PSPM I QS 015/1 Session
2014/2015
3 CHOW CHOON WOOI
5. (a) State the interval for x such that the expansion for (4 + 3 )2 is valid.
3
(b) Expand (4 + 3 )2 in ascending power of x up to the term in 3.
3
(c) Hence, by substituting an appropriate value of x, evaluate (5)2 correct to three decimal
places.
SOLUTION
a) (4 + 3 = [4 (1 + 3 3
3 )2 4 )]2
ℎ
3
−1 < 4 < 1
44
− 3 < < 3
b) (4 + 3 = [4 (1 + 3 3
3 )2 4 )]2
3
3 32
= 42 (1 + 4 )
3
32
= 8 (1 + 4 )
[1 (23) 3 (23) (12) 3 2 (23) (21) (− 21) 3 3 ]
1! (4 2! (4 3! (4
= 8 + ) + ) + ) + ⋯
= 8 [1 + 9 + 3 9 2 ) − 3 27 3) + ⋯ ]
8 8 (16 48 (64
= 8 [1 + 9 + 27 2 − 81 3 + ⋯ ]
8 128 3072
9 27 2 − 27 3 + ⋯ ]
= 8 [1 + +
8 128 1024
27 27
= 8 + 9 + 16 2 − 128 3 + ⋯
c) (4 + 3 = 8 + 9 + 27 2 − 27 3 +⋯
3 )2 16 128
33
(4 + 3 )2 = (5)2
4 + 3 = 5
Page 9
101
PSPM I QS 015/1 Session
2014/2015
3 = 1
1
= 3
(4 + 3 = 8 + 9 + 27 2 − 27 3 + ⋯
16 128
3 )2
3 1 27 1 2 27 1 3 CHOW CHOON WOOI
12
[4 + 3 (3)] = 8 + 9 (3) + 16 (3) − 128 (3) + ⋯
3 1 27 1 2 27 1 3
[5]2 = 8 + 9 (3) + 16 (3) − 128 (3) + ⋯
= 11.180
Page 10
102
PSPM I QS 015/1 Session
2014/2015
6. (a) Given ( ) = 2 + 1 and ( ) = 2 + 2x − 1.
(i) Find ( − )(x).
(ii) Evaluate (3 − 2 )(1).
(b) Given ( ) = √2 + 1. State the domain and range of ( ). Hence, on the same axes, CHOW CHOON WOOI
2
sketch the graph of ( ) and −1(x).
SOLUTION
a) ( ) = 2 + 1 and ( ) = 2 + 2x − 1
i. ( − )(x) = ( ) − ( )
= (2 + 1 ) − ( 2 + 2x − 1)
= 2 + 1 − 2 − 2x + 1
= − 2 + 2
ii. (3 − 2 )( ) = 3 ( ) − 2 ( )
= 3( 2 + 2x − 1) − 2( 2 + 1)
= 3 2 + 6x − 3 − 4 − 2
= 3 2 + 2x − 5
(3 − 2 )(1) = 3(1)2 + 2(1) − 5
=3+2−5
=0
b) ( ) = √2 + 1
2
1
: 2 + 2 ≥ 0
1
2 ≥ − 2
1
≥ − 4
{ : 1
= ≥ − }
4
= { : ≥ 0}
Page 11
103
PSPM I QS 015/1 Session
2014/2015
CHOW CHOON WOOI
y −1( )
( )
1 x
−4
1
−4
Page 12
104
PSPM I QS 015/1 Session
2014/2015
7. Let = + be a nonzero complex number.
a. Show that 1 = |zz̅|2.
b. Show that if z̅ = −z, then z is a complex number with only an imaginary part.
c. Find the value of a and b if (2 − ) = (̅z + 1)(1 + i). CHOW CHOON WOOI
SOLUTION
a) = +
z̅ = −
|z|2 | + |2
−
= (√a2 + 2)2
−
= a2 + 2
− +
= a2 + 2 ( + )
2 + − − ( )2
= (a2 + 2)( + )
2 − 2 2
= (a2 + 2)( + )
2 − 2(−1)
= (a2 + 2)( + )
2 + 2
= (a2 + 2)( + )
1
= ( + )
1
=z
Page 13
105
PSPM I QS 015/1 Session
2014/2015
b) z̅ = −z
− = −( + )
− = − −
= − CHOW CHOON WOOI
2 = 0
= 0
= +
= 0 +
=
∴ z is a complex number with only an imaginary part when z̅ = −z
c) (2 − ) = (̅z + 1)(1 + i)
( + )(2 − ) = [(a − bi) + 1](1 + i)
2 + 2 − − 2 = (a − bi)(1 + i) + (1 + i)
2 + 2 − + = ( − + − 2) + (1 + i)
2 + + (2 − ) = − + + + 1 +
2 + (2 − ) = ( + 1) + ( − + 1)
By equating real part
2 = + 1
= 1
Page 14
106
PSPM I QS 015/1 Session
2014/2015
By equating imaginary part
(2 − ) = ( − + 1) CHOW CHOON WOOI
3 − 2 = 1
3 − 2(1) = 1
3 − 2 = 1
3 = 3
= 1
Page 15
107
PSPM I QS 015/1 Session
2014/2015
8. (a)
Solve the for the following equation |6 2 + − 11| = 4.
