∂U / ∂X + λ∂U B / ∂X = −µ
A
∂T / ∂X
∂U / ∂Y
A A = −µ
∂T / ∂Y
∂U / ∂Y
λ B B = −µ
∂T / ∂Y
Από τις τρεις τελευταίες εξισώσεις συνεπάγεται ότι:
∂U / ∂X + λ∂U / ∂X ∂U / ∂Y
=A B A A
∂T / ∂X ∂T / ∂Y
∂U / ∂Y ∂U / ∂Y
A A =λ B B
∂T / ∂X ∂T / ∂X
οι οποίες με τη σειρά τους είναι ισοδύναμες με τις ακόλουθες:
∂U / ∂X ∂U / ∂X ∂T / ∂X
A +λ B =
∂U / ∂Y ∂U / ∂Y ∂T / ∂Y
AA AA
∂U ∂U
A =λ B
∂Y ∂Y
AB
Από τις τελευταίες λαμβάνουμε ότι:
∂U / ∂X λ∂U / ∂X ∂T / ∂X
A+B = ⇔
∂U / ∂Y λ∂U / ∂Y ∂T / ∂Y
AA BB
∂U / ∂X ∂U / ∂X ∂T / ∂X
A +B = ⇔
∂U / ∂Y ∂U / ∂Y ∂T / ∂Y
AA BB
MRSA + MRSB = RPT
347
Ανταγωνιστική αγορά με
δημόσια αγαθά
Όταν έχουμε μία ανταγωνιστική οικονομία και όταν το αγαθό Χ είναι
δημόσιο:
α) οι παραγωγοί θα προμηθεύσουν στην αγορά τον συνδυασμό που
ικανοποιεί τη σχέση:
RPT = PX/PY
β) οι καταναλωτές θα επιλέξουν τον συνδυασμό που ικανοποιεί:
MRSA = PX/PY και
MRSB = PX/PY
Συνεπώς, και όταν το Χ είναι δημόσιο αγαθό, η ανταγωνιστική οικονομία
θα μας δώσει μία κατανομή αγαθών που ικανοποιεί:
MRSA = MRSB = RPT
Η κατανομή αυτή δεν θα είναι αποτελεσματική γιατί δεν ικανοποιεί τη
συνθήκη για την αποτελεσματικότητα μίας κατανομής, MRSA + MRSB = RPT που
αποδείξαμε προηγουμένως για την περίπτωση που το ένα από τα δύο αγαθά είναι
δημόσιο.
Αποτελεσματική κατανομή
δημοσίων και ιδιωτικών
αγαθών (διαγραμματικά)
Λαμβάνουμε μία οικονομία στην οποία υπάρχουν 2 καταναλωτές. Ο
δείκτης 1 υποδηλώνει τον πρώτο και ο 2 τον δεύτερο. Υ είναι το ιδιωτικό αγαθό και
Χ το δημόσιο.
Η ποσότητα του δημοσίου αγαθού Χ* που έχουμε σε κατάσταση
ισορροπίας σε μία ανταγωνιστική οικονομία παρουσιάζεται στο Διάγραμμα 6.
Στο διάγραμμα 6: MRS1 + MRS2 είναι το οριζόντιο άθροισμα των MRS1 και
MRS2.
348
Στο Διάγραμμα 7 δίδεται η ποσότητα του δημοσίου αγαθού Χ που
ικανοποιεί την συνθήκη για μια αποτελεσματική κατανομή των δύο αγαθών.
Στο διάγραμμα 7 MRS1 + MRS2 είναι το κάθετο άθροισμα των MRS1 και
MRS2.
Διάγραμμα 6 Κατανομή αγαθών Διάγραμμα 7Κατανομή αγαθών σε
ανταγωνιστική οικονομία σε ανταγωνιστική οικονομία
MRS MRS
RPT RPT
MRS2 MRS1+MRS2
RPT
MRS2
MRS1+MRS2
MRS1 MRS1
Εξωτερικές oικονομίες υπό την
μορφή δημοσίων αγαθών
Οι λύσεις στο πρόβλημα των εξωτερικών οικονομιών που παρουσιάζονται
παραπάνω δεν θα αποδώσουν το επιθυμητό (μια αποτελεσματική κατανομή) αν
η εξωτερική οικονομία έχει τα χαρακτηριστικά των δημοσίων αγαθών π.χ. όπως
συμβαίνει στην περίπτωση της ατμοσφαιρικής ρύπανσης.
Αν πάρουμε για παράδειγμα την περίπτωση που έχουμε δύο
καταναλωτές και δύο αγαθά ενέργεια, Ε, και ατμοσφαιρική ρύπανση, ΑΡ. Για
349
την επίτευξη μιας άριστης κατανομής θα πρέπει να επιτύχουμε μεγιστοποίηση της
κοινωνικής ευημερίας, δηλαδή, να λύσουμε το πρόβλημα που ακολουθεί:
max W ( U1 ( E1 , AP ) , U2 ( E2 , AP )
E1, E2, AP
δοθέντος του περιορισμού T ( AP, E1 + E2 ) = 0
όπου W ( U1 , U2 ) είναι μια συνάρτηση κοινωνικής ευημερίας και T(AP, E1+
E2) = 0 δίνει την καμπύλη μετασχηματισμού ενέργειας σε ατμοσφαιρική ρύπανση.
Από την παρουσίαση του προβλήματος των δημοσίων αγαθών που
προηγήθηκε σε προηγούμενη ενότητα γνωρίζουμε ότι θα έχουμε μια
αποτελεσματική κατανομή αν:
MRS1 + MRS2 = RPT
Για τον προσδιορισμό μιας αποτελεσματικής κατανομής θα πρέπει στην
περίπτωση αυτή να προσδιορίσουμε τον οριακό λόγο υποκατάστασης ενέργειας
σε ατμοσφαιρική ρύπανση και για τους δύο καταναλωτές. Ο μόνος τρόπος όμως
για να το μάθουμε αυτό είναι να τους ρωτήσουμε. Η απάντηση όμως των
καταναλωτών θα εξαρτηθεί από τις πεποιθήσεις των καταναλωτών σχετικά με
τον τρόπο χρηματοδότησης της πολιτικής που θα επιλεχθεί. Εάν οι καταναλωτές
γνωρίζουν (ή πιστεύουν ότι γνωρίζουν) τον τρόπο με τον οποίο θα επιβληθεί η
φορολογία τότε έχουν κίνητρο να πουν ψέματα, με αποτέλεσμα η άριστη κατανομή
να μην μπορεί να επιτευχθεί ρωτώντας τους καταναλωτές να δηλώσουν τον οριακό
τους λόγο υποκατάστασης ενέργειας σε ατμοσφαιρική ρύπανση.
Το θεώρημα του Coase
Το θεώρημα του COASE αναφέρεται στις περιπτώσεις που υπάρχουν
εξωτερικές οικονομίες και λέει ότι οι ομάδες αντικρουόμενων συμφερόντων θα
μπορέσουν να φτάσουν σε μία συμφωνία άριστης κατανομής αν το κόστος των
διαπραγματεύσεων είναι μηδέν.
Για την περίπτωση του παραδείγματος των εξωτερικών οικονομιών με τη
βιομηχανία χαλκού και τους ψαράδες που παρουσιάσθηκε σε προηγουμένη
ενότητα (βάσει του θεωρήματος του Coase) έχουμε ότι διαπραγματεύσεις θα
μπορέσουν να μας δώσουν μία άριστη κατανομή.
Οι διαπραγματεύσεις θα προσδιορίσουν την αμοιβή της βιομηχανίας για
τον περιορισμό της ρύπανσης του ποταμού (η αμοιβή της θα πρέπει να είναι
τουλάχιστον ίση με την μείωση των κερδών της και όχι μεγαλύτερη της αύξησης
των κερδών των ψαράδων).
Η αποτελεσματική κατανομή, η οποία θα προκύψει μέσω
διαπραγματεύσεων, είναι ανεξάρτητη της δομής των δικαιωμάτων ιδιοκτησίας.
350
Εισαγωγή χρόνου στο μοντέλο
γενικής ισορροπίας
Η εισαγωγή του χρόνου στο μοντέλο γενικής ισορροπίας γίνεται
εύκολα αν αναλογισθούμε ότι στον ορισμό των αγαθών από οικονομικής άποψης
υπάρχει και μια διάσταση χρόνου. Δηλαδή, το ίδιο προϊόν διαθέσιμο σε δυο
διαφορετικές περιόδους αποτελεί διαφορετικό αγαθό από οικονομικής άποψης.
π. χ. μπορούμε να ορίσουμε ότι το Χ είναι το αγαθό Α διαθέσιμο τη στιγμή
t και Υ είναι το ίδιο αγαθό διαθέσιμο τη στιγμή m. Έτσι θα πρέπει μάλλον να
σκεφτόμαστε ότι τα αγαθά Χ και Υ είναι συμβόλαια παράδοσης του προϊόντος
Α τις στιγμές t και m αντίστοιχα και ότι ΡX και ΡY είναι οι τιμές των συμβολαίων
αυτών τη στιγμή 0 (σήμερα).
Όλα τα προηγούμενα αποτελέσματα της μικροοικονομικής ανάλυσης
εξακολουθούν να ισχύουν (περί αποτελεσματικότητας της ανταγωνιστικής
οικονομίας κλπ.) και για την περίπτωση των αγαθών / συμβολαίων παράδοσης
προϊόντων που ορίσαμε παραπάνω.
Στη γενική ισορροπία τώρα απαιτείται ότι ΖΗΤΗΣΗ = ΠΡΟΣΦΟΡΑ για όλα
τα συμβόλαια.
Γενική ισορροπία σε
διαφορετικές καταστάσεις του
κόσμου
Εάν υπάρχει αβεβαιότητα σχετικά με τις μελλοντικές καταστάσεις της
φύσης ή του κόσμου, για να κάνουμε την ανάλυση μας, μπορούμε να θεωρήσουμε
ότι τα αγαθά Χ και Υ είναι συμβόλαια υπό όρους.
π. χ. Χ = 1 παγωτό αν ο καιρός είναι καλός αύριο και Υ = 1 παγωτό αν ο
καιρός είναι άσχημος αύριο. Οι επιχειρήσεις προσφέρουνε και οι καταναλωτές
αγοράζουνε σήμερα συμβόλαια υπό όρους αυτού του τύπου.
Όλα τα προηγούμενα αποτελέσματα της μικροοικονομικής ανάλυσης
εξακολουθούν να ισχύουν και για την περίπτωση των αγαθών / συμβολαίων
υπό όρους που ορίσαμε παραπάνω.
Στην γενική ισορροπία ΖΗΤΗΣΗ = ΠΡΟΣΦΟΡΑ για όλα τα συμβόλαια υπό
όρους που υπάρχουν στην οικονομία.
351
352
ΠΑΡΑΡΤΗΜΑ 4
ΕΝΟΤΗΤΕΣ
ΜΕΛΕΤΗΣ
Το παρόν βιβλίο αποτελείται από 15 Κεφάλαια και 4 Παραρτήματα. Η μελέτη της
ύλης με τη μέθοδο της εξ αποστάσεως εκπαίδευσης προτείνεται να γίνει από τους
φοιτητές με βάση τις παρακάτω ενότητες μελέτης.
