2018/2019 SM015/1
MATRICULATION PROGRAMME EXAMINATION
5. Water is poured into a right inverted cone of height ℎ with a semi-vertical angle of 60° at a
constant rate of 25 3 per second. CHOW CHOON WOOI
a. Show that the rate of change of the height of water is ℎ = 32ℎ52.
b. Find the rate of change of the height of water after 5 seconds.
c. Given the height of the cone is 20cm, find the time taken to fill the cone
completely with water.
SOLUTION
r r
tan 60° = ℎ
h h
60° 60°
√3 = ℎ
= √3ℎ
a)
dv
dt = 25
ℎ ℎ
= .
= ℎ (25 )
∗∗ .
= 1 2ℎ
3
301 12
2018/2019 SM015/1
MATRICULATION PROGRAMME EXAMINATION
12 CHOW CHOON WOOI
= 3 (√3ℎ) ℎ
= 1 (3ℎ2)ℎ
3
= ℎ3
= 3 ℎ2
ℎ
ℎ ℎ
= ( ) .
1
= (3 ℎ2) . (25 )
25
= 3 ℎ2
25
= 3ℎ2
b) ℎ = 5, ℎ
dv
dt = 25
= .
ℎ3 = (25 ). (5)
ℎ3 = 125
ℎ=5
ℎ 25
= 3ℎ2
25
= 3(5)2
1
= 3 /
302 13
2018/2019 SM015/1
MATRICULATION PROGRAMME EXAMINATION
c) ℎ ℎ = 20
= ℎ3 CHOW CHOON WOOI
= (20)3
= 8000
= .
8000 = (25 ).
= 320
14
303
SM015/2 CHOW CHOON WOOI
MATEMATIK
2018/2019
Matriculation Programme Examination
304
2018/2019 SM015/2
MATRICULATION PROGRAMME EXAMINATION
1. Given 1 = 2 + 3 and 2 = 4 − 4 . Express ( 2) + [( 3 )] in Cartesian form.
(̅ ̅ 1̅)
− 2 CHOW CHOON WOOI
2. Solve
a. (12275)2 x (295)4 = (295) −3 x (68215)2
b. 1 ≥ 8
4−2
3. a) The first three terms of a geometric series are (3 − 27) , (3 − 2) 6.
Determine the value of . Hence, find the seventh term of this series.
b) Expand (3 2 − 3
2 1)
1 34
4. a) Given the matrix [ + 2 3 2] such that 11 = 7 and 12 = −1,
4 + 9
calculate the values of a and b.
134 7 13 −6 1
b) Let = [1 3 2] , = [−1 −7 2 ] = (1)
4 10 9 −2 2 0 2
i. Find determinant of by expanding first column.
ii. Evaluate ( 2 − ) .
5. a) Given ( ) = (5 4 + 1) and g( ) = √ +2−1−42. Find
i. the domain of g(x).
ii. ℎ( ), ( ℎ)( ) =
b) Given ( ) = (3 + 6) and ( ) = − 2. Show that ( ) ( ) are
3
inverses of each other.
2
305
2018/2019 SM015/2
MATRICULATION PROGRAMME EXAMINATION
6. The polynomial ( ) = 4 + 3 − 7 2 − 4 + has a factor ( + 3) and
remainder 60 when divided by ( − 3). Find the values of and . Hence, factorise CHOW CHOON WOOI
( ) completely.
7. a) Express 12 cos + 7 sin in the form of Rcos( − ), where > 0 and
0° ≤ ≤ 90°
b) Hence, show that the maximum value of 12 1 sin +15 is 1 (15 + √193).
cos +7 32
8. The function ( ) is defined by
2 , ≤ 2
− 2 , 2 < ≤ 8
( ) = √2 − 2 , > 8
|8 − |
{ − 8
Find
a) lim ( )
→2+
b) lim ( )
→8+
9. a) Find the derivative of ( ) = 6 using the first principle.
√
b) Find the value of when = 0 for each of the following:
i. = ln(9 − 2 )
ii. = −3
√3 +1
10. Given ( ) = 32 + 9, where > 0. Find the coordinates of the stationary point and
state it’s nature.
