PSPM I QS015/1 Session 2017/2018
1. Given matrix = (−22 35) such that 2 + + = 0, are constants, where
and are identity matrix and zero matrix of 2 2 respectively. Determine the value of
.
SOLUTION
= (−22 53) CHOW CHOON WOOI
2 + + = 0
(−22 53) (−22 35) + (−22 35) + (10 10) = (00 00)
(−44 − 6 −66++1255) + (−22 53 ) + ( 0 0 ) = (00 00)
− 10
(−−124 1219) + (−22 53 ) + ( 0 0 ) = (00 00)
(−−2 1+42− 2+ 21 + 3 ) = (00 00)
19 + 5 +
21 + 3 = 0
= −7
−2 + 2 + = 0
−2 + 2(−7) + = 0
= 16
∴ = −7, = 16
Page 4
251
PSPM I QS015/1 Session 2017/2018
2. Solve the equation 32 +1 − (16)3 + 5 = 0.
SOLUTION
32 +1 − (16)3 + 5 = 0
32 31 − (16)3 + 5 = 0 CHOW CHOON WOOI
3. (3 )2 − (16)3 + 5 = 0
Let = 3
3 2 − 16 + 5 = 0
(3 − 1)( − 5) = 0
(3 − 1) = 0 ( − 5) = 0
= 1 = 5
3 = 5
3 ln 3 = ln 5
3 = 1
3
3 = 3−1
= −1 ln 3 = ln 5
= 1.465
∴ = −1 = 1.465
Page 5
252
PSPM I QS015/1 Session 2017/2018
3. The first and three more successive terms in a geometric progression are given as follows:
7, … , 189, , 1701, …
Obtain the common ratio r. Hence, find the smallest integer n such that the n-th term
exceeds 10,000.
SOLUTION CHOW CHOON WOOI
7, … , 189, , 1701, …
= 7
1701
189 =
2 = 321489
= 567
567
= 189
= 3
> 10000
−1 > 10000
(7)3 −1 > 10000
3 −1 > 1428.57
ln 3 −1 > ln 1428.57
( − 1) ln 3 > ln 1428.57
( − 1) > 6.61
> 6.61 + 1
> 7.61
= 8
Page 6
253
PSPM I QS015/1 Session 2017/2018
1
4. a) Expand (1 − )2 in ascending power of up to the term in 3 and state the interval
3
of for which the expansion is valid.
1
b) From part 4(a), express √9 − 3 in the form of (1 − )2 , where is an integer.
3
c) Hence, by substituting the suitable value of , approximate √8.70 correct to two
decimal places. CHOW CHOON WOOI
SOLUTION
a. (1 − 1 = 1 + (1) (− 1 + (12)(−21) (− )2 + (12)(−12)(−23) (− )3
)2 2 )
3 1! 3 2! 3 3! 3
1 2 3 3
= 1 − 6 − 8 ( 9 ) − 48 (27)
2 3 3
= 1 − 6 − 72 − 48 (27)
= 1 − 1 − 1 2 − 1 3
6 72 432
The interval of for which the expansion is valid:
|3| < 1
−1 < 3 < 1
−3 < < 3
1
b. √9 − 3 = (9 − 3 )2
1
1 3 2
= 92 (1 − 9 )
= 3 (1 − 1
3 )2
c. √8.70 = √9 − 3(0.01) Page 7
254
PSPM I QS015/1 Session 2017/2018
= 0.01
√9 − 3 = 3 (1 − )12
3
√9 − 3 = 3 [1 − 1 − 1 2 − 1 3] CHOW CHOON WOOI
6 72 432
√9 − 3(0.01) = 3 [1 − 1 (0.01) − 1 (0.01)2 − 1 (0.01)3]
6 72 432
√8.7 = 2.95
Page 8
255
PSPM I QS015/1 Session 2017/2018
5. Solve the equation 3 9 = ( 3 )2.
SOLUTION
3 9 = ( 3 )2
3 3 = ( 3 )2 CHOW CHOON WOOI
3 9
3 3 = ( 3 )2
3 32
3 3 = ( 3 )2
2 3 3
3 3 = ( 3 )2
2
3 3 = 2( 3 )2
= 3
3 = 2 2
2 2 − 3 = 0
(2 − 3) = 0
= 0 2 − 3 = 0
= 0
3 = 0 = 3
= 30
2
3 = 3
2
3
= 32
= 1 = 5.196
Page 9
256
PSPM I QS015/1 Session 2017/2018
6. Given a complex number = 2 + .
a. Express ̅ − 1 in the form + , where and are real numbers.
̅
b. Obtain | ̅ − 1|. Hence, determine the values of real numbers and if
̅
+ = | ̅ − 1| ( ̅ − 1)2.
