The words you are searching are inside this book. To get more targeted content, please make full-text search by clicking here.
Discover the best professional documents and content resources in AnyFlip Document Base.
Search
Published by Penalaran, 2023-12-23 23:23:51

Buku Lentera Karya

t-Rex (Tablet of Rice Lice Repellent & Exterminator) from Lime Peel and Shallot Peel to Reducing Rice (Oryza Sativa) Losses in The Storage Process Elda Zaelita Nurul Nurul Raizma1 , Devia Angelina Sopian2 , Aqilah Rahma Adiningrum3 , Adrian Panjaitan4 , Oryza Tiva Kusumamiarsih5 1) Biology, Faculty of Biology, Jenderal Soedirman University, Purwokerto, Indonesia ([email protected]) 2) Biology, Faculty of Biology, Jenderal Soedirman University, Purwokerto, Indonesia ([email protected]) 3) Food Technology, Jenderal Soedirman University, Purwokerto, Indonesia ([email protected]) 4) Food Technology, Jenderal Soedirman University, Purwokerto, Indonesia ([email protected]) 5) Biology, Faculty of Biology, Jenderal Soedirman University, Purwokerto, Indonesia (oryza.kusumamiarsih@mhs,unsoed.ac.id) Abstract Pest control in rice crops still uses many harmful chemicals. Environmentally friendly natural ingredients that can repel and eradicate rice bugs (S. oryzae) need to be explored and utilised. One of them comes from lime peel (C. aurantiifolia) and shallot skin (A. cepa). Rice aphid can cause a decrease in rice quality which has an impact on national food security. Lime peel extract contains essential oils consisting of various bioactive compounds, one of which is a limonone compound that can repel insects and shallot skin extract contains saponins that can eradicate insects. The method of writing this paper uses literature studies sourced from scientific journals, papers, articles, books, and other relevant reference sources. The use of lime peel extract is effective in repelling rice lice because it contains limonone compounds, which have an unpleasant odour and bitter taste. In addition, the saponin compound in shallot skin extract is also effective in repelling rice fleas because the saponin content in it is toxic to rice fleas by reducing the tension on the surface of the mucous membrane of the larval digestive tract until the digestive tract becomes corrosive. Based on this explanation, the formulation of lime peel and shallot skin extracts is effectively used as a natural rice flea repellent in tablet form so that it can maintain the quality of rice during storage in order to realise national food security. Keywords: lime peel, shallot peel, rice lice, tablet, t-Rex 245


1. Introduction Indonesia faces significant levels of food insecurity. According to a report by the Food Security Agency of the Ministry of Agriculture (2018), 81 districts in Indonesia are still vulnerable to food crises in the next 10 to 20 years. Food crises are nontraditional threats that can undermine the security of a country or region. These threats can come from climate change, economic factors, resource limitations, disease outbreaks, or food safety issues that cause food scarcity (Lasminingrat & Efriza, 2020). Food crises can negatively affect food security, which includes individuals' efforts to obtain sufficient food in terms of food production, energy consumption, protein, and food quality. However, the improvement of national food security in Indonesia related to the production of staple foods, such as rice, has decreased. Data from the National Food Agency in 2023 shows that the production of paddy rice from January to April 2023 is estimated at 13.12 million tonnes, a decrease of 4.3% compared to the same period the previous year. This has become a concern for Indonesia's and even the world's food crisis in the future. The productivity of rice as a food need is not in line with the increase in population, which will affect food security and the threat of a food crisis in Indonesia (Fai, 2022). The cause of the decline in the quality and quantity of rice (O. sativa) can occur due to several factors, namely non-optimal temperature, unclean rice storage, and pest attacks. The impact that occurs if the decline in the quality and quantity of rice is allowed to continue will result in hunger in Indonesian society. Food security in Indonesia will be threatened if the above is allowed to continue. The worst impact that can arise is the occurrence of a food crisis. Therefore, a solution is needed to prevent and eradicate rice aphid infestation in post-harvest rice. One of them is with pesticides that prevent and eradicate rice bugs. Pesticide products that have been widely found in the market are preparations of rice lice drugs that contain chemicals. The use of rice flea medicines containing chemicals has negative effects, some of which can cause the environment to be contaminated, can poison surrounding living things, especially animals and humans, and the residue is difficult to disappear (Oktavia et al., 2021). The use of natural ingredients can be one way to make pesticide preparations that are effective and environmentally friendly because they do not contain harmful chemicals. Two natural ingredients that can be used include lime peel (Citrus aurantiifolia) and shallot skin (A. cepa). Lime peel (C. aurantiifolia) and shallot skin (A. cepa) are household organic wastes that are commonly found in kitchens and fruit stalls, fruit juices, and 246


restaurants. The processing of lime peel (C. aurantiifolia) and shallot skin (A. cepa) waste is still not maximised so that it becomes a pile of garbage that causes environmental pollution. Research conducted by Kartika et al. (2014), showed that lime peel extract (C. aurantiifolia) contains essential oils consisting of various bioactive compounds, one of which is the 62.34% limonene compound which is effective as a rice flea repellent because of its pungent odour and bitter taste. In addition to lime peel (C. aurantiifolia), another natural ingredient that can be used as a natural insecticide for rice lice is shallot skin (A. cepa). Onion skin extract (A. cepa) contains acetogenin compounds that function as stomach poisons at low concentrations while at high concentrations, acetogenin compounds act as antifeedants that make insect pests no longer excited and appetite decreases so that insects are reluctant to devour the plants they like (Putri et al., 2023). In addition, onion skin extract (A. cepa) also contains various chemical compounds including flavonoids, polyphenols, saponins, terpenoids, and alkaloids that give a bitter taste, foul odour, and somewhat spicy so that it has the potential as a natural pesticide (Putri et al., 2023). Therefore, the waste of shallot skin (A. cepa) and lime peel (C. aurantiifolia) is effective as a natural pesticide in the form of repellent and eradicating rice bugs (S. oryzae) without harmful chemicals. Based on this, the author offers an innovation entitled "t-Rex (Tablet of Rice Lice Repellent & Exterminator) from Lime Peel and Shallot Peel Waste to Realise Sustainable Food Security" as a solution to prevent the development of lice pests in rice storage through the utilisation of organic waste. 2. Method and Detail Eksperimental The research method used a descriptive method with a qualitative approach. The qualitative method was carried out through a literature study which aims to provide an accurate description of the characteristics of the object of research and the entirety of the rice flea as well as the potential of lime peel (C. aurantifolia) and shallot skin (A. cepa) as an exterminator of rice fleas (S. oryzae) so that it can be used as a problem solution in the form of creative and innovative ideas. 2. 1 Tools and Material No Tools and Material Function 1 Lime peel The highest compound component in lime peel (C. aurantifolia) is limonene at 97.69%, followed by linolool (0.56%), beta pinen (0.53%), 247


alpha pinen (0.41%), and nerol (0.18%). Limonene compounds have antibacterial properties and have insecticidal effects. 2 Shallot peel Saponin compounds contained in shallot skin (A. cepa) function as insecticides because they inhibit the digestion of insect food (Saputri et al., 2020). 3 Menthol The characteristics of menthol have a distinctive aroma and cold sensation, therefore menthol is widely used in pharmaceuticals, cosmetics, candies, toothpaste, and food (Habibi et al., 2019). 2. 2 Research Prosedure 2.2.1 Data Collection, Processing, and Analysis Techniques The data collection technique is in the form of a literature study by collecting relevant data and references after that describing the data in the form of effective, regular, and logical sentences then the data is systematically analysed through elaboration, development, and adjustment to the topic of scientific writing. 2.2.2 Framework Figure 1. Framework 2.2.3 Decision Based on the problems related to the quality of rice during storage due to rice aphid infestation (S. oryzae) which has an impact on national food security, as well as the accumulation of lime peel (C. aurantifolia) and shallot skin (A. cepa) waste which has an adverse impact on health, t-Rex (Tablet of Rice Lice Repellent & Exterminator) is one of the innovations in the field of food security. This innovation is a product that repels and exterminates rice lice (S. oryzae) during storage as an effort to utilise household waste to support national food availability. 2.2.4 The Making of t-Rex 2.2.4.1 Preparation of Lime Peel Extract Fresh lime (C. aurantifolia) peels were wet sorted and 248


washed under running water, then coarsely grated and airdried. Then dry sorting was carried out. The dried lime peel (C. aurantifolia) of 30gram was soaked with 150 ml of 90% ethanol solution for 3 days and stirred once every day. The extract is then filtered and the filtered liquid is concentrated on a water bath at 40-50°C until the extract is thick, which is characterised by a constant relative weight (Ananda et al., 2022). 2.2.4.2 Preparation of Red Onion Peel Extract Fresh shallot skin (A. cepa) was wet sorted and washed under running water, then cut into small pieces and airdried. Then dry sorting was carried out 100 grams of dried shallot skin (A. cepa) was soaked with 1000 ml of technical methanol solution for 3 days and stirred once every day. The extract is then filtered and the filtered liquid is concentrated on a water bath at 40-50°C until the extract is thick, which is characterised by a constant relative weight (Badriyah et al., 2022). 2.2.4.3 The Making of t-Rex In the first stage, 1.6 grams of carrageenan, 0.4 grams of xanthan gum, and 0.1 grams of sodium benzoate were mixed in a glass beaker and then 42.85 ml of hot distilled water (75°C) was added. The beaker was placed on a water bath to stabilise the temperature and stirred continuously until homogeneous and reached a temperature of 65°C after which 5 grams of propylene glycol was added and stirred again until homogeneous. The mixture was then added 2 grams of lime peel extract (C. aurantifolia) and 1 gram of shallot skin (A. cepa) to the mixture while stirring rapidly until homogeneous. The mixture was then added menthol with the ratio of menthol: mixture is 1:1. After mixing, tablet moulding was done. Figure 2. Prototype t-Rex Design 2.3 Evaluation and Refinement The results of analysing data from testing is one of the aspects involved in evaluation. Improvements should be made if the success of the product is below 75% and once the various stages of 249


development are passed, the product will be ready for use. 2.4 Rice Lice Rejection Effectiveness Test with Lime Peels Experimental tests of rice flea rejection of orange peel are supported by research with experimental methods conducted by Susanti et al. (2018). Preparation of rice fleas that have been bred for approximately 30 days and then sliced into several fresh orange peels, namely sweet orange peel, lime peel, kaffir lime peel, lemon peel, grapefruit peel, and sunkist orange peel. The repellent test was conducted by putting rice into each jar, then 20 rice bugs were introduced and acclimatised for 2 days without treatment to allow the rice bugs to adapt. Two jars containing rice fleas were connected with a hose and given each treatment, the first jar was given pieces of orange peel and the second jar without orange peel. The jars were then covered with gauze and observed at 6 hours, 12 hours, 24 hours, 48 hours, and 72 hours. Table 1. Average Percentage Rejection of Rice Bugs (S. oryzae) to Slices of Various Orange Peels Treatmen t % Rejection L1 L 2 L3 L4 L5 Controls 0 0 0 0 0 Sweet orange peel 5 1 1, 2 5 18, 7 25 35 Lime peel 2, 5 0 1 6, 2 5 25 47, 5 56, 25 Kaffir lime peel 2, 5 0 1 0, 5 0 23, 75 33, 75 53, 75 Lemon peel 2, 5 0 7, 5 0 15 25 35 Grapefruit peel 1, 2 5 7, 5 0 13, 75 22, 50 31, 25 Sunkist orange peel 1, 2 5 6, 2 5 12, 50 20 27, 5 Descirption: L1 = 6 hours L2 = 12 hours L3 = 24 hours L4 = 48 hours L5 = 76 hours The results of observations in Table 1. obtained that lime peel slices are more effective in rejecting rice fleas, namely with a percentage of 56.25 at the 76th hour while the lowest percentage in rejecting rice fleas is in the treatment of sunkist orange peel slices with a percentage of 27.5 at the 76th hour. 2.5 Effectiveness Test of Rice Lice Rejection with Shallot Peels Average Percentage of Attack Intensity and Category of 250


