PSPM I QS 015/1 Session
2016/2017
4. If A and B are 2 2 matrices where ≠ 2, such that ( + )2 = 2 + 2 + 2,
deduce that = −1 [Assume = = ]. If = [19 −21], find .
SOLUTION
( + )2 = 2 + 2 + 2 CHOW CHOON WOOI
( + )( + ) = 2 + 2 + 2
2 + + + 2 = 2 + 2 + 2
+ = 2
= 2 −
= = = ℎ −1 =
∴ = −1
= [19 −21]
= −1 = 1 (2)(9) [−−91 −12]
(1)(−1) −
= 1 [−−91 −12]
−19
= 1 [−−19 −12]
−19
1 2
= [199 119]
19
19
Page 7
201
PSPM I QS 015/1 Session
2016/2017
1
5. (a) Obtain the expansion for (1 − )4 in ascending powers of x up to the term 3.
4
1
State the interval for x such that the expansion (1 − )4 is valid. Hence, obtain
4
1
the simplest form of the expansion (16 − 4 )4.
1 CHOW CHOON WOOI
(b) Write 4√12 in the form of [(1 − )4]. Hence, approximate 4√12 correct to
4
three decimal places.
SOLUTION
a) (1 − 1 = 1 + (1) (− 1 + (41)(14−1) (− )2 + (41)(41−1)(14−2) (− )3 + ⋯
)4 4 )
4 1! 4 2! 4 3! 4
1 (− (14) (− 43) 2 (41) (− 43) (− 74) (− 3
() ) () )
= 1 + 44 + 2 1 16 + 3 2 1 64 + ⋯
3 2 21 3
= 1 − 16 − 32 (16) − 384 (64) + ⋯
= 1 − 1 − 3 2 − 7 3 + ⋯
16 512 8192
The interval for x such that the expansion ( − ) is valid
|4| < 1
−1 < 4 < 1
−4 < < 4
Page 8
202
PSPM I QS 015/1 Session
2016/2017
The simplest form of the expansion ( − )
1
1 4 4
(16 − 4 )4 = [16 (1 − 16)]
= 1 (1 − 1 CHOW CHOON WOOI
164 4 )4
= 2 (1 − )14
4
= 2 [1 − 1 − 3 2 − 7 3 + ⋯ ]
16 512 8192
= 2 − 1 − 3 2 − 7 3 + ⋯
8 256 4096
b) √ in the form of [( − ) ]
4√12 = 1
124
1
= (16 − 4)4
1
44
= [16 (1 − 16)]
1 Compare 2 (1 − 4 )41 = 2 − 1 − 3 2 − 7 3
8 256 4096
1 14
= 164 (1 − 4) +⋯
1
14
= 2 (1 − 4)
= 2 − 1 (1) − 3 (1)2 − 7 (1)3 + ⋯
8 256 4096
≈ 1.862
Page 9
203
PSPM I QS 015/1 Session
2016/2017
6. Given ( ) = 2+1, ≥ 0. CHOW CHOON WOOI
5
(a) Determine −1( ). Hence, if ( ( )) = 1 ( 2(3 −1) + 1), show that ( ) =
5
3 −1
(b) Evaluate ( (2)) correct to three decimal places.
(c) Assume that the domain for ( ) is ≥ 0, determine −1( ) and state its
domain and range.
SOLUTION
a) ( ) = 2+1, ≥ 0
5
Method I Method II
2 + 1 2 + 1
( ) = 5 = 5
[ −1( )] = 5 = 2 + 1
[ −1( )]2 + 1 2 = 5 − 1
= √5 − 1
5 = −1( ) = √5 − 1
[ −1( )]2 + 1 = 5
[ −1( )]2 = 5 − 1
−1( ) = √5 − 1
( ( )) = 1 ( 2(3 −1) + 1)
5
[ ( )]2 + 1 = 1 ( 2(3 −1) + 1)
55
[ ( )]2 + 1 = 2(3 −1) + 1
[ ( )]2 = 2(3 −1)
Page 10
204
PSPM I QS 015/1 Session
2016/2017
1
( ) = [ 2(3 −1)]2
( ) = 3 −1
b) Evaluate ( (2)) CHOW CHOON WOOI
22 + 1
(2) = 5
=1
( (2)) = (1)
= 3(1)−1
= 2
c) ( ) = 3 −1 Method II
Method I
( ) = 3 −1 ( ) = 3 −1
[ −1( )] = = 3 −1
3[ −1( )]−1 = ln = ln 3 −1
ln 3[ −1( )]−1 = ln ln = 3 − 1
3[ −1( )] − 1 = ln 3 = ln + 1
3[ −1( )] = ln + 1 ln + 1
= 3
−1( ) = ln + 1 ln + 1
3 3
−1( ) =
Page 11
205
PSPM I QS 015/1 Session
2016/2017
( ) = 3 −1; ≥ 0 ( ): ≥ 3(0)−1
( ): ≥ 0 ≥ −1
1
≥ CHOW CHOON WOOI
−1( ) = ( ) −1( ) = ( )
−1( ): ≥ 0
−1( ): ≥ 1
Page 12
206
PSPM I QS 015/1 Session
2016/2017
7. (a) If √7 − 3√5 = √ − √ , determine the values of and .
