The words you are searching are inside this book. To get more targeted content, please make full-text search by clicking here.
Discover the best professional documents and content resources in AnyFlip Document Base.
Search
Published by Penalaran, 2023-12-23 23:23:51

Buku Lentera Karya

11 pemasaran untuk mengenalkan Buffinblue ke pembeli adalah dengan memberikan diskon pada saat grand launching di Instagram official account Buffinblue. Kemudian pembeli diminta untuk memberikan testimoni melalui story atau pun postingan Instagram dan dipilih beberapa orang untuk mendapat hadiah. 3.4 Rencana Pengembangan Usaha Langkah yang akan dilakukan jika usaha ini mulai berkembang dan tingkat permintaan tinggi adalah dengan mematenkan produk Buffinblue serta mempertahankan keunggulan dan kualitas produk, memperluas jaringan usaha dan pemasaran dalam skala besar melalui website, membuat toko pemasaran pusat di Purwokerto, serta mengembangkan dalam berbagai variasi. Langkah lain yaitu dengan analisis strenghts, weaknesses, opportunities, threats (SWOT) untuk meningkatkan kekuangan, memperbaiki kelemahan, memaksimalkan kesempatan, serta menghadapi ancaman yang datang. 3.5 Jadwal Kegiatan Usaha No. Jenis Kegiatan Bulan Person Penanggung Jawab 1 2 3 4 1. Persiapan alat, tempat, bahan Amanda Eka S 2. Produksi produk Tutut Rizki I 3. Pengurusan surat izin usaha Atika Rahmawati 4. Promosi Atika Rahmawati 5. Pemasaran dan analisis usaha Kartika C 6. Perekrutan karyawan Puan Anindya 7. Penyusunan laporan Tutut Rizki I 8. Evaluasi Puan Anindya 195


12 BAB IV PENUTUP Usaha Baffinblue (Banana Muffin Blue) merupakan usaha yang bergerak di bidang kuliner, yaitu berupa muffin atau kue panggang yang dikombinasikan dengan pisang dan bunga telang. Buah pisang kaya akan vitamin dan serat. Jika dibandingkan dengan buah lain, seperti apel, pisang memiliki lebih dari dua kali lipat karbohidrat, dan lima kali lipat vitamin A. Selain itu pisang juga kaya magnesium dan kalium yang penting bagi tubuh. Bunga Telang dimanfaatkan sebagai pewarna biru alami, selain itu bunga Telang juga bermanfaat dalam mengontrol tekanan darah karena kandungan senyawa antosianin yang dimiliki bunga telang dapat mengurangi kekakuan pada arteri. Dengan kombinasi tersebut muffin yang dihasilkan akan terlihat lebih menarik dan bermanfaat bagi tubuh. Usaha Baffinblue ini dapat melatih kemandirian mahasiswa dengan membuka peluang usaha sendiri dan dapat melatih kreativitas mahasiswa untuk berinovasi. 196


197


KTI Judul Anggota Tim Evengeco: Application Of Potassium Permanganate (Kmno4) And Cocoa Fruit Charcoal As Ethylene Scavenger In Tomato Fruit 1. Reza Darmawan (UKMPR 2018) 2. Oryza Tiva Kusumamiarsih (UKMPR 2021) 3. Ghani Husni Fata (UKMPR 2021) 4. Alif Ardandi (UKMPR 2022) 5. Devia Angelina Sopian (UKMPR 2022) Alternative CuO/g-C3N4 Nanosheets to Environmental Problems With a Large Amount of Drug Waste Contamination In Water Solvents 1. Chika A. Darmawan (UKMPR 2021) 2. Rini D. Puspitasari (UKMPR2019) 3. Sanifha H. Pradesya 4. Zia Rahmawati (UKMPR 2022) Biopellets of Coffee Skin and Sengon NonCarbonized Sengon Wood Powder: Exploring the Impact of Temperature and Drying Time on Their Properties 1. Panca Cahya Utami (UKMPR 2019) 2. Laela Safitri 3. Sri Wahyuni 4. Aulia Rizkillah 5. Desti Eka Safitri (UKMPR 2019) 6. Ropiudin Bofble: High Nutrition Fish Feed From Fermented Tilapia (Oreochromis Niloticus) Bone Waste Based On Zero Waste-Zero Emission 1. Devia Angelina Sopian (UKMPR 2022) 2. Elda Zaelita Nurul Raizma (UKMPR 2022) 3. Zia Rahmawati (UKMPR 2022) 4. Fajar Fatkhurrohman (UKMPR 2021) 5. Dea Mudrikah (UKMPR 2020) t-Rex (Tablet of Rice Lice Repellent & Exterminator) from Lime Peel and Shallot Peel to Reducing Rice (Oryza Sativa) Losses in The Storage Process 1. Elda Zaelita Nurul Raizma (UKMPR 2022) 2. Devia Angelina Sopian (UKMPR 2022) 3. Aqilah Rahma Adiningrum (UKMPR 2021) 4. Adrian Panjaitan (UKMPR 2021) 5. Oryza Tiva Kusumamiarsih (UKMPR 2021) Bio-Skintec: Pemanfaatan Daun Kelor dan Limbah Kulit Bawang Merah sebagai Bahan Dasar Alternatif Alami Pembuatan Sunscreen Spray Gel 1. Farah Ispramudita Septiyanti (UKMPR 2021) 2. Feony Dwi Suciati (UKMPR 2021) 3. Elda Zaelita Nurul Raizma (UKMPR 2022) Formulation of Effervescent Preparations Made From Natural Ingredients As a Stabilizer of Human Blood Sugar Levels 1. Sanifha H. Pradesya 2. Rini D. Puspitasari (UKMPR2019) 3. Chika A. Darmawan (UKMPR 2021) 4. Zia Rahmawati (UKMPR 2022) 198


KTI Judul Anggota Tim CHALORA: City Park Lights CO2 Absorber Based on Microalgae Culture (Chlorella sp.) to realize Net Zero 2050 1. Devia Angelina Sopian (UKMPR 2022) 2. Elda Zaelita Nurul Raizma (UKMPR 2022) 3. Siti Nuril Ihda (UKMPR 2022) 4. ZiaRahmawati (UKMPR 2022) 5. Bagja Hanifan Hilmana (UKMPR 2021) 199


EVENGECO: APPLICATION OF POTASSIUM PERMANGANATE (KMnO4) AND COCOA FRUIT CHARCOAL AS ETHYLENE SCAVENGER IN TOMATO FRUIT Reza Darmawan1 , Oryza Tiva Kusumamiarsih2 , Ghani Husni Fata3 , Alif Ardandi4 , Devia Angelina Sopian5 1) Agricultural Engineering, Faculty of Agriculture, Jenderal Soedirman University, Purwokerto, Indonesia ([email protected]) 2) Biology, Faculty of Biology, Jenderal Soedirman University, Purwokerto, Indonesia ([email protected]) 3) Agrotechnology, Faculty of Agriculture, Jenderal Soedirman University, Purwokerto, Indonesia ([email protected]) 4) Agrotechnology, Faculty of Agriculture, Jenderal Soedirman University, Purwokerto, Indonesia ([email protected]) 5) Biology, Faculty of Biology, Jenderal Soedirman University, Purwokerto, Indonesia ([email protected]) Abstract Tomato is a horticultural product that has a high ethylene content so it is easily damaged after harvest if it is not balanced with proper handling. This study aims to develop a kinetic model of changes in tomato quality with the application of an ethylene scavenger, to determine the physical and chemical changes of tomatoes during storage and to determine the best treatment of cocoa shell charcoal mass on tomato quality. The research was carried out in November 2022 - January 2023 in stages consisting of preparing cocoa shell-activated charcoal, preparing KMnO4 solution, and mixing cocoa shell-activated charcoal. The results showed that treatment with 2 grams of activated charcoal from cocoa shells could inhibit the decrease in tomato weight loss during storage. Treatment of 4 grams of activated charcoal from cocoa shells inhibited the total discoloration of tomatoes during storage. Treatment of 6 grams of activated charcoal from cocoa shells can inhibit the hardness, brightness, red color, and yellow color of tomatoes during storage. However, the treatment of 6 grams of activated charcoal from cocoa shells had the most damage to tomatoes during storage. The addition of activated charcoal of cocoa shell with low mass and KMnO4 as ethylene absorbent can inhibit the increase in weight loss, decrease in brightness, increase in red color, total color change, and total change in tomato color during storage. a mercury-containing environment so that they have the potential to become mercury bioremediation agents in illegal gold mining areas. Keywords: tomato, ethylene scavenger, cocoa shell charcoal, KMnO4. 1. Introduction Tomato (Solanum lycopersicum) is a horticultural product that is widely cultivated by farmers in rural areas. According to 2020 Central Bureau of Statistics data, tomato production in 2020 increased to 1,084 million tonnes, an increase of 6.34% from the previous year. Tomato consumption in the household sector also increased to 634.01 thousand 200