3
306
2018/2019 SM015/2
MATRICULATION PROGRAMME EXAMINATION
1. Given 1 = 2 + 3 and 2 = 4 − 4 . Express ( 2) + [( 3 )] in Cartesian form.
(̅ ̅ 1̅)
− 2 CHOW CHOON WOOI
SOLUTION
1 = 2 + 3
2 = 4 − 4
( 2) + 3 )] = 4 − 4 + 3 4 ))]
( ̅ 1) [(− 2 2 − 3 [(−(4 −
4 − 4 3
= 2 − 3 − (4 − 4 )
(4 − 4 )(4 − 4 ) − 3(2 − 3 ) = √−1
= (2 − 3 )(4 − 4 ) 2 = −1
3 = −
16 − 16 − 16 + 16 2 − 2 3 + 3 4 4 = 1
= 8 − 8 − 12 + 12 2
16 − 16 − 16 + 16(−1) − 2(− ) + 3(1)
= 8 − 20 + 12(−1)
16 − 16 − 16 − 16 + 2 + 3
= 8 − 20 − 12
3 − 30
= −4 − 20
(3 − 30 ) (−4 + 20 )
= (−4 − 20 ) . (−4 + 20 )
−12 + 60 + 120 − 600 2
= 16 − 80 + 80 − 400 2
−12 + 60 + 120 − 600(−1)
= 16 − 80 + 80 − 400(−1)
588 + 180
= 416
4
307
2018/2019 SM015/2
MATRICULATION PROGRAMME EXAMINATION
CHOW CHOON WOOI
588 180
= 416 + 416
147 45
= 104 + 104
5
308
2018/2019 SM015/2
MATRICULATION PROGRAMME EXAMINATION
2. Solve
a. (12275)2 x (295)4 = (295) −3 x (68215)2 CHOW CHOON WOOI
b. 1 ≥8
4−2
SOLUTION
a. (12275)2 x (295)4 = (295) −3 x (68215)2
(295)4 = (68215)2 −
(295) −3 (12275)2 ( ) = ( )
(295)4 [(35)4]2 9 −3 25 3−
(295)3− [(35)3]2 (25) = ( 9 )
=
[(53)2]4 = (35)8
[(35)2]3− (53)6
(53)8 = (53)8 = −
(53)6−2 (35)−6
5 8 −(6−2 ) 5 8−(−6)
(3) = (3)
5 10 −6 5 14
(3) = (3)
6
309
2018/2019 SM015/2
MATRICULATION PROGRAMME EXAMINATION
10 − 6 = 14 CHOW CHOON WOOI
= 2
b. 1 ≥8
4−2
18
4 − 2 − ≥ 0
− 8(4 − 2 )
(4 − 2 ) ≥ 0
− 32 + 16
(4 − 2 ) ≥ 0
17 − 32
(4 − 2 ) ≥ 0
:
= 32 = 0 = 2
17 (−∞, 0) 32 32 (2, ∞)
(0, 17) (17 , 2) +
-
+ +
17 − 32 - - +
+ -
(4 − 2 ) + +
○+
- +
17 − 32 ○+ -
(4 − 2 )
32
: { : < 0 ∪ 17 ≤ < 2}
7
310
2018/2019 SM015/2
MATRICULATION PROGRAMME EXAMINATION
3. a) The first three terms of a geometric series are (3 − 27) , (3 − 2) 6.