Attack on Rice Stem Leafhopper (S. oryzae) with Red Onion Peel Extract Treatment (A. cepa) Treatment (%) Attack Intensity to Rice Aphid (S. oryzae) (%) Category K (0) 0,00 Normal T1 (10%) 55,67 Weight T2 (25%) 38,70 Medium T3 (50%) 17,22 Medium T4 (75%) 8,31 Lightweight Categories: Normal = 0, Mild = 125%, Moderate = 25-50%, Severe = 51-75%, Very Severe = 76-100% Table 2 shows that the application of 0% shallot skin extract (A. cepa) had no impact on the mortality rate of rice bugs (S. oryzae). Research by Leatemia & Romthe (2019) supports that on the contrary, T1 and T2 treatments on rice ticks (S. oryzae) caused higher mortality rates than T3 and T4. The observation was that the T1 treatment showed the highest level of attack, which significantly caused the death of rice aphid (S. oryzae). The cause is the content of acetogenin compounds in shallot skin (A. cepa). High concentrations of acetogenin can act as an antifeedant or disrupt insect appetite. Insects lose their appetite and are reluctant to eat their usual food sources. 3. Result and Discussion t-Rex, which is made from lime peel and shallot skin extracts formulated in tablet form with the addition of menthol, has a high potential to repel and eradicate rice bugs (S. oryzae). The use of natural ingredients such as lime peel (C. aurantifolia) and shallot skin (A. cepa) for organic pesticides can be considered as an alternative choice that is more environmentally friendly in pest control efforts. The active ingredients in lime peel (C. aurantifolia) and shallot skin (A. cepa) that act as repellents and exterminators of pests such as essential oils, flavonoids, and other bioactive compounds found in lime peel (C. aurantifolia) and shallot skin (A. cepa) can have potential as pest control agents, especially rice bugs (S. oryzae). Lime peel extract (C. aurantifolia) and shallot skin (A. cepa) can have an effect as an insect repellent by interfering with the nervous system, respiratory tract and developmental process of rice aphid (S. oryzae). Lime peel extract (C. aurantifolia) has a greater limonene content than other types of citrus. This difference in the amount of limonene compounds in lime peel (C. aurantifolia) is believed to be the main factor in the difference in insect repellent potential. Limonene is a contact poison that can harm rice bugs (S. oryzae) when in direct contact, and also has potential as a respiratory poison (fumigant). Besides limonene, there is also αpinene in lime peel (C. aurantifolia), which is a compound that acts as a toxin to various types of insects. This toxin has a 251


damaging effect on the insect's nervous system, which in turn can cause paralysis and even death (Moki et al., 2014). Lime peel (C. aurantifolia) also contains saponin compounds that belong to the category of terpenoid compounds. The effect of saponins on the insect body is to bind free sterols in the digestive tract, where these sterols act as precursors of the hormone ecdysone. A decrease in the concentration of free sterols can result in disruption of the moulting process in insects. In addition, the properties of saponins can also damage red blood grains and are toxic to insects (Saleh et al., 2017). Onion skin (A. cepa) contains acetogenin compounds, which have properties as antidotes or act as pesticides (Mulyati, 2020). Onion skin (A. cepa) also contains high essential oil, which is believed to control rice aphid (S. oryzae). Essential oils derived from shallot skin (A. cepa) can have various effects on rice fleas (S. oryzae), such as repelling or repelling and reducing appetite in rice fleas (S. oryzae) (Arivoli & Tennyson., 2013). In addition, active compounds in onion skin (A. cepa) that often provide pest control effects are allicin and other organosulfur compounds. Allicin is the main compound in shallot skin (A. cepa) that gives onions their characteristic aroma and pungent flavour, and it has antimicrobial properties that can disrupt the nervous system of insects, including the rice aphid (S. oryzae). In addition, organosulfur compounds in shallots (A. cepa) can also have an insect repellent effect. Based on research by Damayanti et al (2013), the effect of menthol on the average number of eggs of R. dominica has an average number of eggs (grains) of 3.67 and a reproduction rate of 47.92%. This is in line with the research of Sastrohamidjojo (2004) menthol and menthone compounds that can cause insect mortality because they inhibit the process of protein synthesis in the insect body. So, it can be concluded that the effectiveness of t-Rex tablets in repelling and eradicating rice bugs (S. oryzae) in terms of pest rejection test research with lime peel (C. aurantifolia) and shallot skin (A. cepa) is quite good. 4. Conclussion Lime (C. aurantifolia) and shallot (A. cepa) peel waste has the potential to be effective as a repellent and exterminator of rice lice (S. oryzae). The method of making t-Rex as a repellent and exterminator of rice lice is carried out through two methods, the first is making lime peel extract (C. aurantifolia) and shallot skin extract (A. cepa) and the second is making tablets. Lime peel waste extract (C. aurantifolia) contains essential oils, one of which consists of limonen compounds which have a pungent odour and a bitter taste, and shallot skin waste extract (A. cepa) which contains a variety of chemical compounds, one of which is a saponin compound, so that it can repel and kill insects including rice fleas (S. oryzae). 5. Acknowledgment 252


The authors would like to express their deepest gratitude to all those who have helped until the completion of this paper. The authors would like to thank Universitas Jenderal Soedirman for supporting the research activities, especially thanks to Mrs Dr Endang Ariyani Setyowati, M.Si. as the supervisor who has directed and supported the research. 6. Reference Arivoli, S & Tennyson, S., 2013. 'Antifeedant Activity, Developmental Index and Morphogenetic Variation of Plant Extracts Against Spodoptera Litura (Fab) (Lepidoptera: Noctuidae)', Journal of Entomological and Zoological Studies, 1(4), pp.87-96. Damayanti, R. R., Himawan, T., & Astuti, L. P., 2013. Inhibition of Rhyzopertha dominica F. (Coleoptera: Bostrichidae) reproduction using neem oil-based tablet fumigants. Journal of Plant Pests and Diseases, 1(3), pp.18-26. Fai., 2022. Food Crisis Definition of Causes and Handling. URL: https://umsu.ac.id/krisispangan-pengertian/. Accessed 7 August 2023. Habibi, M., Aji, D. A. P., Suryanto, R. K., Lambang, R. P., & Gunawan, A., 2019. The Use of Menthol for Charcoal Heritage Consolidant Material. Borobudur, 13(1), pp.3-11. Kartika, Fika A. R., Eva H., Amanatufahmi, Tyas L., Iis S., 2014. Utilisation of Limonene from Lime Peel in Making Insect Repellent Aromatic Candles. Conference Paper National Student Scientific Week Student Creativity Programme. Jakarta, Indonesia. Lasminingrat, L., Efriza, 2020. National Food Barn Development: A Strategy to Anticipate Indonesia's Food Crisis. Journal of Defence & State Defense, 10(3), pp.243-260. Leatemia, J. A., & Isman, M. B., 2019. Aktivitas Insektisida Ekstrak Biji Kasar Annona Spp, Lansium Domesticum dan Sandoricum Koetjape Terhadap Larva Lepidopteran. Fitoparasitika, 32(1), pp.30-37. Mulyati, S., 2020. Effectiveness of Red Onion Peel Natural Pesticide on the Control of Caterpillar Pests (Plutella xylostella) in Green Mustard Vegetable Plants. Journal of Nursing and Public Health, 8(2), pp.79- 86. Moki, M., Rida, I & Fahria D., 2014. Effectiveness Test of Three Types of Orange Peel as a Vegetable Insecticide in Suppressing the Population and Attack of Rice Beetle (Sitophilus oryzae). Gorontalo State University. Oktavia, E, S, R., Muliyana, F., Wicaksono, G., Khansa, Rafika, N., Habibburrohman, S., Setyaningsih, E., 2021. Description of the Potential 253


Content of Papaya Leaves and Putri Malu Leaves against the Survival of Rice Lice Pests. Proceedings of the 1st Biolohi National Seminar. 26 June, 2021, Padang, Indonesia. pp. 37- 43. 2023. Putri, A., Annisa., Hutagalung, P, A, P., Tanjong, I, F., Hasibuan, F, R., 2023. Effectiveness Test of Shallot Peel (Allium cepa) as Pesticide in Pest Control in Ecosystem. Scientific Journal of Education Science, 6(5), pp.2910- 2914. Saleh, M., Andi S., Syarfaini, & Musdalifah, 2017. Effectiveness Test of Lime Fruit Peel Extract (Citrus aurantifolia) as a Biological Insecticide against Aedes aegypti Mosquitoes, 3(1), pp. 2541-5301. Sastrohamidjojo, H., 2004. Essential Oil Chemistry. Gadjah Mada University. Yogyakarta. Susanti, D., Niswah, C. & Sunarti, R.N., 2018. The Effect of Giving Various Orange Peels as Repellency of Rice Lice (Sitophilus Oryzae L.) and its Contribution to the Material of Pests and Diseases in Plants in class VIII. Bioilmi: Journal of Education, 4(2), pp.110-122. Xiangna, H. Huang, X. Zhang, B., 2015. Morphological Studies Menthol as A Temporary Consolidant for Urgent Conservation in Archaeological Field. Dalam Journals of Cultural Heritage. 254


LOMBA KARYA TULIS ILMIAH MAHASISWA NASIONAL 2023 Bio-Skintec: Pemanfaatan Daun Kelor dan Limbah Kulit Bawang Merah sebagai Bahan Dasar Alternatif Alami Pembuatan Sunscreen Spray Gel Diusulkan oleh: Farah Ispramudita Septiyanti, B1A021078, 2021 Feony Dwi Suciati, B1A021100, 2021 Elda Zaelita Nurul Raizma, B1A022012, 2022 UNIVERSITAS JENDERAL SOEDIRMAN PURWOKERTO 2023 255


Bio-Skintec: Pemanfaatan Daun Kelor dan Limbah Kulit Bawang Merah sebagai Bahan Dasar Alternatif Alami Pembuatan Sunscreen Spray Gel Farah Ispramudita Septiyanti*, Feony Dwi Suciati1 , Elda Zaelita Nurul Raizma2 Universitas Jenderal Soedirman [email protected] Pemanasan global mengakibatkan perubahan iklim yang cukup signifikan sehingga suhu bumi meningkat dan terasa sangat panas. Menurut informasi dari BMKG, peristiwa tersebut terjadi karena peningkatan akumulasi konsentrasi gas rumah kaca. Peningkatan suhu di bumi juga diikuti oleh peningkatan paparan sinar UV matahari bagi masyarakat. Wajah merupakan bagian tubuh yang sering terpapar sinar UV matahari, jika dibiarkan akan mengakibatkan timbulnya iritasi bahkan penyakit kanker kulit. Untuk menghindari hal tersebut, diperlukan upaya sebagai bentuk adaptasi untuk melindungi wajah dari paparan sinar UV dengan menggunakan sunscreen. Dari penelitian Wiraningtyas et al. (2019) diketahui bahwa ekstrak etanol kulit bawang merah memiliki kandungan SPF yang tinggi, yaitu pada konsentrasi 16 ppm menghasilkan nilai 34,83 SPF. Abidin et al. (2019) menyebutkan bahwa daun kelor memiliki aktivitas antioksidan karena mengandung senyawa flavonoid yang berperan sebagai inhibitor tirosinase yang dapat menghambat produksi pigmen melanin sehingga mencegah kulit wajah tampak lebih gelap. Karya tulis ilmiah ini bertujuan untuk mengetahui potensi pemanfaatan daun kelor dan limbah kulit bawang merah sebagai bahan dasar alternatif pembuatan sunscreen spray gel serta menghasilkan produk sunscreen spray gel berbahan dasar alami sebagai pelindung kulit dari sinar UV matahari dan mencerahkan kulit. Tahap pembuatan sunscreen spray gel terdiri dari pembuatan simplisia daun kelor dan limbah kulit bawang merah, pengubahan ekstrak daun kelor dan limbah kulit bawang merah melalui teknik maserasi menggunakan pelarut etanol, pembuatan sediaan spray gel menggunakan bahan HPMC, carbopol, trietanolamin, metil paraben, propil paraben, propilen-glikol, dan aquades. Berdasarkan pengujian yang dilakukan meliputi uji organoleptik dan homogenitas, uji viskositas, uji pH, uji daya sebar lekat, uji iritasi, uji waktu mengering, dan penentuan nilai SPF menunjukkan bahwa sunscreen spray gel telah memenuhi kriteria sebagai sunscreen yang dapat melindungi wajah dari sinar UV, menangkal radikal bebas, memperlambat penuaan dini, dan mencerahkan kulit wajah. Kata kunci: Daun kelor, Kulit Bawang Merah, UV, SPF, Sunscreen. 256


BAB I. PENDAHULUAN A. Latar Belakang Indonesia dalam waktu terakhir ini dilanda panas ekstrem oleh paparan sinar UV matahari. Sinar UV matahari merupakan bagian dari radiasi elektromagnetik sehingga tidak terlihat oleh mata manusia. Sinar UV matahari memiliki peran dalam pembentukan vitamin D pada tulang, akan tetapi juga memberikan dampak negatif pada kulit. Pengaruh yang diberikan sinar UV matahari berbeda sesuai dengan panjang gelombang yang dihasilkan. Panjang gelombang 320-400 nm yang dimiliki sinar UV A memiliki kemampuan menembus kulit hingga lapisan dalam kulit (dermis). Sinar UV B dengan panjang gelombang 290-320 nm memiliki kemampuan menembus kulit terluar (stratum korneum). Sinar UV C dengan panjang gelombang 200-290 nm memiliki radiasi yang tidak mencapai permukaan bumi sebab diserap oleh ozon di atmosfer bumi. Berdasarkan panjang gelombang tersebut, sinar UV A menghasilkan dampak yang besar berupa dapat merusak DNA kulit sebagai penyebab terjadi penuaan, sedangkan sinar UV B menghasilkan dampak berupa dapat menyebabkan kulit terbakar (Minerva, 2019). Menurut Badan Meteorologi, Klimatologi, dan Geofisika, bahwa beberapa wilayah di Indonesia mengalami paparan sinar UV matahari ekstrem yang mana berpotensi hingga kategori very high dan extreme di siang hari. Kategori very high dan extreme memiliki dampak berupa kulit dan mata dapat rusak maupun terbakar dalam waktu yang cepat bahkan hitungan menit. Menurut Dampati & Veronica (2020), sinar UV matahari berlebih dapat menyebabkan kulit terbakar, kulit hitam, photoaging, hiperpigmentasi, eritema, hingga resiko kanker kulit. Kanker kulit menjadi kanker tertinggi ketiga di Indonesia yang mana disebabkan oleh sinar UV matahari berlebih. Sinar UV matahari menyebabkan resiko kanker kulit karena menimbulkan terbentuknya RNS (Reactive Nitrogen Species) berupa nitrit oksida dan nitrit oksida dan ROS (Reactive Oxygen Species) berupa anion superoksida serta radikal hidroksil dan peroksil. Senyawa radikal tersebut yang menimbulkan gangguan pengaturan sel sehingga sel dapat rusak hingga mati. Berdasarkan kondisi tersebut, perlu perhatian dan perlindungan lebih terhadap kulit agar terlindung dari paparan sinar UV matahari secara berlebih. Pencegahan dan perlindungan dari sinar UV matahari dapat dilakukan dengan menggunakan tabir surya yang efektif, yang mampu melindungi kulit dari paparan. Tabir surya akan bekerja dengan menyerap dan memantulkan sinar UV matahari apabila diaplikasikan 257