ΕΝΟΤΗΤΕΣ ΜΕΛΕΤΗΣ
1. Τι είναι βιομηχανική οργάνωση; ΚΕΦΑΛΑΙΟ 1 & ΠΑΡΑΡΤΗΜΑ 1 & 2
2. Τα οικονομικά της ευημερίας ΚΕΦΑΛΑΙΟ 2
3. Θεωρία επιχείρησης ΚΕΦΑΛΑΙΟ 3 & ΚΕΦΑΛΑΙΟ 13
4. Θεωρία Αγοράς ΚΕΦΑΛΑΙΟ 14
(14.1 – 14.8)
5. Μονοπώλιο και δύναμη αγοράς ΚΕΦΑΛΑΙΟ 4 & ΚΕΦΑΛΑΙΟ 14
(14.9 – 14.15)
6. Διάκριση τιμών ΚΕΦΑΛΑΙΟ 5
7. Ποιότητα προϊόντος ΚΕΦΑΛΑΙΟ 6
8. Ολιγοπώλιο και ΚΕΦΑΛΑΙΟ 7 & ΚΕΦΑΛΑΙΟ 14
τιμολόγηση (14.18)
9. Μονοπωλιακός ανταγωνισμός ΚΕΦΑΛΑΙΟ 14
(14.16 – 14.17)
10. Διαφοροποίηση προϊόντος ΚΕΦΑΛΑΙΟ 8
11. Εισαγωγή στη στρατηγική συμπεριφορά ΚΕΦΑΛΑΙΟ 9
12. Εμπόδια εισόδου ΚΕΦΑΛΑΙΟ 10
13. Ανάπτυξη νομικού πλαισίου για τις ΚΕΦΑΛΑΙΟ 11
αγορές
14. Άριστη τιμολόγηση στο φυσικό ΚΕΦΑΛΑΙΟ 12
μονοπώλιο
15. Ειδικά θέματα ΚΕΦΑΛΑΙΟ 15 & ΠΑΡΑΡΤΗΜΑ 3
353
Η μελέτη του παρόντος βιβλίου μπορεί να ολοκληρωθεί σε 8 πλήρεις εβδομάδες
μελέτης, με την εβδομαδιαία κατανομή των παραπάνω ενοτήτων μελέτης που
δίδεται στον παρακάτω πίνακα.
Α/Α ΕΒΔΟΜΑΔΩΝ ΕΝΟΤΗΤΑ ΜΕΛΕΤΗΣ
ΜΕΛΕΤΗΣ 1, 2
3, 4
1 5, 6
2 7, 8
3 9, 10
4 11, 12
5 13, 14
6 15
7
8
Για κάθε Ενότητα Μελέτης (ΕΜ) δίδονται στη συνέχεια οι: σκοποί της, μία
εισαγωγή, λέξεις κλειδιά και βασικά ερωτήματα. Ασκήσεις αυτοαξιολόγησης
δίδονται στο Παράρτημα 5.
ΕΝΟΤΗΤΑ ΜΕΛΕΤΗΣ 1 ΚΕΦΑΛΑΙΟ 1 & ΠΑΡΑΡΤΗΜΑ 1 & 2
Τι είναι βιομηχανική οργάνωση;
Ολοκληρώνοντας το κεφάλαιο θα πρέπει να είστε σε θέση :
- Να ορίζετε τη βιομηχανική οργάνωση
- Να περιγράφετε με τι ασχολείται η βιομηχανική οργάνωση
- -Να παρουσιάζετε την παραδοσιακή και τη νέα βιομηχανική οργάνωση
- Να εξοικειωθείτε με τη χρήση διαγραμμάτων και τη γραφική απεικόνιση
συναρτήσεων
- Να λύνετε το πρόβλημα μεγιστοποίησης ή ελαχιστοποίησης
συναρτήσεων με ή χωρίς περιορισμούς
- Να υπολογίζετε παραγώγους συναρτήσεων
- Να χρησιμοποιείτε το Θεώρημα envelop
- Να προσδιορίζετε την υπόθεση ceteris paribus και τη χρησιμότητά της
Εισαγωγή: Στο κεφάλαιο αυτό παρουσιάζουμε τον ορισμό και το
αντικείμενο της βιομηχανικής οργάνωσης καθώς και τις δύο προσεγγίσεις του
αντικειμένου της. Επίσης για τη μελέτη της ύλης σε αυτό το επίπεδο είναι
απαραίτητη η χρήση βασικών μαθηματικών εννοιών και εργαλείων. Αυτά
παρουσιάζονται συγκεντρωμένα στην παρούσα ενότητα μέσω του Βασικού
Κειμένου Μελέτης: Παράρτημα 1 & 2.
Λέξεις – Κλειδιά:
Βιομηχανία, βιομηχανική οργάνωση, εμπόδιο εισόδου, βαθμός
συγκέντρωσης κλάδου, διαφοροποίηση προϊόντος, συνθήκες ανταγωνισμού,
μοντέλο δομής – συμπεριφοράς – απόδοσης. Επίσης,
• Μεγιστοποίηση συναρτήσεων με ή χωρίς περιορισμούς
• Ελαχιστοποίηση συναρτήσεων με ή χωρίς περιορισμούς
• Υπολογισμός παραγώγων
• Θεώρημα envelop
• Μεγιστοποίηση χωρίς τη χρήση άλγεβρας
• Ceteris paribus
Βασικά ερωτήματα:
354
Τι είναι βιομηχανική οργάνωση; Τι μελετά η βιομηχανική οργάνωση; Πως
διακρίνεται η βιομηχανική οργάνωση σε παραδοσιακή και σύγχρονη;
Θα γνωρίζετε ότι οι καταναλωτές παίρνουν τις αποφάσεις που μεγιστοποιούν τη
χρησιμότητά τους και οι επιχειρήσεις εκείνες που μεγιστοποιούν το κέρδος τους.
Πως μπορώ να προσδιορίσω τις ιδανικές αποφάσεις των καταναλωτών και των
επιχειρήσεων; Πως μπορώ να απεικονίσω τη σχέση μεταξύ ζητούμενης ποσότητας
και τιμών;
ΕΝΟΤΗΤΑ ΜΕΛΕΤΗΣ 2 ΚΕΦΑΛΑΙΟ 2
Τα οικονομικά της ευημερίας
Ολοκληρώνοντας το κεφάλαιο θα πρέπει να είστε σε θέση :
- Να αναγνωρίζετε τους στόχους της επιχείρησης.
- Να περιγράφετε τις δομές αγοράς.
- -Να αναγνωρίζετε τις μορφές αγοράς και τα χαρακτηριστικά τους.
- Να αναλύετε τις συνθήκες προσφοράς της εταιρείας.
- Να αποδίδετε τις συνθήκες ισορροπίας της αγοράς
- Να απαριθμείτε τις προϋποθέσεις και να περιγράφετε τις συνθήκες που πρέπει
να ικανοποιούνται για να είναι μία αγορά αποτελεσματική;
- Να αναδεικνύετε τη δύναμη της αγοράς και να γνωρίζετε τα μέτρα της
- Να επεξηγείτε τον νόμο και την ισορροπία κατά Warlas, την έννοια της
αποτελεσματικής κατανομής αγαθών (κατά Pareto) και της κοινωνικής
ευημερίας
- Να περιγράφετε τι είναι δημόσιο αγαθο, και πως η ύπαρξή τους επηρεάζει τη
λειτουργία μίας ανταγωνιστικής αγοράς.
- Να επεξηγείτε τι είναι εξωτερικές οικονομίες.
- Να επεξηγείτε το θεώρημα του Coase και να περιγράφετε την εισαγωγή του
χρόνου στο μοντέλο γενικής ισορροπίας.
Εισαγωγή:
Συνεχίζοντας από το πρώτο κεφάλαιο παρουσιάζουμε τους στόχους της
επιχείρησης, τις 4 μορφές αγοράς, τις συνθήκες προσφοράς της επιχείρησης, την
ισορροπία στην αγορά, τις συνθήκες αποτελεσματικότητας της αγοράς, το
κριτήριο Pareto και τη δύναμη της αγοράς.
Έχοντας εξετάσει τον τρόπο λειτουργίας μεμονωμένων αγαθών και διαπιστώσει τις
αλληλεπιδράσεις που υπάρχουν μεταξύ διαφόρων αγορών αγαθών και
υπηρεσιών, εξετάζουμε στο κεφάλαιο αυτό τον τρόπο που οι αγορές λειτουργούν
ταυτόχρονα και το πώς διαμορφώνεται η ισορροπία όταν λαμβάνουμε υπόψη
αυτές τις αλληλεπιδράσεις. Παράλληλα εξετάζουμε την αποτελεσματικότητα της
ανταγωνιστικής οικονομίας, την ύπαρξη των δημόσιων αγαθών και τα προβλήματα
που δημιουργούν οι εξωτερικές οικονομίες καθώς και τρόπους αντιμετώπισής
τους.
Λέξεις – Κλειδιά:
Μέγιστο κέρδος, κανονικό κέρδος, μορφή αγοράς, τέλειος ανταγωνισμός,
μονοπώλιο, ολιγοπώλιο, μονοπωλιακός ανταγωνισμός, συνθήκες προσφοράς.,
αποτελεσματική αγορά, πλεόνασμα παραγωγού, πλεόνασμα καταναλωτή, μη
αντισταθμιζόμενη απώλεια, ελάχιστη αποτελεσματική κλίμακα, κριτήριο pareto,
δύναμη αγοράς. Επίσης,
• Ισορροπίας κατά Warlas
• Ο Νόμος του Warlas
• Αποτελεσματική κατανομή
• Κοινωνική ευημερία
• Γενική ισορροπία οικονομίας
• Το θεώρημα της μη υποκατάστασης
• Δημόσια αγαθά
• Δημόσια αγαθά
• Εξωτερικές οικονομίες
• Θεώρημα Coase
355
Βασικά ερωτήματα:
Ποιος είναι ο βασικός στόχος της επιχείρησης; Ποιες είναι οι μορφές αγοράς; Ποιες
μορφές αγοράς ενδιαφέρουν τη βιομηχανική οργάνωση και γιατί; Ποία είναι τα
κριτήρια με τα οποία μια επιχείρηση παράγει; Πότε έχουμε ισορροπία στην αγορά;
Τι είναι η μη αντισταθμιζόμενη απώλεια; Πότε μια κατανομή είναι αποτελεσματική
κατά Pareto; Τι είναι δύναμη αγοράς και πώς τη μετράμε;
Ποιο είναι το αποτέλεσμα λειτουργίας μίας ανταγωνιστικής οικονομίας; Πότε μία
οικονομία λειτουργεί κατά τρόπο αποτελεσματικό; Πως επηρεάζεται η λειτουργία
μίας οικονομίας από την ύπαρξη δημόσιων αγαθών ή τις εξωτερικές οικονομίες;
ΕΝΟΤΗΤΑ ΜΕΛΕΤΗΣ 3 ΚΕΦΑΛΑΙΟ 3 & ΚΕΦΑΛΑΙΟ 13
Θεωρία επιχείρησης
Ολοκληρώνοντας το κεφάλαιο θα πρέπει να είστε σε θέση :
- Να διακρίνετε τις διάφορες κατηγορίες κόστους
- Να εξηγείτε γιατί οι επιχειρήσεις μπορεί να επωφελούνται με την αύξηση της
παραγωγής τους.