Determine the value of . Hence, find the seventh term of this series. CHOW CHOON WOOI
b) Expand (32 2 − 3
1)
SOLUTION
a) Geometric series
(3 − 7 , (3 − 2) 6
2)
2 = 3
1 2
3 − 2 6
=
7 3 − 2
3 − 2
(3 − 2)2 = 6 (3 − 7
2)
9 2 − 12 + 4 = 18 − 21
9 2 − 30 + 25 = 0
(3 − 5)(3 − 5) = 0
5
= 3
7
= 3 − 2
57
= 3 (3) − 2
8
311
2018/2019 SM015/2
MATRICULATION PROGRAMME EXAMINATION
3 CHOW CHOON WOOI
=2
6
= 3 − 2
6
= 3 (53) − 2
=2
7 = 6
= 3 (2)6
(2)
= 96
b) (3 2 − 3 = (03) (3 2 3 (−1)0 + (13) (3 2 2 (−1)1 + (32) (3 2 1 (−1)2 + (33) (3 2 0 (−1)3
2 2 2 2
2 1) ) ) ) )
27 6 9 4 3 2
= (1) ( 8 ) (1) + (3) ( 4 ) (−1) + (3) ( 2 ) (1) + (1)(1)(−1)
= 27 6 − 27 4 + 9 2 − 1
8 4 2
9
312
2018/2019 SM015/2
MATRICULATION PROGRAMME EXAMINATION
1 34 CHOW CHOON WOOI
i. a) Given the matrix [ + 2 3 2] such that 11 = 7 and 12 = −1,
4 + 9
calculate the values of a and b.
134 7 13 −6 1
b) Let = [1 3 2] , = [−1 −7 2 ] = (1)
4 10 9 −2 2 0 2
i. Find determinant of by expanding first column.
ii. Evaluate ( 2 − ) .
SOLUTION
1 34
a) [ + 2 3 2]
4 + 9
11 = | 3 29|
+
= 27 − 2 − 2
27 − 2 − 2 = 7 ………………………….. (1)
2 + 2 = 20
+ = 10
12 = (−1)1+2 | + 2 92|
4
= (−1)[9 + 18 − 8]
10
313
2018/2019 SM015/2
MATRICULATION PROGRAMME EXAMINATION
= −9 − 18 + 8
−9 − 18 + 8 = −1 CHOW CHOON WOOI
9 + 18 = 9
+ 2 = 1 ………………………….. (2)
(2) − (1)
= 1 − 10 = −9
+ (−9) = 10
= 19
∴ = 19, = −9
bi)
134 7 13 −6 1
= [1 3 2] , = [−1 −7 2 ] = (1)
4 10 9 −2 2 0 2
| | = (1) |130 92| − (1) |130 94| + (4) |33 42|
= (1)[27 − 20] − (1)[27 − 40] + (4)[6 − 12]
= 7 + 13 − 24
= −4
314 11
2018/2019 SM015/2
MATRICULATION PROGRAMME EXAMINATION
134 134 7 −1 −2 1
bii) ( 2 − ) = [(1 3 2) (1 3 2) − ( 13 −7 2 )] (1)
CHOW CHOON WOOI
4 10 9 4 10 9 −6 2 0 2
20 52 46 7 −1 −2 1
= [(12 32 28 ) − ( 13 −7 2 )] (1)
50 132 117 −6 2 0 2
13 53 48 1
= [(−1 39 26 )] (1)
56 130 117 2
162
= ( 90 )
420
12
315
2018/2019 SM015/2
MATRICULATION PROGRAMME EXAMINATION
5. a) Given ( ) = (5 4 + 1) and g( ) = √ +2−1−42. Find CHOW CHOON WOOI
i. The domain of g(x).
ii. ℎ( ), ( ℎ)( ) =
b) Given ( ) = (3 + 6) and ( ) = − 2. Show that ( ) ( ) are
3
inverses of each other.
SOLUTION
( ) = 5 + 1
( 4 )
g( ) = √ +1−2
2−4
5ai) ( )
+ 1 ≥ 0 and 2 − 4 ≠ 0
≠ ±2
≥ −1 and
∴ : [−1,2) ∪ (2, ∞)
5 ) ( ℎ)( ) =
[ℎ( )] =
5ℎ( ) + 1
[ 4ℎ( ) ] =
5ℎ( ) + 1 = 4 ℎ( )
5ℎ( ) − 4 ℎ( ) = −1
ℎ( )[5 − 4 ] = −1
316 13
2018/2019 SM015/2
MATRICULATION PROGRAMME EXAMINATION
−1 CHOW CHOON WOOI
ℎ( ) = 5 − 4
5b) Given ( ) = (3 + 6) and ( ) = − 2
3
[ ( )] = [3 ( 3 − 2) + 6]
= [ − 6 + 6]
= [ ]
= [ ]
=
(3 +6)
[ ( )] = 3 − 2
3 + 6
= 3 −2
3 + 6 − 6
=3
=
[ ( )] = [ ( )] = , ℎ ( ) ( ) ℎ ℎ
14
317
2018/2019 SM015/2
MATRICULATION PROGRAMME EXAMINATION
6. The polynomial ( ) = 4 + 3 − 7 2 − 4 + has a factor ( + 3) and CHOW CHOON WOOI
remainder 60 when divided by ( − 3). Find the values of a and b. Hence, factorise
( ) completely.