̅ ̅
SOLUTION CHOW CHOON WOOI
(a) = 2 +
̅ − 1 = (2 − ) − 2 1
̅ −
1 (2 + )
= (2 − ) − (2 − ) (2 + )
(2 + )
= (2 − ) − 4 + 2 − 2 − 2
(2 + )
= (2 − ) − 5
21
= 2 − − 5 − 5
86
= 5 − 5
(b) | ̅ − 1| = |8 − 6 |
̅ 5 5
= √(85)2 + 62
(5)
= √64 + 36
25 25
= √100
25
= √4
=2
1 12
+ = | ̅ − ̅| ( ̅ − ̅)
Page 10
257
PSPM I QS015/1 Session 2017/2018
8 62
+ = 2 ( − )
55
82 8 6 62
+ = 2 [(5) − 2 (5) (5) + (5 ) ]
64 96 36
+ = 2 [25 − 25 − 25]
28 96 CHOW CHOON WOOI
+ = 2 [25 − 25 ]
56 192
+ = 25 − 25
= 56 = − 192
25 25
Page 11
258
PSPM I QS015/1 Session 2017/2018
7. Find the interval of for which the following inequalities are true.
a. 5 − 1 ≤ 0
+3
b. |3 −2| > 2
2 +3
SOLUTION
a) 5 − 1 ≤ 0 + 3 = 0 CHOW CHOON WOOI
= −3
+3
5 − ( + 3)
+ 3 ≤ 0
5 − − 3
+ 3 ≤ 0
2 −
+ 3 ≤ 0
2 − = 0
= 2
2 − (−∞, −3) (−3, 2) (2, ∞)
+ 3 + + -
2 − - + +
+ 3
- + -
{ : < −3 ∪ ≥ 2}
b) |3 −2| > 2 | | > ⟺ > < −
2 +3
3 − 2 3 − 2
2 + 3 > 2 2 + 3 < −2
3 − 2 3 − 2
2 + 3 − 2 > 0 2 + 3 + 2 < 0
(3 − 2) − 2(2 + 3) >0 (3 − 2) + 2(2 + 3) <0
2 + 3 2 + 3
3 − 2 − 4 − 6 >0 3 − 2 + 4 + 6 <0
2 + 3 2 + 3
− − 8 7 + 4
2 + 3 > 0 2 + 3 < 0
Page 12
259
PSPM I QS015/1 Session 2017/2018
− − 8 = 0 2 + 3 = 0 7 + 4 = 0 2 + 3 = 0
= −8 = − 3
= − 4 = − 3
2
7 2
33
(−∞, −8) (−8, − 2) (− 2 , ∞) 3 34 4
(−∞, − 2) (− 2 , − 7) (− 7 , ∞)
--
− − 8 + -+ 7 + 4 - -+
-
2 + 3 +- 2 + 3 - ++
− − 8 -
2 + 3 7 + 4 + -+ CHOW CHOON WOOI
2 + 3
3 or 34
(−8, − 2) (− 2 , − 7)
−8 34
−2 −7
3 34
(−8, − 2) ∪ (− 2 , − 7)
Page 13
260
PSPM I QS015/1 Session 2017/2018
8. Consider functions of ( ) = ( − 2)2 + 1, > 2 and ( ) = ln( + 1), > 0.
a. Find −1( ) and −1( ) , and state the domain and range for each of the
inverse function.
b. Obtain ( )( ). Hence, evaluate ( )(2).
SOLUTION CHOW CHOON WOOI
( ) = ( − 2)2 + 1, > 2
( ) = ln( + 1), > 0.
(a) Let = −1( )
( ) =
( − 2)2 + 1 =
( − 2)2 = − 1
− 2 = √ − 1
= √ − 1 + 2
−1( ) = √ − 1 + 2
Let = −1( )
( ) =
ln( + 1) =
+ 1 =
= − 1
−1( ) = − 1
−1: (1, ∞)
−1: (2, ∞)
−1: (0, ∞)
−1: (0, ∞)
(b) ( )( )
[ ( )] = [( − 2)2 + 1]
= ln[[( − 2)2 + 1] + 1]
= ln[( − 2)2 + 2]
( )(2) = ln[(2 − 2)2 + 2] Page 14
= ln[2]
261
PSPM I QS015/1 Session 2017/2018
9. Given the function ( ) = 1 .
2 −5
a. Find the domain and range of ( ).
b. Show that ( ) is a one-to-one function. Hence, find −1( ).
c. On the same axis, sketch the graph of ( ) and −1( ).
d. Show that −1( ) = .
SOLUTION CHOW CHOON WOOI
( ) = 1 5
2 −
(a) : 2 − 5 ≠ 0
5
≠ 2
55
: (−∞, 2) ∪ (2 , ∞)
: (−∞, 0) ∪ (0, ∞)
(b) ( ) = 1
2 −5
1
( 1) = 2 1 − 5
1
( 2) = 2 2 − 5
Let ( 1) = ( 2)
11
2 1 − 5 = 2 2 − 5
2 1 − 5 = 2 2 − 5
2 1 = 2 2
1 = 2
1 = 2 ℎ ( 1) = ( 2), ℎ ( ) .
Let = −1( )
( ) =
1
2 − 5 =
1
2 − 5 =
1
2 = + 5
Page 15
262
PSPM I QS015/1 Session 2017/2018
1 + 5 =
2 = ( )
1 + 5
= 2
−1( ) = 1 + 5
2
(c) CHOW CHOON WOOI
−1( )
(d) −1( ) = [ −1( )]
1 + 5
= [ 2 ]
= 1
2 [1 + 5 ] − 5
2
1
= [1 + 5 ] − 5
= 1
[1 + 5 − 5 ]
1
= [1 ]
=
Page 16
263
PSPM I QS015/1 Session 2017/2018
10. Given the system of linear equations as follow: CHOW CHOON WOOI
2 + 4 + = 77
4 + 3 + 7 = 114
2 + + 3 = 48
a. Express the system of equations in the form of matrix equation = where
= ( ). Hence, determine matrix and matrix .
b. Based on part 10(a), obtain | |.