tons or 45.36% of total tomato consumption (BPS, 2020). The Increased tomato production is not matched by proper post-harvest handling. Tomatoes will quickly spoil about 3-4 days after harvesting when stored at room temperature without proper handling. Tomatoes are perishable due to their high water content (90-95%) and are classified as climacteric plants whose respiration rate increases with age. This is due to the ethylene content which can accelerate the respiration rate, thus affecting the quality and shelf life of the fruit. Peak ethylene gas production in tomatoes occurs before tomatoes reach the peak of climacteric respiration. The ripening process of tomato fruit can be slowed down in various ways, one of which is by using potassium permanganate (KMnO4). This compound has properties as a strong oxidizer of ethylene in the fruit, so that it can slow down fruit ripening (Immaduddin et al., 2017). Arista et al. (2017) explained that direct contact between KMnO4 and fruit can reduce the physical appearance of the fruit. Therefore, a carrier material is needed that can bind KMnO4 and is safe for use on fruit. Cocoa shell waste is one carrier material that has charcoal potential. Cocoa waste consists of 27.6% crude fiber, 10.65% ash content, 6.4% protein, and 1.5% fat. The high crude fiber content and low ash content of cocoa shells make them suitable for use as activated charcoal. Recently, the utilization of cocoa pod shell waste itself is still very limited, where people use cocoa shell waste only as animal feed and compost fertilizer (Purnamawati & Utami, 2014). Based on the background above, it can be formulated a problem that needs to be studied in this research about how to model the kinetics of changing the quality of tomatoes by applying cocoa shell charcoal and KMnO4 as an ethylene absorbent. This research is useful to provide information on the kinetics model of changes in tomato quality with the application of cocoa shell charcoal mass and KMnO4 as an ethylene absorbent. 2. Methods 2.1. Tools and Material The tomato used in the research is the jello yellow tomato and weights about 30 ounces (30-40 grams), potassium permanganate (KMnO4), cocoa skin, aquadest, citrate phospate (H3PO4), potassium hydroxide (KOH), spundbond cloth, and cardboard boxes. Tools used in this research are stoves, pans, refractometer, penetrometer, color reader, ovens, measuring glasses, analytic scales, writing tools, latex gloves, filter paper, separatory funnel, and sealer. 2.2. Research Procedure 2.2.1. Mixing KMnO4 with Active Cocoa Skin as Ethylene Scavenger 201


KMnO4 mixed with active cocoa skin as ethylene scavenger. The manufacture of cocoa skin is done by simply carbonizing the dried cocoa skin using cooking pot stoves as a crucible. The charcoal was thus sifted by using a sieve of 60 mesh. Active charcoal activation is done by soaking 50 grams of 50 grams of H3PO4 and KOH with 5% and 10% concentration and 60 minutes and 90 minutes of activation time. Charcoal was then washed clean with the aquadest until the pH was neutral and dried in ovens at 110 temperatures for an hour and cooled in a desiccator and weighed for weight. 2.2.2. Manufacture of Ethylene Scavenger Ethylene scavenger is made by mixing active cocoa skin charcoal into the solution of KMnO4 for 10 minutes, then charcoal is drained for 5 minutes. Sweetened, active charcoal is added to a spundbond cloth 6 by 8 cm with the active mass of cacao skin 2 grams, 4 grams, and 6 grams. 2.2.3. Packing The Tomatoes With Ethylene Scavenger On A Cardboard Pack The array was made by inserting a tomato and ethylene scavenger that contained a combination of KMnO4 and active cocoa skin with the weight of 2 grams, 4 grams, and 6 grams into a 15x15x7.5 cm box containing a corrugated flute type E. Ethylene scavenger was placed on the top of the box and not directly related to the tomato. The placement of tomatoes and ethylene scavenger shapes can be viewed in the following picture. 2.2.4. Tomato storage And Observation Storage is done at room temperature. Observation was made daily for 10 days by measuring and recording data of observations. Observations were made of the weight, color, violence of the tomato, and the total solidity. 3. Result and Discussion 3.1 Loss weight On the tenth day, the tomatoes studied were on average damaged, such as wrinkles, water arising from inside the fruit, and emitting a foul odor. The parameter of tomato weight loss decreased during 10 days of storage. Tomatoes without treatment had the smallest average weight loss (4.12%), while tomatoes treated with P3 had the largest average weight loss (5.65%). Changes in weight loss with no control treatment and with P1, P2, and P3 treatments in zero-order and the first-order mathematical equation can be seen in the curve graph of the following picture. a 202


Picture 1. The curve of changes in tomato weight loss during a) zero-order storage, b) first-order storage. Based on the curve in picture, the regression equation is obtained from the addition of an ethylene scavenger from each weight loss treatment, which is shown in the following table. Table 1. Weight loss regression equation during storage for each treatment. Treatments Zero-order mathematical equations R2 First-order mathematical equation R2 K At = 0,007t + 0,0028 0,9877 lnAt = 0,2304t - 4,6555 0,7808 P1 At = 0,007t + 0,0055 0,9941 lnAt = 0,197t - 4,3592 0,8847 P2 At = 0,0073t + 0,0025 0,9953 lnAt = 0,2192t - 4,5377 0,8691 P3 At = 0,0107t - 0,0029 0,9963 lnAt = 0,2393t - 4,4037 0,9260 Average 0,9933 0,8651 Table 1 shows the value of the coefficient of determination (R2 ) of zero-order is greater than firstorder. From this equation, it can be seen the comparison of the k values shown in the following picture. Table 2. The k value of the weight loss parameter from the zero-order regression equation Treatment K value K 0,0070 P1 0,0070 P2 0,0073 P3 0,0107 Ghozali (2021) explains that if the R-square value is more than 0.67, then the equation model is said to be good. The k value in the control treatment is 1, and P1 is the smallest k value in the weight loss parameter. The addition of cocoa shell-activated charcoal and KMnO4 can slow the decrease in weight loss. Musdalifah (2017) explains that activated cocoa shell charcoal can absorb anything that comes in direct contact with the charcoal. In addition, activated charcoal is also an effective absorbent used in the absorption process. According to research conducted by Pandia et al. (2017), activation of the cocoa shell absorbent causes the adsorbent surface to have an irregular shape but many pores. The total pore volume of activated charcoal is seven times greater than that of unactivated charcoal. 3.2 Hardness During 10 days of storage, tomato hardness with the highest average value was found in the control treatment and P3 treatment (0.62 gr/mm). While the lowest average value was found in the P2 treatment (0.57 gr/mm). Changes in tomato hardness during storage for each treatment can be seen in the following pictures. a b 203


Picture 2. The curve of changes in tomato hardness during a). zero-order storage, b) first-order storage Based on the curve in the picture, the hardness regression equation is obtained by adding an ethylene scavenger to each treatment, as shown in the following Table 3. Table 3. Hardness regression equation during storage for each treatment. Treatments Zero-order mathematical equations R2 First-order mathematical equation R2 K At = 0,0012t + 0,6141 0,2807 lnAt = 0,0019t - 0,4876 0,2831 P1 At= -0,0071t + 0,6346 0,2293 lnAt = -0,0128t - 0,4503 0,2369 P2 At = -0,0135t + 0,6425 0,2523 lnAt = -0,0258t - 0,4338 0,2556 P3 At = 0,0009t + 0,6102 0,0305 lnAt = 0,0016t - 0,4943 0,0289 Average 0,1982 0,2011 Table 3 shows the value of the coefficient of determination (R2 ) of order 1 is greater than order 0. From this equation, it can be seen that the value of k is listed in Table 4 Table 4. The k value of the hardness parameter from the zero-order regression equation Treatments k value K 0,0019 P1 0,0128 P2 0,0258 P3 0,0016 A negative k value indicates a decrease in the level of tomato hardness during storage. This is proven by research conducted by Tarigan et al. (2021), where the slope value (k) states the relationship between the degradation value and the storage time. Based on Picture A, the hardness with the P3 treatment has the smallest k value, namely 0.0016. However, the value of Rsquare in a mathematical equation of order 0 or a mathematical equation of order 1 is not more than 0.67. Ghozali (2021) explains that if the R-square value is between 0.19 and 0.33, the equation model is categorized as weak. The results showed that the administration of cocoa shellactivated charcoal with KMnO4 did not significantly change the hardness of tomatoes because the R-square value was small. 3.3 Brightness For 10 days of storage, tomato brightness with the highest average value is in tomatoes with P2 treatment (34.08). While the lowest average value is in the control (32.93). Changes in brightness value with without control treatment and with the treatment of P1, P2, and P3 can be seen in following picture. a b 204


