3 SESSION 2019/2020 SM015/2
[5 marks]
PSPM 1
5. Given ( ) = 2 − 6, where ≠ 0. Find the coordinate(s) of stationary point
and determine whether it is a relative maximum or a relative minimum. Give CHOW CHOON WOOI
the coordinates correct to 3 decimal places.
SECTION B [25 marks]
This section consists of 2 question. Answer all questions.
1. The function ( ) is defined by
− , ≤
− < ≤
,
( ) = √ −
| − | >
{ − + ,
Where and is constant.
a. If lim ( ) exists, find the values of . [5 marks]
[3 marks]
→2
[5 marks]
b. Find the values of such that ( ) is discontinuous at = 8. [9 marks]
[3 marks]
2. Given a right circular cylinder with height 2ℎ and radius = √ 2 − ℎ2,
which is inscribed in a sphere of fixed radius a.
a. Show that the volume of the cylinder is = 2 ( 2 − ℎ2)ℎ.
b. From part 2(a), find the maximum value of the volume, in terms
of as the height, ℎ varies. Hence, state the value of the volume
if = 3.
c. Show that the ratio of the volume of the sphere to the maximum
volume of the cylinder is √ : .
END OF QUESTION PAPER
3
351
4 SESSION 2019/2020 SM015/2
[8 marks]
PSPM 1
Question A1 CHOW CHOON WOOI
1. Polynomial ( ) = 12 3 − 2 − + 8 is divisible by 3 2 − 7 + 4. Find the
values of and . Hence, factorise ( ) completely.
SOLUTION
( ) = − − +
( ) = − + = ( − )( − )
( ) =
( ) =
( ) = ( ) − ( ) − ( ) + =
+ =
= − …………… (1)
( ) = ( ) − ( ) − ( ) + =
− − + =
− − + =
+ = …………… (2)
Substitute (1) into (2)
( − ) + =
− + =
− =
= −
=
( ) = − + +
4
352
5 SESSION 2019/2020 SM015/2
PSPM 1
− + + CHOW CHOON WOOI
− + +
− +
− +
− +
( ) = − + +
= ( − + )( + )
= ( − )( − ) ( + )
= ( − )( − ) ( + )
Alternative Method:
( ) = − − +
( ) = − + = ( − )( − )
( ) = ➔ ( − ) ( )
( ) = ➔ ( − ) ( )
( ) = ( ) ( )
− − + = ( − )( − )( + )
− − + = ( − − + )( + )
− − + = ( − + )( + )
− − + = + − − + +
− − + = + ( − ) + ( − ) +
Compare the coefficient:
: =
=
5
353
6 SESSION 2019/2020 SM015/2
PSPM 1 = CHOW CHOON WOOI
=
: − = −
: − = ( ) − ( )
=
: − = −
− = ( ) − ( )
= −
= ; = −
( ) = ( − )( − ) ( + )
= ( − )( − ) ( + )
6
354
7 SESSION 2019/2020 SM015/2
PSPM 1 [5 marks]
[5 marks]
Question A2 CHOW CHOON WOOI
2. a) Show that − cot can be simplified as tan 2 .
b) Hence, find the values of ° and °. Give your answer in the form
of + √ , where a, b and c are integers.
SOLUTION
a) − = −
= −
= −( − )
=
=
=
b) = −
° = ( °)
= ° − °
= − °
° °
= − √
= − √
7
355
8 SESSION 2019/2020 SM015/2
PSPM 1
= + CHOW CHOON WOOI
° = ° +
= ( °) +
= ( − √ ) +
= ( + − √ ) +
= − √
= ( − √ )
8
356
9 SESSION 2019/2020 SM015/2
PSPM 1 [7 mark]
[3 mark]
Question A3
3. a) A function ( ) is defined as
− < CHOW CHOON WOOI
− , =
( ) = − ,
− >
{ − ,
Determine whether ( ) is continuous at = .
b) Find −+ − .