- -Να αναλύετε τις οικονομίες και αντιοικονομίες κλίμακας και σκοπού.
- Να περιγράφετε την έννοια της συνάρτησης παραγωγής, να κατανοήσουν τις
υποθέσεις της θεωρίας παραγωγής, του οριακού λόγου τεχνικής
υποκατάστασης και οριακού προϊόντος, των αποδόσεων κλίμακας, ιδιότητες
των συναρτήσεων παραγωγής, την ελαστικότητα υποκατάστασης
- Να περιγράφετε πλήρως το πρόβλημα ελαχιστοποίησης του κόστους
παραγωγής
Εισαγωγή:
Αναλύουμε στο κεφάλαιο αυτό την φύση και την εξέλιξη των διαφόρων
μεγεθών του κόστους όσο αυξάνει η παραγωγή και το πώς μεταβάλλονται τα
κόστη με βάση το χρόνο ή και την κοινή χρήση εισροών στην παραγωγή πολλών
προϊόντων ταυτόχρονα. Mελετούμε επίσης σε αυτή την ενότητα αναλυτικά τη
θεωρία της επιχείρησης. Δίδεται έμφαση στη μελέτη των συναρτήσεων
παραγωγής, του προβλήματος ελαχιστοποίησης κόστους παραγωγής καθώς και
στη σχέση μεταξύ των βραχυχρόνιων και μακροχρόνιων καμπυλών κόστους.
Λέξεις – Κλειδιά: Κόστος ευκαιρίας, οικονομικό κόστος, μη αναστρέψιμο
κόστος, συνολικό, μέσο και οριακό κόστος, σταθερό και μεταβλητό κόστος
ελάχιστη αποτελεσματική κλίμακα, βραχυχρόνιο και μακροχρόνιο κόστος,
Οικονομίες και αντιοικονομίες κλίμακας, σταθερές αποδόσεις, οικονομίες και
αντιοικονομίες σκοπού. Επίσης,
• Συναρτήσεις Παραγωγής
• Υποθέσεις θεωρίας παραγωγής
• Οριακός λόγος τεχνικής υποκατάστασης και οριακό προϊόν
• Αποδόσεις κλίμακας
• Ιδιότητα συναρτήσεων παραγωγής που χαρακτηρίζονται από σταθερές
αποδόσεις κλίμακας
• Ελαστικότητα υποκατάστασης
• Ελαχιστοποίηση του κόστους παραγωγής
• Συνάρτηση κόστους όταν έχουμε σταθερές αποδόσεις κλίμακας
• Καμπύλες συνολικού κόστους, οριακού κόστους και μέσου κόστους
• Γραμμή επέκτασης της παραγωγής
• Ιδιότητες συναρτήσεων κόστους
• Διάκριση μεταξύ βραχυχρόνιας και μακροχρόνιας περιόδου
• Σχέση μεταξύ μέσου κόστους και μέσου προϊόντος
• Σχέση μεταξύ οριακού κόστους και οριακού προϊόντος
• Βραχυχρόνιες καμπύλες κόστους
• Σχέση μεταξύ βραχυχρόνιων και μακροχρόνιων καμπυλών κόστους
356
Βασικά ερωτήματα:
Τι είναι το κόστος ευκαιρίας; Γιατί έχουμε μη αναστρέψιμα κόστη; Πώς ορίζεται το
συνολικό κόστος; Τι είναι το μέσο κόστος; Τι είναι το οριακό κόστος; Σε ποιο
σημείο η επιχείρηση ελαχιστοποιεί το μέσο κόστος της; Ποια κόστη είναι σταθερά
και πότε; Πότε εμφανίζονται οικονομίες κλίμακας; Πότε εμφανίζονται αντιοικονομίες
κλίμακας; Πότε έχουμε οικονομίες σκοπού;
Πως περιγράφονται τεχνολογικές σχέσεις που διέπουν μία παραγωγική διαδικασία;
Ποιες είναι οι καμπύλες κόστους της επιχείρησης και ποιες οι ιδιότητες και σχέσεις
αυτών; Πως αυτές διαμορφώνονται στη βραχυχρόνια και πως στη μακροχρόνια
περίοδο;
ΕΝΟΤΗΤΑ ΜΕΛΕΤΗΣ 4 ΚΕΦΑΛΑΙΟ 14
Θεωρία Αγοράς (14.1 – 14.8)
Ολοκληρώνοντας το κεφάλαιο θα πρέπει να είστε σε θέση :
• Να περιγράφετε τη συμπεριφορά των επιχειρήσεων, τα χαρακτηριστικά
του ανταγωνιστικού κλάδου και την έννοια της συνολικής καμπύλης
προσφοράς
• Να περιγράφετε τη λειτουργία του ανταγωνιστικού κλάδου στη
μακροχρόνια περίοδος
Εισαγωγή:
Έχοντας μελετήσει στα προηγούμενα κεφάλαια τη θεωρία της επιχείρησης,
μελετάμε σε αυτό το κεφάλαιο τη λειτουργία της ανταγωνιστικής αγοράς.
Λέξεις – Κλειδιά:
• Συμπεριφορά επιχειρήσεων
• Χαρακτηριστικά ανταγωνιστικού κλάδου
• Διάκριση χρονικών περιόδων
• Συμπεριφορά ανταγωνιστικής επιχείρησης
• Συνολική καμπύλη προσφοράς
• Τέλειος ανταγωνισμός (μακροχρόνια περίοδος)
• Μακροχρόνια καμπύλη προσφοράς
• Μακροχρόνιο μέσο και οριακό κόστος και μέγεθος του κλάδου
• Ανταγωνισμός στην μακροχρόνια περίοδο
ΕΝΟΤΗΤΑ ΜΕΛΕΤΗΣ 5 ΚΕΦΑΛΑΙΟ 4 & ΚΕΦΑΛΑΙΟ 14
Μονοπώλιο και δύναμη αγοράς (14.9 – 14.15)
Ολοκληρώνοντας το κεφάλαιο θα πρέπει να είστε σε θέση :
o Να περιγράφετε το μονοπώλιο και τους παράγοντες που οδηγούν στην
ανάπτυξη του.
o Να εξηγήσετε το ρόλο του κράτους στη δημιουργία μονοπωλίων
o Να παρουσιάσετε το πλεονέκτημα που παρέχει η νομοθεσία πνευματικών
δικαιωμάτων στον ιδιοκτήτη τους.
o Να αναλύετε πως ο μονοπωλητής διατηρεί το πλεονέκτημα του και αποτρέπει
τους δυνητικούς ανταγωνιστές του από την είσοδο τους στην αγορά.
o Να περιγράφετε τη λειτουργία άλλων μορφών αγοράς, όπως: η μονοπωλιακή
επιχείρηση.
Εισαγωγή: Στο κεφάλαιο 4 αναλύουμε το μονοπώλιο. Μας ενδιαφέρουν
ιδιαίτερα οι συνθήκες δημιουργίας και διατήρησης του αλλά και πώς και γιατί το
κράτος παρεμβαίνει ενεργά προκειμένου να το δημιουργήσει και να το διατηρήσει.
Επίσης, έχοντας μελετήσει τη θεωρία της επιχείρησης, μελετάμε σε αυτό το
κεφάλαιο το μονοπώλιο
357
Λέξεις – Κλειδιά: φυσικό μονοπώλιο, κρατικά έσοδα, πνευματικά
δικαιώματα, πατέντες, βαθμός επιθετικότητας μονοπωλίου, απόλυτο πλεονέκτημα
κόστους, εμπόδια εισόδου, αποκλειστικότητα πόρου, κόστος διαφοροποίησης
προϊόντος. Επίσης,
• Μονοπωλιακή επιχείρηση
• Σύγκριση μονοπωλίου και ανταγωνισμού
• Φυσικό μονοπώλιο
• Μονοπωλιακή πρόσοδος
• Διάκριση τιμών στο μονοπώλιο
• Περιορισμοί στη διάκριση τιμών
Βασικά ερωτήματα: Γιατί υπάρχουν μονοπώλια; Πώς δημιουργούνται τα
μονοπώλια; Τι ρόλο έχει το κράτος στη δημιουργία μονοπωλίων; Γιατί το κράτος
επιδιώκει τη διατήρηση των μονοπωλίων; Πώς ο μονοπωλητής διατηρεί το
πλεονέκτημα του στην αγορά; Γιατί οι καταναλωτές δεν αλλάζουν εύκολα τα
προϊόντα τους με υποκατάστατα;
ΕΝΟΤΗΤΑ ΜΕΛΕΤΗΣ 6 ΚΕΦΑΛΑΙΟ 5
Διάκριση τιμών
Ολοκληρώνοντας το κεφάλαιο θα πρέπει να είστε σε θέση :
- Να εξηγήσετε γιατί συμφέρει την επιχείρηση να διακρίνει τις τιμές των
προϊόντων της.
- Να διακρίνετε τη διαφοροποίηση τιμής ανάλογα με τη διάκριση τιμών που
εφαρμόζει η επιχείρηση.
Εισαγωγή: Στο κεφάλαιο αυτό αναλύουμε τη διάκριση τιμών, με ποιους
τρόπους γίνεται, πως προσαρμόζεται η επιχείρηση ανάλογα με την αγορά και τις
αποφάσεις της επιχείρησης.
Λέξεις – Κλειδιά: Διαφοροποίηση πρώτου, δεύτερου και τρίτου βαθμού,
πλεόνασμα καταναλωτή, τιμολόγηση αποθάρρυνσης εισόδου, αρπακτική
τιμολόγηση, τιμολόγηση με βάση το βασικό σημείο, τιμολόγηση με χαμηλή τιμή.
Βασικά ερωτήματα: Γιατί η επιχείρηση διαφοροποιεί την τιμή των
προϊόντων της ανάλογα με τον καταναλωτή ή την αγορά; Πώς τη συμφέρει να
διαφοροποιήσει την τιμή; Γιατί μπορεί η επιχείρηση να τιμολογήσει επιθετικά; Γιατί
μπορεί να συμφέρει την επιχείρηση χαμηλά ή και ακόμη κάτω από το κόστος της;
ΕΝΟΤΗΤΑ ΜΕΛΕΤΗΣ 7 ΚΕΦΑΛΑΙΟ 6
Ποιότητα προϊόντος
Ολοκληρώνοντας το κεφάλαιο θα πρέπει να είστε σε θέση :
Να εξηγήσετε γιατί οι επιχειρήσεις έχουν κίνητρο να διαφοροποιούν τα προϊόντα
τους με βάση την ποιότητα
Να διακρίνετε τα αγαθά ανάλογα με βάση το χρόνο που απαιτείται για την
εξακρίβωση των ποιοτικών χαρακτηριστικών από τον καταναλωτή.
Να αναδεικνύετε πως ο ηθικός κίνδυνος επιδρά στις αποφάσεις του παραγωγού
σχετικά με την ποιότητα
Να εξηγείτε γιατί η ασύμμετρη πληροφόρηση δημιουργεί κίνητρο για τη δημιουργία
αγορών προϊόντων κακής ποιότητας.
