KEJURUTERAAN AWAM
4.3 Comparison in Design Method between Manual Calculation and VB
Software
Table 4.1 : Comparison in Design Method between Manual Calculation and VB Software
No. Manual Calculation VB Software
Difficult to calculate Easy to calculate a thickness of pavement
1 design
Probability to make a miscalculation More accurate and can avoid calculation
2 errors
3 Understand about design method More understanding about design method
An usual teaching and learning process It makes teaching and learning process
4 more attractive
Students easy to get stress or demotivated It gives motivation and inspiration to learn
5 for a long calculation solution which is
still not sure the correct answer
6 Not satisfied More satisfied
7 Need a lot of time to design Save time in design
5.0 DISCUSSION
Based on analysis, more than 70% respondents agreed to choose excellent for all
question in questionnaires, which shows that VB application is easier than manual
calculation and VB application is more accurate and avoid calculation errors. Other than
that, VB application also simpler and save time. Besides that, students shows more
understanding in this design method by using VB application as well as T&L has become
more attractive compare to manual method. In addition, VB application also gives
motivation and inspiration to learn, and students had satisfied with VB application
compare to manual calculation. The finding from the data shows 100% respondents
agreed with the using of VB application in T&L.
6.0 RECOMMENDATION
Improvement of VB application must be considered in term of system, graphic
and design including colors so that it will be more attractive towards users. Besides that,
290 e-Digest PSIS 2017
KEJURUTERAAN AWAM
this application also could be developed with more variety of content related to teaching
and learning (T&L) such as short note, tutorial questions etc. to make this application
become effective to user. This application is also recommended to use by other education
institution, industry and local authorities such as PWD.
e-Digest PSIS 2017 291
KEJURUTERAAN AWAM
REFERENCES
Fred L. Mannering et al (2004). Principles of Highway Engineering and Traffic Analysis.
John Wiley and Son Publication, Third Edition.
Huberman, A. M., & Miles, M. B.(1994). Assessing Local Causality in Qualitative Research.
In D. N. Berg & K. K. Smith (Eds.), The self in social inquiry: Researching methods.
Newbury Park, CA: Sage. pp. 351–381.
Jabatan Kerja Raya Malaysia, Arahan Teknik (Jalan) 5/85. Manual On Pavement Design.
Mass Highway, Edition 2006 from http://www.mhd.state.ma.us/downloads/
designGuide/CH_9.pdf.
Evangelos,P. (2008). Microsoft Visual Basic 2008. Wiley Publishing, Inc., Canada.
Robson, C. (2011). Real world research. Chichester, UK: Wiley-Blackwell.
S. Gurcharan and S. Jagdish (2008). Highway Engineering, A.K. Jain (Prop.) For Standard
Publishers Distributors, Delhi, 2008
Ahuja, T.D. (2011). Highway Engineering. Rajinder Kumar Jain, Standard Book House,
Delhi. 2nd ed.
Gunalaan, V. and Hidayu (2014). Study on Comparative Flexible Pavement Thickness
Analysis Using Various Design Method. IJRET: International Journal of Research In
Engineering and Technology.
292 e-Digest PSIS 2017
KEJURUTERAAN AWAM
OIL REMOVAL FROM POME BY USING PALMATIC ACID TREATED SAGO
BARK
Noor Farahin Bain
Jabatan Kejuruteraan Awam
Politeknik Sultan Idris Shah
[email protected]
Nur Shuhada Arbaan
Jabatan Kejuruteraan Awam
Politeknik Sultan Idris Shah
[email protected]
ABSTRACT
Oily wastewater poses toxicity and harmful to the environment. There are two
types of oily wastewater that required treatment before it can be released to the nearby
river. Free oil can be treated by using physical technique such as skimming and
gravitational separation. Meanwhile, emulsified oil in complicated characteristic
needs to be treated by using a sorbent. The objectives of this study is to synthesis
esterified sago bark (ESB) reacted with Palmatic acid, and continue with column oil
sorption study by using esterified sago bark (ESB) in palm oil mill effluent POME via
chromatography column. The oil removal efficiency is analyze by using Response
Surface Methodology (RSM) with difference parameter such as the column bed
height, the size of the sago bark and the flow rate of palm oil mill effluent (POME)
By using natural sorbent, sago barks omit this chemically modified the structure with
Palmatic Acid via esterification process which was used to improve the efficiency the
adsorption. In adsorption process, molecules of the sorbate accumulate on the sorbent
surface without penetrating into the sorbent. The sorbate wastewater produced from
palm oil industry, POME is treated in chromatography column to allow the separation
process to occur. This study was done with several different parameters such as bed
height, flow rate and the particle size. The result revealed that, the maximum height of
bed was used as well as minimum flow rate and particle size that resulted in the oil
removal efficiency to be 94%.
Keywords: Emulsified Oil, Sago Bark, Palmatic Acid
e-Digest PSIS 2017 293
KEJURUTERAAN AWAM
1.0 INTRODUCTION
Malaysia is one of the largest palm oil exporters in the world. If taken into
account the yield annually, palm oil industry produces a huge amount of wastewater
known as Palm Oil Mill Effluent (POME) that caused pollution to environment. Due
to that environmental impact factor, industries should preserve the sustainability of
environmental for future generation. There is always a need for concern over the
protection and management of water resource.
The regulation of effluent standard by the government stated under the
Environmental Quality Act, 1974 provides the legal basis for environmental
management in general and water pollution control. In 1975 the establish of the
department of environment (DOE) and in 1977, DOE announced standards for the
quality of POME discharge into watercourses that became increasingly stringent as
presented in table 1. POME of palm oil mills should be treated well before
discharging it into streams and rivers. POME is a thick brownish viscous liquid waste
which is nontoxic but has unpleasant odor which contains soluble materials that may
have a significant impact on the environment. The composition of POME are mainly
water, oil, suspended solid, dissolved solid and sand.
Wastewater from POME contains emulsified oil and cannot be treated by
using physical techniques such as gravity separation and skimming because the
characteristics of the oil droplet are dispersed in immiscible oil-water phase. Thus, by
using adsorption process of emulsified oil through adsorption and coalescences in
depth filter is likely the fit approaches due to their feasibility and effectiveness (Wahi
et al., 2013) since oil removal by adsorption is an excellent, cost effective and simple
when appropriate sorbent is used.
The media that used as the sorbent to remove the oil is by using natural
sorbent since shows the better oil removal ability compared to synthetic sorbent.
Synthetic products, exhibit a good buoyancy and good oil sorption capacity due to
their high oleophilicity and hydrophobicity (Schrader et al., 1991) however, they
degrade very slowly and may therefore constitute to another source of pollution after
the oil has been removed from the water. Therefore has been considerable interest in
organic natural products (Leonardo et al., 1999).
294 e-Digest PSIS 2017
KEJURUTERAAN AWAM
The efficiency of sorption by using natural sorbent can be enhanced by
chemically modified the structure. Many types of chemical modifications have been
applied to of various plant sources. These include acid hydrolysis, oxidation,
etherification, cross-linking, and esterification. Specific chemical modifications were
applied to meet the requirements of various industrial applications without destroying
granular structure (Karim et al., 2007).
In this study, sago bark is used as the natural sorbent to remove the emulsified
oil from the wastewater of palm oil mill effluent, POME through the column sorption
process by using chromatography column. The POME sample is collected from the
first aerobic pond from the palm oil industry at Kota Samarahan, Sarawak. While the
sago bark is collected from the sago industry from the Mukah, Sarawak
Sago bark comes from the sago palm (Metroxylon sagu). It is a crop that
excellence for sustainable agriculture. Sago palms industry generated a huge waste
that generally polluted the Mukah’s river. Sago bark (SB) is the sago waste from the
extracted of sago flour such as the bark and fiber. Since the fibrous structure of sago
bark, it makes sago bark an excellent oil sorption properties after undergo chemical
treatment and high biodegradability of natural fibers make them particularly attractive
as a possible alternative to synthetic fibers (Rajakovic et al., 2007).
2.0 MATERIALS
The chemical used for the column sorption study of oil removal by using
esterified sago bark. The main raw material is sago bark as the main natural sorbent
for oil sorption study. Then palmatic acid which is long chain carboxylic acid used for
chemically modified sago bark into esterified sago bark. The Catalyst used for
esterification of sago bark to speed up the reaction process is calcium oxide. Ethyl
acetate is the solvent used to react with palmatic acid in reaction. While n-Hexane is
the solvent used for identify the concentration of oil and grease in POME.