→∞
SOLUTION
9− 2 , < 3
= 3
−3 > 3
a) ( ) = −6,
162 −54 2 ,
{ 3−27
At =
( ) = −
( ) = ( − )
→ − → − −
= [( + )( − )]
→ − −
= [−( + )( − )]
→ − −
= [−( + )]
→ −
= −( + )
= −
9
357
10 SESSION 2019/2020 SM015/2
PSPM 1
( ) = ( ) −
−
→ + → +
= [ ]− ( − ) + +
→ + ( − )( + + ) − − CHOW CHOON WOOI
−
= [ ]−
−
→ + ( + + ) −
= − ( ) −
−
+ ( )+
= −
= −
( ) = −
→
( ) = ( ) = − ,
→
( ) =
b) 5 3+4 −9 = 5 3+4 −9
7−3 3 7−3 3
→∞ →∞
5 3 + 4 − 9
= 3
7 − 3 3
→∞
3
= 5 + 4 − 9
2 3
→∞ 7
3 − 3
5+0−0
= 0−3
5
= −3
10
358
11 SESSION 2019/2020 SM015/2
[5 mark]
PSPM 1 [7 marks]
Question A4
4. a) Given = 2 −3 , find 2 2 . Give your answer in the simplest form. CHOW CHOON WOOI
b) Given = ( + ).
Show that ( + ) + + = ( + ).
SOLUTION
a) = 2 −3
= = −
′ = ′ = − −
= ′ + ′
= ( )(− − ) + ( − )( )
= − [− + ]
= − + = −
′ = − + ′ = − −
= (− + )(− − ) + ( − )(− + )
= − [(− )(− + ) + (− + )]
= − [ − − + ]
= − [ − + ]
b) = ( + )
+ = ( + )
11
359
12 SESSION 2019/2020 SM015/2
PSPM 1
[ + ] + [ + ] = [− ( ) ( + ) + ( + )] Given:
= ( + )
+ + + = − ( + ) + ( + )
+ + = − ( ) + ( + ) CHOW CHOON WOOI
+ + + ( ) = ( + )
+ + ( + ) = ( + )
( + ) + + = ( + )
12
360
13 SESSION 2019/2020 SM015/2
[5 marks]
PSPM 1
Question A5 CHOW CHOON WOOI
5. Given ( ) = 2 − 6, where ≠ 0. Find the coordinate(s) of stationary point
and determine whether it is a relative maximum or a relative minimum. Give the
coordinates correct to 3 decimal places.
SOLUTION
( ) = −
= − −
′( ) = + −
= +
′( ) =
+ =
+ =
= −
= − .
= − .
= − . ,
( ) = (− . ) −
− .
= .
= (− . , . )
= − −
= −
= − .
= − = . > ( )
(− . )
∴ (− . , . ) .
13
361
14 SESSION 2019/2020 SM015/2
PSPM 1
Graph: (Only for illustration purpose)
CHOW CHOON WOOI
14
362
15 SESSION 2019/2020 SM015/2
PSPM 1 [5 marks]
[3 marks]
Question B1
1. The function ( ) is defined by
− , ≤ CHOW CHOON WOOI
−
, < ≤
( ) = √ −
| − | >
{ − + ,
Where and is constant.
a. If lim ( ) exists, find the values of .
→2
b. Find the values of such that ( ) is discontinuous at = 8.
SOLUTION
− , ≤
− < ≤
,
( ) = √ −
| − | >
{ − + ,
a) lim ( )
→2
( ) = ( )
→ − → +
− = −
→ − → + √ −
− = − √ +
→ + √ − √ +
− = ( − )(√ + )
→ + −
− = ( − )(√ + )
( − )
→ +
− = √ +
→ +
15
363
16 SESSION 2019/2020 SM015/2
PSPM 1 CHOW CHOON WOOI
− = √ ( )+
− =
=
= ±√
b) ( ) is discontinuous at = 8
( ) = −
√ ( )−
( ) = = | − | = {−( −− ) ,, − ≥
− <
| − | = − + = {− −+ , , ≤
+ >
+
→ + − → + −
= +
→ +
= +
( ) =
+ ≠
≠
∈ ℝ\{ }
16
364
17 SESSION 2019/2020 SM015/2
PSPM 1 [5 marks]
[9 marks]
Question B2 [3 marks] CHOW CHOON WOOI
2. Given a right circular cylinder with height 2ℎ and radius = √ 2 − ℎ2,
which is inscribed in a sphere of fixed radius a.
a. Show that the volume of the cylinder is = 2 ( 2 − ℎ2)ℎ.
b. From part 2(a), find the maximum value of the volume, in terms
of as the height, ℎ varies. Hence, state the value of the volume
if = 3.
c. Show that the ratio of the volume of the sphere to the maximum
volume of the cylinder is √ : .