Να παρουσιάζετε τους τρόπους με τους οποίους οι εταιρείες δείχνουν ότι το
προϊόν τους είναι ποιοτικό
Εισαγωγή: Στο κεφάλαιο αυτό παρουσιάζουμε την διαφοροποίηση του
προϊόντος με τον ανταγωνισμό σε σχέση με την ποιότητα. Κατηγοριοποιούμε τα
αγαθά με βάση το χρόνο που απαιτείται για την εκτίμηση της ποιότητας τους.
358
Επίσης ορίζουμε την ασύμμετρη πληροφόρηση και καθορίζουμε κατά πόσο έχει
κίνητρο η επιχείρηση να αποκαλύψει την πραγματική ποιότητα του προϊόντος της,
και κατ’ επέκταση να την αναδείξει προκειμένου να κερδίσει καταναλωτές.
Λέξεις – Κλειδιά: Αγαθά έρευνας, αγαθά εμπειρίας, φήμη προϊόντος και
εταιρείας, δέσμευση εταιρείας, ασύμμετρη πληροφόρηση, ηθικός κίνδυνος,
διάκριση ποιότητας.
Βασικά ερωτήματα: Πόση πληροφόρηση σχετικά με την ποιότητα ενός
χρειάζεται να έχει ένας καταναλωτής προκειμένου να αγοράσει το προϊόν; Πώς ο
καταναλωτής πληροφορείται την ποιότητα του προϊόντος; Γιατί ορισμένα προϊόντα
τα αγοράζουμε μετά από ιδιαίτερη προσοχή και μελέτη; Ποιό προϊόν είναι ποιοτικό;
Γιατί ορισμένοι πωλητές αποκρύπτουν την ποιότητα των προϊόντων τους; Γιατί
ορισμένες επιχειρήσεις αναδεικνύουν την ποιότητα των προϊόντων τους; Γιατί
αναπτύσσονται αγορές προϊόντων χαμηλής ποιότητας;
ΕΝΟΤΗΤΑ ΜΕΛΕΤΗΣ 8 ΚΕΦΑΛΑΙΟ 7
Ολιγοπώλιο και τιμολόγηση
Ολοκληρώνοντας το κεφάλαιο θα πρέπει να είστε σε θέση :
- Να εξηγείτε το υπόδειγμα του Bertrand σχετικά με το ολιγοπώλιο
- Να εξηγείτε το υπόδειγμα του Cournot σχετικά με το ολιγοπώλιο
- Να αναλύετε την κριτική του Chamberlain σχετικά με τα παλαιότερα
υποδείγματα ολιγοπωλίου.
- Να παρουσιάζετε την τεθλασμένη καμπύλη προσφοράς
- Να δείχνετε πως η ηγεσία τιμής οδηγεί σε ολιγοπωλιακές λύσεις και
κυριαρχία της αγοράς.
- Να εξηγείτε πως κυριαρχείται η αγορά από μία ομάδα επιχειρήσεων που
λειτουργούν ως μονοπώλιο.
- Να περιγράφετε τη λειτουργία άλλων μορφών αγοράς, όπως: το
ολιγοπώλιο, τον ψευδοανταγωνισμό
- Να περιγράφετε τις διαφορές των ατελών μορφών αγοράς
Εισαγωγή:
Η μορφή αγοράς του ολιγοπωλίου παρουσιάζεται στο κεφάλαιο αυτό με μία σειρά
θεωρητικών υποδειγμάτων που προσπάθησαν να εξηγήσουν τη δημιουργία του
και τη μορφή του. Επίσης θα παρουσιάσουμε τη μεταγενέστερη κριτική και πιθανές
στρεβλώσεις που δημιουργούνται στην αγορά από την ανάπτυξη σχημάτων που
εκμεταλλεύονται την αγορά είτε λόγω ηγεσίας τιμής είτε λόγω δυνατότητας
συνεννόησης μεταξύ των επιχειρήσεων του κλάδου.
Έχοντας μελετήσει στα προηγούμενα κεφάλαια τη θεωρία της επιχείρησης,
μελετάμε σε αυτό το κεφάλαιο το ολιγοπώλιο.
Λέξεις – Κλειδιά: Δυοπώλιο, ολιγοπωλητής, ολιγοπωλιακή τιμή, ηγεσία
αγοράς, ηγεσία τιμής, πόλεμος τιμών, συνεννόηση επιχειρήσεων, καρτέλ. Επίσης,
• Ολιγοπώλιο
• Υπόδειγμα ψευδοανταγωνισμού
• Καρτέλ (Cartel)
• Κουρνό (Cournot)
• Σύγκριση Καρτέλ, Κουρνό και Ψευδοανταγωνισμού
• Στάκελμπεργκ ( Stackelberg)
• Yπόδειγμα ηγεσίας τιμής
Βασικά ερωτήματα: Πόσο θα πρέπει να παράγει η κάθε επιχείρηση στο
ολιγοπώλιο; Με βάση ποιο κριτήριο καθορίζεται η παραγωγή της ολιγοπωλιακής
επιχείρησης; Γιατί η επιχείρηση που έχει ηγεσία τιμής καθορίζει την τιμή και την
ποσότητα της ολιγοπωλιακής αγοράς; Πώς μια επιχείρηση αποκτά ηγεσία τιμής;
359
Γιατί οι επιχειρήσεις συνεννοούνται μεταξύ τους στο ολιγοπώλιο; Πώς οι
επιχειρήσεις διασφαλίζουν ότι το καρτέλ θα δημιουργηθεί και θα διατηρηθεί;
ΕΝΟΤΗΤΑ ΜΕΛΕΤΗΣ 9 Μονοπωλιακός ΚΕΦΑΛΑΙΟ 14
ανταγωνισμός (14.16 – 14.17)
Ολοκληρώνοντας το κεφάλαιο θα πρέπει να είστε σε θέση :
• Να περιγράφετε τη λειτουργία άλλων μορφών αγοράς, όπως: ο
μονοπωλιακός ανταγωνισμός
• Να περιγράφετε τις διαφορές του μονοπωλιακού ανταγωνισμού με άλλες
ατελείς μορφές αγορών
Εισαγωγή:
Έχοντας μελετήσει στα προηγούμενα κεφάλαια τη θεωρία της επιχείρησης,
μελετάμε σε αυτό το κεφάλαιο τις διάφορες μορφές αγορά, όπως το μονοπωλιακό
ανταγωνισμό.
Λέξεις – Κλειδιά:
• Μονοπωλιακός ανταγωνισμός
• Διαφοροποίηση προϊόντος
Βασικά ερωτήματα:
Τι είναι εκείνο που σας οδηγεί στην επιλογή μίας συγκεκριμένης πτήσης, στην
αγορά ενός τύπου σαπουνιού, αυτοκινήτου, κινητού κλπ
ΕΝΟΤΗΤΑ ΜΕΛΕΤΗΣ 10 ΚΕΦΑΛΑΙΟ 8
Διαφοροποίηση προϊόντος
Ολοκληρώνοντας το κεφάλαιο θα πρέπει να είστε σε θέση να εξηγείτε:
- Γιατί υπάρχουν πολλά προϊόντα που εξυπηρετούν την ίδια ανάγκη
- Την έννοια της οριζόντιας και κάθετης διαφοροποίησης του προϊόντος.
- Τα οφέλη της επιχείρησης από τη διαφοροποίηση του προϊόντος της σε
σχέση με τον ανταγωνισμό.
- Τα κριτήρια με τα οποία η επιχείρηση επιλέγει την τοποθεσία διάθεσης
του προϊόντος της.
- Γιατί η επιχείρηση κερδίζει από πιθανά κόστη αλλαγής προϊόντος του
καταναλωτή.
Εισαγωγή: Η διαφοροποίηση του προϊόντος της επιχείρησης παρουσιάζεται
στο κεφάλαιο αυτό. Διακρίνουμε τη διαφοροποίηση σε οριζόντια και κάθετη.
Εξετάζουμε τη διαφορά που προκύπτει από τη πιθανή θέση εγκατάστασης με
βάση το μοντέλο του Hotelling. Τέλος, διακρίνουμε τα πιθανά κόστη που
προκύπτουν από την ύπαρξη πολλών διαφορετικών προϊόντων για τον
καταναλωτή.
Λέξεις – Κλειδιά: Οριζόντια διαφοροποίηση, κάθετη διαφοροποίηση,
χαρακτηριστικά προϊόντος, υπόδειγμα Hotelling, διαφοροποίηση τοποθεσίας,
κόστος αλλαγής προϊόντος.
Βασικά ερωτήματα: Γιατί υπάρχουν πολλά προϊόντα που καλύπτουν την
ίδια ανάγκη; Πώς διαφοροποιείται το προϊόν ανάλογα με τις ανάγκες των
καταναλωτών; Πώς επηρεάζει την επιχείρηση ο τόπος εγκατάστασης της; Γιατί το
ίδιο προϊόν μπορεί να έχει διαφορετική τιμή σε διαφορετικές χώρες; Τι κόστη
αντιμετωπίζει ο καταναλωτής όταν αλλάζει ένα προϊόν;
360
ΕΝΟΤΗΤΑ ΜΕΛΕΤΗΣ 11 ΚΕΦΑΛΑΙΟ 9
Εισαγωγή στη στρατηγική συμπεριφορά
Ολοκληρώνοντας το κεφάλαιο θα πρέπει να είστε σε θέση :
- Να ορίζετε τη στρατηγική συμπεριφορά
- Να διακρίνετε τις αποφάσεις της επιχείρησης με βάση το χρονικό ορίζοντα
- Να εξηγείτε γιατί η επιχείρηση που μπαίνει πρώτη σε μία αγορά έχει
πλεονέκτημα έναντι των δυνητικών επόμενων.
- Να αναγνωρίζετε το πότε ξεκινά η μακροχρόνια περίοδος.
- Να συνδέετε τις στρατηγικές αποφάσεις με την ύπαρξη και την
εκμετάλλευση οικονομιών κλίμακας
Εισαγωγή: Η επιχείρηση δεν αποφασίζει μόνο για τη σημερινή της
παραγωγή. Πολλές αποφάσεις της αφορούν και την επιβίωση και την κερδοφορία
της στο μέλλον. Στο κεφάλαιο αυτό θα αναλύσουμε τη σημασία των στρατηγικών
επιλογών και το πλεονέκτημα που έχουν οι επιχειρήσεις που εισέρχονται πρώτες
σε μία αγορά ή έχουν αναπτύξει οικονομίες κλίμακας.
Λέξεις – Κλειδιά: Στρατηγικές αποφάσεις, τακτικές αποφάσεις, έρευνα και
ανάπτυξη, καινοτομία, πλεονέκτημα Stackelberg.