Hence, find
i. | | if = , where is an identity matrix 3 3.
ii. | | if = (2 ) .
iii. .
Hence, obtain −1 and find the values of , .
SOLUTION
2 + 4 + = 77
4 + 3 + 7 = 114
2 + + 3 = 48
(a)
2 4 1 77
(4 3 7) ( ) = (114)
2 1 3 48
= 77
= (114)
241
= (4 3 7); 48
213
(b)
| | = +(2) |31 73| − (4) |42 73| + (1) |42 13|
= 2(9 − 7) − 4(12 − 14) + (4 − 6)
= 2(2) − 4(−2) + (−2)
= 10
Page 17
264
PSPM I QS015/1 Session 2017/2018
(i) = = ℎ = −1
= −1
| | = | −1| | −1| = 1
1 | |
= | |
1 ( ) = CHOW CHOON WOOI
= 10 , ℎ | | = | |
(ii) = (2 ) | | = | |
| | = |(2 ) |
= 23| |
= 8| |
= 8(10)
= 80
(iii) ( ) =
241
= (4 3 7)
213
+ |13 37| − |42 73| + |42 31|
, = − |41 13| + |22 31| − |22 14|
(+ |43 71| − |42 71| + |24 43|)
2 2 −2
= (−11 4 6 )
25 −10 −10
( ) =
2 2 −2
= (−11 4 6 )
25 −10 −10
2 −11 25
= ( 2 4 −10)
−2 6 −10
−1 = 1 ( )
| |
1 2 −11 25
= (2 4 −10)
10 −2 6 −10
Page 18
265
PSPM I QS015/1 Session 2017/2018
2 −11 25
10 10 10
= 2 4 −10
10 10 10
−2 6 −10
( 10 10 10 )
1 −11 5 CHOW CHOON WOOI
5 10 2
=1 2
5 5 −1
−1 3
( 5 5 −1)
=
−1 = −1
= −1
= −1
1 −11 5
5 10 2 77
1 2 −1 (114)
( ) = 5 5
−1 3 48
5
(5 −1)
10
= (13)
5
∴ = 10, = 13, = 5
Page 19
266
QS 015/2 CHOW CHOON WOOI
Matriculation Programme Examination
Semester I
Session 2017/2018
267
PSPM I QS015/2 Session 2017/2018
1. Express 3 2 −5 in partial fractions.
( −3)( 2+2)
2. Solve the equation cos + cos 5 = 2 cos 3 0 ≤ ≤ . Give your answers in
terms of .
3. Evaluate the following limits:
a. lim 3 −8 CHOW CHOON WOOI
2 −2
→2
b. lim √5 +7
→∞ 6 −5
4. Given = −2 sin 3 . Find and 2 2 .
Hence, show that 2 + 4 + 13 = 0.
2
5. Given the polynomial ( ) = 2 − 4 and ( ) = 4 + 3 + 2 2 + + 28.
a. Find all zeroes of ( ).
b. When ( ) is divided by ( ), the remainder is 14 + 52. Use the remainder
theorem to find the values of and .
c. Using the values of and obtained from part 5( ), find the remainder when
2 ( ) + is divided by ( ).
6. Express cos + √2 sin in the form sin( + ), where > 0 and is an acute
angle.
Hence,
a. Solve the equation cos + √2 sin = √3 by giving all solutions between
2
0° and 360°.
b. Show the greatest value of 1 is 5+√3.
cos +√2 sin +5 22
7. State the conditions for continuity of ( ) at = .
a. By using the conditions for continuity of ( ) at = , find the values of
and such that
− 2 cos , < 0
( ) = {2 + 2, 0 ≤ < 2
− , ≥ 2
is continuous on the interval (−∞, ∞).
Page 2
268
PSPM I QS015/2 Session 2017/2018
b. If = −2 and = 4, determine whether ( ) is differentiable at = 2 or
not.
8. A curve with equation 2 − 3 2 = −2 + − 6, where and are constants,
passes through the point (1, 2).
a. Given = 1 at (1, 2), determine the values and . CHOW CHOON WOOI
b. Evaluate 2 at (1, 2).
2
9. The function is defined by ( ) = ln( −1) for > 1.
−1
a. By considering the first and second derivatives of ( ), show that there is
only one maximum point on the graph = ( ).
b. Use the result obtained in part 9(a) to state the exact coordinates of the
maximum point.
c. Find the -coordinate of the function f when 2 = 0.
2
10. A curve is defined by the parametric equations = 3 − 1 and = + 3, where ≠ 0.
a. Show that = 3 22−+31. Hence, find 2 2 .
b. Show that can be expressed as = 1 − 3 (31 20+1). Hence, deduce that
3
−3 < < 1.
3
END OF QUESTION PAPER
Page 3
269
PSPM I QS015/2 Session 2017/2018
1. Express 3 2 −5 in partial fractions.
( −3)( 2+2)
SOLUTION
3 2 − 5 +
( − 3)( 2 + 2) = − 3 + 2 + 2
( 2 + 2) + ( + )( − 3) CHOW CHOON WOOI
= ( − 3)( 2 + 2)
3 2 − 5 = ( 2 + 2) + ( + )( − 3)
=
3(3)2 − 5 = [(3)2 + 2] + [ (3) + ][(3) − 3]
22 = 11
= 2
=
3(0)2 − 5 = (2)[(0)2 + 2] + [ (0) + ][(0) − 3]
−5 = 4 − 3
3 = 9
= 3
=
3(1)2 − 5 = (2)[(1)2 + 2] + [ (1) + (3)][(1) − 3]
−2 = 6 − 2[ + 3]
2[ + 3] = 8
+ 3 = 4
= 1
3 2 − 5 2 + 3
( − 3)( 2 + 2) = − 3 + 2 + 2
Page 4
270
PSPM I QS015/2 Session 2017/2018
2. Solve the equation cos + cos 5 = 2 cos 3 0 ≤ ≤ . Give your answers in
terms of .