The sorbent is synthesis with addition of palmatic acid to chemically modify
the performance of the sago bark via esterification process to change the hydroxyl
group in the sago bark to the esterified sago bark (ESB). The reaction is performed
with addition of ethyl acetate and calcium oxide (CaO) as the catalyst to enhance the
e-Digest PSIS 2017 295
KEJURUTERAAN AWAM
esterification process. The chemicals required for synthesis the ESB are sago bark,
palmatic acid, Calcium oxide, Ethyl acetate and n-hexane . palmatic acid is added
according to the ratio required sago bark 4: Palmatic acid 1. (SB:PA at 4:1).
However, the palmatic acid needs to be mixed in the ethyl acetate solution to
dissolve the solid state particle of the Palmatic acid. Then CaO is added to the mixture
as catalyst. The weight required for the CaO is 10% of the mass of sago bark.
All chemical is added in the round bottle flask with appropriate quantity. The
flask was immersed in oil bath solution to allow the mixture is heated indirectly since
the energy is supplied during heating process to allow the chemical reaction occurred.
This process is called reflux since the vessel open only at the top and water keep
flowing to control the temperature. This technique is useful for performing chemical
reactions under controlled conditions. After the mixture is heated for 4-5 hours, the
mixture was then filtered, washed with ethyl acetate to remove unreacted Palmatic
acid and cooled the ESB to room temperature to next undergo the column sorption
process.
3.0 METHODOLOGY
3.1 Chemically modified sago bark.
Chemically modification of SB is performed through the esterification process
of hydroxyl group with Palmatic acid. The esterified sago bark (ESB) purpose is to
modification the structure to increase the hydrophobicity of sago bark before undergo
the column sorption process to improve the efficiency of oil removal process. The
following reaction (figure 1) shows the esterification process of sago bark.
296 e-Digest PSIS 2017
KEJURUTERAAN AWAM
1) R-OH + Ca-O R-O-
O
SAGO BARK
O
2) R-O- +
HO C16H32 R-O C16H32
PALMATIC ACID ESTERIFIED SAGO BARK
Figure 1.0 : Mechanism process of esterified sago bark.
3.2 Oil adsorption test of POME.
The batch adsorption study of ESB was conducted in a chromatography
column. POME is used as the effluent since the emulsified oil needs to be separated.
POME is needed to be filtered with a sorbent that filled in the column. The sorbent
used is ESB and filled in the column based on different bed heights, different particle
size and also controlling the flow rate of the POME. The table 1.0 shows the
parameters used in order to identify the efficiency of oil removal by using ESB.
Table 1.0: Table of parameters study in oil removal by using ESB in column sorption.
Bed height Flow rate
Particle size ESB
ESB POME
(mm)
(cm) (ml/min)
5 10 15 5 10 15 <0.5 0.55-1 1>
Bed 5
height SB 10
(cm) 15
e-Digest PSIS 2017 297
KEJURUTERAAN AWAM
Flow rate 5
POME 10
(ml/min) 15
Particle <0.5
size SB 0.55-1
1>
(mm)
3.3 Determination oil and grease content in POME.
Determination of oil content in POME before undergo the oil absorption
process in the column is important to identify the different the amount of oil and
grease in the POME after the oil absorption process in the column, the content of oil
and grease is conducted by n-hexane solvent extraction method (USEPA : Method
10056) 20mL sample is transferred to separatory funnel.
Then 9 drops of 1 : 1 HCl : water is added to obtain POME with pH < 2 prior
to addition of hexane (3 mL). The separatory funnel is vigorously shaked for 2
minutes and left for 10 minutes to form 2 layers. The combined organic and oil layer
was collected onto gravity filtration apparatus and dried over NaSO4 anhydrous.
Hexane in oil is removed by using rotary evaporator. Oil sample was dried at 103o C
for 15 minutes, cooled to room temperature and weight. The measured weight is taken
as oil and grease content value. The oil removal efficiency is determined from the
equation below;
Oil removal efficiency (%) = [(Co-Cf)/Co] X 100%
(1)
Where;
Co = Initial oil concentration in POME (mg/l)
Cf = Final oil concentration of POME after filtration with sorbent (mg/l)
298 e-Digest PSIS 2017
KEJURUTERAAN AWAM
4.0 RESULT AND DISCUSSION
4.1 Esterification process.
In a Fischer esterification reaction, a carboxylic acid is exposed to an alcohol
and an acid catalyst which results in the production of an ester and water as products.
These caused the esterification process is preferable to change the structure of SB.
The SB structure contains hydroxyl group (OH) which can be changed into ester
group after undergo the esterification process. The OH group needs to be changed
because able to cause the SB become low hydrophobicity and low buoyancy that
could lead to low oil removal efficiency and oil sorption capacity. SB that contains
OH group is added with palmatic acid in a flask and immersed in oil bath and heated
at reflux for 5 hours.
This process was chosen compared to physical treatment such as grinding and
mechanical pressing since have no effect on the chemical structure of SB, and caused
no effect on the oil removal capacity (Abdullah et al., 2010). The existence of new
peak at 1726cm-1 attributed the esterification of SB was succeed. Hydrophobicity test
shows that after the esterification process, the hydrophobicity of ESB increased by
48%, thus the oil removal efficiency increase up to 94% as shows in table 2.0.
4.2 SEM analysis
SEM analysis able to generate high-resolution images of shapes of objects
(SEI) and show spatial variations in chemical compositions. By using SEM, figure 2.0
shows the images of SB, ESB and ESB + pome showed the different surface
morphology of SB and after undergo the esterification process. After reflux at long
hours, the surface topography was altered due to removal fiber’s wax and cuticle. In
fact, the smoother surface of SB compared to ESB.
The images of ESB caused more pores had formed which allow the
penetration oil from POME compared to SB. After going through the column
filtration, the SEM image of the ESB + POME showed the surface of ESB was
covered with oil, indicated the successful attachment of oil during adsorption process
which resulted the oil content from POME had been reduced.
e-Digest PSIS 2017 299
KEJURUTERAAN AWAM
Table 2.0: Hydrophobicity of SB and ESB.
Sorbent Hydrophobicity Oil removal efficiency in POME
SB (%) (%)
ESB 8 45.36
(Rafeah et al., 2014)
48 94
(a) (b) (c)
Figure 2.0 : SEM images for (a) raw SB, (b) ESB (c) ESB + POME
4.3 Oil sorption study
The initial concentration (CO) for untreated POME is 80 680mg/L. The
concentration is calculated based on the weight of oil obtained from 25ml volume of
POME. The weight obtained for the emulsified oil is 2.017g.
Three different bed heights were used to differentiate the efficiency of the oil
removal efficiency. When using minimum bed height 5cm, with similar flow rate
6ml/min. the effect of the oil removal efficiency different because the different
particle size is used. By using the minimum particle size <0.5mm, the efficiency is
56% and with maximum size up to 1mm and more the efficiency reduced to 53% .The
results, after increased the flow rate to 14ml/min, with same bed height and particle
size, the oil removal efficiency reduced to 51% and 52% only. For intermediate bed
height 10cm and the flow rate also in-between low value and high value, the
efficiency increased to 79% and 77 % respectively as compare to minimum bed
height value.
300 e-Digest PSIS 2017
KEJURUTERAAN AWAM
The experiment was completed with maximum bed height 15cm. from the
table 3.0; it shows that the oil removal efficiency increased up to 94% because the
minimum flow rate was used with minimum particle size. However, when the particle
size of SB was changed to >1mm the result gave different value of oil removal
efficiency reduced to 82% only. Identical with the reading of oil efficiency, after
changing the flow rate up to 14ml/min with similar size SB, ,0.5mm and >1mm the
value of the oil removal became 77% and 79% only.
Therefore, some conclusion was make to describe the oil removal efficiency
based on the resulted obtained. Increasing the bed height and reducing the flow rate
and particle size show the best and higher oil removal efficiency. However, reducing
the bed height and increase the size and the flow rate, it shows that the oil removal
efficiency become lower.
These can be explain through the retention time between sorbent and the
sorbate. The higher contact time and higher adsorbent surface area, which result in
higher adsorption capacity. In fact, smaller particles contain more available surface
area as oil binding sites and therefore increase adsorption. Although more oil can be
captured on larger particles due to increase in oil–sorbent collision, its greater shear
forces reduce possibility of oil retention. While, at the higher flow rates, the contact
time inside the column decrease therefore, the POME solution distributes and diffuses
weakly among the sorbent particle that causes the required time to reach the saturation
quicker and so result in lower removal efficiency.