Βασικά ερωτήματα: Τι είναι η επιχειρησιακή στρατηγική; Γιατί οι τακτικές
αποφάσεις εμπεριέχουν στοιχεία στρατηγικών αποφάσεων; Πώς μπορεί μία
επιχείρηση να επενδύσει σήμερα για να κερδίσει μερίδιο αγοράς στο μέλλον; Γιατί
είναι καλό κάποιος να εισέρχεται πρώτος σε μια αγορά; Πώς οι οικονομίες
κλίμακας ορίζουν την μακροχρόνια περίοδο;
ΕΝΟΤΗΤΑ ΜΕΛΕΤΗΣ 12 ΚΕΦΑΛΑΙΟ 10
Εμπόδια εισόδου
Ολοκληρώνοντας το κεφάλαιο θα πρέπει να είστε σε θέση :
- Να εξηγείτε γιατί οι επενδύσεις αποτελούν εμπόδια εισόδου
- Να αναλύετε πώς ποιοι και γιατί εμποδίζουν την είσοδο νέων
επιχειρήσεων σε ένα κλάδο.
- Να διακρίνετε ανάμεσα σε εμπόδια εισόδου και σε στρατηγικές
ανταγωνισμού μετά την είσοδο
- Να συγκρίνετε την ανταγωνιστική με την ατελώς ανταγωνιστική αγορά
- Να εξηγείτε γιατί η είσοδος μιας επιχείρησης σε έναν κλάδο δεν είναι
ανέξοδη
- Να συνδέετε τις οικονομίες κλίμακας με τα μη αναστρέψιμα κόστη
- Να αποδίδετε τα χαρακτηριστικά του εύρωστου ανταγωνισμού
- Να προσδιορίζετε το απόλυτο πλεονέκτημα κόστους
Εισαγωγή: Η ύπαρξη και η λειτουργία μιας μη ανταγωνιστικής αγοράς
προϋποθέτει την ύπαρξη εμποδίων εισόδου για πιθανούς ανταγωνιστές και
στρατηγικές αντιμετώπισης τους σε περίπτωση εισόδου. Επίσης αναλύουμε τις
διαφορές του τέλειου ανταγωνισμού με τις ατελείς μορφές αγοράς και γιατί οι
μορφές αυτές υπάρχουν. Ακόμη παρουσιάζουμε τη σχέση μεταξύ του μη
αναστρέψιμου κόστους και των οικονομιών κλίμακας και εισάγουμε την έννοια του
απόλυτου πλεονεκτήματος κόστους.
Λέξεις – Κλειδιά: Νεοεισερχόμενη επιχείρηση, υπάρχουσα επιχείρηση,
στρατηγική χτυπήματος εξόδου, εμπόδιο εισόδου, εμπόδιο διατήρησης, νεκρό
σημείο, ατελώς ανταγωνιστική αγορά, ελάχιστη αποτελεσματική κλίμακα,
ευρωστία ανταγωνισμού, απόλυτο πλεονέκτημα κόστους., κανονιστική
προσέγγιση.
361
Βασικά ερωτήματα: Πώς προστατεύεται η υπάρχουσα επιχείρηση σε μία
μη ανταγωνιστική αγορά; Ποια μπορεί να είναι τα εμπόδια εισόδου; Πώς
διακρίνονται τα εμπόδια εισόδου από τα εμπόδια διατήρησης; Ποιο είναι το κόστος
εισόδου σε μία αγορά; Γιατί οι οικονομίες κλίμακας οδηγούν σε μη αναστρέψιμα
κόστη; Πότε σε μια αγορά ο ανταγωνισμός είναι εύρωστος; Τι είναι το απόλυτο
πλεονέκτημα κόστους;
ΕΝΟΤΗΤΑ ΜΕΛΕΤΗΣ 13
Ανάπτυξη νομικού πλαισίου για τις αγορές ΚΕΦΑΛΑΙΟ 11
Ολοκληρώνοντας το κεφάλαιο θα πρέπει να είστε σε θέση :
- Να εξηγείτε γιατί είναι απαραίτητη η δημιουργία νομικού πλαισίου
- Να αναφέρετε και να αναλύετε τα χαρακτηριστικά της αποτελεσματικής
παραγωγής.
- Να εξηγείτε γιατί οι αγορές αποτυγχάνουν και πως το κράτος μπορεί να
παρέμβει και να διορθώσει τις ατέλειες τους.
- Να αναλύετε την περίπτωση του φυσικού μονοπωλίου και την τιμολόγηση
των προϊόντων του.
- Να εξηγείτε γιατί το κράτος δημιουργεί και ενισχύει τα φυσικά μονοπώλια
- Να αναλύετε τις περιπτώσεις στις οποίες τα σχήματα φυσικού μονοπωλίου
δεν λειτουργούν επαρκώς
- Να συνδέετε τις οικονομίες κλίμακας με την ύπαρξη φυσικών μονοπωλίων
- Να παρουσιάζετε πως επιλύονται τα προβλήματα που προκύπτουν στη
λειτουργία τους και από ποιόν.
Εισαγωγή: Σε αυτό το κεφάλαιο αναλύουμε το φυσικό μονοπώλιο ως
ανάγκη για την ανάπτυξη κάποιων αγορών, την επένδυση που απαιτείται για την
δημιουργία τους, με βάση την σύνταξη και εφαρμογή επαρκούς νομοθετικού
πλαισίου λειτουργίας του από το κράτος. Εξηγούμε το ρόλο του κράτους στη
δημιουργία, τον έλεγχο και τη διατήρηση φυσικών μονοπωλίων, τα προβλήματα
που προκύπτουν από τη λειτουργία τους καθώς και τις λύσεις που προτείνονται
για την επίλυση τους.
Λέξεις – Κλειδιά: Νομοθετικό πλαίσιο, δημόσιο συμφέρον, αποτελεσματική
παραγωγή, αποτυχία αγοράς, φυσικό μονοπώλιο, οριακό κόστος τιμολόγησης,
βιωσιμότητα, ανταγωνισμός για το μονοπώλιο, διάδοχος επιχείρηση,
υποπροσθετικότητα, αποκλειστικά δικαιώματα τιμολόγησης, ευέλικτη επιχείρηση,
οικονομική θεωρία ρύθμισης.
Βασικά ερωτήματα: Τι ανάγκες εξυπηρετεί η δημιουργία νομοθετικού
πλαισίου; Πώς ορίζεται η αποτελεσματική παραγωγή; Γιατί οι αγορές
αποτυγχάνουν; Τι είναι το φυσικό μονοπώλιο; Ποιες είναι οι προϋποθέσεις
δημιουργίας φυσικού μονοπωλίου; Τι εμπόδια εισόδου έχει το φυσικό μονοπώλιο;
Τι είναι η αρχή της υποπροσθετικότητας; Τι είναι και ποιος ασκεί τα αποκλειστικά
δικαιώματα τιμολόγησης; Σε τι αναφέρονται οι οικονομικές θεωρίες ρύθμισης;
ΕΝΟΤΗΤΑ ΜΕΛΕΤΗΣ 14
Άριστη τιμολόγηση στο φυσικό μονοπώλιο ΚΕΦΑΛΑΙΟ 12
Ολοκληρώνοντας το κεφάλαιο θα πρέπει να είστε σε θέση :
- Να αναλύετε την οριακή τιμολόγηση σε ένα φυσικό μονοπώλιο.
- Να εξηγείτε την τιμολόγηση Ramsey.
- Να αναλύετε τη διαφοροποίηση με βάση τη ζήτηση
- Να παρουσιάζετε πως η επιχείρηση μπορεί να εφαρμόσει πολλαπλή
τιμολόγηση.
-
362
Εισαγωγή: Στο κεφάλαιο αυτό θα εξετάσουμε πιθανές αποτελεσματικές ή
άριστες τιμολογήσεις όταν η αγορά είναι ελεγχόμενη. Η τιμολόγηση μπορεί να είναι
άριστη ή να είναι η δεύτερη καλύτερη κατά Ramsey. Επίσης μπορεί να οδηγείται
από το κόστος, τη ζήτηση ή την ομάδα των προϊόντων που αποτελούν το σύνολο
της παραγωγής. Τέλος, εξετάζουμε εναλλακτικές λύσεις πολλαπλής τιμολόγησης.
Λέξεις – Κλειδιά: Οριακή τιμολόγηση, τιμολόγηση Ramsey, Απαιτούμενη
πληροφορία, τιμολόγηση με βάση τη ζήτηση, πολλαπλή τιμολόγηση, arbitrage,
αποτέλεσμα Coase.
Βασικά ερωτήματα: Πώς ορίζεται η αποτελεσματική τιμολόγηση; Τι είναι η
τιμολόγηση κατά Ramsey; Πώς τιμολογούμε με βάση τη ζήτηση; Γιατί εφαρμόζεται
και πότε η πολλαπλή τιμολόγηση; Ποιόν ωφελεί η διαφοροποιημένη τιμολόγηση; Τι
λύση προτείνει για το θέμα της αποτελεσματικής τιμολόγησης ο Coase;
ΕΝΟΤΗΤΑ ΜΕΛΕΤΗΣ 15 ΚΕΦΑΛΑΙΟ 15 &
Ειδικά θέματα ΠΑΡΑΡΤΗΜΑ 3
Ολοκληρώνοντας το κεφάλαιο θα πρέπει να είστε σε θέση :
• Να εξηγείτε τις έννοιες της ελαστικότητας
• Να συγκρίνετε έμμεσους και εφάπαξ φόρους
• Να επιλέγετε στρατηγικές τοποθέτησης επώνυμων και μη επώνυμα
προϊόντα σε κατάστημα λιανικής
• Να κατανοείτε τα χαρακτηριστικά και το τι λαμβάνουν υπόψη τους οι
δείκτες τιμών κατανάλωσης
• Να κατανοείτε τις διαφορές στον τρόπο είσπραξης φόρου ανά μονάδα
προϊόντος
• Να κατανοείτε τις έννοιες: πλεόνασμα παραγωγού, πλεόνασμα
καταναλωτή, όφελος της κοινωνίας και τη σχέση αυτών με τη χρησιμότητα,
κέρδος και κόστος
• Να περιγράφετε πολιτικές ελέγχου μονοπωλίου και φυσικού μονοπωλίου
• Να περιγράφετε τα χαρακτηριστικά της αγοράς καινούργιων και
μεταχειρισμένων αυτοκινήτων.
• Να περιγράφετε την προσέγγιση που εισαγάγει τις έννοιες των
χαρακτηριστικών αγαθών και τις υπονοούμενες τιμές
Εισαγωγή:
Έχοντας μελετήσει τη θεωρία της επιχείρησης και τις διάφορες μορφές αγοράς,
μελετούμε στην ενότητα αυτή εφαρμογές και ειδικά θέματα η ανάλυση των οποίων
απαιτεί τη χρήση των εργαλείων και τη μεθοδολογική προσέγγιση των
προηγούμενων κεφαλαίων.