SOLUTION
0 ≤ ≤ sin + sin = 2 sin ( + ) cos ( − ) CHOW CHOON WOOI
a) 22
cos + cos 5 = 2 cos 3 b) sin − sin = 2 cos ( + ) sin ( − )
22
cos 5 + cos = 2 cos 3 c) + = ( + ) ( − )
5 + 5 − d) cos − cos = −2 sin ( + ) sin ( − )
2 cos ( 2 ) cos ( 2 ) = 2 cos 3
22
2 cos 3 cos 2 = 2 cos 3
2 cos 3 cos 2 − 2 cos 3 = 0
cos 3 [2 cos 2 − 2] = 0
cos 3 = 0 2 cos 2 − 2 = 0
0 ≤ ≤ cos 2 = 1
0 ≤ 3 ≤ 3
0 ≤ 2 ≤ 2
3 = , 2 − , 2 + 2 = 0,
5
222
= 0, 6 , 2 , 6 ,
5
= 6 , 2 , 6
Page 5
271
PSPM I QS015/2 Session 2017/2018
3. Evaluate the following limits:
a. lim 3 −8
2 −2
→2
b. lim √5 +7
→∞ 6 −5
SOLUTION CHOW CHOON WOOI
a. lim 3 −8 = lim ( −2)( 2 +2 +4)
2 −2 ( −2)
→2 →2
= lim ( 2 + 2 + 4)
→2
22 + 2(2) + 4
=2
=6
b. lim √5 +7 = lim √5 +7
− 5
→∞ 6 −5 →∞ 6
= lim 5 + 7
√ −
→∞ 5
6
= √5 + 0
6 − 0
= √5
6
Page 6
272
PSPM I QS015/2 Session 2017/2018
4. Given = −2 sin 3 . Find and 2 2 .
Hence, show that 2 + 4 + 13 = 0.
2
SOLUTION
= −2 sin 3 CHOW CHOON WOOI
= −2 = sin 3
′ = −2 −2 ′ = 3 cos 3
= ′ + ′
= ( −2 )(3 cos 3 ) + (sin 3 )(−2 −2 )
= 3 −2 cos 3 − 2 −2 sin 3
= −2 (3 cos 3 − 2 sin 3 )
= −2 = 3 cos 3 − 2 sin 3
′ = −2 −2 ′ = −9 sin 3 − 6 cos 3
= ′ + ′
= ( −2 )(−9 sin 3 − 6 cos 3 ) + (3 cos 3 − 2 sin 3 )(−2 −2 )
= ( −2 )[−9 sin 3 − 6 cos 3 − 2(3 cos 3 − 2 sin 3 )]
= ( −2 )[−9 sin 3 − 6 cos 3 − 6 cos 3 + 4 sin 3 ]
= ( −2 )[−5 sin 3 − 12 cos 3 ]
2
2 + 4 + 13
= ( −2 )[−5 sin 3 − 12 cos 3 ] + 4[3 −2 cos 3 − 2 −2 sin 3 ] + 13[ −2 sin 3 ]
= −5 −2 sin 3 − 12 cos −2 3 + 12 −2 cos 3 − 8 −2 sin 3 + 13 −2 sin 3
=0
Page 7
273
PSPM I QS015/2 Session 2017/2018
5. Given the polynomial ( ) = 2 − 4 and ( ) = 4 + 3 + 2 2 + + 28. CHOW CHOON WOOI
a. Find all zeroes of ( ).
b. When ( ) is divided by ( ), the remainder is 14 + 52. Use the remainder
theorem to find the values of and .
c. Using the values of and obtained from part 5( ), find the remainder when
2 ( ) + is divided by ( ).