SOLUTION
a) 2 + ℎ2 = 2
= −
= √ −
= ( )
= (√ −
)
= ( − )
17
365
18 SESSION 2019/2020 SM015/2
PSPM 1
b) = 2 ( 2 − ℎ2)ℎ CHOW CHOON WOOI
= −
= −
= ;
− =
( − ) =
− =
=
=
= −
= − < ( > )
=
= =
= √
= −
= −
=
= ( − )
= ( − )
= ( )
=
= √
= √
18
366
19 SESSION 2019/2020 SM015/2
PSPM 1
c) Volume of sphere = 4 3
3
= CHOW CHOON WOOI
= (√ = ( √ ) = √
)
= √
= √
: = √ :
19
367
2020/2021
368
CHOW CHOON WOOI
SM015 PSPM I 2020/2021
Section A
1. (a) ℎ < 1 CHOW CHOON WOOI
≥ 1, ≠
+ 1 ,
( ) = { 2 − −
− ,
= 1. ℎ . , lim ( ). [ 6 marks]
[3 marks]
→
(b) 1
2 + 5 3
lim (3 4)
−
→+∞
2. (a) ℎ
= 1 + 3 2, = 2 − 4√ , > 0
2 2 [6 marks]
2 . , 2 = 1
(b) 2 [5 marks]
= (1 − 2 ) . ℎ ℎ = −2 2 . [5 marks]
3. A farmer has a 100 meter of fencing wants to fence off a rectangular piece of
land that borders a straight river. The part of the land which borders the river
needs no fencing. Find the dimensions of the enclosed region that has the
maximum area.
Section B
1. (a) ℎ [4 marks]
ln 24 −1 = ln 8 +5 + 2161−2 [5 marks]
2.
(b) 1 = 2 − 3 2 = 4 + 2 .
ℎ , 3 = ̅ 1 ℎ , | 3|.
2
369
SM015 PSPM I 2020/2021
2 ℎ ℎ .
4 [5 marks] CHOW CHOON WOOI
( ) 4 − ≥ 6. [6 marks]
( ) | − 6| < 3| − 2|
3 ℎ ( ) ℎ − 2 ≤ ≤ 5.
(5,11)
(−2,9)
(3, −1)
[1 marks]
(a) ℎ ( ). [4 marks]
[2 marks]
(b) ℎ ( ).
[4 marks]
(c) ( )(0). [5 marks]
[4 marks]
4 Given the function ( ) = 3 , ≠ −2, 2 ( )( ) = 3 , ≠ 5.
2 −4 −5 [8 marks]
(a) ( ) ≥ 0 .
(b) Show that −1( ) exist. Hence, find −1( ) and its domain.
(c) Find the values of and if ℎ( ) = + , such that
(ℎ −1)( ) = 5 2 + 12.
5 Given
2 2 + 2
( ) = 2 − 4
(a) ℎ ℎ ( )
370
SM015 PSPM I 2020/2021
(b) , ℎ ℎ ℎ ( ). [3 marks]
[5 marks]
6 2 [6 marks]
(a) = ( + ) , ℎ ℎ − 2 = 0. [6 marks]
4 2
CHOW CHOON WOOI
(b) ( ) = − 2 , ≠ ln 2 ℎ .
, ℎ ′( ) = −2.
(c) Find the value of tangent to the curve 2 = 3 and 2 2 + 3 2 = , where is
a constant, at the points (1, −1) (1, 1).
Hence, state the relationship between the tangent values at these two points.