Λέξεις – Κλειδιά
• Ελαστικότητα
• Σύγκριση εμμέσων και εφάπαξ φόρων
• Επώνυμα και μη επώνυμα προϊόντα
• Τοποθέτηση προϊόντων σε κατάστημα λιανικής
• Δείκτες τιμών κατανάλωσης
• Επιβολή φόρου ανά κάθε μονάδα του προϊόντος
• Πλεόνασμα παραγωγού
• Πλεόνασμα καταναλωτή
• Σχέση μεταξύ πλεονάσματος καταναλωτή και χρησιμότητας
• Καθαρό (συνολικό) όφελος της κοινωνίας
• Έλεγχος μονοπωλίου
• Έλεγχος φυσικού μονοπωλίου
• Έλεγχος φυσικού μονοπωλίου με πολιτική 2 τιμών
363
• Πολιτική αποδεκτού επιπέδου απόδοσης για τον έλεγχο του φυσικού
μονοπωλίου
• Ιδανική τιμολόγηση φυσικού μονοπωλίου
• Η αγορά για πατάτες
• Η ασύμμετρη πληροφόρηση στην αγορά των ασφαλειών
• Χαρακτηριστικά αγαθών και υπονοούμενες τιμές
• Ηδονικές (hedonic) τιμές
Βασικά ερωτήματα:
Είναι προτιμότεροι οι έμμεσοι ή ο εφάπαξ φόροι; Έχει διαφορά εάν τα
φορολογικά έσοδα καταβάλλονται στον δικαιούχο από τους καταναλωτές ή τους
παραγωγούς; Υπάρχουν πολιτικές ελέγχου μονοπωλίων και φυσικών
μονοπωλίων; Μπορούμε να τροποποιήσουμε τις υπάρχουσες θεωρίες για να
μελετήσουμε αγορές διαφοροποιημένων αγαθών;
364
ΠΑΡΑΡΤΗΜΑ 5
ΑΣΚΗΣΕΙΣ
ΑΥΤΟΑΞΙΟΛΟΓΗΣΗΣ
365
ΑΣΚΗΣΕΙΣ ΑΥΤΟΑΞΙΟΛΟΓΗΣΗΣ
ΕΝΟΤΗΤΑ ΜΕΛΕΤΗΣ 1
Παράδειγμα 1.1
Υπολογίσατε τη μέγιστη τιμή της συνάρτησης κέρδους που δίδεται στη συνέχεια:
π (Q) = 4 Q - Q2
Παράδειγμα 1.2
Υπολογίσατε όλες τις παραγώγους πρώτου και δεύτερου βαθμού των
συναρτήσεων:
Α) f(x1 , x2 ) = a x12 + b1 x1 x2 + c x22
Β) f(x, y) = eax+by
Γ) f(x, y) = a logx + b logy
Παράδειγμα 1.3
Σας δίνετε η συνάρτηση:
y = f (x, a) = - x2 + a x
Υπολογίστε dy* / da με και χωρίς τη χρήση του θεωρήματος envelop, όπου
y* = max f (x , a)
x
Παράδειγμα 1.4
Υπολογίστε την μέγιστη τιμή της συνάρτησης:
z = f (x , y ) = - ( x - 1 )2 - ( y - 2 )2 + 10
Παράδειγμα 1.5
Υπολογίστε την μεγίστη τιμή της συνάρτησης:
f (x,y) = - x2 + 2x - x2 + 4y - y2 + 5
δοθέντος ότι τα x και y ικανοποιούν την σχέση x + y = 1
366
ΑΠΑΝΤΗΣΕΙΣ
ΑΣΚΗΣΕΙΣ ΑΥΤΟΑΞΙΟΛΟΓΗΣΗΣ
ΕΝΟΤΗΤΑ ΜΕΛΕΤΗΣ 1
Παράδειγμα 1.1
ΛΥΣΗ
Για να υπολογίσουμε την μέγιστη τιμή της συνάρτησης κέρδους, θα
πάρουμε την συνθήκη του πρώτου βαθμού και θα λύσουμε ως προς Q.
dπ / dQ = 4 - 2 Q = 0 ⇒
Q* = 2
Q* = 2 θα μεγιστοποιεί την συνάρτηση κέρδους αν ικανοποιεί την
συνθήκη του δεύτερου βαθμού:
d2 π / dQ2 = - 2 < 0
Η συνθήκη δευτέρου βαθμού για μεγιστοποίηση των κερδών
ικανοποιείται.
Το μέγιστο κέρδος υπολογίζεται ως εξής:
π* = 8 - 4 = 4
Παράδειγμα 1.2
ΛΥΣΗ
a) f(x1 , x2 ) = a x12 + b1 x1 x2 + c x22 ⇒
f1 = 2 a x1 + b x2
f2 = b x1 + 2 c x2
f1 1 = 2 a
f1 2 = b = f21
β) f(x, y) = eax+by f2 2 = 2 c
⇒
f1 = a eax+by
f2 = b eax+by
f1 1 = a2 eax+by
f2 2 = b2 eax+by
f1 2 = f2 1 = a b eax+by
γ) f ( x, y) = a logx + b logy ⇒
367
f1 = a / x
f2 = b/ y
f1 1 = - a / x2
f2 2 = - b / y2
f1 2 = f2 1 = 0
Παράδειγμα 1.3
ΛΥΣΗ
dy / dx = - 2x + a = 0 ⇒
x* = a / 2
d2y / dx2 = - 2 < 0
y* = - (x*)2 + a x* = - ( a/ 2 )2 + a ( a / 2 ) = - ( a2 / 4 ) + ( a2 / 2 ) = a2 / 4
Συνεπώς, dy* / da = 2 (a /4) = a/ 2.
Γνωρίζοντας όμως ότι x* = a / 2, μπορούμε να υπολογίσουμε το dy / da
χρησιμοποιώντας το θεώρημα envelop ως εξής:
dy* / da = ϑy(x = x*) = x* = a / 2
ϑa
Παράδειγμα 1.4
ΛΥΣΗ
Λαμβάνουμε καταρχήν τις συνθήκες πρώτου βαθμού:
ϑf /ϑx = - 2 x + 2 = 0
ϑf /ϑy = - 2y + 4 = 0
Στην συνέχεια λύνοντας το τελευταίο σύστημα ως προς x και y, λαμβάνουμε
τις λύσεις:
χ* = 1 και
y* = 2
Ελέγχουμε την ικανοποίηση των συνθηκών δεύτερου βαθμού:
ϑ 2 f / ϑ x2 = - 2 < 0
ϑ 2 f / ϑ y2 = - 2 < 0
ϑ 2 f ϑ 2 f - ( ϑ 2 f )2 =
ϑx2 ϑy2 ϑxϑy
= ( - 2) ( - 2 ) = 4 > 0
και συμπεραίνουμε ότι πράγματι οι παραπάνω λύσεις θα μας δώσουν ένα
μέγιστο.
368
Συνεπώς, z* = max z = 10
Παράδειγμα 1.5
ΛΥΣΗ
L = - x2 + 2x - y2 + 4y + 5 + λ (1 - x - y)
ϑL = - 2x + 2 - λ = 0
ϑx
ϑL = - 2y + 4 - λ = 0
ϑy
ϑL = 1-x-y=0
ϑλ
Η πρώτη και η δεύτερη από τις παραπάνω σχέσεις μας δίνουν ότι:
- 2x + 2 = λ = - 2y + 4 ⇒ x = y - 1
Από την τελευταία σχέση και τη συνθήκη πρώτου βαθμού ϑL =0
ϑλ
έχουμε στη συνέχεια ότι:
y -1 + y = 1 ⇒ 2y = 2 ⇒
y=1
x=0
λ=2
f * = max f = 8
369
ΑΣΚΗΣΕΙΣ ΑΥΤΟΑΞΙΟΛΟΓΗΣΗΣ
ΕΝΟΤΗΤΑ ΜΕΛΕΤΗΣ 3
ΑΣΚΗΣΗ-Εφαρμογή 3.1
Αποδείξτε ότι το L* που μεγιστοποιεί το μέσο προϊόν της εργασίας
ικανοποιεί τη σχέση : APL (L) = MPL (L)
ΑΣΚΗΣΗ-Εφαρμογή 3.2
Υπολογίστε την ελαστικότητα υποκατάστασης των παρακάτω
συναρτήσεων παραγωγής :
Q = f (K,L) = γ K +δ L
Q = f (K,L) = A Ka Lb όπου a+b=1 και
Q = min {aK,bL)
ΑΣΚΗΣΗ-Εφαρμογή 3.3
Οι συνθήκες πρώτου βαθμού του προβλήματος ελαχιστοποίησης του
κόστους παραγωγής της ποσότητας Q μας δίνουν :
MP W
L = RTS
=
MP r
K
Μπορούμε να χρησιμοποιήσουμε την τελευταία σχέση, RTS = W
r
για τον υπολογισμό της ελαστικότητας τεχνικής υποκατάστασης;
Παράδειγμα 3.1
Λύστε το πρόβλημα ελαχιστοποίησης κόστους δοθέντος ότι η συνάρτηση
παραγωγής είναι Cobb-Douglas. Δηλαδή, λύστε το πρόβλημα :
min r K + W L
K,L
Q = A Lβ Ka
Όπου Α, α, β είναι κάποιες σταθερές.
370
Παράδειγμα 3.2
Σας δίδετε η συνάρτηση παραγωγής:
Q = 10 ( K L )0.5
Υπολογίστε:
α) την βραχυχρόνια συνάρτηση συνολικού κόστους και
β) την μακροχρόνια συνάρτηση κόστους.
371
ΑΠΑΝΤΗΣΕΙΣ
ΑΣΚΗΣΕΙΣ ΑΥΤΟΑΞΙΟΛΟΓΗΣΗΣ
ΕΝΟΤΗΤΑ ΜΕΛΕΤΗΣ 3
ΑΣΚΗΣΗ-Εφαρμογή 3.1
Απάντηση
max APL Q
L = L
Η συνθήκη πρώτου βαθμού είναι :
L(∂Q / ∂L) − Q = 0 ⇔
L2
LMPL − Q = 0 ⇔
L2
LMPL (L* ) − Q = O ⇔
MPL (L* ) = Q ⇔
L*
MP L (L* ) = APL (L* )
ΑΣΚΗΣΗ-Εφαρμογή 3.2
Απάντηση
α) Η περίπτωση αυτή, βλέπε Διάγραμμα 7, αναφέρεται σε μια συνάρτηση
παραγωγής που χαρακτηρίζεται από σταθερές αποδόσεις κλίμακας και η οποία
δίδεται από την εξίσωση που ακολουθεί :
Q=γK+δL
όπου γ και δ είναι δύο σταθερές.
Η συνάρτηση παραγωγής μπορεί να γραφτεί υπό την ακόλουθη μορφή:
K = Q−δ L
γγ
Eκ της τελευταίας λαμβάνουμε ότι ο οριακός λόγος τεχνικής
υποκατάστασης RTS είναι ίσος με –δ/γ, δηλαδή,
372
RTS = − dK = δ (μια σταθερά)
dL γ
dQ =0
Λαμβάνουμε, λοιπόν, από τα παραπάνω ότι dRTS=0. Αντικαθιστώντας
dRTS=0 στον ορισμό της ελαστικότητας υποκατάστασης
d (K / L) RTS
σ = dRTS K / L
λαμβάνουμε ότι σ = 0
β) Q = A K a Lb ⇒ K = Q1/ a A−1/ a L(a−1) / a ⇒
dK = a − 1 Q1/ a A−1/ a L−1+(a−1) / a = a − 1 Q1/ a A−1/ a L−1/ a =
dL a a
a − 1[ A1/ a KL(1−a) / a ]A−1/ a L−1/ a = a − 1 KL−1 ⇒
aa
RTS = a −1 K ⇒ K = a −1 RTS
aL L a
Διάγραμμα 7: σ = ∞
K
-b / a
L
373
Διάγραμμα 8: σ = 0
Κ
L
Χρησιμοποιώντας την τελευταία σχέση και τον ορισμό της ελαστικότητας
υποκατάστασης λαμβάνουμε :
d (K / L) RTS a 1−a =1⇒σ =1
σ= =
dRTS K / L 1 − a a
γ) Εάν η συνάρτηση παραγωγής δίδεται από την εξίσωση Q = min {aK,bL},
δηλαδή εάν οι καμπύλες ίσου προϊόντος έχουν το σχήμα ορθής γωνίας, βλέπε
Διάγραμμα 8, τότε η ελαστικότητα υποκατάστασης είναι ίση με το μηδέν, γιατί η
παραγωγή πάντα γίνεται με τη χρήση κεφαλαίου και εργασίας σε σταθερή
αναλογία a/b.
