PSPM I QS 015/1
Session 2015/2016
7. A curve = 2 + bx + c where a, b and c are constants, passes through the points (2,11), CHOW CHOON WOOI
(-1, -16) and (3,28).
(a) By using the above information, construct a system containing three linear equations.
(b) Express the above system as a matrix equation AX=B.
(c) Find the inverse of matrix A by using the adjoint matrix method. Hence, obtain the
values of a, b and c.
SOLUTION
(a)
= 2 + bx + c
(2,11)➔ = 2, = 11
11 = 22 + b(2) + c
4 + 2b + c = 11 ………………. (1)
(−1, −16)➔ = −1, = −16
−16 = (−1)2 + b(−1) + c
− b + c = −16 ………………. (2)
(3,28)➔ = 3, = 28
28 = (3)2 + b(3) + c
9 + 3b + c = 28 ………………. (2)
Page 14
151
PSPM I QS 015/1
Session 2015/2016
(b)
………………. (1)
4 + 2b + c = 11 ………………. (2) CHOW CHOON WOOI
− b + c = −16 ………………. (2)
9 + 3b + c = 28
4 2 1 11
(1 −1 1) ( ) = (−16)
9 3 1 28
(c) 1
| |
−1 = ( )
421 ( ) = ( )
= (1 −1 1)
931
| | = (4) |−31 11| − (2) |91 11| + (1) |91 −31|
= 4[−1 − 3] − 2[1 − 9] + 1[3 + 9]
= −16 + 16 + 12
= 12
+ |−31 11| − |19 11| + |19 −31|
= − |32 11| + |94 11| − |49 23|
[+ |−21 11| − |41 11| + |41 −21|]
−1 − 3 −(1 − 9) 3 + 9
= [−(2 − 3) 4 − 9 −(12 − 18)]
2 + 1 −(4 − 1) −4 − 2
Page 15
152
PSPM I QS 015/1
Session 2015/2016
−4 8 12
= [ 1 −5 6 ] Page 16
3 −3 −6
CHOW CHOON WOOI
( ) =
−4 8 12
= [ 1 −5 6 ]
3 −3 −6
−4 1 3
= [ 8 −5 −3]
12 6 −6
− = ( )
| |
−1 = 1 −4 1 3
12 [8 −5 −3]
6
12 −6
4 1 3
− 12
=8 12 12
12 5 3
12
− 12 − 12
[ 12 6 6
12 − 12]
1 1 1
−3 12 4
=2 1
3 5 −4
[1 − 12 1
− 2]
1
2
153
PSPM I QS 015/1
Session 2015/2016
4 2 1 11
(1 −1 1) ( ) = (−16)
9 3 1 28
= −1
1 1 1 CHOW CHOON WOOI
−3 12
2 4 11
[ ] = 5 1 [−16]
3 − 12 −4
1 28
1
[1 2 − 2]
2
=[ 7 ]
−11
∴ = 2, = 7, = −11
Page 17
154
PSPM I QS 015/1
Session 2015/2016
8. Given a function ( ) = √3 − 2 . CHOW CHOON WOOI
(a) Show that is a one to one function.
(b) Find the domain and range of .
(c) Determine the inverse function of and state its domain and range.
(d) Sketch the graphs of and −1 on the same axis.
SOLUTION
( ) = √3 − 2
(a)
( 1) = √3 − 2 1
( 2) = √3 − 2 2
( 1) = ( 2)
√3 − 2 1 = √3 − 2 2
3 − 2 1 = 3 − 2 2
1 = 2
∴
(b)
( ) = √3 − 2
Page 18
155
PSPM I QS 015/1
Session 2015/2016
:
: 3 − 2 ≥ 0 Alternative CHOW CHOON WOOI
3 ≥ 2 ( ) = √3 − 2
2 ≤ 3 [ −1( )] =
3 √3 − 2 −1( ) =
≤ 2
3 − 2 −1( ) = 2
3
= (−∞, 2] 2 −1( ) = 3 − 2
= [ , ∞)
(c)
( ) = √3 − 2
= √3 − 2
2 = 3 − 2
2 = 3 − 2
3 − 2
=
2
−1( ) = 3 − 2
2
−1 ( ) = 3 − 2
2
Page 19
156
PSPM I QS 015/1
Session 2015/2016
(d)
y
( )
3 y=x
2
3 x CHOW CHOON WOOI
2
−1 ( )
Page 20
157
PSPM I QS 015/1
Session 2015/2016
9. (a) The function is given as ( ) = +2 , x ≠ 4. If ( )(x) = x, find the value of a.