(b) Solve the equation 2 − 4(3 + 4) = 0.
SOLUTION CHOW CHOON WOOI
a) √7 − 3√5 = √ − √
2
[√7 − 3√5] = [√ − √ ]2
7 − 3√5 = √ 2 + √ 2 − 2√ √
7 − 3√5 = + − 2√
+ = 7 ………………… (1)
= 7 −
2√ = 3√5
√4 = √9 5 ………………… (2)
4 = 45
Substitute (1) into (2) = 5
4 (7 − ) = 45
28 − 4 2 = 45 2
4 2 − 28 + 45 = 0
(2 − 9)(2 − 5) = 0
= 9
2
Page 13
207
PSPM I QS 015/1 Session
2016/2017
= 7 − 9 = 7 − 5
2 2
= 5 = 9
2 2
95 59
∴ = 2 , = 2 = 2 , = 2
CHOW CHOON WOOI
b) 2 − 4 (3 + 4) = 0
=
2 − 2 (3 + 4) = 0
2 4
2 − 2 (3 + 4) = 0 log =
222
2 − 2 (3 + 4) = 0
2 2 2
= 1
2 − 2 (3 + 4) = 0
2(1)
1
2 − 2 2 (3 + 4) = 0
1
2 = 2 2(3 + 4)
1
2 = 2(3 + 4)2
1
= (3 + 4)2
2 = 3 + 4
2 − 3 − 4 = 0
( − 4)( + 1) = 0
= 4 = −1
> 0, ∴ = 4
Page 14
208
PSPM I QS 015/1 Session
2016/2017
8. (a) Solve the following equation | 3 | = 7, ≠ 4.
−4
(b) Find the solution set for the inequality, −4− ≥ + 4, ≠ 3.
−3
SOLUTION or 3 = −7 CHOW CHOON WOOI
(a) | 3 | = 7
−4
−4
3 = −7( − 4)
3 =7 3 = −7 + 28
7 = 28 − 3
−4 7 = 25
= 25
3 = 7( − 4)
3 = 7 − 28 7
7 = 3 + 28
7 = 31
= 31
7
(b) −4− ≥ + 4, ≠ 3
−3
−4 −
− 3 ≥ + 4
−4 −
− 3 − − 4 ≥ 0
−4 − − ( − 3) − 4( − 3) ≥0
− 3
−4 − − 2 + 3 − 4 + 12 ≥0
− 3
− 2 − 2 + 8
− 3 ≥ 0
Page 15
209
PSPM I QS 015/1 Session
2016/2017
−( 2 + 2 − 8) ≥0
( − 3) = 0
− 3
( 2 + 2 − 8)
≤0
− 3
( + 4)( − 2) ≤0 CHOW CHOON WOOI
− 3
( + 4) = 0 ( − 2) = 0
= −4 = 2 = 3
( + 4) (−∞, − ) (− , ) ( , ) ( , ∞)
( − 2) - + + +
- - + +
( − 3) - - - +
( + )( − ) - + - +
−
∴ ; { : − ∞ < ≤ −4 ∪ 2 ≤ < 3}
Page 16
210
PSPM I QS 015/1 Session
2016/2017
CHOW CHOON WOOI
Page 17
211
PSPM I QS 015/1 Session
2016/2017
9. Given ( ) = and ( ) = | − 3|.
(a) Show that ( )( ) = { −( − −33) , ≥ 3
, < 3
(b) Sketch the graph of = ( )( ). Hence, state the interval in which
( )−1( ) exists. CHOW CHOON WOOI
(c) Determine ( )−1( ),for ≥ 3.
(d) Find the function ℎ( ) for > 1, given that (ℎ )( ) = 2 . Hence, show
1−3
3
that h(x) is a one to one function.
SOLUTION
( ) = and ( ) = | − 3|
a) ( )( ) = (| − 3|)
= | −3|
| − 3| = {−( −−33),, − 3 ≥ 0 | | = ቄ− ,, ≥ 0
− 3 < 0 < 0
= {−( −−33),, ≥ 3
< 3
( )( ) = | −3|
= { −3, ≥ 3
−( −3), < 3
b)
3
1
3
Page 18
212
PSPM I QS 015/1 Session CHOW CHOON WOOI
( )−1( ) exists for ≥ 3 < 3 2016/2017
c) ( )−1( ) ≥ 3
( )( ) = −3 Page 19
= −3
ln = ln −3
ln = − 3
= ln + 3
∴ ( )−1( ) = ln + 3
d) ( ) = ,
2
(ℎ )( ) = 1 − 3
2
ℎ[ ( )] = 1 − 3
ℎ[ ] = 1 2
− 3
=
2
ℎ[ ] = 1 − 3
2
ℎ[ ] = 1 − 3
Show that h(x) is a one to one function
ℎ( ) = 1 2
− 3
Let ℎ( 1) = ℎ( 2)
213
PSPM I QS 015/1 Session
2016/2017
1 2 1 = 1 2 2
− 3 1 − 3 2
2 1(1 − 3 2) = 2 2(1 − 3 1)
1(1 − 3 2) = 2(1 − 3 1)
1 − 3 1 2 = 2 − 3 1 2 CHOW CHOON WOOI
1 = 2
1 = 2, ℎ ℎ( )
Page 20
214
PSPM I QS 015/1 Session
2016/2017
10. (a) Given = [−21 0 −24] , = −1 31 2 1
6 [0 2] = [3 2 2].