SOLUTION
( ) = 2 − 4
( ) = 4 + 3 + 2 2 + + 28
(a) When ( ) = 0
2 − 4 = 0
2 = 4
= ±√4
= ±2
ℎ , − 2, 2
(b) ( ) = ( ) = 2 − 4 = ( + 2)( − 2)
( ) = 4 + 3 + 2 2 + + 28
( ) = 14 + 52 When a polynomial P(x) is divided by (x – a), then the
remainder is P(a)
4 + 3 + 2 2 + + 28 = ( )( 2 − 4) + (14 + 52) Page 8
4 + 3 + 2 2 + + 28 = ( )( + 2)( − 2) + (14 + 52)
ℎ = 2
(2) = (2)
(2)4 + (2)3 + 2(2)2 + (2) + 28 = [14(2) + 52]
274
PSPM I QS015/2 Session 2017/2018
16 + 16 + 2 + 28 = [28 + 52]
16 + 2 = 36
8 + = 18 ………………… (1)
ℎ = −2
(−2) = (−2) CHOW CHOON WOOI
(−2)4 + (−2)3 + 2(−2)2 + (−2) + 28 = [14(−2) + 52]
16 − 8 + 8 − 2 + 28 = [−28 + 52]
16 − 2 + 28 = 24
16 − 2 = −4
8 − = −2 ………………… (2)
(1) + (2)
16 = 16
= 1
8 − = −2
= 10
∴ = 1, = 10
(c) ( ) = 4 + 3 + 2 2 + 10 + 28
( ) = 2 ( ) +
( ) = 2 − 4
( 4 + 3 + 2 2 + 10 + 28) = [ ( )( + 2)( − 2) + (14 + 52)]
2( 4 + 3 + 2 2 + 10 + 28) = 2[ ( )( + 2)( − 2) + (14 + 52)]
2[ 4 + 3 + 2 2 + 10 + 28] + = 2[ ( )( + 2)( − 2) + (14 + 52)] +
2[ 4 + 3 + 2 2 + 10 + 28] + = 2 ( )( + 2)( − 2) + 2(14 + 52) +
( ) = 2(14 + 52) +
= 28 + 104 +
= 29 + 104
Page 9
275
PSPM I QS015/2 Session 2017/2018
6. Express cos + √2 sin in the form sin( + ), where > 0 and is an acute CHOW CHOON WOOI
angle.
Hence,
a. Solve the equation cos + √2 sin = √3 by giving all solutions between
2
0° and 360°.
b. Show the greatest value of 1 is 5+√3.
cos +√2 sin +5 22
SOLUTION
cos + √2 sin = sin( + )
cos + √2 sin = (sin cos + cos sin )
cos + √2 sin = sin cos + cos sin
cos + √2 sin = cos sin + sin cos
cos sin = cos
sin = 1 …………. (1)
sin cos = √2 sin
cos = √2 …………. (2)
(1)2 + (2)2
( 2 sin2 ) + ( 2 cos2 ) = 12 + 2
(√2)
2(sin2 + cos2 ) = 3 sin2 + cos2 = 1
2 = 3
= √3
Page 10
276
PSPM I QS015/2 Session 2017/2018
(1) ÷ (2) CHOW CHOON WOOI
sin 1
cos = √2
1
tan =
√2
= 35.26°
cos + √2 sin = √3 sin( + 35.26°)
(a) cos + √2 sin = √3 0° < < 360°
2
√3 sin( + 35.26°) = √3
2
sin( + 35.26°) = 1
2
0° + 35.26° < + 35.26° < 360° + 35.26°
35.26° < + 35.26° < 395.26°
−1 (12) = 30° 30°
+ 35.26° = 180° − 30°; 360° + 30°
+ 35.26° = 150°; 390°
= 150° − 35.26° = 150°; 390° − 35.26°
= 114.7°, 354.74°
Page 11
277
PSPM I QS015/2 Session 2017/2018
(b) Show the greatest value of 1 is 5+√3
cos +√2 sin +5 22
cos + √2 sin = √3 sin( + 35.26°)
−1 ≤ sin( + 35.26°) ≤ 1
−√3 ≤ √3 sin( + 35.26°) ≤ √3 CHOW CHOON WOOI
−√3 ≤ cos + √2 sin ≤ √3
−√3 + 5 ≤ cos + √2 sin + 5 ≤ √3 + 5
11 1
≤≤
√3 + 5 cos + √2 sin + 5 −√3 + 5
111
≤≤
√3 + 5 cos + √2 sin + 5 5 − √3
The greatest value of 1:
cos +√2 sin +5
1 1 (5 + √3)
=
5 − √3 (5 − √3)(5 + √3)
5 + √3
= 25 − 3
5 + √3
= 22
Page 12
278
PSPM I QS015/2 Session 2017/2018
7. State ℎ ( ) = .
a. By using the conditions for continuity of ( ) at = , find the values of
and such that
− 2 cos , < 0
( ) = {2 + 2, 0 ≤ < 2
− , ≥ 2 CHOW CHOON WOOI
is continuous on the interval (−∞, ∞).
b. = −2 = 4, determine whether ( ) is differentiable at = 2 or
not.
SOLUTION
ℎ ( ) =
i. ( )
ii. lim ( )
→
iii. lim ( ) = ( )
→
− 2 cos , < 0
(a) ( ) = {2 + 2, 0 ≤ < 2
− , ≥ 2
( ) = 0 = 2 .
ℎ = 0
lim ( − 2 cos ) = lim (2 + 2)
→0− →0+
− 2 cos(0) = 2 + (0)2
− 2 = 2
= 4
ℎ = 2
lim (2 + 2) = lim ( − )
→2− →2+
2 + (22) = − 2
3 + 4 = 0
Page 13
279
PSPM I QS015/2 Session 2017/2018
4
= − 3
4
∴ = − 3 , = 4
(b) = −2 = 4 CHOW CHOON WOOI
4 − 2 cos , < 0
( ) = { 2 − 2 2, 0 ≤ < 2
−2 − , ≥ 2
= 2 ′ ( ) = lim ( ) − ( )
−
→
′ (2− ) = l→im2− ( ) − (2) ′ ( − ) = lim ( ) − ( )
− 2 −
→ −
= l→im2− (2 − 2 2) − (−2 − ) ′ ( + ) = lim ( ) − ( )
−
− 2 → +
= lim 2 − 2 2 + 2 +
→2− − 2
= lim −2 2 + + 4
→2− − 2
−2(2)2 + (2) + 4
= 2−2
= +∞ ((Undefined)
′(2−) , ℎ ( ) = 2.