Table 3.0: Experimental result for oil removal studies
C O = 80 680mg/l
Run Bed height Flow rate Particle size Concentration Oil removal
order (cm) (ml/min) (mm)
efficiency
1 5 6
(mg/l)
(%)
0.5 35 488 56
e-Digest PSIS 2017 301
KEJURUTERAAN AWAM
25 6 1 37 919 53
35
45 14 0.5 39 533 51
5 10
6 10 14 1 39 533 52
7 15
8 15 10 0.75 16 943 79
9 15
10 15 10 0.75 18 556 77
6 0.5 4840 94
6 1 14 522 82
14 0.5 16 943 79
14 1 18 556 77
ESB was investigated for adsorptive removal of emulsified oil in POME.
However the earlier researcher was conducted at ratio of sago bark to stearic acid
(SA) by 4:1, and the percentage catalyst of 15; and refluxing time for, and 8 hours. A
developed two-factor interaction (2FI) model showed that the preparation conditions
of 1:1 SB:SA, 15% catalyst, and 8 hours refluxing time afforded ESB with the
maximum oil removal efficiency of up to 95.52% in POME. The esterification of SB
successfully improved the oil absorptivity for the removal of emulsified oil in POME.
However, in this study, with 5 hours reflux time, and 10% catalyst for esterification
the oil removal efficiency also reach to 94%. However, the oil removal efficiency
different not very significant only 1.52% different only.
4.4 Response surface methodology (RSM) study
Response surface methodology (RSM) is a method to analysis chemical
process using a standard RSM design called a central composite design (CCD) to
optimize the factors from the design expert software. It’s well suited for fitting a
302 e-Digest PSIS 2017
KEJURUTERAAN AWAM
quadratic surface, which usually works well for process optimization by, included
several parameters in the experiment.
A central composite design with 10 experimental run were employed, and the
best model to fit was the two factor interaction (2FI) model. The actual experiment
factors and average response are presented in table 4.0. The experimental factors are
bed height, flow rate of POME and the particle size of ESB. Since the target of
esterification to increase the quality of SB as a sorbent, optimization parameters can
lead to ESB with maximum oil removal efficiency.
Table 4.0: The experimental factors table.
Parameter Low value High value
Bed height 5 15
(cm)
Flow rate (ml/min) 6 14
Particle size (mm) <0.5 >1
ANOVA summary generated by Design Expert software for response surface
2FI model gave the oil removal efficiency the Model F-value of 15.14 implies the
model is significant. There is only a 0.53% chance that a "Model F-Value" this large
could occur due to noise. Values of "Prob > F" less than 0.0500 indicate model terms
are significant.
Figure 3.0 shows the predicted vs actual plot of oil removal efficiency of ESB
for the present study. R-squared was a calculated value from the sample data and was
used to determine the relationship between the actual and predicted oil removal
e-Digest PSIS 2017 303
KEJURUTERAAN AWAM
efficiency values. Zero R-squared value indicated that there was no relationship
between the actual and predicted oil removal efficiency.
The R-squared value of 1 showed that the linear regression model fit the data
perfectly. In this study, the adjusted R-squared value was used instead of R-squared
value due to the nature of R-squared value to decrease when a regressor variable is
dropped from a regression model. The adjusted R-squared gave an estimate of R-
squared in the population from which the sample was drawn. ANOVA result showed
that the adjusted R squared of 0.8371 was in reasonable agreement with the adjusted
R-squared of 0.8914. The predicted R-squared value also indicated that the prediction
of experimental data was satisfactory.
From figure 4.0 shows that the relation of flow rate of POME and the bed
height of column. By reducing the flow rate and increasing the bed height, the high
removal efficiency can be obtained. The longer contact of POME and the sorbent
cause high removal can be obtained by increasing the bed height and lowering the
flow rate of POME.
Figure 3.0: Predicted vs actual data for oil removal efficiency (%)
304 e-Digest PSIS 2017
KEJURUTERAAN AWAM
Figure 4.0: Effect of individual esterification parameters, (A bed height), (B) flow rate, (C)
particle size on oil removal efficiency in POME.
e-Digest PSIS 2017 305
KEJURUTERAAN AWAM
REFERENCES
Abdullah M.A., Rahmah A.U., Z. Man. (2010) Physicochemical and sorption characteristics
of Malaysian Ceiba pentandra (L.) Gaertn. as a natural oil sorbent. J. Hazard. Mater.
177 (1–3) 683–691.
Karim A.A., Nadiha M.Z., Chen F.K., Phuah Y.P., Chui Y.M., Fazilah A. (2008). Pasting
and retro gradation properties of alkali-treated sago. Food Hydrocolloids 22 1044–
1053.
Leonardo Setti, Stefania Mazzieri, Pier Giorgio PifferiSchrader, E.L., (1991). Remediation of
floating, open water oil spills: comparative efficacy of commercially available
polypropylene sorbent booms. Environment Geol. Water Science 17, 157-166.
Rajakovic V., Aleksic G. b, Radetic M. (2007). Efficiency of oil removal from real
wastewater with different sorbent materials. Journal of Hazardous Materials 143 494–
499.
Schrader, E.L., (1991). Remediation of floating, open water oil spills comparative efficacy of
commercially available polypropylene sorbent booms. Environ. Geol. Water Sci. 17,
157-166.
Wahi Rafeah a,b., Chuah Luqman Abdullah a, Thomas Shean Yaw Choong a, Zainab Ngaini
b, Mohsen Mobarekeh Nourouzi (2013). Oil removal from aqueous state by natural
fibrous sorbent: An overview. Separation and Purification Technology. 113 51–63.
306 e-Digest PSIS 2017
KEJURUTERAAN AWAM
MENGKAJI BULUH SEBAGAI BAHAN BINAAN ALTERNATIF DALAM SENI
BINA MODEN DI MALAYSIA,
KAJIAN KES: SURAU BULUH ISLAMIC GREEN VILLAGE, KUALA KANGSAR,
PERAK
Ab Razak Bin Ahmat
Jabatan Kejuruteraan Awam
Politeknik Sultan Idris Shah
[email protected]
Zulhimi Bin Hussin
Jabatan Kejuruteraan Awam
Politeknik Sultan Idris Shah
[email protected]
Mazarina Binti Mad Zain
Jabatan Kejuruteraan Awam
Politeknik Sultan Idris Shah
[email protected]
ABSTRAK
Peranan buluh dalam industri pembinaan bukanlah perkara baharu di Malaysia
kerana, ia pernah menjadi asas penting untuk pembinaan bangunan. Masa berubah
dengan pantas, penggunaan buluh bukan menjadi pilihan utama apatah lagi negara
sudah mula menerima impak teknologi dan penghasilan bangunan menggunakan
bahan yang lebih berkualiti. Justeru, buluh kini tidak lagi digunakan oleh pelbagai
pihak dan biasanya hanya popular untuk binaan wakaf, chalet mahupun resort. Kajian
buluh di Malaysia masih belum dibuat secara terperinci. Kajian ini dijalankan untuk
mengkaji buluh sebagai bahan binaan alternatif dalam merakabentuk bangunan
moden di Malaysia. Bagi pengisian kepada kajian ini, satu kajian kes telah dilakukan
tehadap sebuah surau yang menggunakan bahan binaan buluh iaitu Surau Buluh
Islamic Green Village, yang terletak di Bukit Chandan Kuala Kangsar, Perak yang
mengaplikasikan konsep seni bina moden. Surau ini disenaraikan sebagai institusi
keagamaan pertama di Malaysia yang menjadikan buluh sebagai tema, sebuah surau
diperbuat 100 peratus daripada buluh oleh pengasas Islamic Green Village iaitu
Jamaluddin Ahmad yang mana beliau mendapat idea daripada Seni Bina di
Yogjakarta, Indonesia. Pemilihan buluh betong untuk tiang utama adalah kerana
buluh itu mampu bertahan antara 60 hingga 70 tahun melalui proses perawatan dan
e-Digest PSIS 2017 307
KEJURUTERAAN AWAM
pengawetan khas secara berkala. Struktur buluh yang ringan serta bersifat elastik
menjadikan rekabentuk surau ini lebih dinamik dan unik. Aliran udara yang bersih
serta pencahayaan yang baik meningkatkan lagi keselesaan pengguna bersesuaian
dengan lokasinya di atas bukit dan kawasan hijau. Konsep yang dipilih ditransformasi
supaya rekaan tampak lebih moden walaupun menggunakan buluh sebagai bahan
binaan utama. Kajian ini juga akan merangkumi aspek pemilihan serta kesesuaian
buluh sebagai sumber alternatif dalam pembinaan surau bermula dari ketahanan
struktur sehinggalah kepada nilai estetika bangunan tersebut. Diharap kajian kes ini
dapat memberi manfaat serta kesedaran kepada masyarakat tentang pentingnya
sumber alam yang masih lagi tidak disedari umum.