4
−6 53 1
Find −1 by using the elementary row operations method.
Hence, if = 3 + , determine the matrix . CHOW CHOON WOOI
(b) Ahmad bought an examination pad, 2 pens and a tube of liquid paper for RM18.
Ali spent RM24 for 3 examination pads, 2 pens and 2 tubes of liquid paper. In
the meantime Abu spent RM36 at the same store for 3 examination pads, 4
pens and a tube of liquid paper. Let x, y and z represent the price per unit for
examination pad, pen and tube of liquid paper respectively.
i. Obatain the system of linear equations from the above information.
ii. Write the system in the form of matrix equation = .
iii. State the price of each unit of examination pad, pen and tube of liquid
paper.
iv. Aminah bought 4 examination pads, 5 pens and 1 tube of liquid paper.
What is the total price paid?
SOLUTION
a) = [−21 0 −24] , = −1 31 2 1
6 [0 2] = [3 2 2]
4
−6 53 1
2∗ = 3 1 − 2 1 2 11 0 0
3∗ = 3 1 − 3 (3 2 2|0 1 0)
3 4 10 0 1
1 2 11 0 0
(0 4 1|3 −1 0)
3 4 10 0 1
1 2 11 0 0
(0 4 1|3 −1 0 )
0 2 2 3 0 −1
Page 21
215
PSPM I QS 015/1 Session
2016/2017
2∗ 1 2 1 2 11 0 0
= 4 1 |34 1
(0 1 4 − 4 0)
0 2 −2 3 0 −1
3∗ = 2 2 − 3 12 1 1 0 0
13 1
01 4|4 − 4 0 CHOW CHOON WOOI
(0 0 − 3 − 3 − 1 1)
2 2 2
2 1 2 141|134 0 0
3 0 1 11 1
3∗ = − 3 (0 0 − 4 0
1 − 2
3)
3
1 10 0
4 1 2 11 1 1
2∗ = 2 − 3 0 1 0|2 − 3 6
(0 0 1 1 1 − 2
3 3)
0 − 1 2
001||12 3
1∗ = 1 − 3 1 2 1 3
0 1 1 3 1
0 0 −
( 6
1 2
− 3)
3
−1 1 1
1 0 010|| 3 3
0 1 1 1 1
1∗ = 1 − 2 2 0 0 2 − 3
( 6
1 2
1 − 3)
3
11
−1 3 3
−1 = 1 1 1
2 −3 6
12
[ 1 3 − 3]
= 3 +
−1 = −1(3 + )
= −1(3 + )
Page 22
216
PSPM I QS 015/1 Session
2016/2017
−1 11
=1
3 3 −1 3 + ([−21 0 −24]) ]
2 1 1 [3 [ 0 2] 6
−3
1 6 −6 5
2
[ 1 3 − 3]
−1 11 CHOW CHOON WOOI
=1
3 3 −3 92 −1
2 1 1 [[ 0 6]+[ 0 6 ]]
−3
1 6 −18 15 −4 2
2
[ 1 3 − 3]
−1 11
=1
3 3 −1 8
2 1 1 [0 12]
−3
1 6 −22 17
2
[ 1 3 − 3]
11 11
(−1)(−1) + (3) (0) + (3) (−22) (−1)(8) + (3) (12) + (3) (17)
1 11 1 11
= (2) (−1) + (− 3) (0) + (6) (−22) (2) (8) + (− 3) (12) + (6) (17)
1 2 1 2
[ (1)(−1) + (3) (0) + (− 3) (−22) (1)(8) + (3) (12) + (− 3) (17) ]
22 12 17
1+0− 3 −8 + 3 + 3
1 22
= −2+0− 6 17
4−4+ 6
44
[−1 + 0 + 3 34
8+4− 3 ]
19 5
−3
25 3
= −6 17
41 6
2
[3 3]
bi) + 2 + = 18
3 + 2 + 2 = 24
3 + 4 + = 36
Page 23
217
PSPM I QS 015/1 Session
2016/2017
1 2 1 18
bii) [3 2 2] [ ] = [24]
3 4 1 36
biii) =
−1 = −1 CHOW CHOON WOOI
= −1
−1 11
=1
3 3 18
2 1 1 [24]
−3
1 6 36
2
[ 1 3 − 3]
11
(−1)(18) + (3) (24) + (3) (36)
1 1 1
= (2) (18) + (− 3) (24) + (6) (36)
[ (1)(18) + 1 (24) + (− 2 (36) ]
(3) 3)
−18 + 8 + 12
=[ 9−8+6 ]
18 + 8 − 24
2
= [7]
2
= , = , =
biv) − ; − ; −
= 4(2) + 5(7) + 1(2)