Page 14
280
PSPM I QS015/2 Session 2017/2018
8. A curve with equation 2 − 3 2 = −2 + − 6, where and are constants,
passes through the point (1, 2).
a. Given = 1 at (1, 2), determine the values and .
b. Evaluate 2 at (1, 2).
2
SOLUTION CHOW CHOON WOOI
2 − 3 2 = −2 + − 6
( , )
12 − 3(2)2 = 2−2(1) + (2) − 6
1 − 12 = + 2 − 6
+ 2 = −5 ………………. (1)
( , ), =
2 − 3 2 = −2 + − 6
2 − 6 = −2 ( − 2 ) +
2 − 6 = ( −2 ) − 2] +
[
2(1) − 6(2)(1) = ( (2)−2(1))[1 − 2] + (1)
−10 = − +
− = 10 ………………. (2)
(1) – (2)
3 = −15
= −5
+ 5 = 10
= 5
∴ = 5, = −5
Page 15
281
PSPM I QS015/2 Session 2017/2018
( ) Evaluate 2 at (1, 2)
2
2 − 3 2 = 5 −2 − 5 − 6
2 − 6 = (5 −2 ) − 2] − 5
[
2 − 6 = 5 −2 − 10 −2 − 5
CHOW CHOON WOOI
2 − [6 2 + 6 2 = [5 −2 2 + 5 −2 ( − 2 )] − 10 −2 ( − 2 ) − 5 2
2 ( ) ] 2 2
2 − [6 2 + 6 2 = [5 −2 2 + 5 −2 − 2)] − 10 −2 − 2) − 5 2
2 ( )] 2 ( ( 2
( , ), =
2 − [6 2 + 6 2 = [5 −2 2 + 5 −2 − 2)] − 10 −2 − 2) − 5 2
2 ( )] 2 ( ( 2
2 − [6(2) 2 + 6(1)2] = [5 2 −2(1) 2 + 5 2−2(1)(1)((1) − 2)] − 10 2−2(1)((1) − 2) − 5 2
2 2 2
2 2 2
2 − [12 2 + 6] = [5 2 − 5] + 10 − 5 2
2 2 2
2 − 12 2 − 6 = 5 2 − 5 + 10 − 5 2
2 2 2
5 2 + 12 2 − 5 2 = 2 + 5 − 10 − 6
2
12 2 = −9
2 9
2 = − 12
2 3
2 = − 4
Page 16
282
PSPM I QS015/2 Session 2017/2018
9. The function is defined by ( ) = ln( −1) for > 1.
−1
a. By considering the first and second derivatives of ( ), show that there is
only one maximum point on the graph = ( ).
b. Use the result obtained in part 9(a) to state the exact coordinates of the
maximum point.
c. Find the -coordinate of the function f when 2 = 0. CHOW CHOON WOOI
2
SOLUTION
(a) ( ) = ln( −1) , > 1
−1
= ln( − 1) = − 1
′ = 1 ( − 1) ′ = 1
−1
1
= − 1
′ − ′
′( ) = 2
( − 1) ( 1 1) − [ln( − 1)](1)
−
=
( − 1)2
1 − ln( − 1)
= ( − 1)2
′( ) = 0
1 − ln( − 1)
( − 1)2 = 0
1 − ln( − 1) = 0
ln( − 1) = 1
− 1 = 1 = ⟺ =
= + 1 = ⟺ =
Page 17
283
PSPM I QS015/2 Session 2017/2018
1 − ln( − 1)
′( ) = ( − 1)2
= 1 − ln( − 1) = ( − 1)2
′ = 2( − 1)
′ = − 1
− 1
CHOW CHOON WOOI
′′( ) ( − 1)2 (− 1 1) − [1 − ln( − 1)]2( − 1)
− [( − 1)2]2
=
[−( − 1)] − [1 − ln( − 1)](2 − 2)
= ( − 1)4
ℎ = + 1
"( ) = (−( + 1 − 1)) − [1 − ln( + 1 − 1)][(2( + 1) − 2)]
( + 1 − 1)4
(− ) − [1 − ln( )](2 )
= ( )4
(− )
= ( )4
1
= − 3 < 0 ( )
(b) Use the result obtained in part 9(a) to state the exact coordinates of the maximum
point.
( ) = ln( − 1)
− 1
ℎ = + 1
( ) = ln( + 1 − 1)
+ 1 − 1
ln
=
1
=
1
∴ ℎ ℎ : ( + 1, )
Page 18
284
PSPM I QS015/2 Session 2017/2018
(c) Find the -coordinate of the function f when 2 = 0
2
2
ℎ 2 = 0
[−( − 1)] − [1 − ln( − 1)](2 − 2) =0 CHOW CHOON WOOI
( − 1)4
[−( − 1)] − [1 − ln( − 1)](2 − 2) = 0
[−( − 1)] − 2( − 1)[1 − ln( − 1)] = 0
( − 1)[−1 − 2(1 − ln( − 1))] = 0
( − 1)[−1 − 2 + 2ln ( − 1)] = 0
( − 1)[−3 + 2ln ( − 1)] = 0
( − 1) = 0 −3 + 2 ln( − 1) = 0
= 1 2 ln( − 1) = 3
ln( − 1) = 3
2
3
− 1 = 2
3
= 2 + 1
3
≠ 1, ℎ = 2 + 1
Page 19
285
PSPM I QS015/2 Session 2017/2018
10. A curve is defined by the parametric equations = 3 − 1 and = + 3, where ≠ 0.
a. Show that = 3 22−+31. Hence, find 2 2 .
b. Show that can be expressed as = 1 − 3 (31 20+1). Hence, deduce that
3
−3 < < 1. CHOW CHOON WOOI
3
SOLUTION
= 3 − 1 and = + 3
(a) Show that = 3 22−+31. Hence, find 2
2
1 3
= 3 − = +
1 3
= 3 + 2 = 1 − 2
3 2 + 1 2 − 3
= 2 = 2
= .