Picture 3. The curve of changes in tomato brightness during a). zero-order storage, b.) first-order storage Based on the curve in picture, the brightness regression equation is obtained by adding an ethylene scavenger in each treatment, shown in the following Table 5. Table 5 shows that the value of the zero-order coefficient of determination (R2) is greater than that of the first-order. From this equation, it can be seen the comparison of the k values shown in the following Tabel 6. Table 6. The k value of the brightness parameter from the zero-order regression equation Treatments k value K 1,4173 P1 1,6689 P2 1,2882 P3 1,2744 Based on Table 6, the brightness value with the P3 treatment has the smallest k value, namely 1.2744. The Rsquare value in the zero-order mathematical equation model is also included in the moderate model. Ghozali (2021) explained that if the equation model is categorized as a moderate model then all treatments have a 55% effect on the quality of tomatoes. Based on descriptive observations, tomatoes treated with P3 had the smallest k value Table 5. Brightness regression equation during storage for each treatment. Treatments Zero-order mathematical equations R2 First-order mathematical equation R2 K At = 1,4173t + 25,131 0,5867 lnAt = 0,0447t + 3,2347 0,5742 P1 At = 1,6689t + 24,604 0,6643 lnAt = 0,052t+ 3,2174 0,6498 P2 At = 1,2882t + 26,994 0,4788 lnAt = 0,0402t + 3,2941 0,4655 P3 At = 1,2744t + 26,987 0,4744 lnAt = 0,0396t + 3,2947 0,4529 Average 0,5510 0,5356 but experienced the most damage during the storage process. 3.4 Red color During 10 days of storage, the red color of tomatoes with the highest average value was controlled treatment tomatoes with a value of 7.37. While the lowest average value was found in tomatoes with P3 treatment with a value of 6.91. Changes in the red color value with no control treatment and with P1, P2, and P3 treatments can be seen in the following picture. b a b 205


Picture 4. The curve tomato red color changes curve during a). zero-order storage, b). first-order storage Based on the curve in Picture 1, the red regression equation is obtained from the addition of an ethylene scavenger in each treatment which is shown in the following Table 7. Table 7 shows that the value of the zero-order coefficient of determination (R2 ) is greater than that of the first-order. From this equation, it can be seen the comparison of the k values shown in the following Tabel 8. Table 8. The k value of the red color parameter from the zero-order regression equation. Treatments k value K 1,1671 P1 1,0101 P2 1,0700 P3 0,7075 Based on Table 8, the red color with P3 treatment has the smallest k value, namely 0.7075. However, based on descriptive observations, the P3 treatment suffered a lot of damage during Table 7. Red color regression equation during storage for each treatment. Treatments Zero-order mathematical equations R2 order mathematical equation R2 K At = 1,1671t + 0,9504 0,8589 lnAt = 0,211t + 0,6525 0,7891 P1 At = 1,0101t + 0,8333 0,9110 lnAt = 0,218t + 0,4693 0,7923 P2 At = 1,07t + 0,9019 0,9512 lnAt = 0,199t + 0,6637 0,8549 P3 At = 0,7075t + 3,0207 0,5318 lnAt = 0,1399t + 1,0508 0,5920 Average 0,8132 0,7570 storage. Masithoh et al. (2013) stated that the increase in the reaction rate parameter was indicated by a positive k value. The R-square value in the zeroorder mathematical equation model is included in the strong model. Ghozali (2021) explains that if the R-square value is more than 0.67, then the model is categorized as strong. The b value is a color attribute that shows yellow and blue colors. 3.5 Yellow color During 10 days of storage, the yellow color of tomatoes with the highest average value was found in tomatoes with P3 treatment with a value of 29.56. While the lowest average value was found in the P2 treatment with a value of 27.66. The change in yellow color with no control treatment and with P1, P2, and P3 treatments can be seen in the following picture. Picture 5. The curve tomato yellow color change during a) zero-order storage, b) first-order storage Based on the curve in picture 9, the yellow regression equation is obtained from the addition of an ethylene scavenger in each a b 206


treatment which is shown in the following Table 9. Table 9 shows that the value of the coefficient of determination (R2 ) of order 0 is greater than that of order 1. From this equation, it can be seen the comparison of the k values shown in the following Table 10. Table 10. The k value of the yellow color parameter from the zero-order regression equation. Treatment k value K 1,0374 P1 1,3106 P2 1,0892 P3 0,8266 Based on Table 10, the yellow color without treatment has the smallest k value, namely 0.7231. The R-Square value in the zeroorder mathematical equation model is included in the moderate model. This is explained in (Ghozali, 2021) that if the RSquare value is more than 0.33 but less than 0.67 then the model Table 9. Yellow color regression equation during storage for each treatment. Treatments Zero-order mathematical equations R2 First-order mathematical equation R2 K At = 1,0374t + 23,066 0,8110 lnAt = 0,0363t + 3,1528 0,8099 P1 At = 1,3106t + 21,438 0,6853 lnAt = 0,0461t + 3,0887 0,6827 P2 At = 1,0892t + 21,667 0,3470 lnAt = 0,0417t + 3,0684 0,2935 P3 At = 0,8266t + 25,017 0,2311 lnAt = 0,0301t + 3,2055 0,2271 Average 0,5186 0,5033 Is categorized as a moderate model. Based on descriptive observations, tomatoes with P3 treatment suffered a lot of damage during storage even though they had the lowest k value. 3.6 Total color different During 10 days of storage, the total color different in with the highest average value was found in tomatoes with P1 treatment with a value of 11.09. While the lowest average value is found in the P3 treatment with a value of 9.22. Changes in total color different values without control treatment and with P1, P2, and P3 treatments can be seen in following picture Picture 6. The curve of the total color different in tomato during a) zero-order storage, b) first-order storage Based on the curve in picture, the total regression equation for color change from the addition of an ethylene scavenger for each treatment is obtained, which is shown in the following Table 11. Table 11 shows that the value of the coefficient of determination (R2 ) of order 0 is greater than that of order 1. From this equation, it can be seen the comparison of the k values shown in the following Table 12. a b 207


Table 12. The k value of the total color different parameter from the zero-order regression equation. Treatments k value K 1,3452 P1 1,1734 P2 0,0803 P3 0,3282 Based on Table 12, the total color different with the P2 treatment has the smallest k value Table 11. Regression equation for total color different during storage for each treatment. Treatments Zero-order mathematical equations R2 First-order mathematical equation R2 K At = 1,3452t + 3,4924 0,7865 lnAt = 0,0096t + 1,3705 0,0038 P1 At = 1,1734t + 4,634 0,7275 lnAt = -0,0068t + 1,3462 0,0010 P2 At = -0,0803t + 9,9942 0,0129 lnAt = -0,1409t + 2,1123 0,3258 P3 At = -0,3282t + 11,029 0,1637 lnAt = -0,1431t + 2,2031 0,3445 Average 0,4226 0,1687 is 0.0803. Ghozali (2021) explains the value that the R-Square value is more than 0.33 but less than 0.67 is a moderate model. Tomato discoloration begins with an increase in ethylene production and loss of green color, in which the chlorophyll content of ripe fruit gradually decreases or only slightly forms pure carotenoids (Ritonga et al., 2020). 3.7 Total dissolved solids During 10 days of storage, the total soluble solids of tomatoes with the highest average value were found in the control treatment with a value of 3.89% brix. While the lowest average value was found in the P2 treatment with a value of 3.63% brix. Changes in total soluble solids with no control treatment as well as with treatments P1, P2, and P3 can be seen in the following figure. Picture 6. The curve of change in total dissolved solids of tomatoes during a) zero-order storage, b) first-order storage. Based on the curve in the picture, the total regression equation for color change from the addition of an ethylene scavenger for each treatment is obtained, as shown in the following Table 13. Table 13. Regression equation for total dissolved solids during storage for each treatment. Treatments Zero-order mathematical equations R2 First-order mathematical equation R2 K At = -0,0032t + 3,9044 0,0013 lnAt = -0,001t + 1,3606 0,0017 P1 At = -0,0768t + 4,1822 0,3144 lnAt= -0,0226t + 1,4423 0,3211 P2 At = -0,0966t + 4,1578 0,3668 lnAt = -0,0277t + 1,4324 0,3796 a b 208