pada kulit. Kebanyakan tabir surya yang terdapat di pasaran saat ini merupakan tabir surya yang berasal dari bahan-bahan kimia sintetis. Bahan kimia sintetis pada tabir surya memungkinkan timbulnya iritasi, alergi, dan dermatitis kontak. Oleh karena itu, diperlukan tabir surya yang mengandung bahan-bahan alami dari tumbuhan dengan kemampuan menjaga kulit tetap sehat. Salah satu bahan alami dari tumbuhan yang dapat diolah menjadi sunscreen yaitu kulit bawang merah. Kulit bawang merah merupakan bagian terluar dari umbi bawang merah dan biasanya dibuang serta tidak bernilai fungsional. Kulit bawang yang dianggap sebagai limbah dapur ternyata memiliki banyak kandungan metabolit sekunder, salah satunya senyawa flavonoid. Senyawa flavonoid tersebut berpotensi sebagai tabir surya karena adanya gugus kromofor yang yang terkandung dalam kulit bawang merah (Afiddah et al., 2022). Senyawa flavonoid juga berperan sebagai anti dermatosis, antiviral, kompreventif, dan antioksidan yang dapat menangkal radikal bebas (Rahayu et al., 2017). Senyawa flavonoid tersebut juga memiliki sifat metal kompleks. Salah satu jenis senyawa flavonoid yang terkandung di dalam kulit bawang merah adalah kuersetin yang berperan sebagai inhibitor tirosinase (Wiraningtyas et al., 2019). Selain itu, kulit bawang merah juga mengandung tanin yang merupakan senyawa metabolit sekunder dan memiliki khasiat sebagai antioksidan, antibakteri, dan astrigen (Hartati & Noer, 2020). Kelor (Moringa oleifera Lam.) merupakan tumbuhan darat yang masuk ke dalam famili Moringaceae. Tumbuhan ini berasal dari daerah tropis dan subtropis, yang dapat tumbuh dengan cepat dan tahan kondisi panas ekstrem. Tumbuhan kelor mengandung banyak senyawa kimia yang dapat dimanfaatkan sebagai bahan pangan maupun obat-obatan. Daun kelor memiliki banyak khasiat, tetapi pemanfaatannya masih terbilang terbatas. Seiring dengan banyaknya informasi dan penelitian terhadap daun kelor, pemanfaatan dan budidaya daun kelor mulai banyak dikembangkan. Menurut beberapa penelitian, daun kelor mengandung beberapa jenis senyawa kimia antara lain: steroid, flavonoid, saponin, tanin, triterpenoid, anthraquinone, dan alkaloid yang mampu berperan sebagai antioksidan. Banyaknya kandungan senyawa kimia yang dimiliki, menyebabkan daun kelor dapat dimanfaatkan untuk merawat kesehatan kulit wajah, yaitu dengan memanfaatkan kandungan beta-karoten dan antioksidan. Daun kelor juga dapat dimanfaatkan sebagai anti-penuaan atau peremajaan kulit wajah karena adanya kandungan senyawa fenol yang dapat memberikan perlindungan terhadap enzim yang mampu mengakibatkan kerusakan 258


elastin dan kolagen pada kulit (Perwita, 2019). Kandungan senyawa yang dimiliki oleh kulit bawang merah dan daun kelor sangat potensial untuk dimanfaatkan sebagai alternatif bahan dasar sunscreen yang alami dan ramah lingkungan. Sunscreen ini tidak hanya melindungi kulit wajah dari paparan sinar UV matahari, melainkan juga untuk mencerahkan kulit dan anti-penuaan. B. Perumusan Masalah 1. Bagaimana formulasi daun kelor dan limbah kulit bawang merah dalam pembuatan sunscreen spray gel? 2. Bagaimana efektivitas daun kelor dan limbah kulit bawang merah dalam pembuatan sunscreen spray gel? 3. Apa keunggulan sunscreen spray gel dengan formulasi daun kelor dan limbah kulit bawang merah? C. Tujuan dan Manfaat 1. Mengetahui potensi dan efektivitas pemanfaatan daun kelor dan limbah kulit bawang merah sebagai bahan dasar alternatif pembuatan sunscreen spray gel. 2. Menghasilkan produk sunscreen spray gel berbahan dasar alami sebagai pelindung kulit dari sinar UV matahari dan mencerahkan kulit. 259


BAB II. TINJAUAN PUSTAKA A. Sunscreen dan Sun Protection Factor (SPF) Upaya memproteksi kulit dari paparan sinar matahari adalah dengan menggunakan sunscreen. Kemampuan sunscreen dalam mencegah paparan sinar UV matahari ditunjukkan oleh nilai sun protection factor (SPF), dimana merupakan indikator universal yang menjelaskan efektivitas dari sunscreen sebagai UV protector. Semakin tinggi nilai SPF yang terdapat pada suatu produk sunscreen maka akan semakin optimal kinerja sunscreen tersebut dalam melindungi kulit dari sinar UV matahari (Lestari et al., 2021). Nilai SPF didefinisikan sebagai energi UV yang diperlukan untuk menghasilkan dosis minimal erythema dose (MED) pada kulit yang dilindungi oleh sunscreen, dibagi dengan jumlah energi UV yang dibutuhkan untuk mencapai MED pada kulit yang tidak terlindungi (Pratama & Zulkarnain, 2015). Berdasarkan penelitian yang dilakukan Sulistyowati & Sudarti (2022) yang merujuk pada Standar Nasional Indonesia (SNI) 16-4399-1996, bahwa emulsi kosmetik di Indonesia, termasuk sunscreen harus memiliki nilai SPF minimal sebesar 4. Sediaan sunscreen dapat dianggap memberikan kemampuan perlindungan apabila memiliki nilai SPF 2-100 dan kemampuan sunscreen dapat dianggap baik apabila memiliki nilai SPF di atas 15 (Wasitaatmadja, 1997). Pemilihan nilai SPF yang baik menjadi suatu hal yang perlu diperhatikan karena nilai SPF dapat menunjukkan daya tahan sunscreen dalam melindungi kulit, dengan cara dikalikan 10 menit. Sebagai contoh, jika nilai SPF suatu sunscreen yang digunakan oleh seseorang sebesar 30, maka selama 30x10 menit = 300 menit atau 5 jam kulit dapat terlindungi dari paparan sinar UV. Sunscreen harus dioleskan kembali setelah 5 jam (Andari, 2020). B. Jenis-jenis dan Kandungan Sunscreen Paparan sinar UV matahari yang kian meningkat akibat globalisasi berdampak pada pembuatan sunscreen yang bervariasi baik dari segi bentuk maupun kandungannya. Produk sunscreen semakin ditingkatkan dan disesuaikan agar lebih optimal dalam melindungi kulit dari sinar UV matahari. Umumnya, sunscreen dapat berbentuk lotion, gel, dan cream. Akan tetapi, kini sunscreen berkembang menjadi dalam bentuk stick dan spray yang lebih mudah diaplikasikan pada wajah. Selain mudah diaplikasikan, penggunaan sunscreen berbentuk spray dan stick memiliki kelebihan yaitu tidak menggeser pemakaian make up, mengurangi kontaminasi, dan lebih efisien. Aplikasi sunscreen yang berbentuk lotion, gel, dan cream memungkinkan adanya kontaminasi bakteri karena dalam pengaplikasiannya 260


menggunakan tangan secara langsung sedangkan sunscreen berbentuk spray dan stick diaplikasikan secara langsung dari media. Penggunaan sunscreen berbentuk spray lebih segar ketika digunakan karena wujudnya yang cair pada wajah. Selain bentuknya, sunscreen juga bervariasi dari segi kandungan dan kemampuannya dalam menangkal sinar UV. Penggunaan kandungan dari ekstrak senyawa kimia dari tumbuhan telah banyak dimanfaatkan dalam pembuatan sunscreen. Misalnya kandungan vitamin E dan vitamin B5. Menurut Ngoc et al. (2019) ekstrak senyawa kimia dari tumbuhan dapat berupa karotenoid, flavonoid, senyawa fenolik, vitamin E, dan vitamin C. Senyawa-senyawa antioksidan tersebut memiliki mekanisme yang berbeda dalam fotoproteksi. Karotenoid berperan dalam penyerapan sinar tampak, sinar UV, dan sinar biru. Flavonoid memiliki ikatan rangkap sehingga dapat menyerap sinar UV secara optimal. Senyawa fenolik berperan dalam menangkap radikal bebas dan menghambat kolagenase serta elastase untuk mempermudah dalam menjaga struktur kulit. Vitamin E berperan dalam menghambat kerusakan sel akibat sinar UV matahari. Vitamin C berperan dalam mengurangi pembentukan sunburn cell. C. Kandungan Flavonoid Kulit Bawang Merah Kulit bawang merah (Allium cepa L.) merupakan bagian terluar dari umbi bawang merah yang umumnya tidak dimanfaatkan, sering menjadi sampah dapur, dan tidak memiliki nilai ekonomis. Padahal, kulit bawang merah memiliki kandungan senyawa kimia yang bernilai tinggi dan dapat dimanfaatkan untuk kesehatan. Dari penelitian Rahayu et al. (2015) diketahui bahwa kulit bawang merah memiliki kandungan senyawa kimia berupa flavonoid, polifenol, saponin, alkaloid, terpenoid, dan steroid. Kandungan flavonoid yang terdapat pada kulit bawang merah bertindak sebagai antioksidan karena mampu menangkal radikal bebas. Jenis senyawa flavonoid yang terdapat pada kulit bawang merah berupa kuersetin. Kuersetin tersebut memiliki manfaat untuk mencerahkan kulit atau sebagai inhibitor tirosinase (Ruslan et al., 2019). Kandungan senyawa kuersetin juga dapat digunakan sebagai antiinflamasi. Pernyataan tersebut dibuktikan dari penelitian Soemarie (2016), bahwa senyawa kuersetin yang terkandung di dalam kulit bawang merah memiliki aktivitas inflamasi, yaitu dapat menghambat peradangan yang terdapat pada telapak kaki mencit. Dalam hal ini, mekanisme kerja kuersetin sebagai penghambat aktivitas kerja enzim siklooksigenase yang menstimulasi pelepasan reseptor rasa nyeri. Selain itu, menurut Wulandari et al. (2021), bahwa kandungan flavonoid dan tanin yang terdapat pada kulit bawang merah juga memiliki potensi sebagai tabir surya. Hal ini dikarenakan 261


pada senyawa tersebut terdapat gugus kromofor yang dapat menyerap sinar UV dan mengurangi dampak kerusakan kulit akibat paparan sinar UV matahari (Whenny et al., 2015). Pernyataan tersebut didukung oleh penelitian Wulandari et al. (2021) bahwa senyawa flavonoid tersebut menyerap sinar UV yang masuk ke dalam kulit sehingga dapat mengurangi kerusakan kulit akibat terpapar sinar UV matahari. D. Kandungan Flavonoid Kelor Kelor (Moringa oleifera Lam.) mempunyai bagian daun berwarna hijau yang mengandung senyawa kimia dengan banyak manfaat. Salah satu senyawa kimia yang ada pada daun kelor adalah flavonoid. Flavonoid merupakan senyawa kimia golongan antioksidan yang dapat melindungi kulit dari paparan sinar matahari maupun radikal bebas. Penelitian yang dilakukan oleh Abidin et al. (2019), menyatakan bahwa senyawa flavonoid berperan sebagai inhibitor tirosinase dan pengkelat Cu, dimana gugus hidroksil pada cincin A dan B akan menghambat kerja enzim tirosinase. Jika enzim tirosinase terhambat maka produksi pigmen melanin yang dapat membuat wajah tampak lebih gelap akan lebih lambat. Berdasarkan beberapa penelitian, yaitu Wulan et al. (2021), ekstrak daun kelor mengandung senyawa flavonoid sebesar 8,33 mg/g sedangkan pada penelitian yang dilakukan oleh Susanty et al. (2019), rebusan daun kelor mengandung senyawa flavonoid sebesar 245,771 mg/kg. Pada penelitian lain yang dilakukan oleh Pradana & Wulandari (2019), ekstrak air daun kelor mengandung senyawa flavonoid sebesar 7,79 mg/g. Hal tersebut dapat disimpulkan bahwa daun kelor cukup banyak mengandung senyawa flavonoid dan memiliki potensi untuk dimanfaatkan sebagai pelindung kulit dari paparan UV sinar matahari maupun radikal bebas. E. Sunscreen Spray Gel Sunscreen spray gel merupakan pengembangan sediaan sunscreen gel yang berbentuk cairan gel dan disemprotkan langsung ke kulit wajah saat pengaplikasiannya. Formulasi bahan pembuatan sunscreen spray gel antara lain menggunakan Hydroxypropyl Methylcellulose (HPMC), carbopol, triethanolamine, metil paraben, propil paraben, propylene glycol, dan akuades. Sejauh ini masyarakat khususnya remaja dan dewasa, masih banyak yang menggunakan sunscreen yang didapatkan di pasaran dengan sediaan gel daripada sunscreen dengan sediaan spray gel. Padahal, sediaan gel kurang efektif daripada sediaan spray gel, karena membutuhkan waktu lebih lama untuk mengoleskanya dan menunggu gel sunscreen kering di kulit wajah (Kristantri et al., 2022). Hal tersebut menjadi alasan sunscreen 262


sediaan spray gel lebih efektif dan praktis untuk digunakan. Teknik semprot yang menghasilkan sediaan dispersi dengan merata di wajah tanpa adanya kontak langsung dengan tangan untuk meratakan sediaan setelah disemprotkan menjadikan sunscreen spray gel lebih aman karena tingkat kontaminasi mikroorganisme lebih rendah dan waktu kontak konsentrat yang lebih lama dengan kulit (Rusita & Suhendriyo, 2017). 263