2 − 3 2
= 2 . 3 2 + 1
2 − 3
= 3 2 + 1
Page 20
286
PSPM I QS015/2 Session 2017/2018
2
2 = ( ) .
2 − 3 = 3 2 + 1 CHOW CHOON WOOI
= 3 2 + 1 ′ = 6
= 2 − 3
′ = 2
′ − ′
( ) = 2
(3 2 + 1)(2 ) − ( 2 − 3)(6 )
= (3 2 + 1)2
6 3 + 2 − 6 3 + 18
= (3 2 + 1)2
20
= (3 2 + 1)2
2
2 = ( ) .
20 2
= (3 2 + 1)2 . 3 2 + 1
20 3
= (3 2 + 1)3
(b) Show that can be expressed as = 1 − 3(31 20+1). Hence, deduce that
3
Page 21
287
PSPM I QS015/2 Session 2017/2018
−3 < < 13.
2 − 3
= 3 2 + 1
1 CHOW CHOON WOOI
3
3 2 + 1 2 − 3
2 + 1
3
10
−3
= 1 + − 10
3 3 2 3
+1
1 10
3 − 3(3 2 + 1)
2 > 0
3 2 > 0
3 2 + 1 > 0 + 1
3 2 + 1 > 1
3(3 2 + 1) > 3
3 < 3(3 2 + 1) < ∞
11
0 < 3(3 2 + 1) < 3
10 10
0 < 3(3 2 + 1) < 3
10 10
− 3 < − 3(3 2 + 1) < 0
1 10 1 10 1
3 − 3 < 3 − 3(3 2 + 1) < 3 + 0
1 10 1
−3 < 3 − 3(3 2 + 1) < 3
1
−3 < < 3
Page 22
288
2018/2019
289
CHOW CHOON WOOI
SM015/1 CHOW CHOON WOOI
MATHEMATICS
2018/2019
Matriculation Programme Examination
290
2018/2019 SM015/1
MATRICULATION PROGRAMME EXAMINATION
1. a) Solve √6 + 1 − √ = 3.
b) Determine the solution set of x which satisfies the inequality. CHOW CHOON WOOI
2
2. a)
b) + 1 < + 3
Find the sum of all integers from 5 to 950 which are divisible by 3.
1
Expand 3(1 + )4 in ascending powers of up to the fourth term. Hence,
approximate 4√80 correct to four decimal places.
3. Find the gradient of the curve cos(4 ) = tan( 2) − 3 at the point where = 0.
4. The parametric equations of a curve are = + 2 and = 2 − 4 , where ≠ 0. Show that
= 2 + 28−2. Hence, find 2 in term of .
2
5. Water is poured into a right inverted cone of height ℎ with a semi-vertical angle of 60° at a
constant rate of 25 3 per second.
a. Show that the rate of change of the height of water is ℎ = 32ℎ52.
b. Find the rate of change of the height of water after 5 seconds.
c. Given the height of the cone is 20cm, find the time taken to fill the cone
completely with water.
END OF QUESTION PAPER
2
291
2018/2019 SM015/1
MATRICULATION PROGRAMME EXAMINATION
1. a) Solve √6 + 1 − √ = 3. CHOW CHOON WOOI
Determine the solution set of x which satisfies the inequality.
b)
2
+ 1 < + 3
SOLUTION
1a)
√6 + 1 − √ = 3
(√6 + 1 − 2 = 32
√ )
(6 + 1) + ( ) − 2(√6 + 1)(√ ) = 9
7 + 1 − 2(√6 + 1)(√ ) = 9
7 − 8 = 2(√6 + 1)(√ )
(7 − 8)2 = [2(√6 + 2
1)(√ )]
49 2 + 64 − 112 = 4(6 + 1)( )
49 2 + 64 − 112 = 24 2 + 4
25 2 − 116 + 64 = 0
(25 − 16)( − 4) = 0
= 16 , = 4
25
Check:
√6 + 1 − √ = 3 √6 + 1 − √ = 3
When = 16 When = 4
25
3
292
2018/2019 SM015/1
MATRICULATION PROGRAMME EXAMINATION
√6 + 1 − √ = √6 16 + 1 − √16 √6 + 1 − √ = √6(4) + 1 − √4 CHOW CHOON WOOI
(25) 25 = √25 − 2
=3
= √121 − √16
25 25
11 4
= 5 −5
7
=5≠3
∴ = 4 4
1b)
2
+ 1 < + 3
2
+ 1 − + 3 < 0
2( + 3) − ( + 1)
( + 1)( + 3) < 0
2 + 6 − 2 −
( + 1)( + 3) < 0
− 2 + + 6
( + 1)( + 3) < 0
2 − − 6
( + 1)( + 3) > 0
( + 2)( − 3)
( + 1)( + 3) > 0
293
2018/2019 SM015/1
MATRICULATION PROGRAMME EXAMINATION
Critical value: (−2, −1) (−1,3) (3, ∞) CHOW CHOON WOOI
= −3, −2, −1, 3
+ + +
(−∞, −3) (−3, −2)
+ 2 - -
− 3 - - - - +
+ 1 - - - + +
+ 3 - + + + +
○ ○ ○( + 2)( − 3)
+ - + -+
( + 1)( + 3)
: { : < −3 ∪ −2 < < −1 ∪ > 3}
5
294
2018/2019 SM015/1
MATRICULATION PROGRAMME EXAMINATION
2. a) Find the sum of all integers from 5 to 950 which are divisible by 3. CHOW CHOON WOOI
b)
1
Expand 3(1 + )4 in ascending powers of up to the fourth term. Hence,
approximate 4√80 correct to four decimal places.