Kata Kunci : bahan binaan alternatif, Islamic Green Village, senibina moden, buloh
Betong, nilai estetika
1.0 PENGENALAN
Kajian ini bertujuan mengkaji buluh sebagai bahan binaan alternatif dalam
rekabentuk bangunan moden di Malaysia bagi menggantikan penggunaan bahan
binaan lain terutamanya berasaskan sumber kayu. Di mana sumber kayu semakin
sukar didapati di pasaran dalam negara kerana kekurangan sumber dan nilai kos bahan
yang semakin tinggi. Bagi membuktikan bahan binaan berasaskan buluh mampu
menjadi alternatif dalam binaan moden di Malaysia, satu kajian kes telah dilakukan di
sebuah surau yang menggunakan buluh sebagai bahan binaan utama, iaitu Surau
Buluh Islamic Green Village, yang terletak di Bukit Chandan Kuala Kangsar, Perak.
Ia telah disenaraikan sebagai institusi keagamaan pertama di Malaysia yang
menjadikan buluh sebagai tema rekabentuk. Ia telah diilhamkan oleh pengasas Islamic
Green Village iaitu Jamaluddin Ahmad yang mana beliau mendapat idea daripada
Seni Bina di Yogjakarta, Indonesia. Surau ini telah direkabentuk oleh seorang arkitek
dari Bali, Indonesia iaitu Widhi Nugroho bersama jurutera projek iaitu Ahmad
Mazlan Othman dari Malaysia. Konsep seni bina moden yang dipilih ditransformasi
supaya rekaan tampak lebih moden walaupun menggunakan buluh sebagai bahan
binaan utama. Keseluruhan buluh adalah diimport dari Jawa, Indonesia,
memandangkan kepakaran serta bekalan buluh terawat amat terhad di Malaysia.
Manaka pekerja-pekerja mahir juga diimport dari Indonesia bagi menghasilkan kualiti
308 e-Digest PSIS 2017
KEJURUTERAAN AWAM
binaan surau buluh pada tahap yang maksimum. Kaedah kajian secara kualitatif
digunakan untuk kajian kes ini. Kajian tapak, pemerhatian dan temu bual pihak yang
terlibat dengan binaan bangunan surau dilakukakn bagi mengumpul data kajian.
Objektif kajian kes dijalankan adalah bagi mengenalpasti kaedah pembinaan serta
sambungan struktur binaan buluh yang digunakan pada bangunan surau ini.
Memandangkan binaan buluh sering dikaitkan dengan rekabentuk konvensional,
kajian ini turut dilakukan bagi membuktikan binaan bangunan yang berasaskan buluh
juga mampu digunakan untuk membina bangunan berkonsepkan rekabentuk moden
atau seni bina moden. Kaedah rawatan buluh yang digunakan untuk bahan binaan
bangunan ini turut dikaji agar dapat diperkenalkan untuk binaan bangunan buluh pada
masa akan datang.
2.0 KAJIAN LETERATUR
2.1 Buluh Sebagai Bahan Binaan Alternatif
Dunia kini menghadapi masalah global iaitu kekurangan bahan binaan
terutamanya berasaskan sumber kayu. Kekurangan sumber kayu menyebabkan
berlakunya peningkatan harga bahaan binaan di pasaran pada masa kini. Buluh sesuai
dijadikan bahan binaan alternatif kerana ia senang didapati di Malaysia dan ia senang
dibiakkan. Malah buluh sesuai ditanam di kawasan sekitar rumah. Buluh merupakan
sejenis bahan binaan yang mesra alam dan berdaya maju kerana ia mampu menjadi
bahan alternatif untuk menggantikan logam, konkrit dan batu bata pada masa akan
datang. Kos bahan berasaskan buluh adalah lebih efektif kerana ia merupakan sumber
yang senang didapati dan mudah diperbaharui kerana ia senang dibiakkan dan cepat
membesar serta proses penuaian buluh adalah dalam tempoh sekitar usia 3 - 6 tahun.
Buluh adalah daripada keluarga rumput. Ia mampu tumbuh sepanjang 7.5cm sehingga
40cm dalam masa 24 jam [1]. Penggunaan buluh mengikut usia:
<30 hari = Sesuai sebagai makanan (rebung)
6 – 9 bulan = Anyaman (bakul)
2-3 tahun = kotak/ ‘lamination’
3 – 6 tahun = Pembinaan
e-Digest PSIS 2017 309
KEJURUTERAAN AWAM
› 6 tahun = Buluh akan hilang kekuatanya sehingga usia 12 tahun
Namun, buluh juga mempunyai beberapa kelemahan apabila ia digunakan
sebagai bahan binaan. Menurut Sattar [2], saiz diameter silinder buluh yang tidak
sekata akan menyukarkan penggunaannya sebagai struktur bangunan. Ruang kosong
dalam buluh menyukarkan proses sambungan. Malah buluh turut tidak mempunyai
ketahanan semulajadi yang tinggi yang menyebabkan ia senang diserang oleh kulat
dan serangga perosak [2] . Oleh yang demikian, buluh perlu dirawat terlebih dahulu
sebelum ia boleh digunakan sebagai bahan binaan.
2.2 Ciri-Ciri Fizikal Buluh
Buluh mempunyai kadar lembapan yang tinggi dan ianya dipengaruhi oleh
faktor cuaca dan jenis spesis buluh tersebut. Kadar lembapan adalah minimum pada
musim panas, dan mencapai kadar maksimum pada musim hujan. Buluh mempunyai
kadar kekuatan yang tinggi, terutamanya kadar regangan. Kadar regangan buluh
bergantung kepada spesis buluh, saiz dan panjang ruas buluh tersebut [2] Kadar
kekuatan buluh boleh dicapai apabila ia berusia 3 -4 tahun, dan akan menurun selepas
tempoh itu.
3.0 PENYATAAN MASAALAH
Menurut Sattar [2], isu global pada masa kini adalah kekurangan sumber
bahan binaan terutamanya kayu. Kekurangan sumber bahan binaan berasaskan kayu
menyebabkan harganya meningkat tinggi di pasaran. Oleh yang demikian, buluh
merupakan sumber alternatif kepada kayu kerana ia mampu menandingi kualiti dari
segi rekabentuk dan kualiti struktur binaan bangunan berbanding kayu, konkrit dan
batu bata. Buluh mempunyai potensi yang tinggi dalam perkembangan ekonomi
negara yang sedang giat maju kerana kadar pertumbuhannya yang tinggi dan mudah
di dapati di negara asia [2]).
310 e-Digest PSIS 2017
KEJURUTERAAN AWAM
4.0 OBJEKTIF
Mengenalpasti kaedah pembinaan serta sambungan struktur binaan buluh
Mengenalpasti karakter rekabentuk bangunan berasaskan bahan binaan buluh
Mengenalpasti kaedah rawatan buluh bagi mengoptimumkan ketahannya.
5.0 SKOP KAJIAN
Mengkaji buluh sebagai bahan binaan alternatif dalam seni bina moden di
Malaysia. Bangunan Surau Islamic Green Village, Kuala Kangsar, Perak telah dipilih
sebagai kajian kes kerana penggunaan bahan binaan buluh yang maksimum dalam
rekabentuk bangunan tersebut.
6.0 METODOLOGI KAJIAN
Rajah 1. Metodologi Kajian
e-Digest PSIS 2017 311
KEJURUTERAAN AWAM
Penggunaan rekabentuk penyelidikan bagi kajian kes ini adalah menggunakan
data kualitatif yang sesuai memandangkan kajian ini melibatkan pemerhatian
seseorangn individu atau unit, satu kumpulan manusia, keluarga, satu kelas, sekolah,
satu masyarakat, peristiwa atau budaya. Metodologi bagi kajian kes ini merujuk
kepada tatacara melaksanakan kajian atau tatacara mendapatkan maklumat bagi
mencapai matlamat kajian. Secara umum, kajian ini menggabungkan dua bentuk asas
kajian bagi menghasilkan dapatan yang lebih berkualiti. Bentuk kajian yang
dimaksudkan ialah kajian perpustakaan (library resarch) dan kajian lapangan (field
research). Gabungan kedua-dua bentuk kajian ini amat sesuai dengan kaedah kajian
masa kini yang mementingkan kedua-dua elemen tersebut. Kajian lapangan
termasuklah kaedah tinjauan, kajian tapak serta temubual seperti yang ditunjukan
dalam rajah 1.
7.0 KEPENTINGAN KAJIAN
Membuktikan bahan binaan berasaskan buluh mampu menjadi sumber
alternatif dalam seni bina moden di Malaysia.
Menyatakan teknik-teknik sambungan struktur dalam pembinaan buluh di
Surau Islamic Green Village, Kuala Kangsar.