ΑΣΚΗΣΗ-Εφαρμογή 3.3
ΛΥΣΗ
σ = d (K / L) RTS = d (K / L) W / r
dRTS K / L d (W / r) K / L
Η σχέση αυτή προσφέρεται για το ευκολότερο υπολογισμό της
ελαστικότητας υποκατάστασης μιας και απαιτεί μόνο γνώση των μεταβολών του
λόγου K/L που αντιστοιχούν σε δεδομένες μεταβολές του λόγου των τιμών των
εισροών.
Παράδειγμα 3.1
ΛΥΣΗ
Λύνοντας τον περιορισμό ως προς L λαμβάνουμε :
L = A-1/β Q-1/β K-α/β
374
Αντικαθιστώντας την τελευταία σχέση στη συνάρτηση που
ελαχιστοποιούμε, έχουμε ότι το αρχικό μας πρόβλημα είναι ισοδύναμο με το
παρακάτω:
min r K + W A-1/β Q-1/β K-α/β
K
Η συνθήκη πρώτου βαθμού είναι :
r a − WA Q-1/β 1/ β Κ −(a+β ) / β = 0
β
Λύνοντας την τελευταία εξίσωση ως προς Κ λαμβάνουμε :
K * = A−1/(a+β ) [ aw ]−β /(α +β ) Q1/(α +β )
βr
(όπου το * σημαίνει λύση στο πρόβλημα ελαχιστοποίησης κόστους).
Έχοντας από παραπάνω την λύση για το κεφάλαιο που απαιτείται για την
ελαχιστοποίηση του κόστους, Κ*, μπορούμε να λάβουμε τη ζήτηση για εργασία, L*,
(αντικαθιστώντας Κ* στον περιορισμό). Έτσι έχουμε :
L* = A−1/(a+β ) [αw ]−a /(a+β ) Q1/(a+β )
βr
Μπορούμε λοιπόν τώρα να υπολογίσουμε την συνάρτηση κόστους :
C(W,r,Q) = W L* + r K*=
= A−1/(a+β ) [( a ) β /(α +β ) + (α ) −α /(α +β ) ]r α /(α +β )W Qβ /(α +β ) 1/(α +β )
ββ
Παράδειγμα 3.2
ΛΥΣΗ
Q = 10 ( K L )0.5 ⇒
Q2 = 100 K L ⇒
Q2
L= ⇒
100K
ότι η βραχυχρόνια καμπύλη συνολικού κόστους είναι:
STC = WQ 2 +rK
100K
Το πρόβλημα ελαχιστοποίησης κόστους της επιχείρησης είναι το εξής:
min r K + w L
K,L
δοθέντος του περιορισμού Q = 10 ( K L )0.5
375
Για την επίλυση του τελευταίου προβλήματος λαμβάνουμε την εξίσωση του
Lagrange: L = r K + w L + λ [ Q - 10 ( K L )0.5 ]
Στη συνέχεια παίρνουμε τις συνθήκες πρώτου βαθμού:
∂L L )0.5 = 0
=r–λ5(
∂K K
∂L L )0.5 = 0
=w–λ5(
∂L K
∂L = Q – 10 ( K L )0.5 = 0
∂λ
Από την πρώτη και την δεύτερη συνθήκη πρώτου βαθμού λαμβάνουμε:
r (L / K )0.5 L
w = (K / L)0.5 = K ⇒
r
L= K
w
Αντικαθιστώντας την τελευταία σχέση στην
Q = 10 ( K L )0.5
λαμβάνουμε διαδοχικά:
Q = 10 ( r K 2 )0.5 ⇒
w
K2 = Q ( w )0.5 και
10 r
L2 = Q r )0.5
(
10 w
Μπορούμε, λοιπόν, τώρα να υπολογίσουμε την μακροχρόνια καμπύλη
συνολικού κόστους:
TC = r K* + w L* =
= [ r ( w )0.5 + w ( r )0.5] Q ⇔
r w 10
TC = Q ( w )0.5
5r
376
ΑΣΚΗΣΕΙΣ ΑΥΤΟΑΞΙΟΛΟΓΗΣΗΣ
ΕΝΟΤΗΤΑ ΜΕΛΕΤΗΣ 4
ΑΣΚΗΣΗ-Εφαρμογή 4.1
Σας δίδεται ότι η μακροχρόνια συνάρτηση κόστους μιας ανταγωνιστικής
επιχείρησης είναι : C (Q) = Q² + 1
Α) υπολογίστε την μακροχρόνια καμπύλη προσφοράς του ανταγωνιστικού
κλάδου,
Β) υπολογίστε την βραχυχρόνια καμπύλη προσφοράς.
Γ) χρησιμοποιείστε ένα διάγραμμα για να απεικονίσετε την βραχυχρόνια και
την μακροχρόνια ισορροπία αυτού του κλάδου.
ΑΣΚΗΣΗ-Εφαρμογή 4.2
Ένας καταναλωτής έχει υπό την ιδιοκτησία του περιουσία αξίας W ευρώ
(π.χ. ένα σπίτι) η οποία μπορεί να υποστεί ζημιά L ευρώ, π.χ. από πυρκαγιά. Η
πιθανότητα ότι αυτή η ζημιά θα συμβεί είναι Ρ. Υπάρχουν στην αγορά
ασφαλιστικές εταιρίες οι οποίες, εφόσον έχουν εισπράξει ασφάλιστρο (πq) θα
καταβάλλουν στον ασφαλιζόμενο:
1) q ευρώ εάν η ζημιά συμβεί και
2) τίποτα ( μηδέν ευρώ ) εάν η ζημιά δεν συμβεί.
Ο καταναλωτής (ασφαλιζόμενος) μπορεί να επιλέξει το ποσόν της
αποζημίωσης q που θα αγοράσει καταβάλλοντας το αντίστοιχο ασφάλιστρο, π q.
Τι ποσόν αποζημίωσης θα αγοράσει ο καταναλωτής;
(Υποθέστε ότι ο ανταγωνισμός θα σπρώξει τα αναμενόμενα κέρδη των
ασφαλιστικών εταιριών στο μηδέν).
377
ΑΠΑΝΤΗΣΕΙΣ
ΑΣΚΗΣΕΙΣ ΑΥΤΟΑΞΙΟΛΟΓΗΣΗΣ
ΕΝΟΤΗΤΑ ΜΕΛΕΤΗΣ 4
ΑΣΚΗΣΗ-Εφαρμογή 4.1
Απάντηση
C = Q² +1 => LAC = Q +1/Q
min LAC = Q +1/Q
Η συνθήκη πρώτου βαθμού είναι:
1 - 1/Q² = 0 Q* =1
Όταν Q* = 1, C* = 2. Εξ αυτού λαμβάνουμε ότι η τιμή στην μακροχρόνια
περίοδο είναι ίση με 2.
Η βραχυχρόνια (υπό την έννοια ότι επιχειρήσεις εξακολουθούν να
μπαίνουν στον κλάδο) καμπύλη προσφοράς της ανταγωνιστικής επιχείρησης είναι:
Q=P/2
(δοθέντος ότι P=2 Q=MC)
Εάν υπάρχουν Ν επιχειρήσεις στον κλάδο, η συνολική καμπύλη
προσφοράς του ανταγωνιστικού κλάδου είναι :
Q = N (P/2)
Εάν ο αριθμός Ν των επιχειρήσεων είναι σταθερός ( δηλαδή
βραχυχρόνια), η ισορροπία προσδιορίζεται στη βραχυχρόνια περίοδο υπό τη
συνθήκη :
Προσφορά = Ζήτηση
Στο Διάγραμμα 15 η μακροχρόνια ισορροπία επιτυγχάνεται στο σημείο Ε.
378
Διάγραμμα 15
€
α
n=1
β
n=2 γ
n=3
2
Ε
D
1 23 Q
Προσέξατε ότι το διάγραμμα αυτό α, β, γ είναι τα βραχυχρόνια σημεία
ισορροπίας όταν Ν = 1, Ν = 2 και Ν = 3 αντίστοιχα.
ΑΣΚΗΣΗ-Εφαρμογή 4.2
Απάντηση
Ο καταναλωτής αντιμετωπίζει το λαχείο:
Pο(W–L–πq+q)+(1–P)ο(W–πq)
Ο καταναλωτής θα επιλέξει το ποσό αποζημίωσης q που μεγιστοποιεί την
αναμενόμενη χρησιμότητα του. Δηλαδή, θα επιλέξει το q που αποτελεί μία λύση στο
πρόβλημα μεγιστοποίησης που ακολουθεί.
max P U ( W – L – π q + q ) + ( 1 – P ) U ( W – π q )
q
Η συνθήκη πρώτου βαθμού του παραπάνω προβλήματος είναι ισοδύναμη με:
∂U (W − L − πq + q) / ∂q = (1− P)π
∂U (W − πq) / ∂q P(1− π )
Το αναμενόμενο κέρδος της ανταγωνιστικής ασφαλιστικής επιχείρησης θα είναι
μηδέν. Ως εκ τούτου:
379
-P(1–π)q+(1–Ρ)πq=0 ⇔
-Pq+Pπq+πq–Pπq=0 ⇔
π=P
Από την συνθήκη πρώτου βαθμού και π = P λαμβάνουμε ότι:
∂U (W − L + (1 − π )q ∂U (W − πq)
=
∂q ∂q
∂ 2U
Από τη τελευταία και δοθέντος ότι ∂ 2W < 0, έχουμε ότι:
W – L + ( 1 – q ) q = W – q2 ⇒
L=q
380
ΑΣΚΗΣΕΙΣ ΑΥΤΟΑΞΙΟΛΟΓΗΣΗΣ
ΕΝΟΤΗΤΑ ΜΕΛΕΤΗΣ 8
Παράδειγμα
Εξετάζουμε μια αγορά στην οποία η ζήτηση για το προϊόν είναι :
Q = q1 + q2 = 120 − P
Υπάρχουν δύο επιχειρήσεις στην αγορά, οι οποίες πουλάνε το ίδιο προϊόν. Γίνεται
η υπόθεση ότι το προϊόν δεν έχει κόστος παραγωγής. Στη συνέχεια
προσδιορίζουμε την ισορροπία της αγοράς για τα υποδείγματα
• Ψεύδοανταγωνισμού
• Καρτέλ
• Κουρνό
• Στάκελμπεργκ
381
ΑΠΑΝΤΗΣΕΙΣ
ΑΣΚΗΣΕΙΣ ΑΥΤΟΑΞΙΟΛΟΓΗΣΗΣ
ΕΝΟΤΗΤΑ ΜΕΛΕΤΗΣ 8
Παράδειγμα
Απάντηση
Α) Ψεύδοανταγωνισμός
Εφόσον MC =0 η τιμή ισορροπίας θα είναι 0. Στην τιμή αυτή η ζήτηση θα
είναι 120. Η ποσότητα που θα παράγει η κάθε επιχείρηση δεν μπορεί να
προσδιοριστεί σε αυτή την περίπτωση.