(b) Find the solution set for the inequality
+ 2
2 − ( − 4) < 5
SOLUTION | | = ⟺ = = − CHOW CHOON WOOI
a) |6 2 + − 11| = 4
6 2 + − 11 = 4 or 6 2 + − 11 = −4
= 1 6 2 + − 7 = 0
6 2 + − 15 = 0 (6 + 7)( − 1) = 0
6 + 7 = 0 − 1 = 0
(3 + 5)(2 − 3) = 0 = − 7 , = 1
3 + 5 = 0 2 − 3 = 0 6
= − 5 , = 3
32
5 3 7
∴= − 3 , = 2 , = − 6 ,
b) 2 − ( +2) < 5
−4
+ 2
2 − ( − 4) − 5 < 0
2( − 4) − ( + 2) − 5( − 4) <0
− 4
2 − 8 − − 2 − 5 + 20 <0
− 4
−4 + 10
− 4 < 0
−4 + 10 = 0 − 4 = 0
= 10 = 5 = 4
42
Page 16
108
PSPM I QS 015/1 Session
2014/2015
−4 + 10 5 5
(−∞, 2) (2 , 4) (4, ∞)
-
+ - +
- -
− 4 - + CHOW CHOON WOOI
-
−4 + 10
− 4
5
ℎ : { : < 2 ∪ > 4}
Page 17
109
PSPM I QS 015/1 Session
2014/2015
9. Two companies P and Q decided to award prizes to their employees for three work ethical
values, namely punctuality (x), creativity (y) and efficiency (z). Company P decided to award
a total of RM3850 for the three values to 6, 2 and 3 employees respectively, while company
Q decided to award RM3200 for the three values to 4, 1 and 5 employees respectively. The
total amount for all the three prizes is RM1000.
(a) Construct a system of linear equations to represent the above situation. CHOW CHOON WOOI
(b) By forming a matrix equation, solve this equation system using the elimination
method.
(c) With the same total amount of money spent by company P and Q, is it possible for
company P to award 15 employees for their creativity instead of 2 employees? Give
your reason.
SOLUTION
a) 6 + 2 + 3 = 3850
4 + + 5 = 3200
+ + = 1000
b) =
6 2 3 3850
(4 1 5) ( ) = (3200)
1 1 1 1000
3 ↔ 3 6 2 3 3850
2 = 4 1 − 2 (4 1 5|3200)
3 = 6 1 − 3
3 = 4 2 − 3 3 1 1 1 1000
1 1 1 1000
(4 1 5|3200)
6 2 3 3850
1 1 1 1000
(0 3 −1| 800 )
6 2 3 3850
1 1 1 1000
(0 3 −1| 800 )
0 4 3 2150
1 1 1 1000
(0 3 −1 | 800 )
0 0 −13 −3250
Page 18
110
PSPM I 1 1 1 1000 QS 015/1 Session CHOW CHOON WOOI
(0 3 −1| 800 ) 2014/2015
1
3 = −13 3 0 0 1 250 Page 19
2 = 2 + 3
1 1 1 1000
1 = 1 − 3 (0 3 0|1050)
1 0 0 1 250
2 = 3 2
1 = 1 − 2 1 1 0 750
(0 3 0|1050)
0 0 1 250
1 1 0 750
(0 1 0|350)
0 0 1 250
1 0 0 400
(0 1 0|350)
0 0 1 250
∴ = 400, = 350, = 250
c) 6 + 15 + 3 = 3850
4 + + 5 = 3200
+ + = 1000
6 15 3 3850
(4 1 5) ( ) = (3200)
1 1 1 1000
6 15 3
= (4 1 5)
111
6 15 3
| | = |4 1 5|
111
= (1) |115 53| − (1) |64 53| + (1) |46 115|
= (75 − 3) − (30 − 12) + (6 − 60)
=0
111
PSPM I QS 015/1 Session
2014/2015
| | = 0, . ℎ ℎ ℎ .
∴ 15 ℎ
2 ℎ ℎ .
CHOW CHOON WOOI
Page 20
112
PSPM I QS 015/1 Session
2014/2015
10. (a) Determine wheather ( ) = 1 and ( ) = 4 +1 are inverse function of each other
−4
by computing their composite functions.
(b) Given ( ) = ln(1 − 3 ).
(i) Determine the domain and range of ( ). Then sketch the graph of ( ). CHOW CHOON WOOI
(ii) Find −1(x), if it exists. Hence, state the domain and range of −1(x).