3 −4 3
(b) Let ( ) = |3 + 2| and ( ) = − + 2 be two functions. Evaluate ( )−1(3).
SOLUTION CHOW CHOON WOOI
+ 2 4
( ) = 3 − 4 , x ≠ 3
( )(x) = x
[ (x)] = x
+ 2
[3 − 4] = x
[ 3 + 24] + 2 = x
3 [ 3 − 24] − 4
+
−
+ 2 + 2
[3 − 4] + 2 = x [3 [3 − 4] − 4]
2 + 2 2(3 − 4) 3 2 + 6
[ 3 − 4 ] + [ 3 − 4 ] = [ 3 − 4 ] − 4
( 2 + 2 ) + 2(3 − 4) 3 2 + 6 4 (3 − 4)
[ 3 − 4 ] = [ 3 − 4 ] − [ 3 − 4 ]
2 + 2 + 6 − 8 3 2 + 6 − 12 2 + 16
[ 3 − 4 ] = [ ]
3 − 4
2 + 2 + 6 − 8 = 3 2 + 6 − 12 2 + 16
3 2 − 12 2 + 6 + 16 − 2 − 6 − 2 + 8 = 0
(3 − 12) 2 + (16− 2) + 8 − 2 = 0
2
3 − 12 = 0
= 4
Page 21
158
PSPM I QS 015/1 CHOW CHOON WOOI
Session 2015/2016
(b)
( ) = |3 + 2| Page 22
( ) = − + 2
(x) = [ ( )]
= [ |3 + 2|]
= − |3 +2| + 2
= |3 +2|−1 + 2
= |3 + 2|−1 + 2
1
= 3 + 2 + 2
1 + 2(3 + 2)
= 3 + 2
1 + 6 + 4
= 3 + 2
6 + 5
= 3 + 2
Let = 6 +5
3 +2
(3 + 2) = 6 + 5
3 + 2 = 6 + 5
3 − 6 = 5 − 2
(3 − 6) = 5 − 2
5 − 2
= 3 − 6
( )−1(y) = 5 − 2
3 − 6
( )−1(x) = 5 − 2
3 − 6
( )−1(3) = 5 − 2(3) = − 1
3(3) − 6 3
159
PSPM I QS 015/1
Session 2015/2016
10. (a) Solve the inequality | −1| > 2.
+3
(b) Show that 2 x 42 = 22 .
8
Hence, find the interval for x so that 2 x 42 − 13(2 ) + 36 ≥ 0.
8
SOLUTION CHOW CHOON WOOI
(a)
− 1
| | > 2
+ 3
− 1 Or − 1
+ 3 > 2 + 3 < −2
− 1 − 1
+ 3 − 2 > 0 + 3 + 2 < 0
− 1 2( + 3) − 1 2( + 3)
+ 3 − + 3 > 0 + 3 + + 3 < 0
− 1 − 2 − 6 >0 − 1 + 2( + 3) <0
+ 3 + 3
− − 7 − 1 + 2 + 6 <0
+ 3 > 0
+ 3
3 + 5
+ 3 < 0
Let − − 7=0 ➔ = −7 Let 3 + 5=0 ➔ = − 5
+ 3 = 0 ➔ = −3
3
+ 3 = 0 ➔ = −3
(−∞, −7) (−7, −3) (−3, ∞) (−∞, −3) 5 5
(−3, − ) (− , ∞)
33
− − 7 + - - 3 + 5 - -+
+ 3 - -+ + 3 - ++
- +- +-+
or
(−7, −3) 5
(−3, − 3)
-7 -3 5
−3
: (−7, −3) ∪ (−3, − 5)
3
Page 23
160
PSPM I QS 015/1
Session 2015/2016
(b)
Page 24
Show that 2 42 = 22
8
2 x 42 2 (22)2 CHOW CHOON WOOI
8 = (23)
2 24
= 23
25
= 23
= 22
2 x 42 − 13(2 ) + 36 ≥ 0
8
22 − 13(2 ) + 36 ≥ 0
(2 )2 − 13(2 ) + 36 ≥ 0
= 2
(2 )2 − 13(2 ) + 36 ≥ 0
2 − 13 + 36 ≥ 0
( − 9)( − 4) ≥ 0
Let ( − 9) = 0 ( − 4) = 0
u=9 u=4
161
PSPM I QS 015/1
Session 2015/2016
( − 9)
( − 4) (−∞, 4) (4, 9) (9, ∞)
( − 9)( − 4) −
− −+
+
++
−+ CHOW CHOON WOOI
≤ 4 or ≥ 9
2 ≤ 4 or 2 ≥ 9
ln 2 ≤ ln 4 or ln 2 ≥ ln 9
ln 2 ≤ ln 4 or ln 2 ≥ ln 9
≤ ln 4 or ≥ ln 9
ln 2 ln 2
≤ 2 or ≥ 3.170
Solution interval : (−∞, 2] ∪ [3.17, ∞)