SOLUTION
( ) = 4 + 3 − 7 2 − 4 +
(−3) = 0
(3) = 60
(−3) = (−3)4 + (−3)3 − 7(−3)2 − 4 (−3) + = 0
81 − 27 − 63 + 12 + = 0
15 − = 18 ……………………. (1)
(3) = (3)4 + (3)3 − 7(3)2 − 4 (3) + = 60
81 + 27 − 63 − 12 + = 60
15 + = 42 ……………………. (2)
(2) − (1)
2 = 24
= 12
15 − 12 = 18
= 2
∴ = 2, = 12
15
318
2018/2019 SM015/2
MATRICULATION PROGRAMME EXAMINATION
( ) = 4 + 2 3 − 7 2 − 8 + 12 CHOW CHOON WOOI
x3 − x2 − 4x + 4
x + 3 x4 + 2x3 − 7x2 − 8x + 12
x4 + 3x3
− x3 − 7x 2 − 8x + 12
− x3 − 3x2
− 4x2 − 8x + 12
− 4x2 −12x
4x + 12
4x + 12
0
( ) = ( + 3)( 3 − 2 − 4 + 4)
= ( + 3)[ 2( − 1) − 4( − 1)]
= ( + 3)( − 1)[ 2 − 4]
= ( + 3)( − 1)( + 2)( − 2)
16
319
2018/2019 SM015/2
MATRICULATION PROGRAMME EXAMINATION
7. a) Express 12 cos + 7 sin in the form of Rcos( − ), where > 0 and
0° ≤ ≤ 90° CHOW CHOON WOOI
b) Hence, show that the maximum value of 12 1 sin +15 is 1 (15 + √193).
cos +7 32
SOLUTION
7a) 12 cos + 7 sin = Rcos( − )
12 cos + 7 sin = [cos cos + sin sin ]
12 cos + 7 sin = Rcos cos + Rsin sin
cos = 12 ……………………… (1)
sin = 7 ……………………… (2)
(1)2 + (2)2
2 2 + 2 2 = 122 + 72
2( 2 + 2 ) = 193c
2(1) = 193
= √193
(2) + (1)
sin 7
cos = 12
7
tan = 12
= 30.3°
12 cos + 7 sin = √193 cos( − 30.3°)
320 17
2018/2019 SM015/2
MATRICULATION PROGRAMME EXAMINATION
7b) 1 +15 = 1
12 cos +7 sin (√193 cos( −30.3°))+15
−1 ≤ cos( − 30.3°) ≤ 1 CHOW CHOON WOOI
−√193 ≤ √193 cos( − 30.3°) ≤ √193
−√193 + 15 ≤ √193 cos( − 30.3°) + 15 ≤ √193 + 15
11 1
≤≤
√193 + 15 √193 cos( − 30.3°) + 15 −√193 + 15
11 1
√193 + 15 ≤ 12 cos + 7 sin + 15 ≤ −√193 + 15
1
ℎ 12 cos + 7 sin + 15
1 = 1 . (15 + √193)
−√193 + 15 (15 − √193) (15 + √193)
= 15 + √193
225 + 15√193 − 15√193 − 193
= 15 + √193
32
1
= 32 (15 + √193)
18
321
2018/2019 SM015/2
MATRICULATION PROGRAMME EXAMINATION
8. The function ( ) is defined by
2 , ≤ 2 CHOW CHOON WOOI
− 2 , 2 < ≤ 8
( ) = √2 − 2 , > 8
|8 − |
{ − 8
Find
a) lim ( )
→2+
b) lim ( )
→8+
SOLUTION
a) lim ( ) = lim ( −2 )
→2+ →2+ √2 −2
− 2 √2 + 2
= lim ( ) ( )
√2 − 2 √2 + 2
→2+
= lim ( ( − 2)(√2 + 2) )
→2+ 2 + 2√2 − 2√2 − 4
= lim ( ( − 2)(√2 + 2) )
→2+ 2 − 4
= lim ( ( − 2)(√2 + 2) )
→2+ 2( − 2)
= lim [(√2 + 2) ]
→2+ 2
√2(2) + 2
=2
=2
322 19
2018/2019 SM015/2
MATRICULATION PROGRAMME EXAMINATION
b) |8 − | = {−(88−− ) 8 − ≥ 0 CHOW CHOON WOOI
8 − < 0
= {−(88−− ) ≤ 8
> 8
lim ( ) = lim |8 − |
→8+ →8+ − 8
= lim −(8 − )
→8+ − 8
= lim − 8
→8+ − 8
= lim 1
→8+
=1
20
323
2018/2019 SM015/2
MATRICULATION PROGRAMME EXAMINATION
9. a) Find the derivative of ( ) = 6 using the first principle.