SOLUTION
a) ( ) = 1 ( ) = 4 +1
−4
[ ( )] = 4 + 1
[ ]
1
= (4 + 1) − 4
1
= 4 + 1 − 4
=
[ ( )] = , ℎ ℎ ℎ .
b) ( ) = ln(1 − 3 )
i. : 1 − 3 > 0
1 > 3
3 < 1
1
< 3
{ : 1
= < }
3
= { ∈ ℝ}
( )
( ) = ln(1 − 3 )
1
3
Page 21
113
PSPM I QS 015/1 Session
2014/2015
ii. [ −1( )] =
ln[1 − 3 −1( )] =
1 − 3 −1( ) =
3 −1( ) = 1 −
−1 ( ) = 1 −
3
CHOW CHOON WOOI
−1 = { ∈ ℝ}
1
−1 = { : < 3}
Page 22
114
QS 015/2 CHOW CHOON WOOI
Matriculation Programme Examination
Semester I
Session 2014/2015
115
PSPM I QS 015/2 Session
2014/2015
1. Given that ( − 2) is a factor of the polynomial ( ) = 3 − 10 2 + − 2 where and CHOW CHOON WOOI
are real numbers. If ( ) is divided by ( + 1) the remainder is −24, find the values of and
. Hence, find the remainder when ( ) is divided by (2 + 1).
2. Solve the equation 2 2 − 1 = sin 0 ≤ ≤ 2 . Give your answer in terms of .
3. Find the relative extremum of the curve = 3 − 4 2 + 4 .
4. Car X is travelling east at a speed of 80km/h and car Y is travelling north at 100km/h as shown
in the diagram below. Obtain an equation that describes the rate of change of the distance
between the two cars.
Hence, evaluate the rate of change of the distance between the two cars when car X is 0.15km
and car Y is 0.08km from P.
Car X P
Car Y
5. Expand ( + )( + )2, and are real numbers with > 0. Hence, find the values of and
if ( + )( + )2 = 3 − 3 − 2.
Express 4 −4 2 +5 −1 in the form of partial fractions.
3 −3 −2
6. (a) Express sin 6 − sin 2 in product form. Hence, show that
sin 6 − sin 2 + sin 4 = 4 cos 3 sin 2 cos .
(b) Use the result in (a) to solve
sin 6 − sin 2 + sin 4 = sin 2 cos for 0 ≤ ≤ 180°.
7. Find the limit of the following, if it exists.
a. lim +3
3+27
→−3
b. lim 2 −1
√ 2 −9
→−∞
c. lim 2−3 −4
→4 √ −2
Page 2
116
PSPM I QS 015/2 Session
2014/2015
1 + ≤ 0
8. Given that ( ) = { +6 0 < ≤ 4
3−
> 4
Where C is a constant.
a) Determine whether ( ) is continuous at = 0. CHOW CHOON WOOI
b) Given that ( ) is discontinuous at = 4, determine the values of .
c) Find the vertical asymptote of ( ).
9. Consider the parametric equations of the curve
= 3 and = 3 , 0 < ≤ 2 .
a) Find and express your answer in terms of .
b) Find the value of if = √2
4
c) Show that 2 = 1 .
2 3 4
sin
Hence, calculate 2 at = .
2
3
10. (a) Use the first principle to find the derivative of ( ) = √1 − .
(b) Given that + + ln(1 + 2 ) = 1, ≥ 0
Show that ( + ) 2 + ( 2 + 2 − 4 = 0.
2 (1+2 )2
)
Hence, find the value of 2 at the point (0,0).
2
END OF QUESTION PAPER
Page 3
117
PSPM I QS 015/2 Session
2014/2015
1. Given that ( − 2) is a factor of the polynomial ( ) = 3 − 10 2 + − 2 where and
are real numbers. If ( ) is divided by ( + 1) the remainder is −24, find the values of and
. Hence, find the remainder when ( ) is divided by (2 + 1).
SOLUTION
( ) = 3 − 10 2 + − 2 ( − 2) is a factor of ( ) CHOW CHOON WOOI
(2) = 0
(2)3 − 10(2)2 + (2) − 2 = 0
8 − 40 + 2 − 2 = 0
8 + 2 = 42
4 + = 21 …………………………. (1)
(−1) = −24 ( ) is divided by ( + 1) the remainder is −24
(−1)3 − 10(−1)2 + (−1) − 2 = −24
− − 10 − − 2 = −24
+ = 12 …………………………. (2)
(1) − (2)