P3 At = -0,0109t + 3,8933 0,0085 lnAt = -0,0034t + 1,3586 0,0121 Average 0,1727 0,1786 Table 13 shows that the firstorder coefficient of determination (R2 ) is greater than the zero-order one. From this equation, it can be seen that the value of k is listed in Table 14. Table 14. The k value of the dissolved solids parameter from the zero-order regression equation. Treatments k value K 0,0010 P1 0,0226 P2 0,0277 P3 0,0034 Based on Table 14, it can be seen that the total soluble solids without treatment (control) have the smallest k value of 0.0010. However, each treatment did not have a significant effect on the total soluble solids of tomatoes. Ghozali (2021) explains that if the R-square value is more than 0.19 but less than 0.33, the equation model is categorized as weak. In the zero-order and first-order mathematical equation models, the R-square value is not more than 0.19. The application of cocoa shell activated charcoal and KMnO4 showed an increase in total soluble solids in tomatoes during storage. This occurred due to the degradation of starch into simple sugars. Arti et al. (2020) explained that tomatoes experienced an increase in total soluble solids during the fruit ripening process. The increase is due to the increase in sugar content obtained from the hydrolysis process of starch into simple sugars. 4. Conclussion Based on result and discussion, it can be concluded that use of KMnO4 and cocoa pod charcoal in tomato fruit storage, give different effects according to the mass of activated charcoal used. Treatment of 2 grams of activated charcoal cocoa shell can inhibit reduction in tomato weight loss during storage. Treatment of 4 grams of activated charcoal cocoa skin can inhibit the total color change of tomatoes during storage. Treatment of 6 grams of cocoa shell activated charcoal can inhibit hardness brightness, red color, and yellow color of tomatoes during storage. However, adding mass of activated charcoal cocoa shell up to 6 grams has damage the most tomatoes during storage. 5. Acknowledgments The researcher and inventors would like to thank the Jenderal Soedirman University and the lecturer supervisor for supporting us in this activity. 6. References Arista, M. L., Widodo, W. D., & Suketi, K. 2017. Penggunaan Kalium Permanganat sebagai Oksidan Etilen untuk Memperpanjang Daya Simpan Pisang Raja Bulu. Buletin Agrohorti. 5(3): 334. Arti, I. M., Ramdhan, E. P., & Manurung, A. N. H. 2020. Pengaruh Larutan Garam Dan Kunyit Pada Berat Dan Total Padatan Terlarut Buah Tomat (Solanum lycopersicum L.). Jurnal Pertanian Presisi (Journal of Precision Agriculture). 4(1): 64–75. 209


Badan Pusat Statistik Badan Pusat Statistik. 2020. Statistik Hortikultura 2020. Jakarta: Badan Pusat Statistik. Ghozali, I. 2021. Partial Least Squares, Konsep, Teknik dan Aplikasi Menggunakan Program SmartPLS 3.2.9 (3rd ed.). Semarang: Badan Penerbit Universitas Diponegoro. Immaduddin, H. F., Amrullah, S., Nurkholis, & Rahayu, T. E. P. S. R. 202). Pengolahan Limbah Tempurung Kemiri Sebagai Adsorben Senyawa Etilen Dengan Penambahan Kalium Permanganat (KMnO4). Jurnal Pengendalian Pencemaran Lingkungan (JPPL). 3(01): 13–19. Masithoh, R. E., Rahardjo, B., Sutiarso, L., & Harjoko, A. (2013). Model Kinetika Perubahan Kualitas Tomat Selama Penyimpanan. Jurnal Teknologi Pertanian. 14(1): 21–28. Mokrzycki, W., & Tatol, M. 2014. Color difference Delta E-A survey Colour difference ∆E-A survey. Machine Vision and Applications. 1: 14–18. Musdalifah. 2017. Aktivasi Arang Limbah Kulit Kakao (Theobroma cacao L.) Dengan Variasi Waktu Dan Zat Pengaktivasi. Skripsi. Politeknik Pertanian Negeri Pangkep, Pangkep. Pandia, S., Siahaan, A.D.Y. and Hutagalung, A.T., 2017. Pemanfaatan Adsorben Dari Kulit Buah Kakao (Theobroma cacao l.) Untuk Menurunkan Chemical Oxygen Demand Pada Palm Oil Mill Effluent. Jurnal Teknik Kimia USU. 6(3): 34-40. Purnamawati, H., & Utami, B. 2014. Pemanfaatan Limbah Kulit Buah Kakao (Theobroma cocoa L) Sebagai Adsorben Zat Warna Rhodamin B. Prosiding Seminar Nasional Fisika Dan Pendidikan Fisika (SNFPF). 5(1): 12–18. Ritonga, A. M., Furqon, F., & Ifadah, R. N. 2020. Identifikasi Perubahan Sifat Fisik Jambu Biji Merah (Psidium guajava L.) Selama Masa Penyimpanan pada Pendingin Evaporatif Termodifikasi. AGROSAINSTEK: Jurnal Ilmu Dan Teknologi Pertanian. 4(2): 112–120. Tarigan, E. B., Wardiana, E., & Supriadi, H. 2021. Pengujian Umur Simpan Kopi Arabika Bubuk Pada Jenis Kemasan dan Suhu Simpan Yang Berbeda. Jurnal Tanaman Industri Dan Penyegar. 8(1): 37-48. 210


Alternative CuO/g-C3N4 Nanosheets to Environmental Problems With a Large Amount of Drug Waste Contamination In Water Solvents 1st Chika A. Darmawan, 2nd Rini D. Puspitasari, 3rd Sanifha H. Pradesya, and 4th Zia Rahmawati 1) Chemistry, Faculty of Mathematics and Natural Sciences, Jenderal Soedirman University, Purwokerto, Indonesia ([email protected]) 2) Pharmacy, Faculty of Health Sciences, Jenderal Soedirman University, Purwokerto, Indonesia ([email protected] ) 3) Chemistry, Faculty of Mathematics and Natural Sciences, Jenderal Soedirman University, Purwokerto, Indonesia ([email protected]) 4) Physics, Faculty of Mathematics and Natural Sciences, Jenderal Soedirman University, Purwokerto, Indonesia ([email protected]) Abstract This research focuses on the degradation of large amounts of drug waste using CuO/g- C3N4 nanosheets. The method used is photodegradation with a photocatalyst using Copper Oxide (CuO), an effective alternative in dealing with polluted environments, including water. CuO nanoparticles are chosen as a photocatalyst because CuO is relatively inexpensive, non-toxic, has a high-efficiency catalytic capacity, and a narrow band gap of 1.2-2.0 eV, which can work in visible light, i.e., in sunlight or lamps—synthesized CuO / gC3N4 (Graphic Carbon Nitride) to degrade oxytetracycline (OTC). In our study, CuO will be doped with g- C3N4 modification. Thus, CuO metal oxide can be seen as an effective visible, active photocatalyst or paracetamol photodegradator. The research method uses experimental details: Synthesis of g- C3N4 nanosheets or Diatomaceous earth, Synthesis of CuO/g-C3N4 nanosheet/Diatomaceous earth, Characterization of Synthesis Result, Determination of the Maximum Wavelength of Paracetamol and Paracetamol Photodegradation Test. The result is that gC3N4 is shown to be capable of being used as a paracetamol photodegradator with a degradation rate of 68%. Keywords: Degradation, Drug Waste, Nanosheets, Paracetamol 1. INTRODUCTION Paracetamol (4'-hydroxy acetanilide, acetaminophen, or N-acetylaminophenol) is a non-prescription drug that is very popular throughout the world as non-steroidal antiinflammatory drugs (NSAIDs) that are analgesic and antipyretic. The use of paracetamol as a fever drug has increased since the COVID-19 pandemic [1]. The use of paracetamol on a large scale has resulted in emerging contaminants for the environment which, in high concentrations, can have undesirable effects on ecosystems and humans [2]. A 420-610 ng/L of waste paracetamol detected in Indonesia, as reported by Koagouw et al. (2021a; 2021b), is located in Jakarta Bay. The concentration is 12-18 times higher than the maximum concentration coast 211