= 8 + 35 + 2
= 45.00
Page 24
218
QS 015/2 CHOW CHOON WOOI
Matriculation Programme
Examination
Semester I
Session 2016/2017
219
PSPM I QS 015/2 Session
2016/2017
1. Express 2 in partial fractions form.
2 −2 −3
2. Evaluate the following limits, if exist.
a. lim −2
4 −16
→2
b. lim (2− )( −1) CHOW CHOON WOOI
( −3)2
→∞
3. Show that 2 = 1 + cos . Hence, solve 2 = cos 2 for 0° ≤ ≤ 360°.
1−cos 1−cos
4. Consider a function ( ) = 1 .
2−√
a. Find lim ( ) and state the equation of horizontal asymptote for .
→∞
b. By using the first principle of derivative, find ’( ).
5. (a) Use the derivative to find the maximum area of a rectangle that can be inscribed
in a semicircle of radius 10cm.
(b) A cone-shaped tank as shown below.
60°
A
Water flows through a hole A at rate of 6 3 per second. Find the rate of
change in height of the water when the volume of water in the cone is 24 3
6. (a) Polynomial ( ) has a raminder 3 when divided by ( + 3). Find the
remainder of ( ) + 2 when divided by ( + 3).
(b) Polynomial 1( ) = 3 + 2 − 5 − 7 has a factor ( − 1) and remainder 1
when divided by ( + 1), while a polynomial 2( ) = 3 − 2 + + 6 has a
remainder 2 when divided by ( – 1). Find the value of the constants and
if 1 + 2 = 5. Hence, obtain the zeroes for 1( ).
Page 2
220
PSPM I QS 015/2 Session
2016/2017
7. Consider a function ( ) = √3 cos 2 + 2 sin 2 .
a. Express in the form of cos(2 − ) for > 0, 0° ≤ ≤ 90° and to the
nearest minute. State the maximum and minimum values of .
b. Hence, solve √3 cos 2 + 2 sin 2 = −√2 for 0° ≤ ≤ 180°. Give your answer CHOW CHOON WOOI
to the nearest minute.
8. The parametric equations of a curve is given by
= 2 +1, = −(2 −1)
(a) Find and 2 when = 1.
2
(b) Given = 2 − . Express in terms of and find . Hence, duduce the set
value of t such that is positive.
9. (a) Given ( ) = 2| | + 5 . Compute lim ( ) and l→im0− ( ). Is continuous at
(b)
→0+
x=0? Give your reason.
The continuous function is defined by
( ) = {√5 − , <
3 − 1, ≥
Find the value of .
10. By writing in terms of and , show that
(tan ) = 2 .
a. If = , find 2 in terms of . Hence, determine the range of value of x
2
such that 2 > 0 for 0 < < .
2
b. If = ( + ), find in terms of and .
Hence, show that = − 22 when = = .
END OF QUESTION PAPER
Page 3
221
PSPM I QS 015/2 Session
2016/2017
1. Express 2 in partial fractions form.
2 −2 −3
SOLUTION Improper Fraction
2
2 − 2 − 3
1 ( ) ( ) CHOW CHOON WOOI
x2 − 2x − 3 x2 ( ) = ( ) + ( )
x2 − 2x − 3
2x + 3
2 2 + 3
2 − 2 − 3 = 1 + 2 − 2 − 3
2 + 3 2 + 3
2 − 2 − 3 = ( − 3)( + 1) = − 3 + + 1
2 + 3 ( + 1) + ( − 3)
( − 3)( + 1) = ( − 3)( + 1)
2 + 3 = ( + 1) + ( − 3)
ℎ = −1
2(−1) + 3 = ((−1) + 1) + ((−1) − 3)
1 = −4
1
= − 4
ℎ = 3
2(3) + 3 = ((3) + 1) + ((3) − 3)
9 = 4
9
= 4
2 + 3 9 1
2 − 2 − 3 = 4( − 3) − 4( + 1)
Page 4
222
PSPM I QS 015/2 Session
2016/2017
2 2 + 3
2 − 2 − 3 = 1 + 2 − 2 − 3
91
= 1 + 4( − 3) − 4( + 1)
CHOW CHOON WOOI
Page 5
223
PSPM I QS 015/2 Session
2016/2017
2. Evaluate the following limits, if exist.
a. lim −2
4 −16
→2
b. lim (2− )( −1)
( −3)2
→∞
SOLUTION CHOW CHOON WOOI
a. lim −2 = lim −2
4 −16 ( 2+4)( 2 −4)
→2 →2
= lim − 2
→2 ( 2 + 4)( + 2)( − 2)
= lim 1
→2 ( 2 + 4)( + 2)
1
= (22 + 4)(2 + 2)