3 = 9
= 3
= 9
( ) = 3 3 − 10 2 + 9 − 2
1 13 12 1
(− 2) = 3 (− 2) − 10 (− 2) + 9 (− 2) − 2
1 19
= 3 (− 8) − 10 (4) − 2 − 2
3 10 9
= −8− 4 −2−2
75
=− 8
Page 4
118
PSPM I QS 015/2 Session
2014/2015
2. Solve the equation 2 2 − 1 = sin 0 ≤ ≤ 2 . Give your answer in terms of .
SOLUTION CHOW CHOON WOOI
0 ≤ ≤ 2
2 2 − 1 = sin
2 (1 − 2 ) − 1 = sin
2 − 2 2 − 1 = sin
2 2 + sin − 1 = 0
=
2 2 + − 1 = 0
(2 − 1)( + 1) = 0
(2 − 1) = 0 ( + 1) = 0
= −1
1 sin = −1
= 2
sin = 1
2
= −1 1 =
(2) 6
66
3
= 6 , − 6 = 2
5
= 6 , 6
5 3
∴ = 6 , 6 , 2
Page 5
119
PSPM I QS 015/2 Session
2014/2015
3. Find the relative extremum of the curve = 3 − 4 2 + 4 .
SOLUTION
= 3 − 4 2 + 4 CHOW CHOON WOOI
= 3 2 − 8 + 4
= 0
3 2 − 8 + 4 = 0
(3 − 2)( − 2) = 0
2
= 3 = 2
2
2 = 6 − 8
ℎ = 2
3
23 22 2
= (3) − 4 (3) + 4 (3)
8 16 8
= 27 − 9 + 3
32
= 27
2 2
2 = 6 (3) − 8
= −4 < 0 ( )
2 32
∴ ℎ (3 , 27 ) .
ℎ = 2
= (2)3 − 4(2)2 + 4(2)
Page 6
120
PSPM I QS 015/2 Session
2014/2015
= 8 − 16 + 8
=0 CHOW CHOON WOOI
2
2 = 6(2) − 8
= 4 > 0 ( )
∴ ℎ (2, 0) .
Page 7
121
PSPM I QS 015/2 Session
2014/2015
4. Car X is travelling east at a speed of 80km/h and car Y is travelling north at 100km/h as shown CHOW CHOON WOOI
in the diagram below. Obtain an equation that describes the rate of change of the distance
between the two cars.
Hence, evaluate the rate of change of the distance between the two cars when car X is 0.15km
and car Y is 0.08km from P.
Car X P
Car Y
SOLUTION Negative sign as the distance is decreasing.
= −80
= −100
Car X P
Z
Car Y
2 = 2 + 2
2 = 2 + 2
1
= 2 (2 + 2 )
1
= ( + )
Page 8
122
PSPM I QS 015/2 Session
2014/2015
ℎ = 0.15, = 0.08, = −80, = −100
2 = 2 + 2
2 = (0.15)2 + (0.08)2
2 = (0.15)2 + (0.08)2 CHOW CHOON WOOI
= 0.17
1
= ( + )
1
= 0.17 [(0.15)(−80) + (0.08)(−100)]
= −117.647
The rate of change of the distance between the two cars is 117.65km/h
Page 9
123
PSPM I QS 015/2 Session
2014/2015
5. Expand ( + )( + )2, and are real numbers with > 0. Hence, find the values of and
if ( + )( + )2 = 3 − 3 − 2.
Express 4 −4 2 +5 −1 in the form of partial fractions.
3 −3 −2
SOLUTION CHOW CHOON WOOI
( + )( + )2 = ( + )( 2 + 2 + 2)
= 3 + 2 2 + 2 + 2 + 2 + 2
= 3 + ( + 2 ) 2 + ( 2 + 2 ) + 2
( + )( + )2 = 3 − 3 − 2
3 + ( + 2 ) 2 + ( 2 + 2 ) + 2 = 3 − 3 − 2
+ 2 = 0 ……………… (1)
2 + 2 = −3 ……………… (2)
2 = −2 ……………… (3)
(1)
= −2
2 + 2(−2 ) = −3
2 − 4 2 = −3
−3 2 = −3
2 = 1
= ±1
> 0, = 1
ℎ = 1
= −2(1)
= −2
= −2, = 1
Page 10
124
PSPM I QS 015/2 Session
2014/2015
4 − 4 2 + 5 − 1
3 − 3 − 2
CHOW CHOON WOOI
3 − 3 − 2√ 4 + 0 3 − 4 2 + 5 − 1
4 − 0 3 − 3 2 − 2
− 2 + 7 − 1
4 − 4 2 + 5 − 1 − 2 + 7 − 1
3 − 3 − 2 = + 3 − 3 − 2
2 − 7 + 1
= − ( − 2)( + 1)2
2 − 7 + 1
( − 2)( + 1)2 = − 2 + + 1 + ( + 1)2
( + 1)2 + ( − 2)( + 1) + ( − 2)
= ( − 2)( + 1)2
2 − 7 + 1 = ( + 1)2 + ( − 2)( + 1) + ( − 2)
ℎ = −1
2 − 7 + 1 = ( + 1)2 + ( − 2)( + 1) + ( − 2)
(−1)2 − 7(−1) + 1 = (−1 − 2)
9 = −3
= −3
ℎ = 2
2 − 7 + 1 = ( + 1)2 + ( − 2)( + 1) + ( − 2)
(2)2 − 7(2) + 1 = (2 + 1)2
−9 = 9
= −1
Page 11
125
PSPM I QS 015/2 Session
2014/2015
ℎ = 0, = −1, = −3 CHOW CHOON WOOI
2 − 7 + 1 = ( + 1)2 + ( − 2)( + 1) + ( − 2)
1 = − 2 − 2
1 = −1 − 2 − 2(−3)
1 = 5 − 2
2 = 4
= 2
4 − 4 2 + 5 − 1 2 − 7 + 1
3 − 3 − 2 = − ( − 2)( + 1)2
= − [ − 2 + + 1 + ( + 1)2]
−1 2 −3
= − [ + + 1)2]
− 2 + 1 ( +
12 3
= + − 2 − + 1 + ( + 1)2
Page 12
126
PSPM I QS 015/2 Session
2014/2015
6. (a) Express sin 6 − sin 2 in product form. Hence, show that
sin 6 − sin 2 + sin 4 = 4 cos 3 sin 2 cos .