of Brazil and Portugal, which is 34.6 ng/L and 95.2 ng/L [4]. Mainline paracetamol degradation is generally turned into p- aminophenol (PAP), which is toxic. PAPs are toxic to the liver, kidney, and blood. High PAP exposure over a long time can cause heart damage, hemolysis, and methemoglobinemia. Besides the harmful damage, PAP is considered potentially a carcinogen for humans by the International Agency for Research on Cancer (IARC) based on proof from animal research. Paracetamol waste also impacts the ecosystem by causing habitat loss and changing the structure ecosystem [5]. Various methods can be used to reduce the impact contamination of material organics in aqueous solvents, for example, mud active, electrolysis, adsorption, or photocatalyst. Studying photocatalysts using Copper Oxide (CuO) can be an effective alternative in handling polluted environments, including water. Nanoparticles CuO was chosen as photocatalyst because CuO is relatively cheap, non-toxic, has high efficiency of catalytic capacity, and a narrow band gap of 1.2–2.0 eV, which can be working on visible light, namely in irradiation light sun or lamp lights [6]. Based on a previous study, Wang et al. (2021) synthesized CuO/gC3N4 (Graphic Carbon Nitride) to degrade oxytetracycline (OTC). CuO with a g-C3N4 combination can produce possible heterojunctions to improve charge transfer and block electron recombination on state-excited light for increased performance of photodegradation waste [8]. g-C3N4 is a semiconductor polymer active light with a 2D structure layer and a band gap of 2.7eV. This semiconductor absorbs visible light and turns it into energy resulting in the chemical degradation of several organic pollutants to become compounds that are not dangerous [9]. g- C3N4 still has disadvantages, such as low surface area and quick charge recombination, which limits photocatalytic efficiency, so it needs to be modified [10]. One method to modify it is to become g-C3N4 nanosheets. In the study, g-C3N4 nanosheets will be synthesized from diatomaceous earthsupported melamine precursors. Diatomaceous earth is a microdisk porous carrier that speeds up migration electrons and holds aggregation g-C3N4 nanosheets. Copper oxide (CuO) is a semiconductor type -p with a narrow band gap (1.2–2.0 eV). The structure of crystal monoclinic CuO shows favorable physical and chemical characteristics for photodegradation, such as a large wide surface, precise potential redox, excellent conductivity, and stability in solution. CuO with a narrow band gap produces maximum free radicals and light absorption up to the infrared part. Enhancement performance Cu catalysts usually need to be doped with other metals as promoters and support catalysts that use various comparisons in stoichiometry and are prepared with a particular method [6]. Based on research conducted by Abdelhaleem et al. (2020), CuO with H2O2 incorporation can degrade paracetamol at 95 % for 60 minutes. In our study, CuO will be doped with modified g-C3N4. Thus, CuO metal oxide can be an effective visible light active photocatalyst for paracetamol photodegradation. Besides it, Carbon nitride graphite is a material semiconductor type -p. It has high chemical stability, high photostability height, and high activity below visible light. Carbon nitride graphite is considered suitable for activation of visible light because the relative gap band is low at 2.7 eV, that very encouraging for absorbing some visible light and breaking down water into H2 and O2 also can degrade several organic and inorganic pollutants to become not harmful compounds [9]. 212


In a study by Herrera et al. (2022), gC3N4 was proven capable of being used as a paracetamol photodegradation with a level degradation of 68%. The performance of g-C3N4 nanosheets is better than g-C3N4 because it has a broader surface (306 m2 /g), a larger band gap (3.3 eV), and a higher electron transfer ability. g-C3N4 nanosheets catalyst can be formed from several precursors, including melamine and cyanamide, dicyanamide, and urea [15]. 2. Methods and Experimental Details 2.1Methods Materials and tools The materials used in this experiment were paracetamol, methanol, aquabidest, aquadest, blue methylene, ammonium nitrate, copper acetate, copper oxide, HCL, melamine, and diatomaceous earth. The tools used in this experiment were glassware, test tubes, crucibles, pipettes, Petri dishes, stirring rods, spatulas, measuring flasks, millipores, Whatman paper, closed alumina containers, magnetic stirrers, analytical balances, calcination furnaces, ovens, desiccator, X-Ray Diffraction (XRD) tool, High-performance liquid chromatography (HPLC) tool, UV-Vis spectrophotometer tool, Scanning Electron Microscopes (SEM) tool, and Transmission electron microscopes (TEM) tool. 2.2 Experimental Details 1. Synthesis of g-C3N4 nanosheets or Diatomaceous earth G-C3N4 and diatomaceous earth were prepared through a thermal polymerization process: 10 g of melamine and the mass variation of diatomaceous earth was 1.5; 2.0; and 2.5 g of diatomaceous earth dissolved in 25 mL of deionized water and stirred for 2 hours. Once homogeneous, filtered and dried in a vacuum drying oven at 80°C for 4 hours. The g-C3N4 and diatomaceous earth mixture was put into an alumina container and then heated to 520°C at 10°C/minute for 4 hours. The resulting product is crushed. g-C3N4 was reacted with concentrated HCl to prepare g-C3N4 nanoparticles, where 0.6 g g-C3N4 was added to 20 mL concentrated HCl and stirred for 10 hours, washed with distilled water three times and dried at 80°C for 3 hours [7]. 2. Synthesis CuO/g-C3N4 nanosheet/ Diatomaceous earth A total of 0.05 g of g-C3N4/ Diatomaceous earth nanoparticles and 0.3 g of copper acetate monohydrate were mixed in a 250 ml flask filled with 150 ml of deionized water sonicated for 30 minutes. The solution was heated at 110°C for 10 minutes. Then, 4 mL of 0.75 molar sodium hydroxide was poured into the mixture. The suspension formed was centrifuged thrice and dried at 80°C for 3 hours. 3. Characterization of Synthesis Result Characterization was carried out using X-ray diffraction analysis on a diffractometer, UV-Vis spectrophotometer analysis at room temperature in the 200-800 nm range, SEM analysis, and TEM analysis. 4. Determination of the Maximum Wavelength of Paracetamol Paracetamol solution with a concentration of 3.5 ppm was measured for its absorbance at 200-800 nm wavelength on a UV-vis spectrophotometer. The wavelength with the largest absorbance value is the maximum wavelength of paracetamol. The standard paracetamol solution is prepared by weighing 10 mg of paracetamol, dissolving with the mobile phase, and then put into a 10 ml measuring flask and diluted with the mobile phase until the volume is precisely 10.0 mL (stock solution). Drop a 0.5 mL pipette of this solution into a 50 mL measuring flask and dilute with the mobile phase to a volume of precisely 50.0 mL (intermediate 213