1
= 32
b. lim (2− )( −1) = lim 2 −2− 2+
( −3)2 2 −6 +9
→∞ →∞
= lim − 2 + 3 − 2
→∞ 2 − 6 + 9
− 2 + 3 − 2
= lim 2
2 − 6 + 9
→∞
2
−1 + 3 − 2
2
= lim
1 − 6 + 9
→∞ 2
−1 + 0 + 0
=1
= −1
Page 6
224
PSPM I QS 015/2 Session
2016/2017
3. Show that 2 = 1 + cos . Hence, solve 2 = cos 2 for 0° ≤ ≤ 360°.
1−cos 1−cos
SOLUTION
2 1 − cos2 CHOW CHOON WOOI
1 − cos = 1 − cos
(1 − cos )(1 + cos )
= 1 − cos
= 1 + cos
2 2 + + = 0
1 − cos = cos 2 − ± √ 2 − 4
1 + cos = 2 2 − 1
2 2 − cos − 2 = 0 = 2
= cos
2 − − 2 = 0
−(−1) ± √(−1)2 − 4(2)(−2)
= 2(2)
1 ± √17
=4
= 1.2808, −0.7808
cos = 1.2808 , −0.7808
Since −1 ≤ cos ≤ 1
cos = − 0.7808
Page 7
225
PSPM I QS 015/2 Session
2016/2017
= −10.7808
= 38.67° CHOW CHOON WOOI
Given that 0° ≤ ≤ 360°
= 180° − 38.67, 180° + 38.67
= 141.33°, 218.67°
Page 8
226
PSPM I QS 015/2 Session
2016/2017
4. Consider a function ( ) = 1 .
2−√
a. Find lim ( ) and state the equation of horizontal asymptote for .
→∞
b. By using the first principle of derivative, find ’( ).
SOLUTION CHOW CHOON WOOI
( ) = 1
2 − √
a. lim ( ) = lim 1
→∞ →∞ 2−√
=0
∴ ( ) = 0 ℎ .
′ ( ) = lim ( + ℎ) − ( )
ℎ
ℎ→0
b. ′( ) = lim 1 [ ( + ℎ) − ( )]
ℎ→0 ℎ
11 1
= lim [ − ]
ℎ 2 − √ + ℎ 2 − √
ℎ→0
= lim 1 (2 − √ ) − (2 − √ + ℎ) ]
[
ℎ→0 ℎ (2 − √ + ℎ)(2 − √ )
= lim 1 2 − √ − 2 + √ + ℎ
[ ]
ℎ→0 ℎ (2 − √ + ℎ)(2 − √ )
= lim 1 −√ + √ + ℎ ]
[ √ )
ℎ→0 ℎ (2 − √ + ℎ)(2 −
1 √ + ℎ − √ (√ + ℎ + √ )
= lim [ ][ ]
ℎ→0 ℎ (2 − √ + ℎ)(2 − √ ) √ + ℎ + √
1 ( + ℎ) − (√ √ + ℎ) + (√ √ + ℎ) − ( ) ]
= lim [
ℎ→0 ℎ (2 − √ + ℎ)(2 − √ )(√ + ℎ + √ )
lim 1ℎ
= [ ]
ℎ→0 ℎ (2 − √ + ℎ)(2 − √ )(√ + ℎ + √ )
= lim [ 1 ]
ℎ→0 (2 − √ + ℎ)(2 − √ )(√ + ℎ + √ )
Page 9
227
PSPM I QS 015/2 Session
2016/2017
1
=
(2 − √ )(2 − √ )(√ + √ )
1
= 2√ (2 − √ )2
CHOW CHOON WOOI
Page 10
228
PSPM I QS 015/2 Session
2016/2017
5. (a) Use the derivative to find the maximum area of a rectangle that can be inscribed
in a semicircle of radius 10cm.
(b) A cone-shaped tank as shown below.