(b) Use the result in (a) to solve
sin 6 − sin 2 + sin 4 = sin 2 cos for 0 ≤ ≤ 180°.
SOLUTION CHOW CHOON WOOI
(a) Express sin 6 − sin 2 in product form. Hence, show that
sin 6 − sin 2 + sin 4 = 4 cos 3 sin 2 cos .
+ −
6 + 2 6 − 2 sin − sin = 2 cos ( 2 ) sin ( 2 )
sin 6 − sin 2 = 2 cos ( 2 ) sin ( 2 )
= 2 cos 4 sin 2
sin 6 − sin 2 + sin 4
= 2 cos 4 sin 2 + sin 4 sin 2 = 2 sin cos
sin 2(2 ) = 2 sin(2 ) cos(2 )
= 2 cos 4 sin 2 + sin 2(2 )
= 2 cos 4 sin 2 + 2 sin 2 cos 2 + −
= 2 sin 2 (cos 4 + cos 2 ) cos + cos = 2 cos ( 2 ) cos ( 2 )
= 2 sin 2 [2 cos ( 4 + 2 ) cos ( 4 − 2 )]
22
= 2 sin 2 [2 cos 3 cos ]
= 4 cos 3 sin 2 cos
(b) Use the result in (a) to solve sin 6 − sin 2 + sin 4 = sin 2 cos .
sin 6 − sin 2 + sin 4 = sin 2 cos
4 cos 3 sin 2 cos = sin 2 cos
4 cos 3 sin 2 cos − sin 2 cos = 0
sin 2 cos (4 cos 3 − 1) = 0
Page 13
127
PSPM I QS 015/2 Session
2014/2015
0 ≤ ≤ 180° 0 ≤ ≤ 180°.
0 ≤ 2 ≤ 360° cos = 0 0 ≤ ≤ 180°
0 ≤ 3 ≤ 540°
sin 2 = 0 4 cos 3 − 1 = 0 CHOW CHOON WOOI
1
cos 3 = 4
90° 75.5°
180° 360° 75.5°
2 = 0°, 180°, 360° = 90° = 75.5°
= 0°, 90°, 180° 3 = 75.5°, 284.5°, 435.5°
= 25.2°, 94.8°, 145.2°
∴ = 0°, 25.2°, 90°, 94.8°, 145.2°, 180°
Page 14
128
PSPM I QS 015/2 Session
2014/2015
7. Find the limit of the following, if it exists.
a. lim +3
3+27
→−3
b. lim 2 −1
√ 2 −9
→−∞
c. lim 2−3 −4 CHOW CHOON WOOI
→4 √ −2
SOLUTION
a. lim +3 = lim ( +3) +3 2 − 3 + 9
3 +27 ( 2−3 +9)
→−3 →−3 + 3√ 3 + 0 2 + 0 + 27
3 + 3 2 + 0
= lim 1
−3 2 + 0 + 27
→−3 ( 2 − 3 + 9) −3 2 − 9
1 9 + 27
= (−3)2 − 3(−3) + 9 9 + 27
1
= 27
b. lim 2 −1 = lim −2 −−1
√ 2 −9 √ 22− 92
→−∞ →−∞
−2 + 1
= lim
→−∞ 9
√1 − 2
−2
=
√1
= −2
c. lim 2−3 −4 = lim ( −4)( +1) 2 − 2 = ( − )( + )
→4 √ −2 →4 √ −2 − 4 = √ 2 − 22
(√ − 2)(√ + 2)( + 1) = (√ − 2)(√ + 2)
= lim
Page 15
→4 √ − 2
= lim(√ + 2)( + 1)
→4
= (√4 + 2)(4 + 1)
= 20
129
PSPM I QS 015/2 Session
2014/2015
1 + ≤ 0
8. Given that ( ) = { +6 0 < ≤ 4
3−
> 4
Where C is a constant.
a) Determine whether ( ) is continuous at = 0. CHOW CHOON WOOI
b) Given that ( ) is discontinuous at = 4, determine the values of .
c) Find the vertical asymptote of ( ).