solution). The mobile phase was prepared with 500.0 mL of methanol: aquabidest (90:10), shaken, and filtered through Whatman paper. Then, a new solution was made from the intermediate solution with a concentration of 3.0; 4.0; 5.0; 6.0; 7.0; 8.0 ppm. Each series of 3nn standard solutions was filtered through a millipore with a diameter of 0.45 μm. 5. Paracetamol Photodegradation Test The photocatalytic degradation of paracetamol was carried out in dark 6ocal6l, equipped with a stirrer and 50W LED lamp. The catalyst (250 mg/L) was dispersed in an aqueous solution containing 5 mg/L of paracetamol. The dispersion was left under dark stirring for 1 hour to reach equilibrium adsorption. Then, the light was connected, and the reactor was exposed to solar irradiation for 4 hours. At 30 min time intervals, 400 μL of the suspension was collected. Photocatalysts were removed by filtration using a filter (Whatman). The liquid phase was flown by HPLC with 7iode7 or 7iode arrays and reversedphase C18 columns. A 0.1% v/v acetonitrile/formic acid mixture (7ocal717 method: 10/90-40/60% was used as the mobile phase at a constant flow rate of 0.35 mL/min. The detection wavelength for paracetamol was set at 256 nm. All paracetamol degradation experiments were carried out in triplicate. The percentage of photodegradation was calculated using the following equation %degradation = [(C0 – C0)/ C0] x 100, where C0 is the initial concentration of paracetamol after adsorption/desorption equilibrium, and C is the concentration of paracetamol after each irradiation [16]. 3. RESULTS AND DISCUSSION Fig 3.1 Degradation Paracetamol Process The growing environmental protection awareness has encouraged researchers to undertake intensive studies to develop efficient remediation technologies. The photocatalytic process has been regarded as the most promising solution. In this process, a photocatalyst with a band gap under 3.0 eV is desired to utilize solar energy. However, conventional photocatalysts such as TiO2, ZnO, and SnO2 can almost absorb ultraviolet light, resulting in poor photocatalytic properties under visible light irrigation. Graphitic carbon nitride (g-C3N4) has been widely studied in recent years. It has proven to be a promising metal-free visible-light photocatalyst owing to its low cost, narrow band gap, and higher thermal stability. Nonetheless, the photocatalytic activity of bulk g-C3N4 is far from satisfactory because of its quick charge-carrier recombination. Many efforts have been undertaken to overcome this problem by doping foreign ions, increasing surface areas, and coupling with other semiconductors. In photocatalysis, semiconductor nanosheet has been considered an exciting structure for their large surface area that offers more active sites and ultrathin thickness that decreases the transfer route of photogenerated carriers. However, these methods result in low product yields, multiple-step 214


operations, or structural defects in the g- C3N4 framework. As is well known, coupling g-C3N4 with a narrow band gap semiconductor is a valid method for increasing the separation of charge-carrier capability. Many metal oxides have been intensively studied as photocatalysts or energy storage materials, such as TiO2, MnO2, Co3O4, and NiO. Among these materials, copper oxide is intriguing for its narrow band gap, high visible light adsorption coefficient, and high natural abundance. CuO/g-C3N4 heterojunction catalyst can promote photo-induced charge-carrier separation to produce high catalytic efficiency. However, all these catalysts were prepared by either multiple-step, time-consuming procedures or expensive precursors. This scientific paper prepared CuO particles supported on graphitic carbon nitride (g-C3N4) nanosheets by chemical blowing route. The g-C3N4 nanosheet material was obtained by thermal condensation of melamine and copper nitrate in the presence of ammonium nitrate. The photocatalytic performance of this material was evaluated through the degradation of salicylic acid (SAL) under visible-light irradiation. The methodology applied in this work is expected to shed new light on preparing various types of g-C3N4– based efficient photocatalysts. 4. Acknowledgments We want to thank the Chancellor of General Soedirman University, the Dean of the Faculty of Mathematics and Natural Sciences, and the Faculty of Health Sciences, who have supported the completion of this research. 5. Conclusion Photocatalyst doped CuO with supported g-C3N4 nanosheets land diatomite own activity high photodegradation compared to with control than will become the solution for problem environment about waste paracetamol in waters. 6. References [1] Levani, Y. 2021. Coronavirus Disease 2019 (COVID-19): [ Atogenesis, Manifestations Clinical and Options therapy. Journal Medicine and Health. East Java: Muhammadiyah University of Surabaya. [2] Zhang, B., Liu, F., Hou, Y., & Tong, M. 2020. Photocatalytic degradation of paracetamol and bisphenol a by chitosan supported covalent organic framework thin film with visible light irradiation. Journal of Hazardous Materials. 435:128966. [3] Koagouw, W., Arifin, Z., & Ciocan, C. 2021a. High Concentrations Of Paracetamol In Effluent Dominated Waters Of Jakarta Bay, Indonesia. Marine Pollution Bulleti. 169. [4] Puspitasari, R., Eman , C.M., & Takarina , ND 2022. Status of Contamination Physics and Chemistry in Jakarta Bay Period 2015-2021. Oceanology and Limnology in Indonesia, 7(1): 1- 13. [5]Yanuartono, Nururrozi, A., Indarjulianto, & Haribowo, N. 2020. Paracetamol Poisoning in Cats and Dogs: Clinical Symptoms and Therapy. Journal of Tropical Animal and Veterinary Science. 10(1): 55-62 [6] Sun, S., Zhang, X., Cui, J., Liang, S., 2019. Tuning Interfacial Cu-O Atomic Structures for Enhanced Catalytic Applications. Chem. Asian. J. 14 (17), 2912-2924. [7] Wang, M., Jin, C., Kang, J., Li, S. 2021. CuO/g-C3N4 2D/2D heterojunction photocatalysts as efficient peroxymonosulfate activators under visible light for oxytetracycline degradation: Characterization, efficiency and mechanism. Chemical 215


Engineering Journal. 416:128118. [8] Kadi, MW, Mohamed, RM, & Bahnemann, DW 2020. Soft and hard templates assisted synthesis of mesoporous CuO /gC3N4 heterostructures for highly enhanced and accelerated Hg (II) photoreduction under visible light. Journal of Colloid and Interface Science. 580: 223-233. [9] Kezhen, Q., Zada, A. 2020. Graphite Carbon Nitride a Polymer Photocatalyst. Journal of the Taiwan Institute of Chemical Engineers. 109:111-123. [10] Wen, X., Sun, N., & Wang, H. 2019. One-step synthesis of petals-like graphitic carbon nitride nanosheets with triazole defects for highly improved photocatalytic hydrogen production. Int. J. Hydrogen Energy. 44(5): 2675. [11] Abdelhaleem, A., Abdelhamid, HN, Ibrahim, MG and Chu, W., 2022. Photocatalytic degradation of paracetamol using photoFenton-like metalorganic framework-derived CuO @ C under visible LED. Journal of Cleaner Production, 379, p.134571. [14] Herrera, T., Vallejo-Márquez, JC, and Sanchez-Martinez, D. 2022. Enhanced visible light photoactivity of polymeric gC3N4 by twice exfoliation in the degradation of acetaminophen and ibuprofen. Journal of Materials Science: Materials in Electronics, 33(20), pp.16210- 16218. [15] Ikbar, H., & Budiman, AW 2020. One-Step Synthesis of Carbon Nitride Nanosheets for Photoremediation of Toxic Organic Dyes Waste in Aquatic Environment. CHEMICA: Journal of Chemical Engineering, 7(2): 142-150. [16] Aviles, A., Garzon, M., & Bedia, J. 2019. C-modified TiO2 using lignin as carbon precursor for the solar photocatalytic degradation of acetaminophen. Chemical Engineering Journal. 358:1574- 1582. 216


1 Biopellets of Coffee Skin and Sengon Non-Carbonized Sengon Wood Powder: Exploring the Impact of Temperature and Drying Time on Their Properties Panca Cahya Utami1 , Laela Safitri2 , Sri Wahyuni3 , Aulia Rizkillah4 , Desti Eka Safitri5 , Ropiudin6 1) Agricultural Engineering, Faculty of Agriculture, Universitas Jenderal Soedirman, Central Java Province, Indonesia ([email protected]) 2) Agricultural Engineering, Faculty of Agriculture, Universitas Jenderal Soedirman, Central Java Province, Indonesia ([email protected]) 3) Agricultural Engineering, Faculty of Agriculture, Universitas Jenderal Soedirman, Central Java Province, Indonesia ([email protected]) 4) Agricultural Engineering, Faculty of Agriculture, Universitas Jenderal Soedirman, Central Java Province, Indonesia ([email protected]) 5) Agricultural Engineering, Faculty of Agriculture, Universitas Jenderal Soedirman, Central Java Province, Indonesia ([email protected]) 6) SUPERVISOR: Agricultural Engineering, Faculty of Agriculture, Universitas Jenderal Soedirman, Central Java Province, Indonesia ([email protected]) Abstract Biopellet is biomass that has the potential to be an alternative energy because it has renewable properties. The process of making biopellets consists of several stages, namely the preparation of tools and materials, sieving, making adhesives, mixing raw materials with adhesives, printing, and drying. Drying is an important step in the manufacture of biopellets. This study aims to determine the effect of temperature and drying time on the characteristics of biopellets without carbonization which include moisture content, ash content, volatile matter content, density, combustion rate, and shatter index. The main ingredients used in this study were coffee rind and sengon wood powder. This study used a completely randomized design (CRD) with a factorial pattern. The drying temperature factor consists of 3 levels, namely 55°C, 100°C, 125°C and the drying time factor consists of 3 levels, namely 1 hour, 2 hours, and 3 hours. Testing of biopellet characteristics includes the value of water content, ash content, volatile matter content, density, combustion rate, and shatter index. Parameters used as. Keywords: biopellets, coffee skin, sengon, non-carbonized, properties 217