60° CHOW CHOON WOOI
A
Water flows through a hole A at rate of 6 3 per second. Find the rate of
change in height of the water when the volume of water in the cone is 24 3
SOLUTION
(a)
10
2 + 2 = 100
2 = 100 − 2
1
= (100 − 2)2
Area of rectangle
=
1
= 2 (100 − 2)2
Page 11
229
PSPM I QS 015/2 Session
2016/2017
= 2 1
′ = 2
= (100 − 2)2
′ = 1 (100 − 2 )−12 (100 − 2)
2
1 CHOW CHOON WOOI
= 1 (−2 )
2(100 − 2)2
−2
=1
2(100 − 2)2
−
=1
(100 − 2)2
= ′ + ′
= (2 ) ( − 1
1) + ((100 − 2)2) (2)
(100 − 2)2
= −2 2 1
1 + 2(100 − 2)2
(100 − 2)2
11
−2 2 + 2(100 − 2)2(100 − 2)2
=1
(100 − 2)2
−2 2 + 2(100 − 2)
=1
(100 − 2)2
−2 2 + 200 − 2 2
=1
(100 − 2)2
200 − 4 2
=1
(100 − 2)2
Let = 0
Page 12
230
PSPM I QS 015/2 Session
2016/2017
200 − 4 2 CHOW CHOON WOOI
1=0
(100 − 2)2
200 − 4 2 = 0
4 2 = 200
2 = 50
= ±√50
Since ≥ 0
= √50
−4 2 + 200
=
1
(100 −
2 )2
= −4 2 + 200 1
′ = −8 = (100 − 2)2
′ = 1 (100 − 2)−12 (100 − 2)
2
= 1 (100 − 2)−12(−2 )
2
−
=1
(100 − 2)2
2 ′ − ′
2 = 2
(100 − 2)12(−8 ) − (−4 2 + 200) ( − 1)
= (100 − 2)2
12
((100 − 2)2)
−8 (100 − 2)12 + [ (−4 2 + 2010)]
(100 − 2)2
=
12
((100 − 2)2)
Page 13
231
PSPM I QS 015/2 Session
2016/2017
11
[−8 (100 − 2)2(100 − 2)2 + (−4 3 + 200 ) ]
1
(100 − 2)2
= 100 − 2
=[ −8 (100 − 2) + (−4 3 + 200 ) ] [ 1 2]
100
1 − CHOW CHOON WOOI
(100 − 2)2
−800 + 8 3 − 4 3 + 200
=3
(100 − 2)2
4 3 − 600
=3
(100 − 2)2
ℎ = √50
2 4(√50)3 − 600√50
2 = = −8 < 0 (max)
3
[100 − (√50)2]2
1
The maximum area, = 2 (100 − 2)2
1
= 2√50 (100 − √502)2
1
= 2√50(50)2
= 2√50√50
= 2(50)
= 100 2
Page 14
232
PSPM I QS 015/2 Session
2016/2017
(b) r r
ℎ = tan 30°
h h 1 CHOW CHOON WOOI
ℎ = √3
30° ℎ
=
60° √3
A Page 15
= −6 3 −1
ℎ ℎ = 24 3
ℎ ℎ
= .
= 1 2ℎ
3
ℎ
=
√3
1 ℎ2
= () ℎ
3 √3
1 ℎ3
= 3 3
= ℎ3
9
ℎ2
ℎ = 3
ℎ 3
= ℎ2
ℎ 3
= ℎ2 . (−6)
ℎ 18
= − ℎ2
233
PSPM I QS 015/2 Session
2016/2017
ℎ = 24
ℎ3 = 24
9
ℎ3 = 24 9
= 216 CHOW CHOON WOOI
ℎ=6
ℎ 18
= − 62
ℎ 18
= − (6)2
= − 1 −1
2
Page 16
234
PSPM I QS 015/2 Session
2016/2017
6. (a) Polynomial ( ) has a raminder 3 when divided by ( + 3). Find the CHOW CHOON WOOI
remainder of ( ) + 2 when divided by ( + 3).
(b) Polynomial 1( ) = 3 + 2 − 5 − 7 has a factor ( − 1) and remainder
1 when divided by ( + 1), while a polynomial 2( ) = 3 − 2 + + 6
has a remainder 2 when divided by ( – 1). Find the value of the constants
and if 1 + 2 = 5. Hence, obtain the zeroes for 1( ).
SOLUTION
(a) (−3) = 3
( ) = ( ) ( ) + ( )
( ) = ( )( + 3) + 3
( ) + 2 = ( )( + 3) + 3 + 2
( ) + 2 = ( )( + 3) + 5
∴ ( ) = 5 ℎ ( ) + 2 ( + 3)
(b) 1( ) = 3 + 2 − 5 − 7
1(1) = 0
(1)3 + (1)2 − 5 (1) − 7 = 0
1 + − 5 − 7 = 0
− 5 = 6 ……………………… (1)
1(−1) = 1
(−1)3 + (−1)2 − 5 (−1) − 7 = 1
−1 + + 5 − 7 = 1
+ 5 = 1 + 8
1 = + 5 − 8 ……………………… (2)
Page 17
235
PSPM I QS 015/2 Session CHOW CHOON WOOI
2016/2017
2( ) = 3 − 2 + + 6
2(1) = 2 ……………………… (3)
(1)3 − (1)2 + (1) + 6 = 2
1 − + + 6 = 2
− + = 2 − 7
2 = − + + 7
(2) + (3)- ……………………… (4)
1 + 2 = 6 − 1
ℎ 1 + 2 = 5
5 = 6 − 1
6 = 6
= 1
(4) (1)
− 5(1) = 6
= 11
∴ = 11, = 1 1( ) = 3 + 2 − 5 − 7 has a
factor of ( − 1)
1( ) = 3 + 11 2 − 5 − 7
= ( − 1) ( )
Page 18
236
PSPM I QS 015/2 Session
2016/2017
x2 + 12x + 7 CHOW CHOON WOOI
x −1 x3 + 11x2 − 5x − 7
x3 − x2
12x2 − 5x − 7
12x2 −12x
7x − 7
7x − 7
0
1( ) = 3 + 11 2 − 5 − 7
= ( − 1)( 2 + 12 + 7)
ℎ 1( )
1( ) = 0
( − 1)( 2 + 12 + 7) = 0
− 1 = 0 ( 2 + 12 + 7) = 0
= 1 − ± √ 2 − 4
= 2
−12 ± √144 − 28
=2
−12 ± √116
=2
= −6 ± √29
, ℎ 1( ) 1, −6 ± √29
Page 19
237
PSPM I QS 015/2 Session
2016/2017
7. Consider a function ( ) = √3 cos 2 + 2 sin 2 . CHOW CHOON WOOI
a. Express in the form of cos(2 − ) for > 0, 0° ≤ ≤ 90° and to the
nearest minute. State the maximum and minimum values of .