√
b) Find the value of when = 0 for each of the following: CHOW CHOON WOOI
i. = ln(9 − 2 )
ii. = −3
√3 +1
SOLUTION
a) ( ) = 6
√
6
( + ℎ) =
√ + ℎ
′( ) = lim ( + ℎ) − ( )
ℎ
ℎ→0
6 −6
√ + ℎ √
= lim ℎ
ℎ→0
= lim 6 61 .
( − ) (ℎ)
ℎ→0 √ + ℎ √
= lim (6√ − 6√ + ℎ . 1
√ √ + ℎ ) (ℎ)
ℎ→0
= lim 6(√ − √ + ℎ) . 1
[ ℎ ] (ℎ)
ℎ→0
√ √ +
= lim 6(√ − √ + ℎ)(√ + √ + ℎ) . 1
[ ℎ(√ + √ + ℎ) ] (ℎ)
ℎ→0
√ √ +
= lim [ 6 ( + √ √ + ℎ − √ √ + ℎ − ( + ℎ)) 1
] . (ℎ)
ℎ→0 √ √ + ℎ(√ + √ + ℎ)
324 21
2018/2019 SM015/2
MATRICULATION PROGRAMME EXAMINATION
= lim [ 6(−ℎ) . 1
√ √ ] (ℎ)
ℎ→0 + ℎ(√ + √ + ℎ) CHOW CHOON WOOI
= lim [ −6 ]
ℎ→0 √ √ + ℎ(√ + √ + ℎ)
−6
=
√ √ + 0(√ + √ + 0)
−6
=
√ √ (√ + √ )
−6
=
(2√ )
−3
=3
2
bi) = ln(9 − 2 )
= 9 1 (9 − 2 )
− 2
= 9 −12 (−2)
−2
= 9 − 2
ℎ = 0
−2
= 9 − 0
325 22
2018/2019 SM015/2
MATRICULATION PROGRAMME EXAMINATION
2 CHOW CHOON WOOI
= −9
bii) = −3 1
√3 +1 = √3 + 1 = (3 + 1)2
= −3 ′ = 1 (3 + 1)−21 (3 + 1)
′ = −3 −3 2
′ − ′ 3
= 2 =1
2(3 + 1)2
(3 + 1 (−3 −3 ) − −3 ( 3 1)
1)2
= 2(3 + 1)2
12
[(3 + 1)2]
ℎ = 0;
(0 + 1 (−3 0) − 0 ( 3 1)
2(0 + 1)2
1)2 1
2
=
[(0 + 1)2]
= −3 − 3
1 2
9
= −2
326 23
2018/2019 SM015/2
MATRICULATION PROGRAMME EXAMINATION
10. Given ( ) = 32+ 9, where > 0. Find the coordinates of the stationary point and CHOW CHOON WOOI
state it’s nature.