Page 25
162
QS 015/2 CHOW CHOON WOOI
Matriculation Programme
Examination
Semester I
Session 2015/2016
163
PSPM I QS 015/2 Session 2015/2016
1. Express 5 2 +4 +4 in the form of partial fractions.
( 2−4)( +2)
2. Evaluate the following(if exist):
a) lim 2+4 −12 CHOW CHOON WOOI
→2 | −2|
b) lim 1−√
→1 1−
3. Find the derivative of the following functions:
a) ( ) = √4 2 + 1
b) ( ) = 2 ln(3 + 4)
4. Given 2 − cot = 3, show that 2 − cot − 2 = 0. Hence, solve the equation
2 − = 3 for 0 ≤ ≤ .
5. A polynomial ( ) = 2 4 + 3 + 2 − 17 + where , are constants, has
factors ( + 2) and ( − 1). When ( ) is divided by ( + 1), the remainder is 8. Find the
values of , . Hence, factorize ( ) completely and state its zeroes.
6. (a) Evaluate lim √2 2+3 .
→∞ 5 +1
5 − , −2 < ≤ −1
(b) Given ( ) = { 2 + + , −1 < ≤ 2
2−4 , > 2
−2
(i) Find the values of and if ( ) is continuous for all real values of .
(ii) Sketch the graph of ( ) using the values p and q obtained in part (i).
Page 2
164
PSPM I QS 015/2 Session 2015/2016
7. A curve is given by the parametric equations = − 1, = + 1.
a) Find and 2 in terns of .
2
b) Obtain the coordinates of the stationary points of the curve and determine the
nature of the points. CHOW CHOON WOOI
8. (a) If 2 − 2 √(1 + 2) + 2 = 0, show that = .
√(1+ 2
)
(b) Water is running at a steady rate of 36 3 −1 into a right inverted circular cone
with a semi-vertical angle of 45°.
(i) Find the rate of increasing in water depth when the water level is 3 cm.
(ii) Find the time taken when the depth of the water is 18cm.
9. (a) Determine the values of and , where > 0 and 0° < < 90° so that 3 sin −
4 cos = ( − ).
(b) Hence, solve the equation 3 sin − 4 cos = 2 for 0° ≤ ≤ 360°.
(c) From the answer obtained in part (b), find the value of for 0° ≤ ≤ 360° so that
( ) = 1 is minimum. Hence, find the minimum value of .
3 −4 +15
10. (a) Find the value of if the slope of the curve 3 + 2 − 2 2 = 0 at the point (-1,1)
is -3.
(b) Given = sin .
1+cos
(i) Find and 2 in terms of .
2
(ii) Hence, show that 3 − 2 − ( 2 = 0.
3 2
)