Menyatakan karakter rekabentuk bangunan berasaskan bahan binaan buluh.
8.0 HASIL KAJIAN
8.1 Kaedah Perawatan
8.1.1 Teknik Penebangan
Penentuan kepada kekuatan serta ketahanan struktur bangunan melalui
pemilihan kesesuaian buluh adalah penting bagi memastikan mutu bahan bainaan
buluh adalah terjamin. Antara faktor yang perlu diambil kira untuk mendapatkan
pulangan yang maksimum ialah faktor umur (anggaran umur ditentukan mengikut
warna permukaan buluh yang masih hijau), ketebalan dinding dan panjang ruas
buluh yang digunakan, menurut Skybamboo [3]. Buluh bermutu dijadikan bahan
binaan bangunan berusia dalam lingkungan empat hingga lima tahun. Empat
tahun dikira matang dan layak ditebang. Buluh yang telah dikenal pasti jenis dan
umurnya hendaklah ditebang dari paras pangkal jarak sepanjang 6 meter ke atas
312 e-Digest PSIS 2017
KEJURUTERAAN AWAM
menurut Skybamboo (2011). Penebangan yang baik biasanya dilakukan
pada musim panas kerana pada musim begini buluh didapati
mempunyai kandungan kanji yang rendah. Selain itu, pembiakan bubuk juga tidak
begitu aktif pada musim panas ini memudahkan penebangan dijalankan.
8.1.2 Teknik Perawatan
Sebelum buluh sedia digunakan sebagai bahan binaan bangunan, ia perlu
diawet terlebih dahulu bagi menghindari masalah bubuk, kulat dan cendawan.
Buluh merupakan bahan semulajadi yang bersifat organik. Tanpa tindakan
pengawalan awal untuk melindungi ketahanannya, daya tahan buluh akan
berkurang dari 3 tahun. Tidak seperti kayu keras, struktur batang buluh tidak
memiliki kandungan toksid atau racun. Ditambah pula dengan hadirnya zat gula
yang banyak terkandung dalam buluh yang mengundang mikroorganism. Menurut
Hartiyono [4], kerosakan buluh dapat mempengaruhi kegunaan, kekuatan dan
nilai buluh tersebut. Kerosakan boleh mengakibatkan pelapukan, retak, pecah
serta permukaan yang berlubang. Oleh itu, pengawetan sangat penting terutama
bagi buluh yang digunakan sebagai struktur bangunan, di mana keselamatan
menjadi pertimbangan utama. Selain itu, jika terdapat kerosakan akibat tidak
diawet, akan memerlukan masa serta peningkatan kos. Usia buluh yang dapat
ditingkatkan melalui proses pengawetan akan menguntungkan untuk jangka masa
yang lebih panjang.
Secara tradisionalnya, terdapat tiga langkah pengawetan dikenal pasti
termasuk merendam buluh itu selama sebulan dalam air biasa sebelum disambung
dua minggu lagi di dalam lumpur lalu dijemur hingga kering. Manakala buluh-
buluh yang diimport daripada Yokjakarta, Indonesia sebagai bahan binaan surau
buluh ini, telah melalui kaedah pengawetan moden yang menggunaan bahan kimia
Borax Boric Acid. Menurut Widhi Nugroho [5] tempoh selama sebulan
diperlukan sebelum buluh sesuai digunakan sebagai struktur utama dan bahan
binaan bangunan. Kaedah ini dapat meninggikan tempoh hayat buluh berbanding
dengan tempoh hayat buluh yang tidak diawet. Oleh yang demikian, tempoh
penggunaannya ditentukan mengikut kadar kemerosotan biologi buluh. Buluh-
buluh ini diawet menggunakan sistem pengawetan buluh Vertical Soak Diffusion
(VCD)
e-Digest PSIS 2017 313
KEJURUTERAAN AWAM
VSD merupakan sistem pengawetan buluh dengan penggunaan kaedah
graviti bumi sebagai tekanan menurut Widhi Nugroho [5] seperti yang ditunjukan
pada gambar 1. Sistem ini sangat efisyen dan mudah dalam penerapannya, kerana
tidak memerlukan banyak penggunaan peralatan dan bahan. Dalam penerapannya,
jika menggunakan sistem ini dalam jumlah yang sederhana mahu pun besar adalah
sangat menguntungkan. Prinsip dasar sistem pengawetan ini adalah, memasukan
larutan Borax Boric Acid ke dalam batang buluh. Sebelum itu buluh perlu
dilubangkan sepanjang batang buluh tersebut, sehingga membentuk seperti tabung
atau balang. Setelah larutan tersebut dimasukkan selama 2 minggu, maka larutan
tersebut akan perlahan-lahan keluar dari pori-pori buluh tersebut. Untuk
mengeluarkan keseluruhan larutan, hujung bahagian bawah buluh akan ditebuk
menggunakan bor atau parang. Untuk setiap jenis dan ukuran buluh memerlukan
waktu pengawetan yang berbeza, bergantung ketebalan buluh dan diameternya
[5].
Gambar 1. Sistem pengawetan VSD (Vertical Soak Diffusion)
8.1.3 Teknik Pengeringan
Sebelum buluh boleh digunakan untuk binaan bangunan, proses
pengeringan dilakukan untuk mengurangkan kandungan lembapan yang terdapat
pada buluh. Proses pengeringan buluh memerlukan masa yang lebih panjang
314 e-Digest PSIS 2017
KEJURUTERAAN AWAM
berbanding kayu. Ia kerana, buluh memiliki unsur yang sangat mudah menyerap
kelembapan. Kaedah pengeringan yang digunakan ialah secara pengeringan
udara di bawah bumbung. Semasa pengeringan dijalankan terdapat beberapa
kecacatan berlaku seperti pecah hujung dan pecah pada permukaan buluh.
Kecacatan ini di sebabkan proses pengecutan dan pengembangan yang berlebihan
atau kedua-duanya sekali, ataupun keadaan awal buluh yang kurang baik. Kadar
kandungan lembapan akhir buluh hendaklah berada antara 12-14 % menurut
Maznah [6]. Faktor-faktor yang perlu diambil kira ketika proses pengeringan buluh
menurut Hartiyono [4], Pengawetan Bamboo:
a. Mengelakkan buluh daripada terkena permukaan tanah bagi menghindari serangga
dan kelembapan.
b. Memastikan umur buluh sekurang-kurangnya 3 tahun bagi mengelakkan
pengecutan berlaku.
c. Mengasingkan buluh yang telah terkena serangan hama dan bubuk bagi
mengelakkan jangkitan pada buluh yang lain.
d. Jauhi daripada perubahan kelembapan yang ketara, seperti menjemurnya terus di
bawah cahaya matahari. Ia boleh menyebabkan buluh mudah retak dan pecah.
e. Menyimpan buluh dalam kedudukan menegak untuk mempercepatkan proses
pengeringan buluh serta mengelakan daripada serangan serangga.
f. Buluh perlu dipusing-pusingkan agar pengeringannya sekata.
8.2 Kaedah Binaan Buluh
Bagi bangunan Surau Islamic Green Village ini, hampir 80 % daripada struktur
bangunan adalah menggunakan material buluh. Surau ini menggunakan buluh untuk
struktur tiang dan bumbung. Rekabentuk bangunan ini adalah berkonsepkan terbuka,
di mana tiada dinding digunakan.
8.2.1 Kaedah binaan yang digunakan bagi bangunan ini adalah:
a. Pemasangan secara bolt dan nut
b. Potongan fish mouth
c. Steel bar dan konkrit
8.2.2 Jenis buluh yang digunakan:
e-Digest PSIS 2017 315
KEJURUTERAAN AWAM
a. Struktur bumbung: Buluh Minyak
Buluh ini digunakan kerana saiznya yang sekata, daya elastik yang tinggi serta
senang untuk dibentuk mengikut rekabentuk bangunan. Saiznya yang sederhana
menjadikan ia sesuai digunakan sebagai struktur bumbung bangunan seperti yang
ditunjukkan pada gambar 2.
Gambar 2. Struktur binaan buluh Surau Islamic Green Village
b. Struktur utama (tiang dan rasuk): Buluh Betung
Buluh Betung digunakan kerana mempunya kekuatan elastik yang baik. Ia
mempunyai daya regangan dan mampatan yang tinggi. Ini menjadikan ia sesuai
digunakan sebagai struktur utama dalam binaan bangunan seperti yang
ditunjukkan pada rajah 2 dan rajah 3.