SOLUTION
3 = 2 + 9
( ) = 2 + 9
= 3
′ = 3 ′ = 2
′( ) = ′ − ′
2
( 2 + 9)(3) − (3 )(2 )
= ( 2 + 9)2
3 2 + 27 − 6 2
= ( 2 + 9)2
−3 2 + 27
= ( 2 + 9)2
= −3 2 + 27 = ( 2 + 9)2
′ = −9 ′ = 2( 2 + 9) ( 2 + 9)
= 2( 2 + 9)(2 )
= 4 ( 2 + 9)
′ − ′
"( ) = 2
24
327
2018/2019 SM015/2
MATRICULATION PROGRAMME EXAMINATION
( 2 + 9)2(−9 ) − (−3 2 + 27)4 ( 2 + 9) CHOW CHOON WOOI
= ( 2 + 9)4
−9 ( 2 + 9)2 − 4 (−3 2 + 27)( 2 + 9)
= ( 2 + 9)4
′( ) = 0
−3 2 + 27
( 2 + 9)2 = 0
−3 2 + 27 = 0
3 2 = 27
2 = 9
= ±3
> 0 , = 3
=
3
( ) = 2 + 9
9
=9+9
1
=2
1
(3, 2 )
328 25
2018/2019 SM015/2
MATRICULATION PROGRAMME EXAMINATION
"( ) = −9 ( 2 + 9)2 − 4 (−3 2 + 27)( 2 + 9)
( 2 + 9)4 CHOW CHOON WOOI
−27(9 + 9)2 − 12(−27 + 27)(9 + 9)
= (9 + 9)4
−27(9 + 9)2 − 0
= (9 + 9)4
< 0 ( )
1
∴ (3, 2 )
26
329
2019/2020
330
CHOW CHOON WOOI
1 SESSION 2019/2020 SM015/1
PSPM 1
SM015/1 CHOW CHOON WOOI
PSPM 1
2019/2020
14 OCTOBER 2019
KOLEJ MATRIKULASI KEDAH
1
331
2 SESSION 2019/2020 SM015/1
PSPM 1 [2 marks]
[7 marks]
Questions [5 marks] CHOW CHOON WOOI
[5 marks]
SECTION A [45 marks] [3 marks]
[4 marks]
This section consists of 5 questions. Answer all questions. [2 marks]
1. Given the complex numbers 1 = − and 2 = 2 + √3. [2 marks]
[5 marks]
a. Express 12 and ̅ 2 in the form + , where , ∈ ℛ.
[2 marks]
b. From part 1(a), find = 12+ ̅ ̅2̅. Hence, find | | and argument . [4 marks]
[4 marks]
1
2. Solve the following:
a. 3(52 ) + 2512 +1 = 200
b. + 4 ≤ 2 + < 12
3. The sum of the first terms of a sequence is given by = 2 + 3−4 .
a. Find the value of constant c such that the -th term is 3−4 .
b. Show that the3 sequence is a geometric series.
c. Find the sum of the infinite series, ∞.
2 30
4. Given matrix = [−5 0 4].
0 21
a. Find the determinant of matrix by expanding the first row.
b. Calculate the adjoin of matrix . Hence, find −1.
1
c. Solve the equation = , where = [2], by using the answer obtained
2
in part 4(b).
5. Given ( ) = 1+11+1 1 .
a. Simplify ( ) and evaluate (1).
2
b. The domain of ( ) is a set of real number except three numbers.
Determine the numbers.
2
332
3 SESSION 2019/2020 SM015/1
PSPM 1 [6 marks]
[7 marks]
SECTION B [25 marks] [2 marks] CHOW CHOON WOOI
[7 marks]
1. Solve the following: [3 marks]
a. 22 = 2 4( + 4)
b. 2 | −3 | ≥ 1
2 −1
2. Given a function ( ) = ln (2 + 1)
a. State the domain and range of ( ).
b. Find the inverse function of ( ) and state its domain and range. Hence, find
the value of for which −1( ) = 0.
c. Sketch the graph of ( ) and −1( ) on the same coordinate axes.