SOLUTION
1 + ≤ 0
( ) = { + 6 0 < ≤ 4
3 − > 4
a) Determine whether ( ) is continuous at = 0 Continuity at a point
(0) = 1 + 0 = 2 ( ) = ℎ
lim ( ) = lim 1 + 1. ( )
→0− →0− 2. lim ( )
= 1 + 0 →
3. lim ( ) = ( )
→
=2
lim ( ) = lim + 6
→0+ →0+ 3 −
0+6
=3−0
=2
lim ( ) = 2
→0
(0) = lim ( ) = 2, ℎ ( ) = 0.
→0
Page 16
130
PSPM I QS 015/2 Session
2014/2015
b) Given that ( ) is discontinuous at = 4, determine the values of .
= 4
lim ( ) = lim + 6
→4− →4− 3 − CHOW CHOON WOOI
4+6
= 3−4
10
= −1
= −10
lim ( ) = lim
→4+ →4+
=
( ) = 4, ℎ ≠ −10.
{ : < −10 ∪ > −10}
c) Find the vertical asymptote of ( ).
:
3 − = 0
= 3
+ 6
lim = −∞
→3+ 3 −
lim + 6 = ∞
→3− 3 −
∴ ℎ = 3.
Page 17
131
PSPM I QS 015/2 Session
2014/2015
9. Consider the parametric equations of the curve
= 3 and = 3 , 0 < ≤ 2 .
a) Find and express your answer in terms of .
b) Find the value of if = √2 CHOW CHOON WOOI
4
c) Show that 2 = 1 .
2 3 4
sin
Hence, calculate 2 at = .
2
3
SOLUTION
a) Find and express your answer in terms of .
= 3 = 3
= 3 cos2 (cos ) = 3 sin2 (sin )
= 3 cos2 (− sin ) = 3 sin2 (cos )
= −3 sin cos2 = 3 cos sin2
= .
= (3 cos sin2 ) (−3 sin 1 cos2 )
= (sin ) (− 1 )
cos
sin
= − cos
= − tan
Page 18
132
PSPM I QS 015/2 Session
2014/2015
b) Find the value of if = √2
4
√2
ℎ = 4
= 3
3 = √2 CHOW CHOON WOOI
4
1
√2 3
cos = ( 4 )
≈ 0.7071
4 4
, = 4
= 4 , 2 − 4
7
= 4 , 4
ℎ = √2 , =
44
= − tan
= − tan ()
4
= −1
Page 19
133
PSPM I QS 015/2 Session CHOW CHOON WOOI
2014/2015
√2 7
ℎ = 4 , = 4 Page 20
= − tan
7
= − tan ( 4 )
= −(−1)
=1
c) Show that 2 = 1 sin . Hence, calculate 2 at = .
2 3 4 2
3
2
2 = [ ] .
1
= [ (− tan )] . (−3 )
sin cos2
= (− 2 ). (−3 sin 1 cos2 )
2
= 3 sin cos2
1
= cos2
3 sin cos2
1
= 3 cos4 sin
= 3
2 1
2 = 3 cos4 sin
1
= 3 cos4 ( 3 ) sin ( 3 )
= 6.16
134
PSPM I QS 015/2 Session
2014/2015
10. (a) Use the first principle to find the derivative of ( ) = √1 − .
(b) Given that + + ln(1 + 2 ) = 1, ≥ 0
Show that ( + ) 2 + ( 2 + 2 − 4 = 0.
2 (1+2 )2
)
Hence, find the value of 2 at the point (0,0). CHOW CHOON WOOI
2
SOLUTION
(a) ( ) = √1 −
( + ℎ) = √1 − ( + ℎ)
′( ) = lim ( + ℎ) − ( )
ℎ→0 ℎ
= lim √1 − ( + ℎ) − √1 −
ℎ→0 ℎ
= lim √1 − ( + ℎ) − √1 − √1 − ( + ℎ) + √1 −
.
ℎ→0 ℎ √1 − ( + ℎ) + √1 −
[1 − ( + ℎ)] − (1 − )
= lim
ℎ→0 ℎ (√1 − ( + ℎ) + √1 − )
1 − − ℎ − 1 +
= lim
ℎ→0 ℎ (√1 − ( + ℎ) + √1 − )
−ℎ
= lim
ℎ→0 ℎ (√1 − ( + ℎ) + √1 − )
−1
= lim
ℎ→0 (√1 − ( + ℎ) + √1 − )
−1
=
(√1 − ( + 0) + √1 − )
−1
=
(√1 − + √1 − )
−1
=
2√1 −
Page 21
135
PSPM I QS 015/2 Session
2014/2015
(b) + + ln(1 + 2 ) = 1
+ [ + ] + (1 1 (1 + 2 ) = 0
+ 2 )
+ + + (1 1 (2) = 0
+ 2 )
CHOW CHOON WOOI
+ + + (1 2 = 0
+ 2 )
( + ) + + (1 2 = 0
+ 2 )
( + ) + + 2(1 + 2 )−1 = 0
[( + ) 2 + ( + 1)] + − 2(1 + 2 )−2 (1 + 2 ) = 0
2
[( + ) 2 + 2 + + − (1 2 (2) = 0
2 ( ) ] + 2 )2
( + ) 2 + 2 + 2 − (1 4 = 0
2 ( ) + 2 )2
ℎ (0, 0) ➔ = 0, = 0
( 0 + 0) + 0 + (1 2 = 0
+ 2(0))
(1 + 0) + 2 = 0
(1)