7 Consider a cone as shown in FIGURE 2.
°
FIGURE 2
Water flows out from a cone through a hole located at the bottom tip at the [8 marks]
rate of 5 3/ . Find the rate of change of the height of the water when the
volume of water in the cone is 3000 3.
END OF QUESTION PAPER
371
SM015 PSPM I 2020/2021
Question A1 < 1
≥ 1, ≠
(a) ℎ
+ 1 ,
( ) = { 2 − −
,
−
= 1. ℎ . , lim ( ). [ 6 marks] CHOW CHOON WOOI
[3 marks]
→
1
2 + 5 3
(b) lim ( )
→+∞ 3 − 4
SOLUTION
a) + 1 , < 1
( ) = { 2 − − ≥ 1, ≠
− ,
lim ( ) = lim ( )
→1− →1+
lim + 1 = lim 2 − −
→1− →1+ −
12 − 1 −
1 + 1 = 1 −
−
2 = 1 −
2 − 2 = −
= 2
= 2
+ 1 , < 1
( ) = { 2 − − 2 ≥ 1, ≠ 2
− 2 ,
lim ( ) = lim 2 − − 2
→2 →2 − 2
= lim ( − 2)( + 1)
→2 − 2
= lim + 1
→2
= 2+1
=3
372
SM015 PSPM I 2020/2021
b) 1 3√2 + 5
2 + 5 3 lim
lim (3 4) =
− →+∞ 3√3 − 4
→+∞
3√2 + 5
= lim
→+∞ 3√3 4
− CHOW CHOON WOOI
3√2 + 5
= lim
→+∞ 4
3√3 −
3√2 + 0
= 3√3 − 0
1
23
= (3)
373
SM015 PSPM I 2020/2021
Question A2 [6 marks]
[5 marks]
(a) ℎ
= 1 + 3 2, = 2 − 4√ , > 0
2 2 CHOW CHOON WOOI
2 . , 2 = 1
(b) 2
= (1 − 2 ) . ℎ ℎ = −2 2 .
SOLUTION
(a) = 1 + 3 2, = 2 − 4√ , > 0
= −1 + 3 2 1
= 2 − 4 2
= − −2 + 6 = 2 − 2 −12
1 2
= − 2 + 6 = 2 − 1
6 3 − 1 2
= 2
3
2 2 − 2
=1
2
= .
3
2 2 − 2 2
= . 6 3 − 1
1
2
33
2 2 ( 2 − 1)
= 6 3 − 1
3
2 3 − 2 2
= 6 3 − 1
= ( ) .
3
2 3 − 2 2
( ) = ( )
6 3 −1
374
SM015 PSPM I 2020/2021
3 = 6 3 − 1
′ = 18 2
= 2 3 − 2 2
1
′ = 6 − 3 2
2 ′ − ′
2 = ( 2 ) . ( )
13
(6 3 − 1) (6 − 3 2) − (2 3 − 2 2) (18 2)
2 CHOW CHOON WOOI
=[ ] . ( )
(6 3 − 1)2 6 3 − 1
13
2(6 3 − 1) (6 − 3 2) − 18 4 (2 3 − 2 2)
= (6 3 − 1)3
=
13
2 (1)2[6(1)3 − 1] [6(1) − 3(1)2] − 18(1)4 [2(1)3 − 2(1)2]
2 =
[6(1)3 − 1]3
5[3] − 18[2 − 2]
= [6 − 1]3
15
= 125
3
= 25
375
SM015 PSPM I 2020/2021
(b) 2
= (1 − 2 )
1 − cos 2 2
= sin 2 (1 − 2 )
1 − cos 2 (1 − cos 2 )(2 cos 2 ) − (sin 2 )(2 sin 2 )] CHOW CHOON WOOI
= sin 2 [
(1 − cos 2 )2
2cos 2 (1 − cos 2 ) − 2 sin2 2
= sin 2 (1 − cos 2 )
2cos 2 − 2 cos2 2 − 2 sin2 2
= sin 2 (1 − cos 2 )
2cos 2 − 2(cos2 2 + sin2 2 )
= sin 2 (1 − cos 2 )
2cos 2 − 2(1)
= sin 2 (1 − cos 2 )
−2(1 − cos 2 )
= sin 2 (1 − cos 2 )
−2
= sin 2
= −2 2
376
SM015 PSPM I 2020/2021
Question A3
A farmer has a 100 meter of fencing wants to fence off a rectangular piece of land
that borders a straight river. The part of the land which borders the river needs no
fencing. Find the dimensions of the enclosed region that has the maximum area.