END OF QUESTION PAPER
3
333
4 SESSION 2019/2020 SM015/1
PSPM 1
Question A1 CHOW CHOON WOOI
1. Given the complex numbers 1 = − and 2 = 2 + √3.
a. Express 12 and ̅ 2 in the form + , where , ∈ ℛ.
b. From part 1(a), find = 12+̅ ̅2̅. Hence, find | | and argument .
1
SOLUTION
a) = −
= + √
= (− )
= − +
̅ ̅ ̅ = − √
b) = +̅ ̅ ̅
= (− )+( − √ )
(− )
= − √
(− )
= ( − √ )( )
(− )( )
= − √
−
= +√
= √ +
| | = √√ +
4
334
5 SESSION 2019/2020 SM015/1
PSPM 1
= √ + CHOW CHOON WOOI
=
= − ( )
√
=
5
335
6 SESSION 2019/2020 SM015/1
PSPM 1
Question A2 CHOW CHOON WOOI
2. Solve the following:
a. 3(52 ) + 2521 +1 = 200
b. + 4 ≤ 2 + < 12
SOLUTION
a) 3(52 ) + 2521 +1 = 200
( ) + ( ) + =
( ) + ( ) + =
( ) + ( ) ( ) =
( ) + ( ) =
=
+ − =
( + )( − ) =
= − =
= − (ignored)
=
=
b) + 4 ≤ 2 + < 12 And + <
+ ≥ + + − <
+ − − ≥ ( + )( − ) <
− ≥ = − =
( + )( − ) ≥
= − = 6
336
7 SESSION 2019/2020 SM015/1
PSPM 1
(−∞, − ) (− , ) ( , ∞) (−∞, − ) (− , ) ( , ∞)
+
+ - + + + - + +
+
− - - ○+ − - - +
○+ - + ○- CHOW CHOON WOOI
(−∞, − ] ∪ [ , ∞) And (− , )
− −
(− , − ] ∪ [ , )
7
337
8 SESSION 2019/2020 SM015/1
PSPM 1
Question A3 CHOW CHOON WOOI
3. The sum of the first terms of a sequence is given by = 2 + 3−4 .
a. Find the value of constant c such that the -th term is 3−4 .
b. Show that the sequence is a geometric series.
c. Find the sum of the infinite series, ∞.
SOLUTION
a) = 2 + 3−4
= − −
− = ( + − ) − ( + − ( − ))
− = + − − − − +
− = − − −
− = − − ( − )
− = − ( − )
− = − ( − )
= −
b) = − ( − )
= − ( − )
− [ − ( − )]
−
= ( − )
[ − + ]
−
= − + −
−
= −
−
8
338
9 SESSION 2019/2020 SM015/1
PSPM 1
=
−
,
−
c) = − ( − ) CHOW CHOON WOOI
= = − ( − ( )) = −
=
∞ =
−
(− )
=
−( )
(− )
=
( )
= −
9
339
10 SESSION 2019/2020 SM015/1
PSPM 1
Question A4 CHOW CHOON WOOI
2 30
4. Given matrix = [−5 0 4].
0 21
a. Find the determinant of matrix by expanding the first row.
b. Calculate the adjoin of matrix . Hence, find −1.
1
c. Solve the equation = , where = [2], by using the answer obtained in
2
part 4(b).
SOLUTION
2 30
a) = [−5 0 4]
0 21
| | = ( ) | | − ( ) |− | + ( ) |− |
= ( )( − ) − ( )(− − ) + ( )|− − |
= − + +
= −
b) Adjoin of matrix
+ | | − |− | + |− |
, = − | | + | | − | |
(+ | | − |− | + |− |)
+( − ) −(− − ) +(− − )
= ( −( − ) +( − ) −( − ) )
+( − ) −( − ) +( + )
10
340
11 SESSION 2019/2020 SM015/1
PSPM 1
− − CHOW CHOON WOOI
= (− − )
−
=
− −
= ( − )
− −
− =
| |
− −
−
= ( − )
− −
−
= (− − )
−
c) =
= −
[− ] [ ] = [ ]
−
[ ] = (− − ) [ ]
−
+ −
= (− − + )
+ −
11
341
12 SESSION 2019/2020 SM015/1
PSPM 1
− CHOW CHOON WOOI
= ( )
−
∴ = − , = , = −
12
342
13 SESSION 2019/2020 SM015/1
PSPM 1
Question A5 CHOW CHOON WOOI
5. Given ( ) = 1+11+11 .
a. Simplify ( ) and evaluate (1).