A Ruang solat
Rajah 2: Pelan Lantai: Surau Islamic Wuduk/ tandas
Laluan masuk
Green Village (tanpa skala)
A
Rajah 3: Keratan rentas A-A struktur bangunan Surau Islamic Green Village
316 e-Digest PSIS 2017
KEJURUTERAAN AWAM
c. Struktur utama (tiang dan beam): Buluh Betung
Penyambungan buluh agak sukar kerana ia mempunyai rongga, terdapat bahagian
ruas, serta jarak dan bentuk silinder pada setiap batang buluh adalah tidak sekata.
i. Sistem Sambungan Tiang Dan Asas Bangunan
Tiang merupakan struktur yang paling penting dalam binaan bangunan
surau ini. Ini kerana tiang akan menanggung beban dinding dan bumbung
bangunan. Oleh itu, sistem penyambungan struktur buluh dan asas bangunan
memainkan peranan penting bagi memastikan bangunan ini kukuh. Jenis buluh
yang digunakan untuk membina struktur tiang adalah buluh betung yang diimport
daripada Indonesia. Buluh betung digunakan kerana ianya struktur buluh ini kuat
dan mempunyai daya regangan dan mampatan yang tinggi berbanding buluh jenis
lain.
Terdapat empat rekabentuk penyambungan struktur tiang untuk
menampung beban bumbung dan mengalirkan beban ke asas bangunan. Seperti
yang ditunjukkan pada rajah berikut.
(a) (b)
(c) (d)
Rajah 4: 4 jenis Rekabentuk tiang pada surau
e-Digest PSIS 2017 317
KEJURUTERAAN AWAM
d. Kaedah Pemasangan
i. Sistem Sambungan Tiang Dan Asas Bangunan
Rajah 5: Sistem pemasangan struktur tiang buluh pada asas bangunan
Rajah 6. Kaedah menebuk lubang pada ruas tiang buluh
Langkah 1: (Rajah 6) Struktur tiang buluh diletakkan pada asas bangunan yang telah
ditetapkan. Satu lubang ditebuk pada ruas paling bawah tiang buluh. Seterusnya tiang
buluh disarungkan pada Steel bar yang telah siap dipasang pada asas bangunan.
318 e-Digest PSIS 2017
KEJURUTERAAN AWAM
Rajah 7. Kaedah menuang konkrit ke dalam rongga buluh
Langkah 2: (Rajah 7) Bancuhan konkrit dituang ke dalam rongga buluh mengikut
sukatan yang ditetapkan. Konkrit dibiarkan mengeras dan seterusnya lubang yang
ditebuk pada tiang buluh ditutup semula menggunakan bolt.
ii. Pemasangan antara struktur tiang buluh
Kaedah yang digunakan untuk memasang dan mencantumkan struktur tiang
buluh adalah menggunakan kaedah bolt dan nut. Tiang buluh perlu dipotong terlebih
dahulu mengikut saiz dan bentuk yang bersesuaian supaya tampak kemas dan
mengikut rekabentuk yang dikehendaki. Alatan yang digunakan untuk memotong
buluh ini adalah seperti parang, gergaji ataupun pisau khas seperti yang ditunjukkan
pada rajah 9.
Rajah 8. Contoh sambungan antara tiang-tiang buluh pada surau
e-Digest PSIS 2017 319
KEJURUTERAAN AWAM
Rajah 9. Proses potongan dan pemasangan tiang buluh
Kaedah 1: Saiz rekabentuk penyambungan ditandakan pada tiang buluh
Kaedah 2: Buluh dipotong menggunakan alatan yang bersesuaian
Kaedah 3: Tiang-tiang buluh dipasang dan disambung menggunakan bolt dan nut
supaya
lebih kukuh seperti yang ditunjukkan pada rajah 9.
iii. Sistem Sambungan Tiang Dan Struktur Bumbung
Kaedah yang digunakan untuk memasang antara struktur tiang dan bumbung
adalah menggunakan bolt dan nut. Bagi memastikan penyambungan struktur kukuh,
tiang diampit oleh dua struktur kekuda bumbung dan disambung menggunakan
sambungan bolt seperti yang ditunjukkan pada rajah 10, rajah 11, rajah 12 dan rajah
13.
Pemasangan bolt
PERINCIAN B
Kekuda bumbung
Struktur tiang
Rajah 10. Sambungan antara struktur tiang dan struktur bumbung
320 e-Digest PSIS 2017
KEJURUTERAAN AWAM
Pemasangan bolt
Kekuda bumbung
Struktur tiang
Kekuda bumbung
Rajah 11. PERINCIAN B
PERINCIAN D
Kekuda bumbung
Struktur tiang
Pemasangan bolt
Rajah 12. Kaedah pemasangan struktur tiang dan bumbung
Perincian C Pemasangan bolt
Kekuda bumbung
Perincian C Struktur tiang
Keratan renKteaksuda bumbung
(a)
(b
)
Kekuda bumbung
Potongan “fish mouth”
Struktur tiang
e-Digest PSIS 2017 321
KEJURUTERAAN AWAM
Rajah 13. PERINCIAN D
iv. Sistem Sambungan Struktur Kekuda Bumbung
Bagi struktur kekuda bumbung, kaedah pemasangan secara sandwiched
digunakan bagi menjamin kekuatan struktur tersebut. Struktur tersebut dipasang
mengunakan bolt dan nut seperti rajah 14, rajah 15 dan rajah 16.
PERINCIAN F
Perincian E
(a) Perincian E
Keratan rentas
(b)
Rajah 14. Pemasangan struktur kekuda bumbung
Rajah 15. PERINCIAN F. Pemasangan secara sandwiched serta bolt dan
nut digunakan
322 e-Digest PSIS 2017
KEJURUTERAAN AWAM
3
2
4
1
Rajak 16. Kaedah pemasangan kekuda bumbung dan kemasan menggunakan rotan.
8.3 Karekter Rekabentuk
Rekabentuk bangunan Surau Islamic Green Village ini adalah bercirikan kepada
seni bina yang moden dan digabungkan dengan bahan binaan buluh yang menjadikan ia
kelihatan lebih unik dan menarik. Hasil daripada pemerhatian dan dapatan kajian,
karekter rekabentuk bangunan ini adalah bercirikan kontemporari, mesra alam dan lestari.
Gambar 3. Rekabentuk Surau Buluh yang bercirikan Kontemporari
e-Digest PSIS 2017 323
KEJURUTERAAN AWAM
i. Rekabentuk Kontemporari
Bangunan ini mempunyai ciri-ciri kontemporari apabila rekabentuknya
yang moden dan digabungkan dengan penggunaan bahan yang berasaskan sumber
semula jadi, iaitu buluh seperti yang ditunjukkan pada gambar 3. Ia menjadikan
bangunan ini lebih menarik dan mempunyai nilai estatika apabila lokasinya
terletak di lereng bukit dan berlatar belakangkan hutan. Suasana harmoni dapat
diwujudkan dan ia amat sesuai dengan aktiviti kawasan ini sebagai Pusat Tahfiz
untuk orang-orang dewasa seperti yang dapat dilihat pada gambar 4.
ii. Rekabentuk Mesra Alam
Karekter bangunan ini adalah mesra alam kerana penggunaan bahan yang
berasaskan sumber semula jadi. Gambar 4 menunjukkan rekabentuk ruang yang
terbuka dapat memaksimumkan pengudaraan semula jadi sepanjang hari.
Pencahayaan semulajadi dapat digunakan pada waktu siang hari.
iii. Rekabentuk Lestari
Bangunan ini mempunyai ciri-ciri rekabentuk bangunan lestari berdasarkan
kepada penggunaan bahan binaan yang berasaskan sumber semulajadi, rekabentuk
ruang yang mengoptimumkan penggunaan pengudaraan semulajadi dan pencahayaan
semulajadi, serta lokasi bangunan di kawasan berasaskan sumber semulajadi seperti
yang dapat dilihat pada gambar 4.