BAB III. METODE PENULISAN A. Teknik Pengumpulan Data dan Pengolahan Data Data dan informasi dalam penulisan karya tulis ilmiah ini didapatkan dari berbagai literatur, baik dari artikel, jurnal ilmiah, e-book, skripsi, dan sumber lainnya yang relevan dengan objek kajian. Metode pengumpulan data yang digunakan dalam penulisan ini adalah studi literatur sehingga dapat dibuktikan secara empiris oleh pembuat literatur. Karya tulis ini memuat data-data penelitian terdahulu yang diperoleh melalui e-book, jurnal atau artikel nasional dan internasional seperti Google Scholar, PubMed, Science Direct, MDPI, dan Elsevier. Kata kunci yang digunakan di antaranya Aktivitas Antioksidan Kulit Bawang Merah, Kadar SPF Kulit Bawang Merah, Tabir Surya, Flavonoid Activity of Red Onion, dan Sunscreen of Red Onion. B. Analisis data Teknik analisis data yang digunakan dalam penyusunan karya tulis ini adalah teknik analisis sintesis. Analisis sintesis dilakukan dengan menganalisis data menggunakan teknik sintesis, yaitu dengan mengembangkan pertanyaan terus-menerus sehingga diperoleh kesesuaian dengan topik kajian dalam penulisan. C. Kerangka berpikir Gambar 3.1 Kerangka Berpikir 264


BAB IV. PEMBAHASAN Antioksidan adalah senyawa yang mampu menekan oksidasi dengan menangkap radikal bebas. Antioksidan diperoleh secara alami dari tumbuhan, antioksidan alami diantaranya senyawa fenolik seperti golongan flavonoid, turunan asam sinamat, asam polifungsional, tokoferol, dan kumarin (Nurhasnawati et al., 2017). Radikal bebas memiliki kemampuan mengikat molekul di sekitarnya sehingga terbentuk suatu reaksi berantai menghasilkan senyawa radikal baru. Oleh karena itu, peran antioksidan menjadi sangat penting dalam menghambat terjadinya reaksi tersebut. Telah kita ketahui pula bahwa radikal bebas dapat mengakibatkan kerusakan sel bahkan jaringan, penyakit degeneratif, penyakit autoimun, dan kanker (Azhar & Yuliawati, 2021). Salah satu senyawa antioksidan adalah flavonoid. Flavonoid merupakan senyawa metabolit sekunder dari polifenol yang diketahui secara luas sebagai agen bioaktif sebagai antioksidan, antiinflamasi, dan anti penuaan. Flavonoid dapat diperoleh dari semua tumbuhan hijau. Studi telah banyak dilakukan mengenai pemanfaatan senyawa flavonoid bahkan saat ini lebih dari 9000 flavonoid telah dilaporkan (Arifin & Ibrahim, 2018). Kuersetin merupakan salah satu flavonol terbaik. Menurut penelitian yang dilakukan oleh Zhu et al. (2017) kuersetin memiliki efek penghambatan pada produksi Reactive Oxygen Species (ROS) yang dihasilkan oleh radiasi UV B. Kemampuan dalam menghambat ROS oleh kuersetin juga menunjukkan adanya efek pencegahan ROS dalam menyerang membran sel dan mitokondria serta efek menghambat penurunan fluiditas membran sel dan depolarisasi membran mitokondria. Kuersetin dikenal sebagai antioksidan alami yang sangat kuat karena kemampuannya sebagai antiinflamasi, antikanker, antivirus, dan antibakteri. Berbagai penelitian telah dilakukan terhadap aktivitas kuersetin sebagai antioksidan dan aktivitasnya dalam menangkal radiasi UV. Berdasarkan studi dan eksperimen secara in vitro dan in vivo menunjukkan bahwa kuersetin mampu melindungi keratinosit dari agen pengoksidasi eksogen, menghambat peroksidasi lipid akibat paparan sinar UV, dan mencegah penurunan antioksidan endogen (Lv et al., 2017). Senyawa-senyawa tersebut dapat ditemukan dalam kulit bawang merah. Hal ini didukung dari beberapa penelitian terhadap kandungan senyawa yang terdapat pada kulit bawang merah. Hasil penelitian dari Bardos et al. (2018) diketahui kulit bawang merah memiliki kandungan flavonoid, yaitu berupa senyawa kuersetin dan fenolik yang lebih tinggi 3-5 kali dibandingkan dengan umbinya. Selain itu, penelitian Ifesan (2017) menyebutkan kandungan flavonoid dalam kulit bawang merah, yaitu sebanyak 664,30 μg/mL. Kandungan 265


senyawa flavonoid tersebut selain sebagai antioksidan juga berperan dalam menghambat aktivitas Angiotensin Converting Enzyme (ACE) yang berperan dalam proses pengaturan tekanan darah dan berperan dalam aktivitas hepatoprotektor (Bardos et al., 2018). Berdasarkan penelitian dari Rahayu et al. (2017), dihasilkan data bahwa pada kulit bawang merah terdapat kandungan senyawa flavonoid, tanin, glikosida, dan saponin. Selain itu, telah diuji pula aktivitas antioksidan dalam kulit bawang merah dengan menggunakan metode ABTS (2,2’-Azinobis-[3-etilbenzotiazoline-6sulfonic acid]). Dari pengujian tersebut, diperoleh aktivitas antioksidan berdasarkan ekstrak metanol dengan nilai IC50 sebesar 39,22 ppm. Nilai IC50 tersebut menunjukkan bahwa aktivitas antioksidan yang terdapat pada kulit bawang merah dinilai sangat kuat. Merujuk dari beberapa penelitian tersebut, dapat diketahui bahwa kulit bawang merah memiliki kandungan senyawa flavonoid tinggi. Salah satu manfaat dari kandungan flavonoid adalah sebagai antioksidan. Namun, hingga saat ini pemanfaatan kulit bawang merah masih belum banyak dikembangkan, bahkan hanya menjadi limbah rumah tangga dan tidak memiliki nilai ekonomis. Hal ini dapat dibuktikan dari banyaknya limbah kulit bawang merah yang terakumulasi banyak di lingkungan. Badan Pusat Statistik (BPS) menyatakan bahwa pada 2022 jumlah produksi bawang merah di seluruh Indonesia sebesar 1.982.360 ton dan mengalami kenaikan dari tahun sebelumnya. Berdasarkan data tersebut, tentunya banyak limbah kulit bawang merah yang dihasilkan, mengingat masyarakat cenderung hanya memanfaatkan umbinya. Apabila limbah kulit bawang merah terus menerus mengalami peningkatan maka dapat mengakibatkan pencemaran lingkungan dan dampak negatif lainnya terhadap lingkungan, bahkan merugikan organisme di sekitarnya. Salah satu upaya pencegahan untuk menghindari dampak negatif tersebut, dapat dilakukan dengan memanfaatkan atau mengurangi limbah kulit bawang merah. Pemanfaatan limbah kulit bawang merah yang dapat dilakukan diantaranya dengan memanfaatkan ekstrak metanol kulit bawang merah sebagai bahan dasar pembuatan sunscreen. Inovasi ini dapat didasarkan pada adanya kandungan SPF yang terdapat pada kulit bawang merah yang telah kami pelajari melalui studi literatur. Berdasarkan dari beberapa hasil penelitian sebelumnya, terdapat beberapa pengujian kandungan SPF yang terdapat pada kulit bawang merah sebagaimana yang telah tercantum dalam Tabel 3.1. Tabel 3.1 Nilai SPF Kulit Bawang Merah dari Beberapa Penelitian No Formulasi (ppm) Nilai SPF Penelitian Judul Penelitian 266


1. 4 11,44 Wiraningtyas et al. (2019) Penentuan Nilai Sun Protection Factor (SPF) dari Ekstrak Kulit 8 20,12 Bawang Merah 12 31,80 16 34,83 2. 180 3,50 ± 0,014 Ratnapuri et al. (2020) Karakteristik Fisika dan Kimia Sediaan Krim Ekstrak Kulit Bawang Merah (Allium ascalonicum) dengan Variasi Konsentrasi Ekstrak 1800 13,313 ± 0,121 18000 22,056 ± 0,007 3. 4 11,4 Ruslan et al. (2019) Penentuan Nilai Sun Inovasi Limbah Tanaman sebagai Bahan Baku Sun Protection Factor (SPF) dari Kulit Bawang Merah 8 20,12 12 31,80 4. 1700 41,513 Meiyuni (2020) Penentuan Nilai Sun Protecting (SPF) Ekstrak Kulit Bawang Merah (Allium cepa L.) dan Kulit Bawang Putih (Allium sativum L.) Kandungan flavonoid juga dapat ditemukan pada daun kelor. Menurut Fejer et al. (2019) bahwa daun kelor mengandung senyawa fenolik berupa kuersetin sebanyak 43.44 mg/kg. Selain itu, daun kelor juga mengandung vitamin E sebanyak 178.10 mg/kg. Daun kelor juga mengandung vitamin A, vitamin B, dan vitamin C sebagai antioksidan. Senyawa antioksidan tersebut berperan dalam mencerahkan kulit wajah, melindungi kulit dari radikal bebas, melembabkan kulit, dan membentuk kolagen untuk meningkatkan kualitas tekstur kulit (Perwita, 2019). Kandungan senyawa-senyawa tersebut berpotensi sebagai bahan pendukung dalam pembuatan sunscreen sehingga selain memiliki kemampuan menangkal paparan sinar UV, sunscreen juga mampu merawat kulit dengan menjaga kelembaban kulit dan mencerahkan kulit wajah. Penelitian yang dilakukan oleh Laksmiani et al. (2022), menunjukan bahwa daun kelor memiliki persentase IC50 sebanyak 115.36. Hasil tersebut merepresentasikan potensi aktivitas kuersetin sebagai agen pencerah wajah. Mekanisme kuersetin sebagai pencerah wajah melalui aktivitasnya dalam menghambat pembentukan eumelanin dan menghasilkan efek mencerahkan kulit pada proses melanogenesis. Berdasarkan penelitian Wiraningtyas et al. (2019) pembuatan ekstraksi kulit bawang merah dapat dilakukan dengan teknik maserasi pada simplisia bawang merah yang sudah dibersihkan dan dikeringkan menjadi serbuk. Teknik maserasi dilakukan sebanyak dua kali 267


dengan melarutkan serbuk kulit bawang merah dengan 1 L pelarut etanol 50%. Hasil ekstraksi kulit bawang merah kemudian diuji dalam spektrofotometer dan diperoleh hasil yang positif. Semakin meningkat konsentrasi ekstrak etanol kulit bawang merah, semakin meningkat pula kandungan SPF. Hal ini menunjukkan bahwa ekstrak etanol kulit bawang merah memiliki potensi yang tinggi dalam perlindungan terhadap sinar UV. Semakin tinggi nilai SPF yang dihasilkan, semakin tinggi juga perlindungan tabir surya terhadap sinar UV. Pembuatan ekstraksi daun kelor juga dilakukan melalui pengeringan daun kelor dan teknik maserasi. Daun kelor kering sebanyak 10 gram dilarutkan dalam etanol 7-% sebanyak 100 ml atau dalam perbandingan sampel dan pelarut 1:10 (Apriyati et al., 2022). Menurut Kresnawati et al. (2022), menyatakan pembuatan spray gel dapat dilakukan menggunakan carbopol yang didispersikan dengan akuades yang akan membentuk massa gel transparan. Senyawa-senyawa seperti trietanolamin, metil paraben, propilen-glikol, dan propil paraben selanjutnya dicampurkan, dimasukkan sedikit demi sedikit ke dalam massa gel transparan dan diaduk hingga homogen. Campuran yang telah homogen dimasukkan niacinamide dan dilarutkan dalam aquades. Dalam hal ini, ekstrak kulit bawang merah yang dimasukkan ke dalam larutan tersebut. Uji Organoleptik, Homogenitas, dan Viskositas Sunscreen Spray Gel Sunscreen spray gel diuji organoleptisnya dengan diamati secara langsung warna, bau dan teksturnya selama waktu penyimpanan 2 minggu. Hasil didapatkan bahwa sediaan sunscreen spray gel berbentuk cair agak gel dan berwarna putih, teksturnya lembut dan tidak memiliki bau. Homogenitas sunscreen spray gel diuji dengan mengoleskan sediaan sebanyak 0,1 g pada preparat kaca, kemudian diratakan dengan menempelkan preparat kaca yang lain dan diamati apakah ada atau tidaknya partikel yang belum tercampur secara homogen. Hasil didapatkan bahwa sediaan sunscreen spray gel sudah tercampur secara homogen seluruh bahan-bahan formulasinya. Viskositas sunscreen spray gel diuji dengan dimasukkan ke dalam gelas beker 100 mL sebanyak 100 g. Sediaan diukur viskositasnya dengan viskometer. Hasil didapatkan bahwa sediaan mencapai angka yang stabil viskositasnya. Uji pH, Daya Lekat & Daya Kering, dan Sensitivitas Sunscreen Spray Gel Sunscreen spray gel dapat diperiksa pH-nya menggunakan pH meter. Tahapannya, sediaan dicelupkan pH meter sampai batas tanda, setelah itu dibaca nilai pH sunscreen spray gel. Hasil didapatkan bahwa sunscreen memiliki pH yang sesuai dengan kulit, yaitu sebesar 4,5-8,0. Parameter daya sebar sunscreen spray gel dapat diuji dengan disemprotkan ke kulit pada bagian lengan atas sebanyak 1 kali, setelah itu dihitung sampai 10 detik. Pengujian dilakukan sebanyak 3 kali dan diamati apakah sunscreen spray gel melekat dan mengering ke 268


kulit atau menetes dari hasil semprotan ke bawah. Hasil didapatkan bahwa sunscreen spray gel dapat mengering dan tidak menetes setelah pengujian ketiga dengan waktu tunggu selama 10 detik. Sunscreen spray gel dioleskan pada kulit bagian belakang telinga, lalu tunggu hingga 15 menit, efeknya terhadap iritasi, efek panas terbakar, gatal, merah dan timbul ruam atau tidak perlu diamati. Hasil didapatkan bahwa sunscreen spray gel tidak menimbulkan iritasi, efek panas terbakar, gatal, merah dan tidak menimbulkan ruam pada kulit bagian belakang telinga. 269