[5 marks] CHOW CHOON WOOI
SOLUTION
+ + = 100
= 100 − 2
To maximize the area:
=
= (100 − 2 )
= 100 − 2 2
= 100 − 4
= 0
100 − 4 = 0
= 25
= 100 − 2(25)
= 50
2
2 = −4 ( )
∴ = 50 = 25 ℎ .
377
SM015 PSPM I 2020/2021
Question B1 [4 marks]
(a) ℎ
ln 24 −1 = ln 8 +5 + 2161−2
2.
(b) 1 = 2 − 3 2 = 4 + 2 . CHOW CHOON WOOI
ℎ , 3 = ̅ 1 ℎ , | 3|. [5 marks]
2
SOLUTION
(a) ln 24 −1 = ln 8 +5 + 2161−2 log = log
ln 24 −1 = ln 23( +5) + 224(1−2 )
ln 24 −1 − ln 23 +15 = (4 − 8 ) 22 = 1
24 −1
ln 23 +15 = 4 − 8
ln 24 −1−(3 +15) = 4 − 8 log − log = log
ln 2 −16 = 4 − 8
( − 16) ln 2 = 4 − 8
ln 2 − 16 ln 2 = 4 − 8
ln 2 + 8 = 4 + 16 ln 2
(ln 2 + 8) = 4 + 16 ln 2
4 + 16 ln 2
= ln 2 + 8
378
SM015 PSPM I 2020/2021
(b) 1 = 2 − 3 , 2 = 4 + 2 = +
| | = √ 2 + 2
3 = ̅ 1
2
2 + 3 CHOW CHOON WOOI
= 4 + 2
2 + 3 4 − 2
= 4 + 2 . 4 − 2
8 − 4 + 12 − 6 2
= 16 − 4 2
14 + 8
= 20
14 8
= 20 + 20
72
= 10 + 5
| 3| = √( 7 2 + 22
()
10 )
5
= √ 49 + 4
100 25
= √13
20
379
SM015 PSPM I 2020/2021
Question B2 [5 marks]
[6 marks]
ℎ ℎ .
(4, ∞)
( ) 4 ≥ 6. +
4 − -
( ) | − 6| < 3| − 2| - CHOW CHOON WOOI
SOLUTION
(a) 4
4 − ≥ 6
4
4 − − 6 ≥ 0
4 − 6(4 − )
4 − ≥ 0
4 − 24 + 6
4 − ≥ 0
10 − 24
4 − ≥ 0
:
10 − 24 = 0 ➔ = 12
4 − = 0 5
➔ = 4
10 − 24 12 12
(−∞, 5 ) ( 5 , 4)
4 −
10 − 24 - +
+ +
4 −
- ○+
12
{ : 5 ≤ < 4}
(b) | − 6| < 3| − 2|
( − 6)2 < [3( − 2)]2
2 − 12 + 36 < 9( 2 − 4 + 4)
380
SM015 PSPM I 2020/2021
2 − 12 + 36 < 9 2 − 36 + 36 (3, ∞)
+
8 2 − 24 > 0 +
8 ( − 3) > 0 ○+
: ➔ = 0 CHOW CHOON WOOI
8 = 0 ➔ = 3
− 3 = 0
8 (−∞, 0) (0,3)
− 3 - +
- -
8 ( − 3)
○+ -
{ : < 0 > 3}
381
SM015 PSPM I 2020/2021
Question B3
ℎ ( ) ℎ − 2 ≤ ≤ 5.
(5,11)
(−2,9) CHOW CHOON WOOI
(3, −1) [1 marks]
[4 marks]
(a) ℎ ( ). [2 marks]
(b) ℎ ( ).