Gambar 4. Rekabentuk Surau Buluh yang bercirikan Mesra Alam & lestari
324 e-Digest PSIS 2017
KEJURUTERAAN AWAM
9.0 KESIMPULAN
Buluh merupakan sumber hutan bukan kayu yang berpotensi besar untuk
diketengahkan sebagai alternatif kepada balak, menurut Fahmy [7], sumber
semulajadi ini mempunyai keistimewaan yang tersendiri jika dibanding dengan bahan
binaan yang lain. Ia mempunyai nilai seni yang tinggi serta nilai estetika yang
berkualiti terhadap bangunan. Sifat fizikalnya yang mudah lentur, dapat menghasilkan
rekabentuk yang lebih organik, menarik serta pelbagai berbanding kayu dan konkrit
yang amat terbatas rekabentunya. Melalui kaedah perawatan yang sistematik, ia
mampu bertahan melebihi 50 tahun, menurut Jamaluddin [8]. Sumber semulajadi
yang boleh diperbaharui ini memerlukan 3 hingga 5 tahun untuk sedia digunakan
sebagai bahan binaan bangunan berbanding sumber kayu yang memerlukan sehingga
40 tahun untuk sedia digunakan. Kekuatan strukturnya adalah setanding binaan
konkrit dan ianya adalah ringan. Namun buluh juga mempunyai beberapa kekurangan
seperti saiz yang tidak sekata daripada pangkal hingga hujungnya dan ia akan
merumitkan kerja-kerja rekabentuk serta pembinaan. Selain itu juga, buluh yang tidak
dirawat dengan sempurna, akan menyebabkan buluh mudah rosak dan perlu diganti
seterunya melibatkan kos yang tinggi. Selain itu juga, kekurangan tenaga mahir di
Malaysia dalam kemahiran perawatan buluh serta jurubinaan, merupakan masalah
utama dalam memartabatkan buluh sebagai bahan alternatif dalam rekabentuk moden
di Malaysia. Melalui kajian ini, diharap dapat memberi pendedahan, pengetahuan
serta kesedaran terhadap sumber alam yang masih banyak lagi yang belum diterokai.
10.0 PENGHARGAAN
Setinggi-tinggi penghargaan kepada pihak tertinggi pentadbiran akademik
serta Unit Seni Bina, Politeknik Sultan Idris Shah yang telah banyak membantu dan
memberi bimbingan dalam menghasilkan serta melakukan proses penyelidikan kajian
ini. Penghargaan juga kepada semua warga pensyarah Seni Bina yang membantu
secara langsung dan tidak langsung atas sumbangan idea dan pandangan mereka
dalam memantapkan lagi penyelidikan ini. Terima kasih juga atas kerjasama serta
tunjuk ajar daripada pengasas Islamic Green Village iaitu Encik Jamaluddin Ahmad
yang banyak memberikan kami peluang dan berkongsi ilmu bagi memperincikan lagi
penyelidikan yang telah dibuat ini. Akhir sekali, terima kasih juga kepada keluarga
dan warga kerja Politeknik Sultan Idris Shah yang memberi dorongan serta sokongan
bagi melaksanakan penyelidikan ini dengan jayanya.
e-Digest PSIS 2017 325
KEJURUTERAAN AWAM
RUJUKAN
[1] Ar. Dhenesh Raj and Ar. Bindu Agarwal (2014). Bamboo as Building Material. Journal
of Civil Engineering and Environmental Technology, 56-61, Volume 1, Number 3.
[2] MA. Sattar (1995). Traditional Bamboo Housing in Asia : Present Status anf Future
Prospect. Bamboo, People and the Evironement, Proceedings of the Vth International
Bamboo Workshop and IV International Bamboo Congress Ubud, Bali Indonesia, 19-22.
[3] Sky Bamboo Entreprise, Proses Buloh.
http://skybamboonotesyahoocom.blogspot.my/p/proses-buluh.html
[4] Hartiyono (2014)
https://arsitekturbambu.wordpress.com/2014/10/23/cara-pengawetan-bambu-ii/
[5] Widhi Nugroho (2010)
http://aristekturdesign.blogspot.my/2010/09/sistem-pengawetan-bambu-vsd-vertical.html
[6] Maznah Zainol, Buloh dan Nilai Komersialnya, (A61244)
http://www.hbp.usm.my/1b/rumpun/BULUH/4cultivation.htm
[7] Ashriq Fahmy Ahmad, Utusan Malaysia, 2016
http://www.karangkraf.com/berita/bina-surau-guna-buluh-1.537863
[8] Jamaluddin Ahmad, karangkraf (2016)
http://www.karangkraf.com/berita/bina-surau-guna-buluh-1.537863
326 e-Digest PSIS 2017
KEJURUTERAAN ELEKTRIK
ROBOT SOCCER: ALTERNATIVE LIGHTING DESIGN USING
REFLECTIVE LIGHTING
Mohd Farhan ‘Uzair Bin Paisan
Jabatan Kejuruteraan Elektrik
Politeknik Sultan Idris Shah
[email protected]
Ilmi Bin Mohd Ariffin
Jabatan Kejuruteraan Elektrik
Politeknik Sultan Idris Shah
[email protected]
Mohd Azizy Bin Adnan
Jabatan Kejuruteraan Elektrik
Politeknik Sultan Idris Shah
[email protected]
Mohd Zul Fahmi Bin Mohd Zawawi
Jabatan Kejuruteraan Elektrik
Politeknik Sultan Idris Shah
[email protected]
Helmi Bin Jamaludin
Jabatan Kejuruteraan Elektrik
Politeknik Sultan Idris Shah
[email protected]
ABSTRACT
A good light intensity distribution on the surface of robot soccer field is
crucial to obtain an optimum robot soccer vision system calibration. Any decrement
in light intensity will affect the overall performance of the robots during the match. In
any robot soccer match, it is known that, the field edges always receive uneven
lighting intensity. This is due to the poor design and unsuitable location of lighting
system armature. The aim of this research is to develop an enhanced version armature
with the help of wide-angle parabolic aluminium reflector. The comparison between
the lux value and the robot recognition rate generated by both the normal and
enhanced lighting system will be analysed. The SPSS (ver. 17.0) program is used to
analyse the significance of the results produced by both lighting systems. The results
show that the enhanced lighting system had significantly increased the average lux
value across the field and the average robot detection rate with 0.05 significance level.
This also demonstrates that the robot soccer lighting system can be enhanced by using
a cheap material such as in the proposed design.
e-Digest PSIS 2017 327
KEJURUTERAAN ELEKTRIK
Keywords— Robot soccer, lux, reflective, light intensity, lighting design.
1.0 INTRODUCTION
The actual FIRA regulation states that the lighting system should provide a
consistent minimum of 500 lux across the surface of the pitch. Lighting system is one
of the crucial aspects of the game because it affects the image quality in the robot
detection. It is crucial to have an even lighting spread across the field. Real world
image transformation cannot be achieved if the lighting design cannot produce
suitable illumination to provide good contrast for the image [1]. The study of ‘Digital
Image Processing in Robot Vision” stated that certain areas on the field, especially
areas near the edge of the field receive uneven lighting intensity [5].
We are using a robot soccer system from the Merlin Systems Corp. Ltd.
However, Merlin does not specify the lighting requirement, type of lamp, design of
lamp armature and its position in order for the vision system to recognize successfully
all the robots. Besides that, there is no recommended lux tolerance given as a guide to
achieve 100% robot recognition across the field.
A study of light setting for the Merlin system had been done recently in [2].
The research concludes that two armatures with 6 normal fluorescent lamps are
enough for the lighting system. They also claimed that this setting promises to create
a uniform illumination. This finding in some way is good information for the robot
soccer community because it had proved that a normal cheap lighting system is
enough to run the game. However, they did not report on the robot detection result
which is definitely the crucial part of the vision system calibration. Besides that, we
also found that their proposed lighting system can be further enhanced using another
cheap material such as a reflector on the armature.
In this research we develop an enhanced version of the two armatures with the
help of reflectors. We then report the lux values and robot recognition rates of new
lighting system and the normal lighting system as benchmarks. The SPSS program is
used to analyse the significance of those results. This paper is divided into five
sections: Section 1 for Introduction, Section 2 for Materials and Methods, Section 3
for Experiments, Section 4 for Results and Discussion and finally we conclude in
Section 5.
328 e-Digest PSIS 2017
ARMATURE NO. 1KEJURUTERAAN ELEKTRIK
ARMATURE NO. 2
1.1 MATERIALS
1) Merlin Robot Soccer System: The overall system configuration used in our research
is based on the Merlin robotic system shown in Fig.1. The system is an integration of
both hardware and software that consists of overhead camera, gantry, personal
computer, bluetooth communication, lighting system, robots and field [2],[3].
Fig. 1 The overall robot soccer system
2) Lighting System: The normal setting for robot soccer lighting consists of two
armatures lighting without reflector (refer Fig. 2 and Fig. 3).
Fig. 2 Field grid with two armatures lighting
e-Digest PSIS 2017 329
KEJURUTERAAN ELEKTRIK
50 cm 50 cm
Fluorescent lamp
245 245
cm cm
Fig. 3 Two armatures position of normal lighting
(without reflector)
3) Fluorescent Lamp & Reflector: 6 fluorescent lamps - PHILIPS 36 Watt / 50 Hz
(Cool Daylight) and 6 reflectors are used in this research (Fig. 4). The reflectors are
the wide-angle parabolic aluminium reflector with cut-off angle α. It is most widely
used because it can produce a wide-beam light distribution, robust and subjected to
high temperature [4].