BAB V. PENUTUP A. Kesimpulan Flavonoid merupakan senyawa metabolit sekunder yang terdapat pada kulit bawang merah dan daun kelor. Flavonoid bermanfaat sebagai agen bioaktif antioksidan, anti inflamasi, dan anti penuaan. Jenis senyawa flavonoid yang terdapat pada kulit bawang merah dan daun kelor berupa kuersetin. Kuersetin berperan dalam menangkal paparan sinar UV di kulit dan dapat mencerahkan kulit atau sebagai inhibitor tirosinase. Selain flavonoid, pada kulit bawang merah juga terdapat tanin yang memiliki potensi sebagai tabir surya. Daun kelor juga mengandung vitamin A, B dan C sebagai antioksidan. Senyawa antioksidan tersebut berpotensi mencerahkan kulit wajah, melindungi kulit dari radikal bebas, melembabkan dan membentuk kolagen untuk memperbaiki tekstur kulit. Ekstrak kulit bawang merah dan daun kelor sehingga diperoleh senyawa-senyawa tersebut berpotensi digunakan sebagai bahan pendukung dalam pembuatan produk tabir surya, sehingga tabir surya tidak hanya dapat mencegah paparan sinar UV, tetapi juga menutrisi kulit dengan menjaga hidrasi kulit dan mencerahkan wajah. B. Saran 1. Hendaknya dilakukan penelitian lebih lanjut terkait efektivitas pembuatan sunscreen jenis lain yang berbahan dasar daun kelor dan kulit bawang merah. 2. Hendaknya informasi terkait pemanfaatan daun kelor dan kulit bawang merah dapat ditingkatkan dan disebarluaskan dengan memanfaatkan ilmu pengetahuan yang dimiliki. 3. Hendaknya dilakukan kajian mendalam terkait penggunaan sunscreen spray gel dari ekstrak kulit bawang merah dan daun kelor pada berbagai jenis kulit. 270


DAFTAR PUSTAKA Abidin, Z., Khaeriah, U., Zuhrina, Z., Pratama, M. & Baits, M., 2019. Tyrosinase Inhibitor Activity Measurement of Crude and Purified Extract of Moringa Leaves (Moringa oleifera L.). Indonesian Journal of Pharmaceutical Science and Technology, 1(1), pp.52-58. Afiddah, B.N., Yakub, L.F., Fajarwati, N.F. & Yuniarsih, N.Y., 2022. Inovasi Limbah Tanaman sebagai Bahan Baku Sun Protection Factor (SPF). Syntax Idea, 4(7), pp.1081-1088. Apriyati, E., Murdiati, A. & Triwitono, P., 2022. Pengaruh Lama Waktu Maserasi terhadap Kadar Falvonoid dan Aktivitas Antioksidan Ekstrak Daun Kelor. Jurnal Teknologi Pangan, 16(1), pp.116-123. Arifin, B. & Ibrahim, S., 2018. Struktur, Bioaktivitas dan Antioksidan Flavonoid. Jurnal Zarah, 6(1), pp.21-29. Azhar, S.F. & Yuliawati, K.M., 2021. Pengaruh Waktu Aging dan Metode Ekstraksi terhadap Aktivitas Antioksidan Black Garlic yang Dibandingkan dengan Bawang Putih (Allium sativum L.). Jurnal Riset Farmasi, 1(1), pp.16-23. Badan Pusat Statistik Indonesia., 2022. Beranda Badan Pusat Statistik. Tersedia (Online): https://www.bps.go.id/indicator/55/61/1/produksi-tanaman-sayuran.html diakses pada Minggu, 11 Juni 2023. Bardos, J., Dalimunthe, A., & Harahap, U., 2018. Hepatoprotective Activity of Skin Ethanol Extract Red Onion (Allium cepa L. Corium) Against Induced Male Mice Parasetamol. Talenta Conference Series: Tropical Medicine (TM), 1(3), pp. 001–006. Dampati, P.S. & Veronica, E., 2020. Potensi Ekstrak Bawang Hitam sebagai Tabir Surya terhadap Paparan Sinar Ultraviolet. Jurnal Kesehatan dan Kedokteran, 2(1), pp.23-31. Fejer, J., Kron, I., Pellizzeri, V., Pl’uchtova, M., Eliasova, A., Campone, L., Gervasi, T., Bartolomeo, G., Cicero, N., Babejova, A., Konecna, M., Sedlak, V., Poracova, J. & Grulova, D., 2019. First Report on Evaluation of Basic Nutritional and Antioxidant Properties of Moringa oleifera Lam. from Caribbean Island of Saint Lucia. Plants, 8 (12), pp.1-15. Hartati, M. & Noer, S., 2020. Penetapan kadar senyawa tanin ekstrak etanol kulit bawang merah (Allium ascalonicum L.). In SINASIS (Seminar Nasional Sains). 1(1), pp. 165-168. Ifesan, B. O. T., 2017. Chemical Composition of Onion Peel (Allium cepa) and its Ability to Serve as a Preservative in Cooked Beef. International Journal of Science and Research Methodology, 7(4), pp. 25–34. Kresnawati, Y., Fitrianingsih, S. & Purwaningsih, C.P., 2022. Formulasi dan Uji Potensi Sediaan Spray Gel Niasiamida dengan Propilenglikol sebagai Humektan. Cendekia Journal of Pharmacy, 6(2), pp.281-290. Kristantri, R.S., Sari, W.K. & Pebriani, T.H., 2022. Uji Angka Lempeng Total (ALT) dan Angka Kapang Khamir (AKK) Sediaan Sunscreen Spray Gel Ekstrak Etanol Kulit 271


Batang Kayu Manis (Cinnamomum burmanii Ness. BI. Syn). Lumbung Farmasi: Jurnal Ilmu Kefarmasian, 3(2), pp. 298-302. Laksmiani, N.P.L., Widiantara, I.W.A. & Pawarrangan, A.B.S., 2022. Potency Of Moringa (Moringa Oleifera L.) Leaves Extract Containing Quercetin As A Depigmentation Agent Inhibiting The Tyrosinase Enzyme Using In-Silico And In-Vitro Assay. Pharmacia, 69(1), pp.85-92. Lestari, I., Prajuwita, M. & Lastri, A., 2021. Penentuan Nilai SPF Kombinasi Ekstrak Daun Ketapang dan Binahong Secara In Vitro. Jurnal Ilmiah Farmasi, 10(1), pp. 1-10. Lv, Xia, Liu, T., Ma, H., Tian, Y., Li, L., Li, Z., Gao, M., Zhang, J. & Tang, Z., 2017. Preparation of Essential Oil-Based Microemulsions for Improving the Solubility, pH Stability, Photostability, and Skin Permeation of Quercetin. AAPS PharmSciTech, 18, pp. 3097-3104. Meiyuni, M, 2020. Penentuan Nilai SUn Protecting (SPF) Ekstrak Kulit Bawang Merah (Allium Cepa L.) dan Kulit Bawang Putih (Allium Sativum L.). Skripsi. Universitas Muslim Nusantara Al-Washliyah Minerva, P., 2019. Penggunaan Tabir Surya Bagi Kesehatan Kulit. Jurnal Pendidikan dan Keluarga, 11(1), pp. 95-101. Ngoc, L.T.N., Tran, V.V., Moon, J.Y., Chae, M., Park, D. & Lee, Y.C., 2019. Recent Trends of Sunscreen Cosmetic: An Update Review. Cosmetics, 6(64), pp. 1-15. Nurhasnawati, H., Sukarni & Handayani, F., 2017. Perbandingan Metode Ekstraksi Maserasi dan Sokletasi Terhadap Aktivitas Antioksidan Ekstrak Etanol Daun Jambu Bol (Syzygium malaccense L.). Jurnal Ilmiah Manuntung, 3(1), pp.91-95. Perwita, M.H., 2019. Pemanfaatan Ekstrak Moringa oleifera sebagai Masker Organik untuk Merawat Kesehatan Kulit Wajah. Jurnal Keluarga Sehat Sejahtera, 17(2), pp.36-41. Pradana, D.L.C. & Wulandari, A.A., 2019. Uji Total Flavonoid Dari Ekstrak Air Daun Kelor (Moringa oleifera) dan Secang (Caesalpinia sappan L.). Jurnal Insan Farmasi Indonesia, 2(2), pp.271-277. Pratama, W, A. & Zulkarnain, A, K, 2015. Uji SPF In Vitro dan Sifat Fisik Beberapa Produk Tabir Surya yang Beredar di Pasaran, Majalah Farmasi, 11(1), pp. 275-283. Rahayu, S., Kurniasih, N. & Amalia, V., 2015. Ekstraksi dan Identifikasi Senyawa Flavonoid dari Limbah Kulit Bawang Merah sebagai Antioksidan alami. al Kimiya: Jurnal Ilmu Kimia dan Terapan, 2(1), pp.1-8. Rahayu, T.D., Ardana, M. & Rijai, L., 2017, November. Potensi Kulit Bawang Merah (Allium cepa L.) Sebagai Antioksidan dan Tabir Surya. In Proceeding of Mulawarman Pharmaceuticals Conferences (Proc. Mul. Pharm. Conf.), 6, pp. 84-89. Ratnapuri, P.H., Sari, D.I., Ihsanuddin, M.F. & Pertiw, M.N., 2020. Karakteristik Fisika Dan Kimia Sediaan Krim Ekstrak Kulit Bawang Merah (Allium ascalonicum) Dengan Variasi Konsentrasi Ekstrak. In Prosiding Seminar Nasional Lingkungan Lahan Basah, 5(2), pp. 36-41. Rusita, Y. D. & Suhendriyo, I. A.., 2017. Aktivitas Tabir Surya Dengan Nilai Sun Protection Factors (SPF) Sediaan Losion Kombinasi Ekstrak Kayu Manis dan Ekstrak Kulit Delima Pada Paparan Sinar Matahari dan Ruang Tertutup. Jurnal Kebidanan dan Kesehatan Nasional, 2(1), pp. 1-59. 272


Ruslan, R., Agustina, S. & Hasanah, U., 2019. Penentuan Nilai Sun Protection Factor (SPF) dari Kulit Bawang Merah. Jurnal Redoks: Jurnal Pendidikan Kimia dan Ilmu Kimia, 2(1), pp.34-43. Soemarie,Y.B., 2016. Uji Aktivitas Antiinflamasi Kuersetin Kulit Merah (Allium cepa L.) pada Mencit putih jantan (Mus musculus). Karya tulis ilmiah, Samarinda, Akademi Farmasi Samarinda. Sulistiyowati, A., Yushardi. & Sudarti., 2022. Potensi Keberagaman SPF Sunscreen terhadap Perlindungan Paparan Sinar Ultraviolet Berdasarkan Iklim di Indonesia, Jurnal Bidang Ilmu Kesehatan, 12(3), pp. 261-269. Susanty, S., Yudistirani, S.A. & Islam, M.B., 2019. Metode Ekstraksi Untuk Perolehan Kandungan Flavonoid Tertinggi Dari Ekstrak Daun Kelor (Moringa oleifera Lam). Jurnal Konversi, 8(2), p.6. Wasitaatmadja, S. M. (2007). Ilmu Penyakit Kulit Dan Kelamin. Edisi V. Jakarta: Universitas Indonesia. Wiraningtyas, A., Ruslan, Agustina, S. & Hasanah, U., 2019. Penentuan Nilai Sun Protection Factor (SPF). Jurnal Redoks: Jurnal Pendidikan Kimia dan Ilmu Kimia, 2(1), pp.34-43. Whenny R, Rusli, dan Rijai L., 2015. Aktivitas Tabir Surya Ekstrak Daun Cempedak (Artocarpus champeden Spreng). Jurnal Sains dan Kesehatan, 1(4), pp.154-158. Wulan, H., Widagdo, D.P. & Aulia, C., 2021. Potensi Ekstrak Etanol Daun Kelor sebagai Antiinflamasi, Penetapan Kadar Flavonoid Total. Media Farmasi Indonesia, 16(2), pp.1693-1697. Wulandari, L., Suhartinah & Nopiyanti, V., 2021. Formulasi dan Uji Aktivitas Perlindungan Tabir Surya Emulgel Ekstrak Etanol Kulit Bawang Merah (Allium cepa L.) secara In Vitro dan In Vivo. Cerata Jurnal Ilmu Farmasi, 12(1), pp.1-9. Zhu, X., Li, N., Wang, Y., Ding, L., Chen, H., Yu, Y. & Shi, X., 2017. Protective Effects of Quercetin on UVB Irradiation-induced Cytotoxicity Through ROS Clearance in Keratinocyte Cells. Oncology Reports, 37(1), pp.2019-218. 273