= −2
ℎ = 0, = 0,
= −2
( 0 + 0) 2 + 0(−2)2 + 2(−2) − (1 + 4 = 0
2 2(0))2
2 4
(1 + 0) 2 + 4 − 4 − 1 = 0
2
2 = 4
Page 22
136
2015/2016
137
CHOW CHOON WOOI
QS 015/1 CHOW CHOON WOOI
Matriculation Programme
Examination
Semester I
Session 2015/2016
138
PSPM I QS 015/1
Session 2015/2016
1. Evaluate the solution of 4 −2 = 1 up to three decimal places.
3−y
2. The first three terms of a geometric sequence are (4 − 2) , (2m − 1) and 12. CHOW CHOON WOOI
3
Determine the value of m. Hence, find the sixth term for this sequence.
3. Solve the equation
2 + log2 = 15 logx 2 .
1 −1
4. (a) Determine the values of x so that [ 0 1 ] is singular.
1 3 −1
(b) If = [13 25] and = [01 −41], find C when = −1.
5. (a) Expand (2 + )−12 in ascending powers of x, up to the term 3.
(b) Use the expansion in (a) to approximate √2.
3
6. Given 1 = 3 − 3i and 2 = 3 + 2i.
(a) Write ̅ 1 in polar form.
(b) Express ( ̅ ̅1̅ 2) + [̅̅̅ 3̅̅̅] in the form of + , , ∈ .
13 − 2
7. A curve = 2 + bx + c where a, b and c are constants, passes through the points (2,11),
(-1, -16) and (3,28).
(a) By using the above information, construct a system containing three linear equations.
Page 2
139
PSPM I QS 015/1
Session 2015/2016
(b) Express the above system as a matrix equation AX=B.
(c) Find the inverse of matrix A by using the adjoint matrix method. Hence, obtain the
values of a, b and c.
8. Given a function ( ) = √3 − 2 . CHOW CHOON WOOI
(a) Show that is a one to one function.
(b) Find the domain and range of .
(c) Determine the inverse function of and state its domain and range.
(d) Sketch the graphs of and −1 on the same axis.
9. (a) The function is given as ( ) = +2 , x ≠ 4. If ( )(x) = x, find the value of a.
3 −4 3
(b) Let ( ) = |3 + 2| and ( ) = − + 2 be two functions. Evaluate ( )−1(3).
10. (a) Solve the inequality | −1| > 2.
+3
(b) Show that 2 42 = 22 .
8
Hence, find the interval for x so that 2 x 42 − 13(2 ) + 36 ≥ 0.
8
END OF QUESTION PAPER
Page 3
140
PSPM I QS 015/1
Session 2015/2016
1. Evaluate the solution of 4 −2 = 1 up to three decimal places.
3−y
SOLUTION
4 −2 = 1 CHOW CHOON WOOI
3−y
4 −2 = 3y
ln 4 −2 = ln 3y
( − 2) ln 4 = ln 3
ln 4 − 2 ln 4 = ln 3
ln 4 − ln 3 = 2 ln 4
(ln 4 − ln 3) = 2 ln 4
2 ln 4
= (ln 4 − ln 3)
= 9.638
Page 4
141
PSPM I QS 015/1
Session 2015/2016
2. The first three terms of a geometric sequence are (4 − 2) , (2m − 1) and 12.
3
Determine the value of m. Hence, find the sixth term for this sequence.
SOLUTION
Alternative CHOW CHOON WOOI
, , ℎ , = =
= ±√
2 − 1 12
4 =
(3 − 2) , (2m − 1), 12 4 2 − 1
(2m − 1) = √(43 − 2) ( 12) 3 − 2
(2m − 1) = √16 − 24 (2m − 1)2 = 16 − 24
(2m − 1)2 = 16 − 24
4 2 − 4 + 1 = 16 − 24 4 2 − 20 + 25 = 0
4 2 − 20 + 25 = 0
(2 − 5)(2 − 5) = 0 (2 − 5)(2 − 5) = 0
5 5
= 2 = 2
Page 5
142
PSPM I QS 015/1
Session 2015/2016
When = 5,
2
4 45 4
1 = = 3 − 2 = 3 (2) − 2 = 3
5 CHOW CHOON WOOI
2 = 2 − 1 = 2 (2) − 1 = 4
=
4
= 4 = 3
3
= −
6 = 4 (3)5
(3)
= 324
Page 6
143
PSPM I QS 015/1
Session 2015/2016
3. Solve the equation
2 + log2 = 15 logx 2.