Page 3
165
PSPM I QS 015/2 Session 2015/2016
1. Express 5 2 +4 +4 in the form of partial fractions.
( 2−4)( +2)
SOLUTION
5 2 + 4 + 4 5 2 + 4 + 4
( 2 − 4)( + 2) = ( − 2)( + 2)( + 2)
5 2 + 4 + 4 CHOW CHOON WOOI
= ( − 2)( + 2)2
= ( − 2) + ( + 2) + ( + 2)2
( + 2)2 + ( + 2)( − 2) + ( − 2)
= ( − 2)( + 2)2
5 2 + 4 + 4 ( + 2)2 + ( + 2)( − 2) + ( − 2)
( − 2)( + 2)2 =
( − 2)( + 2)2
5 2 + 4 + 4 = ( + 2)2 + ( + 2)( − 2) + ( − 2)
ℎ = 2:
5(2)2 + 4(2) + 4 = (2 + 2)2
32 = 16
= 2
ℎ = −2:
5(−2)2 + 4(−2) + 4 = [(−2) − 2]
16 = −4
= −4
ℎ = 0, = 2, = −4:
5(0)2 + 4(0) + 4 = 2[(0) + 2]2 + (0 + 2)(0 − 2) + (−4)(0 − 2)
4 = 2(4) − 4 + 8
Page 4
166
PSPM I QS 015/2 Session 2015/2016
4 = 12
= 3
5 2 + 4 + 4 2 3 4 CHOW CHOON WOOI
( 2 − 4)( + 2) = ( − 2) + ( + 2) − ( + 2)2
Page 5
167
PSPM I QS 015/2 Session 2015/2016
2. Evaluate the following(if exist):
a) lim 2+4 −12
→2 | −2|
b) lim 1−√
→1 1−
SOLUTION CHOW CHOON WOOI
(a)
lim 2 + 4 − 12 = lim ( + 6)( − 2)
→2 | − 2| →2 | − 2|
| − 2| = {−(( −−22)), , ≥ 2
< −2
( + 6)( − 2) , ≥ 2
, < −2
( + 6)( − 2) = − 2
| − 2| + 6)( −
( −( − 2) 2)
{
= {−( ++66, ), ≥ 2
< −2
lim ( + 6)( − 2) = lim −( + 6)
→2− | − 2| →2−
= −(2 + 6)
= −8
lim ( + 6)( − 2) = lim ( + 6)
→2+ | − 2| →2+
= (2 + 6)
=8
( + 6)( − 2)
l→im2− | − 2|
≠ lim ( + 6)( − 2) , ℎ lim 2 + 4 − 12 .
→2+ | − 2| →2 | − 2|
Page 6
168
PSPM I QS 015/2 Session 2015/2016
2 + 2 = ( + )( − )
(b)
lim 1 − √ = lim 1 − √
→1 1 − →1 12 − (√ )2
1 − √ CHOW CHOON WOOI
= lim
→1 (1 + √ )(1 − √ )
1
= lim
→1 (1 + √ )
1
=
(1 + √1)
1
=2
Page 7
169
PSPM I QS 015/2 Session 2015/2016
3. Find the derivative of the following functions:
a) ( ) = √4 2 + 1
b) ( ) = 2 ln(3 + 4)
SOLUTION CHOW CHOON WOOI
(a)
( ) = √4 2 + 1
1
( ) = (4 2 + 1)2
′( ) = − 2 (4 2 1 (4 2 + 1
+ 1)2 1)2
= − 2 (4 2 1 1 (4 2 + 1)−21 (4 2 + 1)
(2)
+ 1)2
= − 2 (4 2 1 1 (4 2 + 1)−21(8 )
(2)
+ 1)2
= − 1 (8 )(4 2 + 1)−12 2 (4 2 + 1
(2)
1)2
=− (4 ) 1
1 2 (4 2 + 1)2
(4 2 + 1)2
4 2√(4 2 + 1)
=−
√(4 2 + 1)
Page 8
170
PSPM I QS 015/2 Session 2015/2016
(b)
( ) = 2 ln(3 + 4)
= 2 = ln(3 + 4)
′ = 2 (2 ) ′ = 1 (3 + 4) CHOW CHOON WOOI
3 +4
= 2 2 =3
3 +4
′( ) = ( 2 ) 3 4) + [ln(3 + 4)](2 2 )
(3 +
= 3 2 + 2 2 ln(3 + 4)
3 + 4
= 2 3 4 + 2 ln(3 + 4)]
[3 +
Page 9
171
PSPM I QS 015/2 Session 2015/2016
4. Given 2 − cot = 3, show that 2 − cot − 2 = 0. Hence, solve the equation
2 − = 3 for 0 ≤ ≤ .
SOLUTION CHOW CHOON WOOI
2 − cot = 3
(1 + 2 ) − cot = 3
2 − cot + 1 = 3
2 − cot + 1 − 3 = 0
2 − cot − 2 = 0
2 − = 3 , 0 ≤ ≤
2 − cot − 2 = 0
Let =
2 − − 2 = 0
( − 2)( + 1) = 0
= 2 = −1
= 2 or = −1
1 =2 or 1 = −1
tan tan
tan = 1 or tan = −1
2
Page 10
172
PSPM I QS 015/2 Session 2015/2016 CHOW CHOON WOOI
0.464
For tan = 1
2 4
0.464
= 0.464
For tan = −1
4
3
= − 4 = 4
∴ = . ,
Page 11
173
PSPM I QS 015/2 Session 2015/2016
5. A polynomial ( ) = 2 4 + 3 + 2 − 17 + where , are constants, has
factors ( + 2) and ( − 1). When ( ) is divided by ( + 1), the remainder is 8. Find the
values of , . Hence, factorize ( ) completely and state its zeroes.