Fig. 4 Wide-angle parabolic aluminium reflector with cut-off angle α
330 e-Digest PSIS 2017
KEJURUTERAAN ELEKTRIK
Fig. 5 shows the concepts diagram of the reflectors integration in the lighting system
meanwhile Fig. 6 represents the completed system of reflective lighting.
Reflectors
Fig. 5 Two armatures of reflective lighting
Fig. 6 Completed system of reflective lighting
4) Light Meter: The light meter used in light intensity measurement is based on the
following specification: Light Meter (LX–103) made by Lutron Company (Fig. 7).
Fig. 7 Light meter
e-Digest PSIS 2017 331
KEJURUTERAAN ELEKTRIK
5) Field: The field (220cm x 180cm) has been marked in blue grid as shown in Fig. 8.
The grid is made of identically sized small boxes of 20cm x 20cm across the field.
Fig. 8 Field grid
Fig. 9 shows the division of the field into three main regions: Outer Region
(72 points), Middle Region (40 points) and Center Region (8 points). The purpose of
this division is to measure the light intensity and robots detection to certain areas on
the field, especially areas near the edge of the field that usually receive the light
poorly [5].
Outer Region
Middle Region
Fig. 9 Division of field
332 e-Digest PSIS 2017
KEJURUTERAAN ELEKTRIK
2.0 EXPERIMENTS
1) The Normal Lighting Experiment:
The implementation of the Normal Lighting experiment consists of two phases:
1. Measurement of light intensity (lux value).
2. Robot recognition percentage observation.
The normal lighting set up has been decided as the control experiment for this
research. We used the provided basic equipments from the Merlin as they are without any
modification. Only six fluorescent lamps are used without any artificial light added (refer
Fig. 3). In the first phase, light intensity was measured at each points of the grid (120
points for a field).
In the second phase, a robot with striker patch (Robot No.5) was placed at the
center of each grid boxes while the recognition percentage was observed through the
Robot Soccer Engine Software.
The camera aperture was set to 50% opening. The purpose of using 50% aperture
opening is to replicate the poor lighting condition during robot soccer tournament as
shown in Fig. 10. In this setting, the outer region received a poor lighting intensity. This
may caused by uneven lighting distribution along the edge of the field [5].
Fig. 10 A snapshot of field view using 50% aperture opening from the Robot Soccer Engine
Software.
2) The Reflective Lighting Experiment:
The implementation of the Reflective Lighting experiment consists of three phases:
1. Wide-angle parabolic aluminium reflector installation.
2. Measurement of light intensity (lux value).
3. Robot recognition percentage observation.
e-Digest PSIS 2017 333
KEJURUTERAAN ELEKTRIK
In the first phase, six wide-angle parabolic aluminium reflectors were installed to the
fluorescent lamps. The detailed information of the reflector is shown in Fig.4. For the
second and third phase, the same procedure as The Normal Lighting Experiment is
applied.
3.0 DATA COLLECTION METHODS AND ANALYSIS
Both experiments for Normal Lighting and Reflective Lighting were
conducted 5 times each to obtain the consistency and accuracy of the data. The results
then will be plotted in the graph. The SPSS program is used to analyse the
significance of the results produced by both lighting systems focusing on the outer
region.
4.0 RESULTS AND DISCUSSIONS
1) Normal Lighting Condition:
The lux values of the normal lighting across the field are plotted in Fig. 11.
The result shows that the light intensity was focused at the centre of the field. The
lowest lux value is measured as 198 meanwhile the highest lux value is 250. Based on
Fig. 13, the maximum average of lux value and the robot recognition percentage at the
center region of the field are 248 and 98% respectively. The average of lux value and
the robot recognition percentage in outer region are the lowest with 219 and 49%
respectively.
Fig. 11 Lux value for Normal Lighting Condition
334 e-Digest PSIS 2017
KEJURUTERAAN ELEKTRIK\
2) Reflective Lighting Condition:
The lux values of the reflective lighting across the field are plotted in Fig. 12.
The 3D graph shows that there are improvements in the lux values. The minimum and
maximum lux values are recorded as 345 and 421 respectively. The average lux value
in all region gain incremental values as shown in Fig. 13. The robot recognition
percentage in outer and middle regions also increased, meanwhile in the center region
remains constant.
The comparison between the Normal Lighting and Reflective Lighting
condition is shown in Fig. 13. The values in the figure are grouped based on the outer,
middle and centre region of the field. The numerical values of the figure can be
observed in Table I. The percentage improvement of the average lux values and robot
recognition are shown in Table II.
Fig. 12 Lux value for Reflective Lighting Condition
e-Digest PSIS 2017 335
KEJURUTERAAN ELEKTRIK
Fig. 13 Comparison between average lux value and average robot recognition using Normal
and Reflective Lighting
Table I
Average Lux Value And Average Robot Recognition Data For Normal And Reflective
Lighting Based On Field Area Division Of Outer, Middle And Center Region
Average Lux Average Robot
Value Recognition
Region Norma
l
Lightin Reflecti Normal Reflecti
g ve Lightin ve
Lighting g Lighting
Outer Region 219 345 49 97
Middle 236 410 94 98
Region
Center 248 421 98 98
Region
Table Ii
336 e-Digest PSIS 2017
KEJURUTERAAN ELEKTRIK
Improvement Percentage Of Average Lux Values And Average Robot Recognition For
Normal And Reflective Lighting Based On Field Area Division Of Outer, Middle And Center
Region
Region Percentage Percentage
Improvement Improvement of
Outer of Average Lux Average Robot
Region Value (%) Recognition
Middle (%)
Region
Center 57.53 97.96
Region
73.73 4.26
69.76 0.00
Hypothesis Pair 1:
Ho: μ Lux Value for Normal Lighting = μ Lux Value for Reflective Lighting
Ha: μ Lux Value for Normal Lighting ≠ μ Lux Value for Reflective Lighting
Hypothesis Pair 2:
Ho: μ Robot Recognition rate for Normal Lighting = μ Robot Recognition rate for Reflective Lighting
Ha: μ Robot Recognition rate for Normal Lighting ≠ μ Robot Recognition rate for Reflective Lighting
Ho = Null Hyphothesis, Ha = Alternative Hyphothesis , μ = mean
We conducted a t-test for paired samples to analyse the significance of the results
produced by both lighting systems focusing on the outer region. The t-test for paired
samples (also referred to as a t-test for correlated groups) is used to compare the means of
two samples of scores when there is a logical basis for connecting each score in one
sample with a particular score in the other samples [6].
e-Digest PSIS 2017 337
KEJURUTERAAN ELEKTRIK
From the result, the significance value for both pair 1 and pair 2 are less than 0.05,
thus the null hypothesis are rejected. The pair 1 of the t-test indicates that the difference
between the mean of lux value of the normal lighting and reflective lighting is significant
and not coincident with t(71) = 33.790 and p < 0.05. The result of the pair 2 also shows
that robot detection rate had increased significantly with t(71) = 11.846 and p < 0.05.
5.0 CONCLUSIONS
We have introduced the alternative lighting design for robot soccer tournament
that can improve the illumination and robot recognition by using cheap material such
as the wide-angle parabolic aluminium reflector. The results from this method has
been analysed in Statistical Package for The Social Science (SPSS) program and
proved to be significant as discussed in Section IV. The overall result shows that by
adding the wide-angle parabolic aluminium reflector, the lux value and robot
recognition percentage can be improve significantly compared to the normal lighting
system without the reflector.
338 e-Digest PSIS 2017
KEJURUTERAAN ELEKTRIK
REFERENCES
[1] R. Shacked and D. Lischinski, “Automatic Lighting Design using a Perceptual Quality
Metric,” The Eurographics Association and Blackwell Publishers, vol. 20, Number 3, pp.
1-12, 2001.
[2] A. H. Pratomo, M. S. Zakaria, A. S. Prabuwono and K. Omar, “Illumination System for
Autonomous Robot,” Jurnal of Engineering and Applied Sciences, 4 (5-6), pp. 342-347,
2009.
[3] Robot Soccer Engine V2.5-User Manual, Merlin Systems Corp. Ltd., 2004.
[4] G. Rüdiger and H. Harald, Handbook of Lighting Design, 1st ed., ERCO Edition, Berlin,
Germany: Verlag Vieweg, 1992.
[5] N. Henderson, “Digital Image Processing in Robot Vision,” Deg. Eng. Thesis, School of
Computer Engineering, University of Newcastle, Australia, 2005.
[6] L. D. Stern, A Visual Approach to SPSS for Windows - A Guide to SPSS 15.0, Allyn and
Bacon, Boston, United States of America: Pearson Education Inc, 2008.
e-Digest PSIS 2017 339