Formulation of Effervescent Preparations Made From Natural Ingredients As a Stabilizer of Human Blood Sugar Levels 1stSanifha H. Pradesya, 2nd Rini D. Puspitasari, 3rd Chika A. Darmawan, and 4 th Zia Rahmawati 1) Chemistry, Faculty of Mathematics and Natural Sciences, Jenderal Soedirman University, Purwokerto, Indonesia ([email protected]) 2) Pharmacy, Faculty of Health Sciences, Jenderal Soedirman University, Purwokerto, Indonesia ([email protected] ) 3) Chemistry, Faculty of Mathematics and Natural Sciences, Jenderal Soedirman University, Purwokerto, Indonesia ([email protected]) 4) Physics, Faculty of Mathematics and Natural Sciences, Jenderal Soedirman University, Purwokerto, Indonesia ([email protected]) Abstract This research focuses on the treatment of diabetes mellitus which has become a health problem complained of by people in Indonesia and even the world. The main ingredient used in this research is cherry leaf extract. This study aims to develop cherry leaf extract effervescent tablets as a stabilizer for blood glucose levels and to obtain the best formula for cherry leaf extract effervescent tablets. Effervescent tablets are tablets that are first dissolved in water and then taken to make it easier for the user to consume the tablet. Cherry leaves contain flavonoids such as flavones, flavanones, flavans and biflavans which have antidiabetic and cytotoxic activity. The research method used was a laboratory experiment by determining cherry leaves, cherry leaf extraction, and formulating cherry leaf extract effervescent tablets. The formulation was carried out by granulating a thick ethanol extract with lactose to produce exact granules. The results showed that cherry leaf extract effervescent tablets were used as an alternative to stabilize blood sugar levels using natural ingredients, environmentally friendly, harmless and did not cause side effects. Keywords:Diabetes Mellitus, Effervescent Tablets, Cherry Leaf Extract. 1. INTRODUCTION Diabetes mellitus (DM) is a group of metabolic diseases characterized by hyperglycemia that occurs due to abnormalities in insulin secretion, insulin action or both [1]. Insulin deficiency in the body is caused by damage to pancreatic β cells, namely cells that function to produce insulin [2]. Based on the latest data from the International Diabetes Federation in 2017, it shows that Indonesia is currently ranked 6th in the world with the largest number of diabetics, as many as 10.3 million people. The prevalence rate of diabetes in Indonesia has increased significantly over the last 5 years in the range of 2013 reaching 6.9% and 2018 reaching 8.5% [3]. Based on data from 2011 to 2016 there were around 60 type 1 DM patients from 1 to 18 years old. Experts predict that the incidence of type 1 and 2 DM will increase by 64% in 2025, which is around 53.1 million people will be diagnosed with type 1 DM. The incidence of type 1 DM in Indonesia is 0.7 per 100,000 children[4]. The type of diabetes mellitus that often occurs in children is 274


type-1, namely the occurrence of absolute insulin deficiency due to damage to pancreatic gland cells by an autoimmune process [5]. Type 1 diabetes mellitus is a chronic disease so medication adherence needs to be considered. Compliance with taking medication plays an important role in maintaining blood glucose levels within the normal range [6]. Administration of drugs using the oral method is often preferred because it is more convenient, costeffective, and acceptable for all patients. Availability of drug formulas for children in Indonesia in the form of tablets and powder. However, both have drawbacks including bad smell, bitter taste and unhygienic powder making process[7]. Therefore, there is a need for innovation to increase children's compliance in taking medication easily, namely effervescent tablets[8]. Effervescent tablets are tablets that are first dissolved in water and then drunk. Drugs in effervescent form have several advantages including being practical, easy to consume, precise dosage and produce a good taste so that they can increase children's adherence to taking medication [9]. Effervescent tablets can be made from natural ingredients such as bay leaves, ciplukan leaves, banana leaves, red betel leaves and cherry leaves. The materials used in this study were 2 cherry leaves. Kersen leaves have active compounds in the form of tannins to precipitate protein from the intestinal mucosa and form a protective lining for the intestine so that glucose intake is hampered. The terpenoid group can also increase insulin secretion from β-pancreatic cells and saponins which can inhibit glucose absorption in the small intestine and inhibit gastric emptying so that food is absorbed longer [8]. According to research conducted by Fitriani & Erlyn (2019), testing the antidiabetic activity of cherry leaf extract in vivo in mice at a dose of 500 mg/dl using ethanol solvent can reduce final blood glucose levels by 103.33 mg/dl from initial levels of 343, 83 mg/dl. This research is still at the testing stage of cherry leaf extract, so there is a need for innovation in the form of effervescent tablets. 2. Methods and Experimental Details 2.1 Methods Materials and tools The materials used in the research are cherry leaves, glucose monohydrate, benzene, acetone, ethanol, distilled water, sodium bicarbonate, citric acid, tartaric acid, PVP K30, lactose, talc, Mg stearate, food coloring, aluminum foil, mannitol, mice, plastic wrap, filter paper, cotton, labels, tissues and napkins. The tools used in the research were glasses, evaporating cups, water bath, blender, maceration tool, electric balance, funnel, stopwatch, filter 14 mesh and 40 mesh, single punch tablet presses, glassware, and ovens. 2.2 Experimental Details 1. Determination of cherry leaves The determination of cherry leaves used were taken in the Grendeng Village, North Purwokerto District, Banyumas Regency. The cherry leaves used, namely the fifth leaf from the shoot by selecting fresh leaves and not rotten. Leaves are collected in the morning at 09.00 until 11.00 WIB. The results of the determination show that the plants that used in this research are cherry leaves (M. calabura L) [10]. 2. Extraction of cherry leaves (M.calabura L) The cherry leaf extraction method refers to research before with cherry leaves that have been washed clean using running water, then cut into small pieces and dried by aerated. The dried cherry leaves are made into powder, then weighed 50 g and put into 275


the maceration container, then 750 mL of 96% ethanol solvent was added. Samples were left for 3 days in a closed container and protected from direct sunlight while stirring periodically, after 3 x 24 hours filtering is carried out and the dregs was macerated again with 750 mL ethanol. Remaceration performed 2 times for ± 2 × 24 hours. Maceration extract or filtrate accommodated together and evaporated until obtained condensed ethanol extract [11]. 3. Formulation cherry leaf extract effervescent tablets The formulations are used in various volumes. Condensed ethanol extract is granulated with lactose to produce extract granules. Acid granules are prepared by mixing extract granules, citric acid, tartaric acid, and some PVP. Alkaline granules are prepared by mixing sodium bicarbonate with PVP residue. The manufacturing process at maintained temperature and humidity, PVP in dry form and added 70% ethanol drop by drop. The product mass obtained was then filtered using a 14 mesh sieve and dried in an oven at 40-60◦C (until dry). Talcum and Mg stearate were mixed into the granules, then the temperature was made 35◦C with a relative humidity (RH) of 40%. Non-extract granules were prepared by mixing granules with distilled water of all ingredients except cherry leaf extract. All formulas are mixed with a small amount of food coloring and flavoring. The granules are put into a single punch printing machine [11]. 4. In Vivo Test Condensed ethanol extract is granulated with lactose to produce extract granules. Acid granules are prepared by mixing extract granules, citric acid, tartaric acid, and some PVP. Alkaline granules are prepared by mixing sodium bicarbonate with PVP residue. The manufacturing process at maintained temperature and humidity, PVP in dry form and added 70% ethanol drop by drop. The product mass obtained is then filtered using a 14 mesh sieve and dried in an oven at 40-60°C (until dry). Talcum and Mg stearate are mixed into the granules, then the temperature is made 35°C with a relative humidity (RH) of 40%. Non-extract granules were prepared by mixing granules with distilled water of all ingredients except cherry leaf extract. All formulas are mixed with a small amount of food coloring and flavoring. The granules are put into the printing press single punch [11]. 3. RESULTS AND DISCUSSION The research conducted used SPSS with one way ANOVA followed by the LSD test. The results showed that the most effective dose for reducing blood glucose levels in Mus musculus L. mice was cherry leaf extract at a dose of 0.3 mL/10gr body weight (mice) in both male and female mice [12]. According to other research, boiling cherry leaves effectively lowered blood sugar levels in 5 respondents (humans) with the same symptoms of diabetes according to objective data, namely frequent polyuria, polydipsia, polyphagia, tingling, weakness, blurred vision, and often eating a lot but weight loss. Tests on the 5 respondents were carried out for 3 days and obtained quite good data, one of which was that their blood sugar levels decreased from 205 mg/dl to 95 mg/dl [13]. Cherry leaf extract can also be made into an ointment for healing wounds with hyperglycemia which was tested on mice by alloxan induction, then initiated and treated with cherry leaf ethanol extract ointment with concentrations of 30%, 40%, and 50% on mice incision wounds [14]. 276


Based on these studies, cherry leaf extract proved effective in reducing blood sugar levels in mice that were induced by alloxan using the in vivo method. However, from these various studies, no one has come up with an effervescent tablet formula. This effervescent tablet formulation for diabetes medication with cherry leaf extract can be an alternative for children or adolescents who suffer from diabetes. 4. Acknowledgments We would like to thank the Chancellor of Jenderal Soedirman University, Dean of the Faculty of Mathematics and Natural Sciences and Faculty of Health Sciences who have supported the completion of this research. We also would like to thank Dr. Santi Nur Handayani, S.Si., M.Sc. for beneficial discussions as well as her support and encouragement. 5. Conclusion Cherry leaf extract effervescent tablets are an alternative medicine to stabilize blood sugar for diabetics. These effervescent tablets can be given to children with diabetes who have difficulty taking regular medication, therefore, healing efforts can be carried out properly because these tablets have a pleasant taste and do not cause side effects. 6. References [1] Marbun, A. S., Aryani, N., Sipayung, N., and Sinaga, A. S. 2022. Pengetahuan Lima Pilar Dengan Kadar Gula Darah Pada Pasien Diabetes Melitus Tipe II Di Upt.Puskesmas Kenangan. Jurnal Teknologi Kesehatan dan Ilmu Sosial. 4(1): 208-217. [2] Tanjung, Y.P. dan Puspitasari, I. 2019. Formulasi dan evaluasi fisik tablet effervescent ekstrak buah mengkudu (Morinda citrifolia L). Jurnal Unpad Farmaka. 17 (1):1-14. [3] Nurdin, F. 2021. Persepsi penyakit dan perawatan diri dengan kualitas hidup diabetes mellitus type 2. Jurnal Keperawatan Silampari. 4 (2): 566–575. [4] Sufyan, D. 2020. Indonesian journal of human nutrition. Indonesian Journal of Human Nutrition. 7 (2):139–152. [5] Pulungan, A.B., Annisa, D. dan Imada, S. 2019. Diabetes Melitus Tipe-1 Pada Anak: Situasi Di Indonesia Dan Tata Laksana. Sari Pediatri. 20 (6):392-400. [6] Fatiha, C.N. & Sabiti, F.B. 2021. Peningkatan Kepatuhan Minum Obat Melalui Konseling Apoteker Pada Pasien Diabetes Mellitus Tipe 2 Di Puskesmas Halmahera Kota Semarang. JPSCR: Journal of Pharmaceutical Science and Clinical Research. 6 (1): 41-48. [7] Rahayu, P. dan Yusrizal. 2017. Keseragaman bobot resep racikan serbuk bagi (Pulveres) di apotek Kota Bandar Lampung tahun 2017. Jurnal Analis Kesehatan. 8 (1): 2017–2020. [8] Pakel, D., Sumah, D.F. dan Rehena, Z. 2019. Keberhasilan Minum Obat Puyer Bagi Balita Dengan Menggunakan Gula Pasir Di Wilayah Kerja Puskesmas Passo Ambon. Moluccas Health Journal. 1 (1): 90–96. [9] Fitriani, N. dan Erlyn, P. 2019. Aktivitas Antidiabetik Kombinasi Ekstrak Etanol Daun Ciplukan (Physalis Angulata) Dan Daun Gaharu (Aquilaria Malaccensis) Pada Tikus Diabetes. MEDIKA: Jurnal Kedokteran dan Kesehatan. 9 (2):70-78. [10] Hasma, H. dan Suryanita, S. 2020. Efektivitas Rebusan daun Muntingia calabura L segar dan kering sebagai penurun hiperglikemia pada mencit. Jurnal Kesehatan Manarang. 6 (2):78-84. [11] Syarif, S., Nurnaningsih, N. dan Pratama, M. 2020. Uji aktivitas ekstrak etanol daun kersen (Muntingia calabura L.) sebagai 277


inhibitor enzim α-glukosidase dengan menggunakan elisa reader. Jurnal Fitofarmaka Indonesia. 7 (2):1–5. [12] Stevani, H., Base, N. H., & Thamrin, H, A. 2016. Efektifitas Rebusan Daun Kersen (Muntingia calabura L) Terhadap Penurunan Kadar Glukosa Darah Pada Mencit (Mus musculus). [13] Purwandari, K.P. 2021. Efektifitas Rebusan Daun Kersen (Muntingia Calabura L) Untuk Menurunkan Kadar Gula Darah Terhadap Penderita Diabetes Militus Di Desa Kedung Ringin Giripurwo Wonogiri. Kersen. 10 (1): 1–11. [14] Ginting, B., Amelia, C. dan Sholikhah, N.A. 2022. Pengaruh Pemberian Rebusan Daun Pandan Wangi (Pandanus Amaryllifolius Roxb) Terhadap Penurunan Glukosa Darah Pada Mencit (Mus Musculus). 12 (2):87–96. 278