SOLUTION CHOW CHOON WOOI
(−2) = 0
(1) = 0
(−1) = 8
For (− ) =
( ) = 2 4 + 3 + 2 − 17 +
(−2) = 2(−2)4 + (−2)3 + (−2)2 − 17(−2) +
0 = 32 − 8 + 4 + 34 +
8 − 4 − = 66 ………………………………….. (1)
For ( ) =
(1) = 2(1)4 + (1)3 + (1)2 − 17(1) +
0 = 2 + + − 17 +
+ + = 15 ………………………………….. (2)
For (− ) = Page 12
(−1) = 2(−1)4 + (−1)3 + (−1)2 − 17(−1) +
8 = 2 − + + 17 +
174
PSPM I QS 015/2 Session 2015/2016 CHOW CHOON WOOI
………………………………….. (3)
− − = 11
(2) + (3) ………………………………….. (4)
2 = 26
= 13
Substitute (4) into (1) ………………………………….. (5)
8(13) − 4 − = 66
4 + = 38
Substitute (4) into (2) ………………………………….. (6)
13 + + = 15
+ = 2
(5) – (6) ………………………………….. (7)
3 = 36
= 12
Substitute (7) into (6) Page 13
12 + = 2
= −10
∴ = 13, = 12, = −10
175
PSPM I QS 015/2 Session 2015/2016
( ) = 2 4 + 13 3 + 12 2 − 17 − 10 Factor Theorem
(−2) = 0 ➔ ( + 2) ( ) ( ) = 0 ℎ
(1) = 0 ➔ ( − 1) ( ) ( − ) ( )
( ) = ( + 2)( − 1) ( )
CHOW CHOON WOOI
= ( 2 + − 2) ( )
2 x2 +11x + 5
x2 + x − 2 2x4 +13x3 +12x2 −17x −10
2x4 + 2x3 − 4x2
11x3 +16x2 −17x −10
11x3 +11x2 − 22x
5x2 + 5x −10
5x2 + 5x −10
0
( ) = ( + 2)( − 1)(2 2 + 11 + 5)
= ( + 2)( − 1)(2 + 1)( + 5)
When ( ) = 0
( + 2)( − 1)(2 + 1)( + 5) = 0
1
= −2, = 1, = − 2 , = −5
Page 14
176
PSPM I QS 015/2 Session 2015/2016
6. (a) Evaluate lim √2 2+3 . CHOW CHOON WOOI
→−∞ 5 +1
5 − , −2 < ≤ −1
(b) Given ( ) = { 2 + + , −1 < ≤ 2
2−4 , > 2
−2
(i) Find the values of and if ( ) is continuous for all real values of .
(ii) Sketch the graph of ( ) using the values p and q obtained in part (i).
SOLUTION
(a)
√2 2 + 3 √2 22 + 3
5 + 1 2
lim = lim
5 1
→−∞ →−∞ +
√2 + 3
= lim
1
→−∞ 5 +
= −√2 + 0
5+0
√2
=− 5
( )
5 − , −2 < ≤ −1
( ) = 2 + + , −1 < ≤ 2
2 − 4 , > 2
{ − 2
(i) ( ) is continuous at x = -1.
lim ( ) = lim ( )
→−1− →−1+
Page 15
177
PSPM I QS 015/2 Session 2015/2016
lim 5 − = lim 2 + +
→−1− →−1+
5 − (−1) = (−1)2 + (−1) +
5 + = 1 − +
2 − = −4 …………………….. (1) CHOW CHOON WOOI
( ) is continuous at x = 2.
lim ( ) = lim ( )
→2− →2+
lim 2 + + = 2 − 4
lim
→2− →2+ − 2
22 + 2 + = lim ( + 2)( − 2)
→2+ − 2
4 + 2 + = lim ( + 2)
→2+
4 + 2 + = 2 + 2
2 + = 0 …………………….. (2)
(2) - (1)
2 = 4
= 2
= −1
Page 16
178
PSPM I QS 015/2 Session 2015/2016
5 + , −2 < ≤ −1 Sketch = − +
1. a = 1, b = -1, c = 2
( ) = { 2− + 2 , −1 < ≤ 2 2. a > 0 (open upwards)
2 − 4 , > 2 3. Minimum point
− 2 − 1
= 2 = 2
5 + , −2 < ≤ −1 CHOW CHOON WOOI
2 − 4 1 − 8 7
= {( +2 − + 2 , −1 < ≤ 2 = −4 = −4 = 4
2)( − 2) > 2 4. Intercept
, When = 0, = 2
− 2
5 + , −2 < ≤ −1
= { 2 − + 2 , −1 < ≤ 2
+ 2 , > 2
(ii) Sketch the graph of ( )
( )
4
-2 -1 2 x
Page 17
179
PSPM I QS 015/2 Session 2015/2016
7. A curve is given by the parametric equations = − 1, = + 1.
a) Find and 2 in terns of .