b. Hence, solve √3 cos 2 + 2 sin 2 = −√2 for 0° ≤ ≤ 180°. Give your anser
to the nearest minute.
SOLUTION cos( − ) = cos cos + sin sin
(a) cos(2 − ) = cos 2 cos + sin 2 sin
( ) = √3 cos 2 + 2 sin 2
√3 cos 2 + 2 sin 2 = cos(2 − )
√3 cos 2 + 2 sin 2 = [cos 2 cos + sin 2 sin ]
√3 cos 2 + 2 sin 2 = cos 2 cos + Rsin 2 sin
cos = √3 ………………………. (1)
sin = 2 ………………………. (2)
(1)2 + (2)2
cos2 + sin2 = 1
2 cos2 + 2 sin2 = 2 + (2)2
(√3)
2(cos2 + sin2 ) = 3 + 4
2 = 7
= √7
(2) ÷ (1)
sin = 2
cos √3
2
tan =
√3
= 49.11°
∴ ( ) = √7 cos(2 − 49.11°)
− 1 ≤ cos(2 − 49.11°) ≤ 1
Page 20
238
PSPM I QS 015/2 Session
2016/2017
−√7 ≤ √7 cos(2 − 49.11°) ≤ √7
∴ = √7
∴ = −√7
(b) CHOW CHOON WOOI
√3 cos 2 + 2 sin 2 = −√2 for 0° ≤ ≤ 180°
√7 cos(2 − 49.11°) = −√2
cos(2 − 49.11°) = − √2
√7
2 − 49.11° = 180° − 57.69°, 180° + 57.69°
2 − 49.11° = 122.31°, 237.69°
2 = 171.12°, 286.80°
= 85.56°, 143.4°
Page 21
239
PSPM I QS 015/2 Session
2016/2017
8. The parametric equations of a curve is given by
= 2 +1, = −(2 −1)
(c) Find and 2 when = 1.
2
(d) Given = 2 − . Express in terms of and find . Hence, duduce the set CHOW CHOON WOOI
value of t such that iz positive.
SOLUTION
= 2 +1, = −(2 −1)
= 2 2 +1 = −2 −(2 −1)
= .
= −2 −(2 −1). 1
2 2 +1
−2 −(2 −1)
= 2 2 +1
− −(2 −1) = −
= 2 +1
1
= − 4
ℎ = 1
1
= − 4(1)
1
= − 4
2
2 = [ ] .
1 )] 1 +1 ]
= [ (− . [
4 2 2
= (− −4 )] . 1
[ [2 2 +1 ]
Page 22
240
PSPM I QS 015/2 Session
2016/2017
4 −4 . [ 1
= 2 2 +1 ] ( ) =
+ = +
4 −4
= 2 2 +1
2 −4 CHOW CHOON WOOI
= 2 +1
2
= 6 +1
ℎ = 1
2 2
2 = 6 +1
2
= 6(1)+1
2
= 7
= 2 −
= ( 2 +1)2 − ( 2 +1)( −(2 −1))
= 2(2 +1) − 2 +1−2 +1
= 4 +2 − 2
= 4 4 +2
> 0
4 4 +2 > 0
4 +2 > 0
: { : ∈ ℛ}
Page 23
241
PSPM I QS 015/2 Session
2016/2017
9. (a)
Given ( ) = 2| | + 5 . Compute lim ( ) and lim ( ). Is continuous at
(b) →0+ →0−
x=0? Give your reason.
The continuous function is defined by
( ) = {√5 − , < CHOW CHOON WOOI
3 − 1, ≥
Find the value of .