CHALORA: City Park Lights CO2 Absorber Based on Microalgae Culture (Chlorella sp.) to realize Net Zero 2050 Devia Angelina Sopian1 , Elda Zaelita Nurul Raizma2 , Siti Nuril Ihda3 , Zia Rahmawati4 , Bagja Hanifan Hilmana5 1) ) Biology, Faculty of Biology, Jenderal Soedirman University, Purwokerto, Indonesia ([email protected]) 2) Biology, Faculty of Biology, Jenderal Soedirman University, Purwokerto, Indonesia ([email protected]) 3) ) Biology, Faculty of Biology, Jenderal Soedirman University, Purwokerto, Indonesia ([email protected]) 4) Physics, Faculty of Mathematics and Natural Sciences, Jenderal Soedirman University, Purwokerto, Indonesia ([email protected]) 5) Electrical Engineering, Faculty of Engineering, Jenderal Soedirman University, Purwokerto, Indonesia ([email protected]) Abstract Air pollution is a serious issue for human health, especially in urban areas, which are centres of mobility and thus have high levels of air pollution and the potential to damage air quality. One innovative approach to reduce pollution in urban areas is to utilise microalgae as a tool to absorb CO2 from the air and convert it into a renewable energy source. CHALORA is a sustainable innovation to reduce air pollution by using the PMFC (Photosynthesis Microbial Fuel Cell) method and converting sunlight into electricity in the metabolic reaction of microbial fuel cells which are then utilised for electrical energy sources for lights in city parks. The method used is a literature study approach. 1. Cultivation of Microalgae Chlorella sp.; 2. Conversion of microalgae into electricity with PMFC System and solar panel assistance; 3. CO2 absorption by exhausted fan on CHALORA.This research uses secondary data obtained from research conducted by Rosyandi et al, (2022). According to the study, the utilisation of microalgae with PMFC method can produce electrical energy with a voltage value of 320 mV, current strength of 5.9 µA, and power density of 1293.151 µW/m2. CHALORA has a significant impact on improving air quality in urban areas because it is equipped with an air absorption system using an exhaust fan so as to maximise CO2 absorption in the environment. CHALORA actively reduces air pollution and reduces carbon emissions because it can produce sustainable electrical energy in an effort to achieve Net Zero Emissions 2030. Keywords: CHALORA, Chlorella sp., CO2, PMFC. 1. Introduction Data from the World Health Organization (2022) recorded that Jakarta, the capital city of Indonesia, ranked 12th as the most polluted city in the world 279


while according to the Air Quality Index (IQAir) data in 2021 recorded that Indonesia ranked 17th as the most polluted country. News from BBC News Indonesia, reported that several countries including Indonesia accounted for 75% of the total global air pollution burden due to high levels of air pollution. This has led to an increased need for oxygen for Indonesians in their neighbourhood. Fine particles from air pollution can enter the human respiratory tract, causing a person to have difficulty breathing. This requires more oxygen because the body must work harder in the respiratory system so that the body's needs are met. The green microalgae species Chlorella vulgaris is often used to reduce carbon emissions. Chlorella vulgaris uses carbon dioxides for the photosynthesis process which produces oxygen with a relatively fast growth rate (Mulyanto & Handayani, 2015). Optimising the growth of Chlorella vulgaris in absorbing carbon dioxide and producing oxygen can be obtained through photobioreactor design. The type of photobioreactor that can photosynthesise more efficiently than other types of closed photobioreactors is the tube photobioreactor (Hadiyanto et al., 2012). In addition to oxygen, Chlorella vulgaris cultures also produce Photocynthetis Microbial Fuel Cell that can generate electrical power through the acceptance of electrons to the anode during the photosynthesis process (Rosyandi et al., 2017). Therefore, the utilisation of microalgae cultures must be optimised to overcome air pollution. The process of absorbing polluted air that replaces fresh air can use an exhaust fan system. The system is designed to remove polluted air with a fan component that sucks air from the environment into the device (Yunianto et al., 2019). Currently, the use of exhaust fan systems is widely used for air conditioners that absorb massive electrical energy. Based on the above background, the problem that needs to be studied in this study can be formulated on how to design an air quality guard tool based on an exhaust fan system that utilises the photosynthesis process of Chlorella vulgaris microalgae culture with an oxygenproducing photobioreactor tube and electrical energy through Photocynthetis Microbial Fuel Cell. This research is useful to provide information on the design of a tool to overcome air pollution by utilising microalgae culture based on an exhaust fan system. 2. Method And Eksperimental Details This research method uses a combination of descriptive and experimental methods by conducting experiments on a prototype scale. The following is the research flow of making "CHALORA": 280


2.1.Tools and Material No . Tools and Material Function 1. PMFC Reactor System Converting sunlight into electricity in the metabolic reactions of microbial fuel cells (MFCs), in which electroactive microorganis ms are used as electron acceptors 2. Photobiore actor tubes Microalgae cultivation site 3. Electrodes electron acceptor substrate produced by microbes in the anode chamber. 4. Microalgae Chlorella sp. Media converting CO2 to O2 5. BBM (Bold Bassal Medium) As a nutrient used for microalgae growth 6. Capillary Pipe Delivering CO2 into microalgae cultures 7. Solar Panel Convert solar energy into electrical energy and supplementa ry energy sources. 8. Exhausted fan Filter air from the outside environment and exchange CO2 into O2. 2.2. Tool Design Tool design includes making system block diagrams and designs that will be realised. Figure 1. CHALORA design 2.3 System Testing This stage is considered the most crucial in the other implementation methods as it serves as the main indicator of the success of "Maflextor". The stages involve: 1. Chlorella vulgaris microalgae culture: This involves the cultivation of Chlorella vulgaris microalgae using treated nutrients as microalgae food, which is then placed in a photobioreactor. 2. Testing for light absorption by microalgae: This test is conducted using a spectrometer to determine the wavelength of light that can be absorbed by the 281


microalgae during the photosynthesis process. This stage is very important to evaluate the performance of the "CHALORA" system. 3. PMFC (Proton Exchange Membrane Fuel Cell) System: Flow of CO2 to the Anode, and O2 to the cathode, electrons from the anode move through an external circuit to create an electric current, the electric current generated by the flow of electrons through the external circuit can be used to be directed to the system for energy storage. 2.4 Data Collection The most crucial part of research is the data collection process. This is because the main goal of research is to obtain accurate information, which depends on the amount of data collected. The data collection process was carried out through literature studies, and small-scale experiments. In addition, this paper also involved the cultivation of microalgae and the utilisation of a solar panel system known as "CHALORA". 2.5 Evaluation and Refinement Evaluation and improvement involve various aspects, including the results of data analysis derived from testing. If the success rate of the product is below 75%, then improvements will be made. After passing through a series of development stages, starting from designing, assembling the product, testing, revising, and improving, the product will be ready for use. 2.6 Testing the reaction of microalgae with sunlight Microalgae Reaction Testing with sunlight is carried out to determine the concentration of oxygen produced by algae when exposed to sunlight. In the test conducted by Cahyadi et al. (2023) they checked the concentration of algae based on time from 11.30 WIB - 20.10 WIB. At different times will produce graphs that experience an increase and decrease in the number of algae concentrations. Algae experienced an increase in oxygen at 11.30 WIB until it reached its final peak at 15.00 WIB with an oxygen concentration of 21.7%, the amount of oxygen decreased due to lack of sunlight at that time. oxygen concentration is also related to the presence of sunlight in the process of oxygen formation. 2.7Testing carbon dioxide levels absorbed by microalgae Testing the levels of carbon dioxide absorbed by microalgae is done to find out when microalgae absorb oxygen well in a day and determine the ability of microalgae to absorb CO2. In tests conducted by Mulyanto (2010) said that the absorption of oxygen in the morning and evening is not too large compared to during the day, because photosynthesis that occurs at that time has not been running well due to lack of sunlight at that hour. The ability of microalgae to absorb CO2 is known using a descriptive data analysis method. The data 282


collected will be observed for their influence on each other, in the experiments carried out there are 3 (three) stages of feeding whose averages are listed in the table, from the data on the results of CO2 produced, the longer the time passed, the higher the CO2 content is as much as 9.16%. At the top of the lamp is a ventilator that sucks up the smog inside, which is channelled into the algae liquid. This liquid is circulated in a spiral system thanks to a pump, which helps the algae absorb CO2 better. Thanks to the frequent use of garden lights, air cleaning becomes more effective. 2.8 Testing the O2 concentration response on a 250 mL microalgae sample Testing of 250 ml microalgae samples was carried out to determine the response of O2 contained. In research conducted by Biolita & Harmadi (2017) resulted in O2 detection testing between oxygen in microalgae culture bottles and oxygen in free air. The free air test produced an O2 concentration of 19% and the 250 ml microalgae culture bottle had an O2 concentration of 19.1%. That way 250 ml of microalgae will produce an increase in O2 concentration of 0.1%. 2.9 Light absorption testing of Chlorella vulgaris microalgae using UV-Vis spectrometer. Light absorption testing is done to determine the wavelength that can be absorbed by microalgae. able to be absorbed by microalgae. In tests conducted by Biolita & Harmadi (2017) said that Chlorella is able to absorb wavelengths of 400 nm - 700 nm, this is the result of wavelengths that can be absorbed by microalgae as long as microalgae are exposed to sunlight. The maximum wavelength that can be absorbed by microalgae is 450 nm, so the good light for microalgae to absorb is light from blue LEDs whose wavelength is around 450 nm - 500 nm. According to Daniyati et al. (2012) who conducted the same test, namely with a UV-Vis spectrometer, produced an optimal absorbance wavelength range of 400 nm - 1000 nm. The wavelength absorbed needs to be considered because if the light is not absorbed or not used it will convert the light into heat energy which will inhibit the development of algae cultures. 3. Result and Discussion 3.1 Electric Energy Generated by CHALORA According to research conducted by Rosyadi et al. (2022), the utilization of biocathodes in PMFCs can generate electrical energy with a voltage value of 320 mV, a current strength of 5.9 µA, and a power density of 1293.151 µW/m2. This research serves as the foundation for our study, where we investigate the use of microalgae Chlorella sp. with specific variations to produce electrical energy. The power generated can fulfill basic electricity requirements and be 283


utilized for garden lighting in urban areas. 3.2 Effectiveness of CHALORA in Absorbing CO2 in the Environment CHALORA is equipped with an air absorption system in the environment using an exhaust fan, this system can maximize the absorption of CO2 which will be directly processed by microalgae Cholerra sp. for photosynthesis. This absorption maximizes the photosynthesis process that occurs so that the O2 produced will be more massive and effective than the natural photosynthesis process. This technology can effectively reduce carbon emissions from conventional power plants using fossil fuels. The utilization of photosynthesis products into electrical energy is one form of using renewable energy to achieve Net Zero Emissions. 3.3 Electricity conversion by microalgae with PMFC preparation The production of electricity through the capture of solar energy from higher plants and microalgae in combination with microbial fuel cells is exciting as these systems promise to produce useful energy in a renewable, sustainable and efficient manner. The developed solarpowered PMFC produces renewable biocatalysed electricity continuously for 100 days. The sustainable performance of the PMFC resulted in a maximum current density of 539 mA/m2 projected anode surface area and a maximum power production of 110 mW/m2 photobioreactor surface area. The energy recovery of PMFCs can be improved by optimisation of the photobioreactor, by reducing competition from nonelectrochemically active microorganisms, by increasing the electrode surface and the formation of a more enriched biofilm. 3.4 PMFC working system Microbial Fuel Cell (MFC) is a prospective technology to be developed. MFC is a system that can produce electrical energy through the metabolism of microorganisms. But in its use, MFC has a weakness in the cathode compartment which still uses chemicals, namely potassium ferricyanide (Novitasari, 2011). So it needs a solution so that this technology becomes truly organic. Like the research conducted by Tanaka (1985), namely by using photosynthetic organisms such as Anabaena as a biocathode. Biocathode is the use of living things as electron acceptor substrates in the cathode compartment (ITB News, 2011). The use of photosynthetic organisms in MFC is called PMFC. PMFCs convert sunlight into electricity in the metabolic reaction of microbial fuel cells (MFCs), where electroactive microorganisms are used as electron acceptors for microbes in anaerobic respiration of organic matter (Yagishita, 1993). PMFCs have the same components as ordinary fuel cells, including cathodic and 284