SOLUTION
2a)
Integers:
5, 6, 7, 8, 9, 10,...950
Integers which are devisible by 3:
6, 9, 12, 15, ... 945, 948
= 6, = 3
= 948
+ ( − 1) = 948
6 + ( − 1)3 = 948
6 + 3 − 3 = 948
3 = 945
= 315
= 2 [2 + ( − 1) ]
315
315 = 2 [2(6) + (315 − 1)3]
= 150255
6
295
2018/2019 SM015/1
MATRICULATION PROGRAMME EXAMINATION
2b)
3(1 1 [1 (14) ( ) (14) (− 34) ( )2 (14) (− 34) (− 47) ( )3] CHOW CHOON WOOI
1! 2! 3!
+ )4 = 3 + + +
1 3 2 + 7 3 ]
= 3 [1 + −
4 32 128
= 3 + 3 − 9 2 + 21 3
4 32 128
| | < 1
−1 < < 1
11
3(1 + )4 = [34(1 + )]4
1
= (81 + 81 )4
4√80 = 1
804
81 + 81 = 80
1
= − 81
4√80 = 3 + 3 (− 1 − 9 (− 12 + 21 (− 13
4 81) 32 81) 128 81)
11 7
= 3 − 108 − 23326 − 22674816
= 2.9907
7
296
2018/2019 SM015/1
MATRICULATION PROGRAMME EXAMINATION
3. Find the gradient of the curve cos(4 ) = tan( 2) − 3 at the point where = 0.
SOLUTION CHOW CHOON WOOI
cos(4 ) = tan( 2) − 3
− sin(4 ) (4 ) = 2( 2) ( 2) − 3
− sin(4 ) [4 + 4 ] = 2 ( 2 ) [2 + 2] − 3
−4 sin(4 ) − 4 sin(4 ) = 2 2( 2) + 2 2( 2) − 3
3 − 4 sin(4 ) − 2 2( 2) = 4 sin(4 ) + 2 2( 2)
[3 − 4 sin(4 ) − 2 2( 2)] = 4 sin(4 ) + 2 2( 2)
4 sin(4 ) + 2 2( 2)
= 3 − 4 sin(4 ) − 2 2( 2)
ℎ = 0
cos(4 ) = tan( 2) − 3
cos[4(0) ] = tan[(0) 2] − 3
cos 0 = tan 0 − 3
1 = 0 − 3
1
= − 3
1
ℎ = 0; = − 3
4 sin(4 ) + 2 2( 2)
= 3 − 4 sin(4 ) − 2 2( 2)
8
297
2018/2019 SM015/1
MATRICULATION PROGRAMME EXAMINATION
4 (− 13) sin [4(0) (− 31)] + (− 13)2 2 [(0) (− 31)2] CHOW CHOON WOOI
= 3 − 4(0) sin [4(0) (− 31)] − 2(0) (− 31) 2 [(0) (− 13)2]
4 (− 31) sin 0 + (− 13)2 2 0
3
=
4 (− 13) sin 0 + (− 31)2 ( 1 20)
3
=
1
= 27
9
298
2018/2019 SM015/1
MATRICULATION PROGRAMME EXAMINATION
4. The parametric equations of a curve are = + 2 and = 2 − 4, where ≠ 0. Show that
= 2 + 28−2. Hence, find 2 in term of . CHOW CHOON WOOI
2
SOLUTION
= + 2 = + 2 −1 = 2 − 4 = 2 − 4 −1
= 1 − 2 −2 = 2 + 4 −2
2 4
= 1 − 2 = 2 + 2
2 − 2 2 2 + 4
= 2 = 2
dy dy
dx = dt .
2 2 + 4 1
= ( 2 ) . ( 2 −2 2)
2 2 + 4 2
= ( 2 ) . 2 − 2
2 2 + 4
= 2 − 2
2
t 2 − 2 2t 2 + 4
2t 2 − 4
8
299 10
2018/2019 SM015/1
MATRICULATION PROGRAMME EXAMINATION
8 CHOW CHOON WOOI
= 2 + 2 − 2
2
2 = [ ] .
2 = [2 + 8( 2 − 2)−1] . 2 2)
2 ( 2 −
= [0 − 8( 2 − 2)−2 ( 2 − 2)] . ( 2 )
2
2 −
8 2
= [( 2 2)2 (2 )] . ( )
− 2 −2
16 2
= [( 2 − 2)2] . ( 2 − 2)
16 3
= ( 2 − 2)3
11
300