2 1. Introduction Alternative energy has continued to be developed in Indonesia due to the everincreasing energy demand to ensure energy availability. Because it is nonrenewable, the scarcity and price increase of fossil fuels will continue. Alternative fuels are needed to save fossil fuels. One of them is renewable energy from organic waste or biomass. One of the potential renewable energy in Indonesia is biopellets, because it has many industries in plantation and agriculture [1]. The biomass potential in Indonesia is 146.7 million tons per year [11]. Coffee rind is a by-product of coffee cherry processing that, if left unchecked, will cause environmental pollution and has not been properly utilized until now [3]. Sengon wood is a type of wood that grows quickly, is easy to obtain, but is not optimal for construction materials [5]. The waste products of coffee rind and sawdust can be used as raw materials for making biopellets. Biopellets is a type of fuel from biomass waste that is compacted through a densification process to a smaller size than briquettes [16]. Densification techniques aim to increase the density of the material and facilitate storage and transportation [12]. The quality standard for biopellets must comply with SNI 8021: 2014 which can be seen in Table 1. Tabel 1. Biopellet Quality Standard Based on SNI 8021:2014 The process of making biopellets consists of several stages, namely preparation of tools and materials, sifting, making adhesives, mixing main materials with adhesives, printing, and drying. Drying is an important step in making biopellets. According to Jufri et al [8], drying at a certain temperature and length of time can affect the characteristics of biopellets. The purpose of writing this scientific article is to determine the effect of drying temperature on biopellets characteristics, determine the drying time on the biopellets characteristics, and determine the optimal use of temperature and drying time in making biopellets. 2. Methods and Experimental Details 2.1 Materials and Equipments Tools to be used in this study include: biopellet printers, sieves, blenders, furnaces, ovens, scales, stirrers, cups, iron claws, calipers, gas stoves, desiccatators, stopwatches, stationery, masks, gloves, and lab coats. The materials used in this study include: coffee bark, sengon wood powder, tapioca flour, and water. Test Parameter SNI Water Content Max. 12% Ash Content Max. 15% Volatile Matter Max. 80% Carbon index Min. 4000 cal/g Fixed carbon Min. 14% 218


3 2.2 Research Stage a. Observation and Measurement Variables Water Content (SNI 8021-2014) Water Content (%) = 2−3 2−1 × 100% descriptions: m1 = cup weight moisture content (g) m2 = cup weight + ingredients before oven drying (g) m3 = cup weight + ingredients after oven drying (g) b. Ash Content (SNI 8021-2014) Ash Content (%) = 3−1 2−1 × 100% descriptions: mc1 = weight of ash cup (g) mc2 = Weight of Cup + Material Before Ash Content Test (G) mc3 = Weight of Cup + Material After Ash Content Test (G) c. Volatile Matter (SNI 8021-2014) Volatile matter (%) = 2−3 2−1 × 100% descriptions: mk1 = Weight of the cup of volatile matter (g) mk2 = Weight of cup + material before volatile matter testing (g) mk3 = cup weight + material after volatile matter testing (g) d. Density Volume = 1 4 × ( 2 ). ρ (g/cm3 ) = () (3) descriptions: ρ = Density (g/cm3 ) π = Constant (3.14) d = Diameter (cm) t = Height (cm) V = Volume (cm3 ) e. Combustion Rate Combustion rate (g/min) = () () Descriptions: mt = mass of burning biopellets (g) ta = time the biopellet burns out(S) f. Shatter Index Shatter Index (%) = 1−2 1 × 100% descriptions: mi1 = mass of biopellets before testing Shatter Index (G) mi2 = mass of biopellets after testing Shatter Index (G) 2.3 Experimental Design Figure 1. Research Flow chart 219


4 a. Preparation Method Preparation of raw materials includes procurement of raw materials, drying of raw materials, and making powder. The raw materials needed in this research are coffee skin, sengon wood powder and tapioca flour as an adhesive. The coffee skins and sengon wood powder that have been collected are then dried in the sun for 3 days with the aim of lowering the water content. Then the raw materials were chopped using a cleaver, and then ground using a blender until they became powder. b. Biopellet Making Method Powder sieving: The powder that has been obtained is then sieved, this aims to obtain a uniform particle size. Sieving is done using a sieve with a size of 20 mesh. Preparation of adhesive material: The adhesive material used in this study is tapioca flour. The process of making the adhesive material was carried out by mixing tapioca flour with water in a ratio of 1:10. Mixing of raw materials with adhesive: The adhesive used was 20% of the total weight of the biopellets and the raw materials used were coffee husk and sengon wood powder in a ratio of 50:50. Raw materials and adhesives that have been processed and weighed, then mixed in a basin container and stirred so that the adhesive is evenly mixed with the raw materials. After the adhesive is sufficient, put the mixture into the biopelet molding tool. Biopelet molding: The raw materials that have been mixed with the adhesive are then printed with a slinder-shaped molding tool with a diameter of 1 cm and a height of 7 cm. The biopellets are molded using a jack with a pressure of 20 kg/cm2 to produce a uniform biopellet size. Drying of biopellet: The biopellets that have been printed are then dried. The drying process uses an oven with different temperatures and drying times. The temperatures used were 55°C, 100°C, and 125°C. While the drying time used includes 1 hour, 2 hours, and 3 hours. The difference in temperature and drying time aims to determine which treatment is best in making biopellets. c. Testing Method The biopelets that have been made will then be tested for the characteristics of biopellets including moisture content, ash content, volatile matter content, density, combustion rate, and shatter index. d. Data Analysis Data were analyzed using Analysis of Variance (ANOVA) and if it had a significant effect, then it was continued with further tests using DMRT (Duncan Multiple Range Test). 3. Result and Discussion a. Water Content Based on the results of the study, the average value of the water content obtained in the biopellets ranging from 4- 28%bb. The lowest water content was obtained at a 220


5 temperature of 125°C with a drying time of 3 hours and the highest at a temperature of 55°C with a drying time of 1 hour. Treatments that met the SNI 802-2014 standard water content which required a maximum biopellet water content value of 12% were T2L1, T2L2, T2L3, T3L1, T3L2, and T3L3. Tabel 2. The average value of biopellet water content Treat ment Loop Mean l II III (%bb) T1L1 29 30 25 28.00 T1L2 21 20 17 19.33 T1L3 13 14 11 12.67 T2L1 10 10 8 9.33 T2L2 6 6 6 6.00 T2L3 6 6 4 5.33 T3L1 4 7 7 6.00 T3L2 5 3 6 4.67 T3L3 5 4 3 4.00 The results of the analysis of various water content of coffee skin biopellets and sengon sawdust without carbonization showed that variations in drying temperature (T), drying time (L), and treatment combinations (TxL) had a very significant effect on the moisture content of biopellets. The results of the DMRT test at the 5% level showed that the T1, T2, and T3 treatments were significantly different. The results of the DMRT test at the 5% level showed that the L1, L2, and L3 treatments were significantly different. b. Ash Content Based on the research results, the average value of ash content obtained in biopellets ranged from 4.00-9.33%. The lowest ash content was obtained at a temperature of 55°C with a drying time of 1 hour and the highest at a temperature of 125°C with a drying time of 3 hours. All treatments did not meet the SNI 802-2014 standard ash content which required a maximum biopellet ash content value of 1.5%. However, the ash content in the T1L1, T1L2, and T1L3 treatments met the French standard ash value requirements, namely a maximum of 6%. Tabel 3. The average value of biopellet ash content Treat ment Loop Mean L II III (%) T1L1 4 4 4 4.00 T1L2 4 6 5 5.00 T1L3 6 5 6 5.67 T2L1 8 9 6 7.67 T2L2 8 7 9 8.00 T2L3 9 8 8 8.33 T3L1 7 7 7 7.00 T3L2 8 9 9 8.67 T3L3 9 10 9 9.33 The results of the analysis of various ash content of coffee skin biopellets and sengon sawdust without carbonization showed that variations in drying temperature (T) and drying time (L) had a very significant effect on the moisture content of biopellets. While the treatment combination (TxL) had no significant effect. The results of the DMRT test at the 5% level showed that the T2 and T3 treatments were significantly different from T1. The results of the DMRT test at the 5% level showed that the L2 and L3 treatments were significantly different from L1. 221