(c) ( )(0).
SOLUTION
(a) : [−1, 11]
(b) −2 ≤ ≤ 3: (−2, 9), (3, −1)
− 1 = 2 − 1
− 1 2 − 1
− 9 −1 − 9
+ 2 = 3 + 2
− 9
+ 2 = −2
− 9 = −2 − 4
= −2 + 5
3 ≤ ≤ 5: (5,11), (3, −1)
− 1 = 2 − 1
− 1 2 − 1
382
SM015 PSPM I 2020/2021
− 11 −1 − 11
− 5 = 3 − 5
− 11
− 5 = 6
− 11 = 6 − 30
= 6 − 19
( ) = {−62 −+159 , −2 ≤ ≤ 3 CHOW CHOON WOOI
, 3 ≤ ≤ 5
(c) (0) = [ (0)]
= [−2(0) + 5]
= (5)
= 6(5) − 19
= 11
383
SM015 PSPM I 2020/2021
Question B4
Given the function ( ) = 3 , ≠ −2, 2 ( )( ) = 3 , ≠ 5.
2 −4 −5
(a) ( ) ≥ 0 . [4 marks]
[5 marks]
(b) Show that −1( ) exist. Hence, find −1( ) and its domain. CHOW CHOON WOOI
[4 marks]
(c) Find the values of and if ℎ( ) = + , such that
(ℎ −1)( ) = 5 2 + 12.
SOLUTION
(a) 3
( ) = 2 − 4 , ≠ −2, 2
( )( ) = 3 5 , ≠ 5
−
3
[ ( )] = − 5
33
[ ( )]2 − 4 = − 5
3[ ( )]2 − 12 = 3 − 15
3[ ( )]2 = 3 − 3
[ ( )]2 = − 1
( ) = √ − 1
: − 1 ≥ 0
≥ 1
(b) ( ) = √ − 1
( 1) = ( 2)
√ 1 − 1 = √ 2 − 1
22
(√ 1 − 1) = (√ 2 − 1)
1 − 1 = 2 − 1
1 = 2
1 = 2 ℎ ( 1) = ( 2). ℎ , ( )
−1( ) .
384
SM015 PSPM I 2020/2021
[ −1( ) ] =
√ −1( ) − 1 =
−1( ) − 1 = 2
−1( ) = 2 + 1
−1 = = [0, ∞)
(c) ℎ( ) = + CHOW CHOON WOOI
−1( ) = 2 + 1
(ℎ −1)( ) = 5 2 + 12
ℎ[ −1( )] = 5 2 + 12
[ −1( )] + = 5 2 + 12
[ 2 + 1] + = 5 2 + 12
2 + + = 5 2 + 12
ℎ
2: = 5
: + = 12
5 + = 12
= 7
Alternative Method
ℎ( ) = +
−1( ) = 2 + 1
(ℎ −1)( ) = 5 2 + 12
ℎ[ −1( )] = 5 2 + 12
= 2 + 1 ➔ 2 = − 1
ℎ( ) = 5( − 1) + 12
= 5 − 5 + 12
= 5 + 7
ℎ( ) = 5 + 7
= 5 ; = 7
385
SM015 PSPM I 2020/2021
Question B5 [8 marks] CHOW CHOON WOOI
[3 marks]
Given
2 2 + 2
( ) = 2 − 4
(a) ℎ ℎ ( )
(b) , ℎ ℎ ℎ ( ).