2
b) Obtain the coordinates of the stationary points of the curve and determine the nature
of the points. CHOW CHOON WOOI
SOLUTION
(a)
= − 1 = + 1
= − −1 = + −1
= 1 + −2 = 1 − −2
= 1 + 1 = 1 − 1
2 2
= 2+1 = 2−1
2 2
= .
2 − 1 2
= 2 . 2 + 1
2 − 1
= 2 + 1
2
2 = ( ) .
2 − 1
( ) = ( 2 )
+ 1
= 2 − 1 = 2 + 1
′ = 2 ’ = 2
Page 18
180
PSPM I QS 015/2 Session 2015/2016
′ − ′ CHOW CHOON WOOI
( ) = 2
( 2 + 1)(2 ) − ( 2 − 1)(2 )
= ( 2 + 1)2
(2 3 + 2 ) − (2 3 − 2 )
= ( 2 + 1)2
2 3 + 2 − 2 3 + 2
= ( 2 + 1)2
4
= ( 2 + 1)2
2
2 = ( ) .
4 2
= ( 2 + 1)2 . 2 + 1
4 3
= ( 2 + 1)3
(b)
To obtain the coordinates of the stationary points,
Let = 0
2 − 1
2 + 1 = 0
2 − 1 = 0
2 = 1
= ±1
Page 19
181
PSPM I QS 015/2 Session 2015/2016
ℎ = 1 = + 1 CHOW CHOON WOOI
= − 1
= 1 + 1
= 1 − 1
1
1
= 2
= 0
ℎ = −1 = + 1
= − 1
= −1 + 1
= −1 − 1
−1
−1
= −2
= 0
ℎ (0, −2) (0, 2)
ℎ = 1, ℎ (0,2)
2 4 3
2 = ( 2 + 1)3
4(1)3
= ((1)2 + 1)3
> 0 (Min)
ℎ = −1, ℎ (0, −2)
2 4 3
2 = ( 2 + 1)3
4(−1)3
= ((−1)2 + 1)3
< 0 (Max)
∴ (0, −2) , (0,2)
Page 20
182
PSPM I QS 015/2 Session 2015/2016
8. (a) If 2 − 2 √(1 + 2) + 2 = 0, show that = .
√(1+ 2
)
(b) Water is running at a steady rate of 36 3 −1 into a right inverted circular cone
with a semi-vertical angle of 45°.
(i) Find the rate of increasing in water depth when the water level is 3 cm. CHOW CHOON WOOI
(ii) Find the time taken when the depth of the water is 18cm.
SOLUTION
(a) 2 − 2 √(1 + 2) + 2 = 0
1
2 − 2 (1 + 2)2 + 2 = 0
2 − [(2 ) 1 (1 + 2)−21(2 ) + (1 + 1 (2 + 2 = 0
(2) )]
2 )2
2 − 2 + 2√1 + 2 + 2 = 0
[ ]
√1 + 2
2 − 2 − 2√1 + 2 + 2 = 0
√1 + 2
2 − 2√1 + 2 = 2 − 2
√1 + 2
(2 − 2√1 + 2) = 2 − 2 √1 + 2
√1 + 2
2 − 2 √1 + 2
= (2 − 2√1 + 2)√1 + 2
2 ( − √1 + 2)
= 2( − √1 + 2)√1 + 2
=
√1 + 2
Page 21
183
PSPM I QS 015/2 Session 2015/2016
( ) = 36 3 −1 r
h tan 45° = ℎ
45°
(i) Find ℎ when h = 3 cm 1=ℎ
ℎ =
ℎ ℎ CHOW CHOON WOOI
= .
= 1 2ℎ
3
= ℎ
= 1 ℎ2ℎ
3
= 1 ℎ3
3
= ℎ2
ℎ
ℎ ℎ
= .
1
= ( ℎ2) . (36 )
36
= ℎ2
ℎ ℎ = 3
ℎ 36
= 32
= 4 −1
Page 22
184
PSPM I QS 015/2 Session 2015/2016
(ii) ℎ ℎ = 18 .