Β) Καρτέλ
Στην περίπτωση αυτή οι επιχειρήσεις μεγιστοποιούν συνολικά έσοδα:
Π = P Q = 120 Q – Q 2
Η συνθήκη πρώτου βαθμού είναι:
∂Π
= 120 − 2Q = 0 ⇒
∂Q
Q = 60
P = 60
Π = 3600
Δεν μπορεί να προσδιοριστεί το πώς το κέρδος και η ποσότητα θα
κατανεμηθεί μεταξύ των δύο επιχειρήσεων.
Γ) Κουρνό
Τα κέρδη των επιχειρήσεων είναι:
Π1 = Pq1 = (120 − q1 − q2 )q1 = 120q1 − q12 − q1q2
Π 2 = Pq2 = (120 − q1 − q2 )q2 = 120q2 − q2 2 − q1q2
Έχοντας στην περίπτωση αυτή
∂q1 = ∂q2 = 0
∂q2 ∂q1
οι συνθήκες πρώτου βαθμού:
∂Π
1 = 120 − 2q1 − q2 =0
∂q1 382
∂Π
2 = 120 − 2q2 − q1 =0
∂q2
Το παραπάνω είναι ένα σύστημα 2 εξισώσεων, το οποίο λύνουμε για q1
και q2 και βρίσκουμε ότι :
q1 = q2 = 40
Συνεπώς, P = 120 - (q1 + q2) = 40 και Π1 = Π2 = P q1 = P q2 = 1600
Δ) Στάκελμπεργκ
Η πρώτη επιχείρηση συμπεριφέρεται όπως οι επιχειρήσεις στο υπόδειγμα
Κουρνό. Από το ( γ ) λοιπόν μπορούμε να δούμε ότι η συνάρτηση αντίδρασης της
πρώτης επιχείρησης είναι:
q1 = 120 − q2
2
Η δεύτερη επιχείρηση λαμβάνει υπόψη της τη συνάρτηση αντίδρασης όταν
μεγιστοποιεί το κέρδος της που δίνεται από
Π2 = 120 q2 - q 2 - q1 q2
2
δηλαδή θα επιλέξει την ποσότητα που ικανοποιεί τη σχέση
∂Π = 120 − 2q2 − q1 − ∂q1 q2 =0
2 ∂q2
∂q2
λαμβάνοντας υπόψη ότι
q1 = 120 − q2
2
Συνεπώς, η συνθήκη πρώτου βαθμού για την μεγιστοποίηση του κέρδους
της δεύτερης επιχείρησης είναι ισοδύναμη με :
120 − (3 / 2)q2 120 − q2 =0
−
2
Από τη τελευταία λοιπόν εξίσωση λαμβάνουμε διαδοχικά:
q2 = 60
q1 = 30
P = 120 - (q1 + q2) = 30
Π2 = p q2 = 1800
Π1 = p q1 = 1800
383
ΑΣΚΗΣΕΙΣ ΑΥΤΟΑΞΙΟΛΟΓΗΣΗΣ
ΕΝΟΤΗΤΑ ΜΕΛΕΤΗΣ 15
ΑΣΚΗΣΗ-Εφαρμογή 15.2
Σας δίδεται ότι : Q = a + b P, b<0.
Υπολογίστε την ελαστικότητα της ποσότητας Q ως προς την τιμή P , ΕQ,P .
Αποδείξτε ότι στο σημείο Α του Διαγράμματος 5.2 που δίνει την γραφική
απεικόνιση της παραπάνω συνάρτησης παραγωγής έχουμε ότι : ΕQ,P = - 1, όπου
ΑΒ = ΑΓ.
ΑΣΚΗΣΗ-Εφαρμογή 15.3
Αποδείξτε τις ακόλουθες σχέσεις μεταξύ ελαστικοτήτων (υποθέτοντας την
ύπαρξη δύο μόνο αγαθών, X και Y):
α) sy εy,i + sx εx,I = 1
β) εx,p = E x,p – sx εx,I
γ) εx,p + εx,q + εx,I = 0
όπου p είναι η τιμή του Χ, q είναι η τιμή του Υ.
∂Χ Ι ∂Χ p sΧ = Χp
ε Χ,Ι = ∂Ι Χ ε Χ,P = ∂p Χ I
∂X P XP
ΕΧ,P = ∂P X
sy =
dU = 0
I
Παράδειγμα 15.1
Υπολογίστε την ελαστικότητα εQ,P για τις ακόλουθες δύο περιπτώσεις :
α) Q = α Pβ, β<0 και p δεν είναι ίσο με μηδέν.
β) logQ = loga + b logP
Παράδειγμα 15.2
Υπολογίστε τις ελαστικότητες:
εx,p, εx,q και εx,I για τις ακόλουθες δύο περιπτώσεις:
384
α) x = α pβ qY Iδ
β) logx = loga +b logp + c logq + d logI
Παράδειγμα 1
Έχουμε μία οικονομία με δυο καταναλωτές και χωρίς παραγωγή. Οι
προτιμήσεις και το εισόδημα του κάθε καταναλωτή περιγράφονται από τις
συναρτήσεις χρησιμότητας που ακολουθούν:
U1(X1,X2)=X α X 1−α
1 2
U2(X1,X2)= X β X 1−β
1 2
Η περιούσια των καταναλωτών 1 και 2 δίδεται αντίστοιχα από :
(Χ11* , Χ21*) = (1 , 0) και (Χ12 , Χ22) = (0 , 1)
όπου ο πρώτος δείκτης δείχνει το προϊόν και. ο δεύτερος δείκτης δείχνει, τον
καταναλωτή. Προσδιορίστε την γενική ισορροπία.
385
ΑΠΑΝΤΗΣΕΙΣ
ΑΣΚΗΣΕΙΣ ΑΥΤΟΑΞΙΟΛΟΓΗΣΗΣ
ΕΝΟΤΗΤΑ ΜΕΛΕΤΗΣ 15
ΑΣΚΗΣΗ-Εφαρμογή 15.2
Απάντηση
∂Q Q
Q = a + b P ⇒ ΕQ,P = ∂P P
Στο σημείο Α έχουμε ότι PA = (a / 2b) και QA = (a / 2)
Συνεπώς στο σημείο Α η ελαστικότητα ΕA δίδεται από τη σχέση που
ακολουθεί
a / 2b
Ε = b (PA/QA ) = - b = -1
a/2
Διάγραμμα 15.2
€ Γ Q
a
-a / b B
A
PA
0 QA
386
ΑΣΚΗΣΗ-Εφαρμογή 15.3
Απάντηση
α) Για την απόδειξη της πρώτης σχέσης χρησιμοποιούμε τον εισοδηματικό
περιορισμό.
p X + q Y =I ⇒
p ∂x + q ∂Y = 1 ⇔ pX ∂X I + qY ∂Y I = 1 ⇔
∂I ∂I I ∂I X I ∂I Y
sy εy,I + sx εx,I = 1
β) Για την απόδειξη της δεύτερης σχέσης θα χρησιμοποιήσουμε την εξίσωση
Slutzky
∂X ∂X ∂X ∂X p ∂X p -pX
= -X ⇔=
∂p ∂p ∂I ∂p X ∂p X
∂X 1 ⇔ dU = 0
∂I X dU = 0
pX ∂X I
⇔ εx,p = Ex,p - ⇔ εx,p = Ex,p – sx εx,Ι
∂I X
I
γ) Για να αποδείξουμε την τρίτη σχέση θα χρησιμοποιήσουμε την ιδιότητα
των συναρτήσεων ζήτησης ότι είναι ομογενής βαθμού μηδέν σε (p,q,I) και το
θεώρημα του Euler, το οποίο μας λέει ότι :
f (tX, tY) = tm f(X,Y) για κάθε t > 0 ,
fx X + fY Y = m f(X,Y)
Χρησιμοποιώντας λοιπόν αυτό το θεώρημα λαμβάνουμε ότι :
X (tp,tq.tI ) = X ( p, q, I ) ⇒
∂X p + ∂X q + ∂X I = 0X (P,Q, I ) ⇔
∂p ∂q ∂I
∂X p + ∂X q + ∂X I = 0 ⇔
∂p ∂q ∂I
∂X ( p / X ) + ∂X (q / X ) + ∂X (I / X ) = 0 ⇔
∂p ∂q ∂I
εΧ,p + εΧ,q + εΧ,Ι = 0
387
Παράδειγμα 15.1
Λύση
α) Q = α Pβ ⇔
∂Q P βαP β −1P βαP β
εQ,P = ∂P Q = αP β = αP β = β
β) logQ = loga + blogP ⇒ dlogQ = dQ/Q και dlogP = dp/p
Από τις τελευταίες σχέσεις λαμβάνουμε :
d log Q dQ / Q dQ P
d log P = dP / P = dP Q = εQ,P
ε Q,P = d log Q = b
d log P
Παράδειγμα 15.2
Λύση
α)
ε x,p αβp β −1qY I δ p β
ap β qY I δ
= =
ε x,q = γ και ε x,I = δ
β) εΧ,p = d log X = β, ε x,q = c, ε x, pI =d
d log p
388
Παράδειγμα 1
ΛΥΣΗ
Από την περιουσία των καταναλωτών συνεπάγεται ότι. για τιμές αγαθών
p1 και p2, τα εισοδήματα του πρώτου και του δεύτερου καταναλωτή είναι
αντίστοιχα:
I1 = p1 και I2 = p2
Για να προσδιορίσουμε τις τιμές ισορροπίας, θα προσδιορίσουμε σε
πρώτη φάση τη ζήτηση για Χ και των δυο καταναλωτών. Η ζήτηση για Χ των
καταναλωτών 1 και 2 δίδονται αντίστοιχα από τις εξισώσεις που ακολουθούν:
X 11 ( p1 , p2 , I ) = aI1 = ap1 =a
p1 p1
X 12 ( p1, p2 , I ) = βI 2 = βp2
p1 p1
Η γενική ισορροπία έχει επιτευχθεί όταν Ζήτηση = Προσφορά σε όλες τις
αγορές.
Ο νόμος του Walras μας επιτρέπει να συμπεράνουμε ότι έχουμε γενική
ισορροπία όταν Ζήτηση = Προσφορά στην αγορά του Χ1, δηλαδή όταν:
X11(p1,p2,I) + X12(p1,p2,I) =1 ⇔
a + βp2 = 1 ⇔ p2 * 1− a
p1 =
p1 * β
όπου p2* και p1* είναι οι τιμές ισορροπίας.
Προσέξτε ότι στην ισορροπία προσδιορίζονται μόνο οι σχετικές τιμές των
δυο αγαθών p2 * = 1 − α
p1 * β
389