2
b. The domain of ( ) is a set of real number except three numbers. Determine
the numbers.
SOLUTION
a) ( ) = 1
1+1+1 1
=
+ +
=
+ +
=
+ +
+
= +
+
( ) = ( )+
( )+
= ( )
=
b) ( ) = 1
1+1+1 1
13
343
14 SESSION 2019/2020 SM015/1
PSPM 1
1 ≠ 0 ➔ ≠ 0
1 + 1 ≠ 0 ➔ ≠ −1
1 + 1 ≠ 0 ➔ 2 +1 ≠ 0 ➔ ≠ − 1 CHOW CHOON WOOI
1+1
2
∴ ≠ 0; ≠ −1; ≠ − 1
2
14
344
15 SESSION 2019/2020 SM015/1
PSPM 1
Question B1 CHOW CHOON WOOI
1. Solve the following:
a. 22 = 2 4( + 4)
b. 2 | −3 | ≥ 1
2 −1
SOLUTION
a) 22 = 2 4( + 4)
= ( + )
= ( + )
= ( + )
= ( + )
( )
= ( + )
= +
=
b) 2 | −3 | ≥ 1
2 −1
| − | ≥
−
− ≥ OR − ≤ −
−
−
− − ≥ − + ≤
− −
( − )−( − ) ≥ ( − )+( − ) ≤
( − ) ( − )
− − + ≥ − + − ≤
− −
15
345
16 SESSION 2019/2020 SM015/1
PSPM 1 − ≤
− ≥ −
− = ; =
− <
<
CHOW CHOON WOOI
(−∞, ) ( , ) ( , ∞)
< - +
- +
− +
+
-
−
+ ○-
OR ( , ]
(−∞, )
(−∞, ) ∪ ( , ]
16
346
17 SESSION 2019/2020 SM015/1
PSPM 1
Question B2 CHOW CHOON WOOI
2. Given a function ( ) = ln (2 + 1)
a. State the domain and range of ( ).
b. Find the inverse function of ( ) and state its domain and range. Hence, find
the value of for which −1( ) = 0.
c. Sketch the graph of ( ) and −1( ) on the same coordinate axes.
SOLUTION
a) ( ) = ln (2 + 1)
:
: + >
> −
: (− , ∞)
:
= (−∞, ∞)
b) ( ) = ln (2 + 1)
[ − ( )] =
[ − ( ) + ] =
− ( ) + =
− ( ) = −
− ( ) = −
:
− = = (−∞, ∞)
:
− = = (− , ∞)
17
347
18 SESSION 2019/2020 SM015/1
PSPM 1 CHOW CHOON WOOI
− ( ) =
− =
− =
=
=
=
c)
18
348
1 SESSION 2019/2020 SM015/2
PSPM 1
SM015/2 CHOW CHOON WOOI
PSPM 1
2019/2020
14 OCTOBER 2019
KOLEJ MATRIKULASI KEDAH
1
349
2 SESSION 2019/2020 SM015/2
PSPM 1 [8 marks]
[5 marks]
Questions [5 marks]
SECTION A [45 marks] [7 mark] CHOW CHOON WOOI
This section consists of 5 questions. Answer all questions. [3 mark]
[5 mark]
1. Polynomial ( ) = 12 3 − 2 − + 8 is divisible by 3 2 − 7 + 4. Find the [7 marks]
values of and . Hence, factorise ( ) completely.
2. a) Show that − cot can be simplified as tan .
2
b) Hence, find the values of ° and °. Give your answer in the form
+ √ , where a, b and c are integers.
3. a) A function ( ) is defined as
− <
− , =
( ) = − ,
− >
{ − ,
Determine whether ( ) is continuous at = .
b) Find −+ − .
→∞
4. a) Given = 2 −3 , find 2 2 . Give your answer in the simplest form.
b) Given = ( + ).
Show that ( + ) + + = ( + ).
2
350