= 1 ℎ3
3
= 1 (18)3
3
CHOW CHOON WOOI
= 1944
= 36
1944
= 36
= 54
Page 23
185
PSPM I QS 015/2 Session 2015/2016
9. (a) Determine the values of and , where > 0 and 0° < < 90° so that
3 sin − 4 cos = ( − ).
(b) Hence, solve the equation 3 sin − 4 cos = 2 for 0° ≤ ≤ 360°.
(c) From the answer obtained in part (b), find the value of for 0° ≤ ≤ 360° so that CHOW CHOON WOOI
( ) = 1 is minimum. Hence, find the minimum value of .
3 −4 +15
SOLUTION
(a)
3 sin − 4 cos = ( − ).
3 sin − 4 cos = ( cos − cos sin )
3 sin − 4 cos = cos − Rcos sin
sin : cos = 3 ………………………….. (1)
cos : sin = 4 ………………………….. (2)
(1)2 + (2)2 cos2 + sin2 = 1
2 cos2 + 2 sin2 = 32 + 42
2(cos2 + sin2 ) = 25
2 = 25
= 5
(2) ÷ (1)
sin 3
cos = 4
sin 3
cos = 4
Page 24
186
PSPM I QS 015/2 Session 2015/2016
3
tan = 4
= 53.1°
∴ 3 sin − 4 cos = 5 ( − 53.1°)
(b) CHOW CHOON WOOI
3 sin − 4 cos = 2 0° ≤ ≤ 360°
5 ( − 53.1°) = 2
2
( − 53.1°) = 5
( − 53.1°) = 0.4
0° ≤ ≤ 360°
0° − 53.1° ≤ − 53.1° ≤ 360° − 53.1°
−53.1° ≤ − 53.1° ≤ 306.9°
( − 53.1°) = 0.4
23.6° 23.6°
− 53.1° = 23.6°, 180° − 23.6° Page 25
− 53.1° = 23.6°, 156.4°
= 23.6° + 53.1°, 156.4° + 53.1°
= 76.7°, 209.5°
187
PSPM I QS 015/2 Session 2015/2016
(c)
( ) = 3 − 1 + 15
4
( ) = 5 ( − 1 + 15 CHOW CHOON WOOI
53.1°)
Since −1 ≤ ( − 53.1°) ≤ 1
For ( ) minimum
( − 53.1°) = 1
− 53.1° = 90°
= 143.1°
Therfore, the minimum value of ( )
( ) = 5 1 53.1°) + 15
(143.1° −
1
= 5 (90°) + 15
1
= 5 (1) + 15
1
= 20
Page 26
188
PSPM I QS 015/2 Session 2015/2016
10. (a) Find the value of if the slope of the curve 3 + 2 − 2 2 = 0 at the point (-1,1)
is -3.
(b) Given = sin .
1+cos
(i) Find and 2 in terms of . CHOW CHOON WOOI
2
(ii) Hence, show that 3 − 2 − ( 2 = 0.
3 2
)
SOLUTION
(a)
3 + 2 − 2 2 = 0
3 2 + [ 2 + 2 ] − 4 = 0
3 2 + 2 + 2 − 4 = 0
2 − 4 = −2 − 3 2
[ 2 − 4 ] = −2 − 3 2
−2 − 3 2
= 2 − 4
At the point (-1,1) ➔ x = -1, y =1 = −3
−2 − 3 2
= 2 − 4
−2 (−1)(1) − 3(−1)2
−3 = (−1)2 − 4(1)
Page 27
189
PSPM I QS 015/2 Session 2015/2016
Page 28
2 − 3 CHOW CHOON WOOI
−3 = − 4
−3( − 4) = 2 − 3
−3 + 12 = 2 − 3
12 + 3 = 2 + 3
5 = 15
= 3
(b)
(i) = sin = 1 + cos
1+cos
= sin
′ = cos ′ = − sin
(1 + cos )(cos ) − (sin )(− sin )
=
(1 + cos )2
cos + cos2 + sin2
= (1 + cos )2
cos + 1
= (1 + cos )2
1
= 1 + cos
= (1 + cos )−1
2 = −(1 + cos )−2 (1 + cos )
2
= −(1 + cos )−2(− sin )
sin
= (1 + cos )2
190
PSPM I QS 015/2 Session 2015/2016
(ii) show that 3 − 2 − ( )2 = 0
3 2
2 sin
2 = (1 + cos )2
= sin = (1 + cos )2
′ = cos ′ = 2(1 + cos ) (1 + cos ) CHOW CHOON WOOI