anodic bodies. Materials are oxidised by microorganisms and produce electrons and protons (Aulenta, 2007). Electrons are transferred to the cathodic body through an external circuit and protons are transferred across the membrane. The electrons and protons combine with oxygen on the cathodic body to form water (Amos, 2008). The basic reaction takes place at the anode, where carbohydrates play an important role in providing fuel for the metabolism of microorganisms. At the anode, microorganisms perform a series of metabolic processes under anaerobic conditions that can produce electrons (Gregor, 2002). Then, the protons released diffuse to the cathode section through the proton/cation exchange membrane, while the electrons are transferred to the cathode section through the electrodes. At the cathode, a water formation reaction occurs. Oxygen from the photosynthesis process of photosynthetic organisms as active electron acceptors, as well as dissolved oxygen for Oxygen Reduction Reaction (ORR) (Gajda, 2015). 3.5 CHALORA Mechanism of Action Figure 2. CHALORA compartment The initial algae photobioreactor (AR1) [1] is a glass bubble column. Ambient air is introduced through a sparger into the reactor with an air pump [2]. The second algal photobioreactor (AR2) is a flat plate glass photobioreactor. Ambient air is pumped into the reactor through a bottle to humidify the air and two spargers into the reactor with two pumps [2]. The top of the algae photobioreactor is open to ambient air and serves as a gas outlet. The reactor solution is continuously circulated with a peristaltic pump [3] in a circuit containing a 2-litre flask, which is continuously rotating and covered with aluminium foil, a glass holder with a sensor, and a bottle with a gas sparger [4]. A flat-plate MFC [5] is used with graphite felts (National Electrical Carbon BV, Netherlands) at the anode [6] and cathode [7]. In this study we used a cation exchange membrane [8]. The anode and cathode electrodes were connected to resistors with a range of 0 to 100 Ω [9]. Anolite and catholyte, are continuously circulated by a 285


peristaltic pump [10, 11] through a circuit containing sensors. The PMFC is formed by connecting the algae photobioreactor via a tube circuit to the anode compartment of the MFC. A timeswitch-controlled peristaltic pump [12] is used to mix the algae photobioreactor and anolite. 3.6 Advantages of CHALORA When the algae from the lamp dies, it can be harvested and used for biofuel, which is another attractive feature of the algae lamp. It is known that fuel can be made from biomass. Once the algae liquid is saturated with carbon dioxide, it needs to be channelled into tubes underground. The tubes direct the biomass to the nearest fuel storage station. Here, the biofuel can be used as an environmentally friendly fuel. This environmental benefit is one of the reasons why garden lamp-based is relevant to the work of the Centre for Sustainable Nanotechnology. Although algae are much larger than the nanoscale, they are a great example of a new sustainable technology being developed. 4. Conclussion Based on the results and discussion, it can be concluded that CHALORA is a solution to the problem of air pollution and energy crisis by utilising microalgae cultures using the PMFC (Photosynthesis Microbial Fuel Cell) method which will absorb carbon dioxide and release clean air in the form of oxygen and produce electrical energy derived from the conversion of sunlight into electrical energy in the microbial microalgae fuel cell metabolism. Chalora uses an exhaust fan system that will absorb large amounts of carbon dioxide using a fan and then release clean air. The process of converting dirty air into clean air occurs through photosynthesis carried out by microalgae cultures and the energy produced occurs through the acceptance of electrons to the anode during the photosynthesis process. 5. Acknowledgment The researcher and inventors would like to thank the Jenderal Soedirman University and the lecturer supervisor for supporting us in this activity. 6. Reference. Amos, B., E.J. Suchomel, K.D. Pennell dan F.E. Loffler. 2008. Water Res. 42: 5718-5726. Aulenta, F., dkk,. 2007. Lingkungan. Sains Teknologi. 41: 2554- 2559. Cahyadi, N. H., Solakhudin, M. R., & Nastiti, V. 2023. MAFLEXTOR (Smart And Flexible Photobioreactor): Microalgae Cultivation Innovation Equipped with IoTBased Solar Panel to Realise Sustainable Environment in Indonesia. Envirous, 3(2). Gajda, J. Greenman, C. Melhuish, I. Ieropoulos. 2015. Selfsustainable electricity production from algae grown in a microbial fuel cell. Biomass and Bioenergy. 82: 87-93. Gregor, Hoogers. 2002. Buku Pegangan Teknologi Sel Bahan Bakar. Edisi Kedua (Seri Buku Pegangan untuk Teknik Mesin). CRC Press. Hadiyanto, Samidjan, I., Kumoro, A. C., Silviana, 2012. High biomass microalgae production 286


in open pond bioreactor. Proceedings of the National Seminar on Chemical Engineering, 2010, Yogyakarta, Indonesia, pp.1-6. ITB News. 2011. Microbial Fuel Cell, Energi Listrik Alternatif dari Bakteri. Bandung. ITB. Mulyanto, A. & Handayani, T., 2014. Carbon dioxide emission fixation by microalgae cultivation using nutrients from dairy industry wastewater. Journal of Industrial Research, 9(1), pp.13-21. Novitasari, Deni. 2011. Optimisation of Microbial Fuel Cell (MFC) Performance for Electrical Energy Production Using Lactobacillus bulgaricus Bacteria. Thesis. Faculty of Engineering, University of Indonesia. Rosyandi, F. A., Laily, E. N., Sitoresmi, S. & Yushardi, 2017. Utilisation of green algae as biocathode in PMFC (Photosynthetis Microbial Fuel Cell). Journal of Chemical Engineering, 12(1), pp.4-8. Tanaka, K., Tamamushi, R. , Ogawa. 1985. Sel bahan bakar elektrokimia bio yang dioperasikan oleh cyanobacterium. Anabaena variabilis. Journal Chem. Tech. Bioteknologi. 35: 191-197. Yagishita, T. Horigome, K. Tanaka. 1993. Effects of light CO2 and Inhibitors on the current output of biofuel cells containing the photosynthetic organism Synechococcus sp. Journal Chem. Technol. Biotechnol. 56: 393–399. Yunianti, B., Suryo, S. H. & Oktavian, D., 2019. Performance Test of Air Heater on Transverse Corrugated Plate with Variation of Inlet Air Velocity. Journal of Rotation, 21(1), pp.36-42. 287


288


ESAI Judul Anggota Tim Uji Potensi Pemanfaatan Lumut Daun Sebagai Bahan Dasar Biodegradable Packaging: Solusi Memperpanjang Umur Simpan Buah Dan Sayur 1. Putri Setianingrum (UKMPR 2021) 2. Farah Ispramudita Septiyanti (UKMPR 2021) 289


UJI POTENSI PEMANFAATAN LUMUT DAUN SEBAGAI BAHAN DASAR BIODEGRADABLE PACKAGING: SOLUSI MEMPERPANJANG UMUR SIMPAN BUAH DAN SAYUR Diusulkan oleh: Ketua: Feony Dwi Suciati; B1A021100; Angkatan 2021 Anggota: 1. Putri Setianingrum; B1A021074; Angkatan 2021 2. Farah Ispramudita Septiyanti; B1A021078; Angkatan 2021 UNIVERSITAS JENDERAL SOEDIRMAN PURWOKERTO 2023 290


i KATA PENGANTAR Puji syukur kami panjatkan kehadirat Tuhan Yang Maha Esa yang telah melimpahkan rahmat, kesempatan, dan hidayah-Nya, sehingga kami dapat menyelesaikan karya tulis ilmiah yang berjudul “Uji Potensi Pemanfaatan Lumut Daun Sebagai Bahan Dasar Biodegradable Packaging: Solusi Memperpanjang Umur Simpan Buah Dan Sayur”. Karya tulis ilmiah ini dibuat dalam rangka mengikuti “National Essay Competition”. Karya tulis ini dapat kami selesaikan berkat bantuan dari banyak pihak. Oleh karena itu, kami mengucapkan terima kasih kepada: 1. Riska Desi Aryani, S.Si., M.Sc. selaku dosen pembimbing yang telah memberikan masukan dan bimbingan, sehingga karya tulis ilmiah ini dapat diselesaikan dengan baik. 2. Orang tua kami yang telah memberikan motivasi dan dorongan untuk dapat menyelesaikan karya tulis ini. 3. Teman-teman seperjuangan yang telah berkontribusi dalam waktu, tenaga, dan pikiran dalam membuat karya tulis ilmiah ini. Karya tulis ilmiah ini memberikan gagasan mengenai potensi pemanfaatan lumut daun sebagai bahan dasar biodegradable packaging: solusi memperpanjang umur simpan buah dan sayur. Kami menyadari bahwa karya tulis ilmiah ini masih belum sempurna dan memiliki banyak kekurangan. Oleh karena itu, saran dan kritik senantiasa kami harapkan demi perbaikan dan penyempurnaan karya tulis ilmiah ini. Kami berharap karya tulis ilmiah ini dapat bermanfaat untuk masyarakat luas. Sekian, kami ucapkan permohonan maaf atas segala kekurangan dan terima kasih. 291


ii DAFTAR ISI KATA PENGANTAR ............................................................................................. i DAFTAR ISI........................................................................................................... ii BAB I PENDAHULUAN....................................................................................... 1 BAB II ISI............................................................................................................... 3 BAB III PENUTUP................................................................................................. 5 DAFTAR PUSTAKA ............................................................................................. 6 292


1 BAB I PENDAHULUAN Pengemasan menjadi peran penting dalam proses distribusi produk. Kemasan harus mampu menjaga keamanan produk, terutama dari kontaminasi fisik, kimia, dan biologi yang dapat menurunkan kualitas produk secara drastis. Penurunan kualitas produk organik erat kaitannya dengan umur simpan. Khususnya pada buah dan sayuran yang umur simpannya relatif pendek, apabila tidak dikemas dalam kemasan yang tepat maka buah dan sayuran tersebut cepat rusak, kering, atau bahkan busuk. Hingga saat ini, plastik masih populer digunakan baik sebagai bahan baku pembuatan kemasan maupun sebagai kemasan siap pakai. Namun, seiring berjalannya waktu, jumlah limbah kemasan meningkat hingga mencapai titik kritis. Lamanya waktu degradasi menjadi penyebab utama pencemaran dan kerusakan lingkungan (Di Matteo et al., 2021). Menurut Prakash et al. (2019), limbah kemasan bahan makanan menyumbang sepertiga dari total limbah rumah tangga dan merupakan sumber limbah padat signifikan. Terkait hubungan pangan dan lingkungan, Indonesia merupakan penyumbang sampah kedua tertinggi di dunia setelah China yang mana akumulasi sampah plastik mencakup 14% dari akumulasi sampah di Indonesia. Telah kita ketahui bahwa plastik merupakan kemasan yang banyak digunakan dalam kemasan makanan dan minuman. Plastik sebagai kemasan yang sulit terurai sehingga menjadi penyumbang sampah dan menjadi salah satu penyebab pemanasan global yang terjadi saat ini. Pemerintah telah mengupayakan hingga 1 juta USD setiap tahun dengan tujuan mengurangi 70% akumulasi sampah plastik pada tahun 2025. Bahkan, pemerintah Indonesia juga berupaya mengurangi penggunaan plastik dengan menciptakan peraturan pajak sebesar Rp 200,00 bagi plastik di supermarket (Setiarto, 2020). Upaya tersebut tidaklah cukup apabila mengingat kondisi lingkungan saat ini. Adapun, perlu kontribusi dari berbagai elemen masyarakat agar penggunaan plastik dapat dihindari dan dikurangi. Lumut daun merupakan tumbuhan yang keberadaannya tidak diinginkan, bahkan seringkali dianggap sebagai tumbuhan yang mengganggu di lingkungan. Padahal, lumut daun memiliki banyak manfaat baik secara ekologis maupun ekonomis. Menurut Azwad et al. (2020), morfologi lumut daun mempunyai 293


2 struktur mirip akar (rhizoid) yang berfungsi sebagai perlekatan pada tempat hidupnya sekaligus sebagai penyimpan air. Semua bagian tubuh lumut daun dapat menahan dan menyerap air dari udara sebagai bentuk adaptasi terhadap faktor abiotik ketersediaan air. Lumut daun dikenal memiliki peran pelindung pada kondisi-kondisi lingkungan yang buruk seperti perlindungan kerusakan lingkungan oleh sinar UV, serangan hama, dan serangan predator (Ludwiczuk & Asakawa, 2019). Lumut daun juga memiliki peran penting sebagai bioindikator pencemaran lingkungan. Selain itu, karakter selnya yang seperti spons menjadikan lumut daun dikenal sebagai tumbuhan yang berkontribusi dalam menahan dan menyimpan air di hutan (Andreevna, 2021). Lumut daun dapat ditemukan pada berbagai habitat mulai dari tanah, bebatuan, batang pohon, pasir, serasah, hingga perairan (Mulyani et al., 2015). Dibandingkan dengan jenis lumut lainnya seperti lumut hati dan lumut tanduk, struktur tubuh lumut daun terlihat lebih jelas sehingga mudah untuk dikenali. Umumnya, bentuk hidup dari lumut daun meliputi lumut tegak (acrocarpous moss) atau lumut merambat (Nadhifah et al. 2018). Lumut daun merupakan tumbuhan yang bersifat poikilohydric sehingga cukup bergantung dengan ketersediaan air saat melakukan fotosintesis (Andreevna, 2021). Adanya sifat poikilohydric memungkinkan lumut daun memiliki kemampuan menyimpan air dalam jumlah yang banyak dan tahan terhadap kekeringan (Kuravova et al., 2016). Kemampuan retensi air pada lumut daun berperan dalam menjaga kelembaban, misalnya menjaga kelembaban tanah atau media tanam. Kemampuan retensi air lumut daun dapat dimanfaatkan dalam fungsi ekonomis, salah satunya sebagai bahan dasar pembungkus atau kemasan makanan yang mudah membusuk seperti buah dan sayur. Permasalahan lingkungan akibat akumulasi limbah kemasan yang sulit terdegradasi mengharuskan adanya upaya mengurangi limbah kemasan sulit terdegradasi. Salah satunya dengan membuat inovasi alternatif bahan dasar untuk kemasan produk ramah lingkungan khususnya bagi produk seperti buah dan sayuran. Dengan berbagai kandungan yang terdapat pada lumut daun, seperti kemampuan poikilohydric yang memiliki kelebihan dalam menampung dan menahan air, lumut daun dapat dijadikan sebagai alternatif bahan dasar pembuatan 294


Click to View FlipBook Version