SOLUTION
2 + log2 = 15 logx 2 CHOW CHOON WOOI
2 + log2 = 15 (lloogg22 2
x)
logc a
logb a = logc b
1
2 + log2 = 15 (log2 x)
15
2 + log2 = log2 x
= log2
15
2 + = u
2 + 2 = 15
2 + 2 − 15 = 0
( − 3)( + 5) = 0
= 3 = −5 logb a = logc a
log2 = −5 logc b
= 2−5
log2 = 3 = 1
= 23
32
= 8
Page 7
144
PSPM I QS 015/1
Session 2015/2016
1 −1
4. (a) Determine the values of x so that [ 0 1 ] is singular.
1 3 −1
(b) If = [13 52] and = [10 −41], find C when = −1.
SOLUTION CHOW CHOON WOOI
(a) Singular Matrix
1 −1 Singular matrix is square matrix
| 0 1 | = 0 whose determinant is zero.
1 3 −1
(1) |30 −11| − ( ) |1 −11| + (−1) |1 30| = 0
(1)[0 − 3] − ( )[− − 1] + (−1)[3 − 0] = 0
−3 + 2 + − 3 = 0
2 − 2 − 3 = 0
( − 3)( + 1) = 0
= 3 = −1
(b)
= [31 52] , = [10 −41]
= −1
−1( ) = −1( −1)
−1( ) = −1
Page 8
145
PSPM I QS 015/1
Session 2015/2016
−1 = −1
( −1 ) = ( −1)
−1 =
= −1 CHOW CHOON WOOI
= [31 25] , = [01 −41]
−1 = 1 0 [−01 −14]
−1 −
= −1 [−01 −14]
= [01 −41]
= −1
= [10 −41] [31 52] [01 −41]
= [−71 −132] [10 −41]
= [−71 −152]
Page 9
146
PSPM I QS 015/1
Session 2015/2016
5. (a) Expand (2 + )−21 in ascending powers of x, up to the term 3.
(b) Use the expansion in (a) to approximate √2.
3
SOLUTION CHOW CHOON WOOI
(a)
(2 + )−12 = [2 (1 + )]−12
2
= 2−12 (1 + )−12
2
1 [1 (− 21) 1 (− 21) (− 23) 2 (− 21) (− 23) (− 25) 3 ]
√2 1! () 2! () 3! ()
= + + 2 + 2 + ⋯
2
1 3 2 15 3
= [1 − + 8 ( 4 ) − 48 ( 8 ) + ⋯ ]
√2 4
1 3 2 5 3
= [1 − + − + ⋯ ]
√2 4 32 128
11 3 2 − 5 3 + ⋯
= − +
√2 4√2 32√2 128√2
(b)
√2 1
(32)2
3 =
3 −12
= (2)
Page 10
147
PSPM I QS 015/1
Session 2015/2016
(2 + )−21 = 3 −12
(2)
3
2 + = 2
1 CHOW CHOON WOOI
= − 2
(2 + )−12 = 1 − 1 + 3 2 − 5 3
√2 4√2 32√2 128√2
1 −12 1 1 1 3 12 5 13
[2 + (− 2)] = √2 − 4√2 (− 2) + 32√2 (− 2) − 128√2 (− 2)
3 −12
( 2 ) = 0.8155
1
22
( 3 ) = 0.8155
√2 = 0.8155
3
Page 11
148
PSPM I QS 015/1
Session 2015/2016
6. Given 1 = 3 − 3i and 2 = 3 + 2i.
(a) Write ̅ 1 in polar form. CHOW CHOON WOOI
(b) Express (̅ ̅1̅ 2) + [̅̅̅ 3̅̅̅] in the form of + , , ∈ .
13 − 2
SOLUTION
(a)
1 = 3 − 3i and 2 = 3 + 2i
̅ 1 = 3 + 3
= | ̅ 1| = √32 + 32
= √18
= 3√2
̅ 1, = −1
( )
= −1 3
(3)
= −1(1)
= 0.785
̅ 1 in polar form
̅ 1 = [cos + ]
= 3√2[cos 0.785 + 0.785]
Page 12
149
PSPM I QS 015/1
Session 2015/2016
(b)
( ̅ 1 2) + ̅̅̅̅ ̅3̅̅̅̅ = (3 + 3 )(3 + 2i) + ̅̅̅̅̅̅̅−̅̅ ̅̅̅̅̅̅
13 (− 2) 13 [−(3 + 2i)]
9 + 6 + 9 + 6 2 ̅̅̅̅̅̅̅ ̅̅̅̅̅̅ CHOW CHOON WOOI
= 13 + [(3 + 2i)]
3 + 15 ̅̅̅̅̅̅ ̅ (̅̅3̅̅−̅̅̅2̅̅i̅)̅̅̅̅̅̅
= 13 + [(3 + 2i)(3 − 2i)]
3 + 15 ̅̅3̅ ̅ ̅+̅̅̅2̅̅
= 13 + [ 9 + 4 ]
3 + 15 ̅̅2̅̅+̅̅̅3̅̅ ̅
= 13 + [ 13 ]
3 + 15 2 − 3
= 13 + 13
3 + 15 + 2 − 3
= 13
5 + 12
= 13
5 12
= 13 + 13
Page 13
150