= 2(1 + cos )(− sin )
= −2 sin (1 + cos )
3 (1 + cos )2(cos ) − [−2 sin (1 + cos )](sin )
3 =
[(1 + cos )2]2
(1 + cos )2(cos ) + 2 sin2 (1 + cos )
= (1 + cos )4
(1 + cos )[cos (1 + cos ) + 2 sin2 ]
= (1 + cos )4
cos + cos2 + 2 sin2
= (1 + cos )3
3 2 2
3 − 2 − ( )
cos + cos2 + 2 sin2 sin 12
= ( (1 + cos )3 ) − ((1 + cos )2) − (1 + cos )
cos + cos2 + 2 sin2 sin 1
= (1 + cos )3 − (1 + cos )2 − (1 + cos )2
cos + cos2 + 2 sin2 (1 sin ) sin 1
(1 + cos )3 + cos cos
= − −
(1 + cos )2 (1 + )2
cos + cos2 + 2 sin2 sin2 1 + cos
= (1 + cos )3 − (1 + cos )3 − (1 + cos )3
cos + cos2 + 2 sin2 − sin2 − (1 + cos )
= (1 + cos )3
Page 29
191
PSPM I QS 015/2 Session 2015/2016
cos + cos2 + 2 sin2 − sin2 − 1 − cos CHOW CHOON WOOI
= (1 + cos )3
cos2 + sin2 − 1
= (1 + cos )3
1−1
= (1 + cos )3
=0
Page 30
192
PSPM I QS 015/2 Session 2015/2016
CHOW CHOON WOOI
Page 31
193
2016/2017
194
CHOW CHOON WOOI
QS 015/1 CHOW CHOON WOOI
Matriculation Programme
Examination
Semester I
Session 2016/2017
195
PSPM I QS 015/1 Session
2016/2017
1. Solve for and where ≠ , such that ( + ) = (3 + √−16 − 3).
3
SOLUTION
( + ) = (3 + √−16 − 3)
3
CHOW CHOON WOOI
+ = (3 + √−16 − 3)(3 )
+ = (3 + √16√−1 − 3)(3 )
+ = (3 + 4 − 3)(3 )
+ = 9 + 12 2 − 3 4
+ = 9 + 12(−1) − 3(1)
+ = 9 − 15
+ = −15 + 9
= − , =
Page 2
196
PSPM I QS 015/1 Session
2016/2017
2. Determine the values of x which satisfy the equation 32 −1 = 4(3 ) − 9.
SOLUTION
32 −1 = 4(3 ) − 9
32 3−1 = 4(3 ) − 9 CHOW CHOON WOOI
(3 )2 1 = 4(3 ) − 9
()
3
1 (3 )2 = 4(3 ) − 9
(3)
(3 )2 = 12(3 ) − 27
= 3
( )2 = 12( ) − 27
2 − 12 + 27 = 0
( − 3)( − 9) = 0
= 3 = 9
3 = 3 3 = 9
= 1 = 2
Page 3
197
PSPM I QS 015/1 Session
2016/2017
3. The seventh term of a geometric series is 16, the fifth term is 8 and the sum of
the first ten terms is positive. Find the first term and the common ratio. Hence,
show that 12 = 126(√2 + 1).
SOLUTION
Geometric series CHOW CHOON WOOI
➔ = −
7 = 6 = 16 …… (1)
5 = 4 = 8 …… (2)
(1) ÷ (2)
6 16
4 = 8
2 = 2
= ±√2
ℎ = ±√2
(±√2)4 = 8
4 = 8
= 2
Page 4
198
PSPM I QS 015/1 Session
2016/2017
➔ = ( − )
− Page 5
Given that > CHOW CHOON WOOI
( − )
= −
ℎ = 2; = √2
2 [(√2)10 − 1]
10 = √2 − 1
2[32 − 1]
=
√2 − 1
62
=
√2 − 1
= 149.68
ℎ = 2; = −√2
2 [(−√2)10 − 1]
10 = −√2 − 1
2[32 − 1]
=
−√2 − 1
62
=
−√2 − 1
= −25.68
ℎ > 0, ➔ = 2 = √2
2 [(√2)12 − 1]
12 = √2 − 1
199
PSPM I QS 015/1 Session
2016/2017
2[64 − 1] CHOW CHOON WOOI
=
√2 − 1
126
=
√2 − 1
126 √2 + 1
=
√2 − 1 √2 + 1
126(√2 + 1)
=
2 + √2 − √2 − 1
126(√2 + 1)
=1
= 126(√2 + 1)
Page 6
200