SOLUTION
(a) 2 2 + 2
( ) = 2 − 4
Vertical Asymptotes
2 − 4 = 0
= ±2
2 2 + 2 2(2)2 + 2 lim 2 2 + 2 2(2)2 + 2
lim = =
2 − 4 (2)2 − 4 →2+ 2 − 4 (2)2 − 4
→2−
10 10
=0 =0
= −∞ = +∞
2 2 + 2 2(−2)2 + 2 2 2 + 2 2(−2)2 + 2
→li−m2− 2 − 4 = (−2)2 − 4 lim =
2 − 4 (−2)2 − 4
10 →−2+
=0
= +∞ 10
=0
= −∞
386
SM015 PSPM I 2020/2021
Horizontal Asymptotes
2 2 + 2 2 2 + 2 2 2 + 2 2 2 + 2
lim 2 − 4 = lim 2 lim 2 − 4 = lim 2
2 − 4 2 − 4
→+∞ →+∞ →−∞ →−∞
2 2
= lim 2 + 2 = lim 2 + 2 CHOW CHOON WOOI
1 − 1 −
→+∞ 2 →−∞ 2
4 4
2 2
2+0 2+0
= 1− 0 = 1− 0
=2 =2
∴ : = 2 = −2
: = 2
(b) 2 2 + 2
= 2 − 4
( )
= 2
= −2 = 2
387
SM015 PSPM I 2020/2021
Question B6
2
(a) = ( + ) , ℎ ℎ 2 − 2 = 0.
4
[5 marks]
[6 marks] CHOW CHOON WOOI
(b) ( ) = − 2 , ≠ ln 2 ℎ . [6 marks]
, ℎ ′( ) = −2.
(c) Find the value of tangent to the curve 2 = 3 and 2 2 + 3 2 = , where is
a constant, at the points (1, −1) (1, 1).
Hence, state the relationship between the tangent values at these two points.
SOLUTION
(a)
= (4 + )
= sec2 + )
(
4
2
= 2 sec ( + ) sec ( + )
2 4 4
2 )
= 2 sec ( + ) sec ( + ) tan ( +
2 4 4 4
2 = 2 sec2 + ) tan + )
2 (4 (4
2
2 = 2 ( ) . ( )
2
2 = 2
2
2 − 2 = 0
388
SM015 PSPM I 2020/2021
(b)
( ) = − 2
= = − 2
′ = ′ =
′( ) = ( − 2)( ) − ( )( ) CHOW CHOON WOOI
( − 2)2
( )[( − 2) − ( )]
= ( − 2)2
( )[−2]
= ( − 2)2
−2
= ( − 2)2
′( ) = 2
−2
( − 2)2 = 2
−2 = 2( − 2)2
= 2 − 4 + 4
2 − 5 + 4 = 0
=
2 − 5 + 4 = 0
( − 1)( − 4) = 0
= 1 = 4
= 1 = 4
= 0 ln = ln 4
ln = ln 4
= ln 4
∴ = 0 = ln 4
(c) 2 = 3
2 = 3 2
3 2
= 2
ℎ (1, −1)
389
SM015 PSPM I 2020/2021
3(1)2 3
= 2(−1) = − 2
ℎ (1,1)
3(1)2 3
= 2(1) = 2
2 2 + 3 2 = CHOW CHOON WOOI
4 + 6 = 0
4
= − 6
ℎ (1, −1)
4(1)2 2
= − 6(−1) = 3
ℎ (1,1)
4(1)2 2
= − 6(1) = − 3
At these two points, the tangent line of = and + = are perpendicular
to each other.
390
SM015 PSPM I 2020/2021
Question B7
Consider a cone as shown in FIGURE 2.
° CHOW CHOON WOOI
FIGURE 2
Water flows out from a cone through a hole located at the bottom tip at the [8 marks]
rate of 5 3/ . Find the rate of change of the height of the water when the
volume of water in the cone is 3000 3.
SOLUTION Remarks
° = −5 3/
° ℎ
=? ℎ = 3000
ℎ ℎ
= .
ℎ
= . (−5)
391
SM015 PSPM I 2020/2021
= 1 2ℎ
3
CHOW CHOON WOOI
°
tan 30° = ℎ
1
√3 = ℎ
ℎ = √3
ℎ
=
√3
= 1 ℎ2
() ℎ
3 √3
= 1 ℎ3
9
= 1 ℎ2
ℎ 3
ℎ = ℎ . (−5)
3
= ℎ2 . (−5)
15
= ℎ2
=
3000 = 1 ℎ3
9
ℎ3 = 27000
ℎ = 30
ℎ −15
= (30)2
= − 1 /
60
392