SOLUTION
(a) ( ) = 2| | + 5
| | = {− ,, ≥ 0
< 0
2 > 0
( ) = {2(− ) + 5 , < 0
+ 5 ,
( ) = {−22 + 5 , > 0
+ 5 , < 0
lim ( ) = lim 2 + 5
→0+ →0+
= 2 + 5(0)
=2
lim ( ) = lim −2 + 5
→0− →0−
= −2 + 5(0)
= −2
lim ( ) ≠ lim ( )
→0+ →0−
lim ( )
→0
lim ( ) , ℎ = 0
→0
Page 24
242
PSPM I QS 015/2 Session
2016/2017
(b) ( ) = {√5 − , <
3 − 1, ≥
( ) = 3( ) − 1 = 3 − 1
lim ( ) = lim 3 − 1 = 3( ) − 1 = 3 − 1
→ + → +
lim ( ) = lim √5 − ) = √5 − CHOW CHOON WOOI
→ − → −
= ➔ lim ( ) = l→im − ( )
→ +
3 − 1 = √5 −
(3 − 1)2 = (√5 − 2
)
9 2 − 6 + 1 = 5 −
9 2 − 5 − 4 = 0
(9 + 4)( − 1) = 0
(9 + 4) = 0 ( − 1) = 0
= − 4 = 1
9
ℎ = − 4,
9
4 − 1 ≠ √5 − 4
3 (− 9) (− 9)
=
4 lim ( ) = lim ( )
∴ ≠ − 9 → + → −
ℎ = 1,
3 − 1 = √5 −
3(1) − 1 = √5 − (1)
∴ = 1
Page 25
243
PSPM I QS 015/2 Session
2016/2017
10. By writing in terms of and , show that
(tan ) = 2 .
a. If = , find 2 in terms of . Hence, determine the range of value of x
2
such that 2 > 0 for 0 < < . CHOW CHOON WOOI
2
b. If = ( + ), find in terms of and .
Hence, show that = − 22 when = = .
SOLUTION
sin
(tan ) = (cos )
= sin = cos
′ = cos ′ = −sin
=
(cos )(cos ) − (sin )(−sin )
= (cos )2
cos2 + sin2
= cos2
1
= cos2
= 2
(a) = 1 + 2 = 2
= 2
= 1 + 2
= 1 + 2
2
2 = 2
= 2 (1 + 2)
Page 26
244
PSPM I QS 015/2 Session
2016/2017
2 >0 0 < <
2 tan
2 (1 + 2) > 0
1 + 2 > 0
2 > 0 CHOW CHOON WOOI
> 0
tan > 0
2
∴ (0, )
2
(b) = ( + )
= 2( + ) [ + ]
= 2( + ) [1 +
]
= 2( + ) + 2 ( + )
− 2( + ) = 2 ( + )
[1 − 2 ( + )] = 2 ( + )
2( + )
= 1 − 2( + )
when = =
2( + ) 1 + 2 = 2
= 1 − 2( + ) 1 − 2 = 2
22
= 1 − 22
2 2
= − 22
1
= 22
− 22
22
Page 27
245
PSPM I QS 015/2 Session
2016/2017
1 22 CHOW CHOON WOOI
= 22 (− 22 )
1
= − 22
= − 22
Page 28
246
2017/2018
247
CHOW CHOON WOOI
QS 015/1 CHOW CHOON WOOI
Matriculation Programme
Examination
Semester I
Session 2017/2018
248
PSPM I QS015/1 Session 2017/2018
1. Given matrix = (−22 35) such that 2 + + = 0, are constants, where
and are identity matrix and zero matrix of 2 2 respectively. Determine the value of
.
2. Solve the equation 32 +1 − (16)3 + 5 = 0.
3. The first and three more successive terms in a geometric progression are given as follows:
7, …, 189, y, 1701, … CHOW CHOON WOOI
Obtain the common ratio r. Hence, find the smallest integer n such that the n-th term
exceeds 10,000.
1
4. a) Expand (1 − )2 in ascending power of up to the term in 3 and state the interval
3
of for which the expansion is valid.
1
b) From part 4(a), express √9 − 3 in the form of (1 − )2 , where is an integer.
3
c) Hence, by substituting the suitable value of , approximate √8.70 correct to two
decimal places.
5. Solve the equation 3 9 = ( 3 )2.
6. Given a complex number = 2 + .
a. Express ̅ − 1 in the form + , where and are real numbers.
̅
b. Obtain | ̅ − 1|. Hence, determine the values of real numbers and if +
̅
= | ̅ − 1| ( ̅ − 1)2.
̅ ̅
7. Find the interval of for which the following inequalities are true.
a. 5 − 1 ≤ 0.
+3
b. |3 −2| > 2.
2 +3
8. Consider functions of ( ) = ( − 2)2 + 1, > 2 and ( ) = ln( + 1), > 0.
a. Find −1( ) and −1( ) , and state the domain and range for each of the
inverse function.
b. Obtain ( )( ). Hence, evaluate ( )(2).
9. Given the function ( ) = 1 .
2 −5
a. Find the domain and range of ( ).
b. Show that ( ) is a one-to-one function. Hence, find −1( ).
c. On the same axis, sketch the graph of ( ) and −1( ).
d. Show that −1( ) = .
10. Given the system of linear equations as follow:
Page 2
249
PSPM I QS015/1 Session 2017/2018
2 + 4 + = 77 CHOW CHOON WOOI
4 + 3 + 7 = 114
2 + + 3 = 48
a. Express the system of equations in the form of matrix equation = where
= ( ). Hence, determine matrix and matrix .
b. Based on part 10(a), obtain | |.
Hence, find
i. | | if = , where is an identity matrix 3 3.
ii. | | if = (2 ) .
iii. .
Hence, obtain −1 and find the values of , .
END OF QUESTION PAPER
Page 3
250