6 c. Volatile Matter Based on the research results, the average value of volatile matter content obtained in biopellets ranged from 88.42- 92.19%. The lowest volatile matter content was obtained at 55°C and the highest at 100°C. All treatments did not meet the standard SNI 802-2014 volatile matter content which required a maximum value of 80% for biopellet volatile matter content. Tabel 4. The average value of volatile matter content biopellet Treat ment Loop Mean l II III (%) T1L1 90.14 88.57 89.33 89.34 T1L2 88.60 87.50 89.15 88.42 T1L3 89.65 90.69 89.88 90.08 T2L1 91.11 92.22 91.30 91.54 T2L2 93.62 92.55 90.42 92.19 T2L3 90.43 91.48 93.75 91.88 T3L1 91.67 90.32 90.32 90.77 T3L2 90.53 90.72 88.29 89.84 T3L3 90.53 90.62 90.72 90.62 The results of the analysis of various volatile matter content of coffee peel biopellets and sengon sawdust without carbonization showed that the variation in drying temperature (T) had a very significant effect on the value of the volatile matter content of the biopellets. Meanwhile, drying time (L) and treatment combination (TxL) had no significant effect. The results of the DMRT test at the 5% level showed that the treatments were significantly different. The treatment of T1 was significantly different from T2, and T2 was significantly different from T3. d. Density Based on the results of the study, the average density values obtained for biopellets ranged from 0.36 g/cm3 - 0.84 g/cm3 . The results of the analysis of various densities of coffee husk biopellets and sengon sawdust without carbonization showed that variations in drying temperature (T), drying time (L), and treatment combinations (TxL) had a very significant effect on the density value of biopellets. The results of the DMRT test at the 5% level showed that the treatments were significantly different. The treatment of T1 was significantly different from T2, and T2 was significantly different from T3. The results of the DMRT test at the 5% level showed that the treatments were significantly different. The treatment of L1 was significantly different from L2, and L2 was significantly different from L3. Tabel 5. The average density value of biopellets Treat ment Loop Mean (g/cm3 l II III ) T1L1 0.84 0.83 0.84 0.84 T1L2 0.67 0.72 0.64 0.68 T1L3 0.65 0.52 0.63 0.60 T2L1 0.46 0.51 0.49 0.49 T2L2 0.38 0.42 0.39 0.40 T2L3 0.35 0.37 0.38 0.37 T3L1 0.41 0.42 0.43 0.42 T3L2 0.36 0.36 0.38 0.37 T3L3 0.37 0.35 0.36 0.36 Density is very important to determine the quality of good and quality biopellets. The higher the temperature, the lower the density value. The air in the biomass will evaporate when the temperatures used in the production of biopellets are higher, thereby 222


7 reducing the mass of the biopellets [2]. Density of biopellets will increase with increasing water content and decrease with increasing moisture content [6] e. Burning Rate Based on the results of the study, the average burning rate value obtained for biopellets ranged from 0.095 g/minute - 0.158 g/minute. The results of the analysis of the various burning rates of coffee skin biopellets and sengon sawdust without carbonization showed that variations in drying temperature (T) and drying time (L) had a very significant effect on the burning rate of biopellets. While the treatment combination (TxL) had no significant effect on the combustion rate. The DMRT test results at the 5% level showed that the T1 treatment was significantly different from T2 and T3, while T2 had no significant effect on T3. The DMRT test results at the 5% level showed that the L1 treatment was significantly different from L2 and L3, while L2 had no effect. real to L3. Tabel 6. The average value of the biopellet burning rate Treat ment Loop Mean l II III (g/minute) T1L1 0.158 0.162 0.154 0.158 T1L2 0.119 0.116 0.137 0.124 T1L3 0.120 0.122 0.110 0.117 T2L1 0.104 0.107 0.118 0.110 T2L2 0.107 0.089 0.106 0.101 T2L3 0.098 0.103 0.095 0.099 T3L1 0.096 0.094 0.111 0.100 T3L2 0.088 0.104 0.100 0.097 T3L3 0.088 0.100 0.285 0,095 The lower the temperature and drying time, the higher the burning rate. The higher the combustion rate, the shorter the biopellets will burn. The burning rate value is calculated from the dry weight of the biopellets divided by the burning time of the biopellets until they are reduced to ashes. The increase in the burning rate is thought to be due to the high moisture content of the material and adhesive. High water content makes biopellets more difficult to ignite and lowers the combustion temperature [13]. To produce flammable biopellets in the initial combustion, the water content must be low to produce a high calorific value [7]. f. Shatter Index Tabel 7. The average value of the biopellet shatter index Treat ment Loop Mean l II III (%bb) T1L1 45.98 43.86 45.00 44.95 T1L2 37.91 41.57 34.25 37.91 T1L3 31.47 34.34 29.68 31.83 T2L1 24.33 29.70 30.45 28.16 T2L2 23.84 24.54 23.52 23.97 T2L3 21.83 25.67 21.91 23.14 T3L1 23.60 25.45 22.28 23.78 T3L2 23.44 21.27 24.16 22.96 T3L3 22.22 20.71 23.07 22.00 Based on the research results, the average shatter index value obtained in biopellets ranges from 22.004% - 44.951%. Treatment with a temperature of 55°C has the highest rupture index and has a range of values that is quite far compared to the treatments at 100°C and 125°C. This shows that the water content can affect the resistance of biopellets to impact. The longer the drying time and the proper drying temperature, the lower the ar content in the biopellets so that 223


8 the shatter index value will be better [10]. The results of the analysis of the variety of breaking index of coffee skin biopellets and sengon sawdust without carbonization showed that variations in drying temperature (T), drying time (L), and treatment combinations (TxL) had a very significant effect on the breaking index value of biopellets. The results of the DMRT test at the 5% level showed that the treatments were significantly different. The treatment of T1 was significantly different from T2, and T2 was significantly different from T3. The results of the DMRT test at the 5% level showed that the treatments were significantly different. The treatment of L1 was significantly different from L2, and L2 was significantly different from L3. 3. Conclusions Based on the research and data analysis that has been done, it can be several conclusions are drawn as follows: Drying temperature has a very significant effect on the characteristics of the tested biopellets, including moisture content, ash content, volatile matter content, density, burning rate, and shatter index. 2. The drying time has a very significant effect on the characteristics of the biopellets, including moisture content, ash content, density, burning rate, and shatter index. As for the characteristics of volatile matter content, it has no significant effect. 3. The optimal use of temperature and drying time depends on the characteristics of moisture content, burning rate, and shatter index at a temperature of 125°C and a drying time of 3 hours in the T3L3 treatment sample. As for the characteristics of ash content, volatile matter content, and density is most optimal at 100°C and 1 hour drying time in T1L1 treatment samples. 4. Acknowledgement We would like to thanks to the almighty God for his gift so we can finish this research and also thanks to Mr. Ropiudin, S.TP., M.Si. for his direction and guidance as a supervisor. 5. References [1] Al Qadry, M. G., Saputro, D. D., & Widodo, R. D. 2019. Karekteristik dan uji pembakaran biopelet campuran cangkang kelapa sawit dan serbuk kayu sebagai bahan bakar alternatif terbarukan. Sainteknol: Jurnal Sains dan Teknologi, 16(2): 177-188. [2] Carone, M. T., Pantaleo, A., & Pellerano, A. 2011. Influence of process parameters and biomass characteristics on the durability of pellets from the pruning residues of olea europaea l. Journal Biomass and Bioenergy, 35(1), 402– 410. https://doi.org/10.1016/j.biom bioe.201 0.08.052 [3] Diniyah, N,. Maryanto,. Nafi, A,. Sulistiya, D,. & Subagio, A. 2013. Ekstraksi dan karakterisasi polisakarida larut air dari kulit kopi varietas arabika (coffea arabica) dan robusta (coffea canephora). Jurnal Teknologi Pertanian. Vol. 14. No. 2 : 73- 78. 224


9 [4] Djafaar, R. P. 2016. Pengaruh temperatur terhadap karakteristik briket bioarang dari campuran sampah kebun dan kulit kacang tanah dengan tambahan minyak jelantah. Skripsi. Universitas Islam Indonesia, Yogyakarta. [5] Handayani, S. 2016. Analisis pengujian struktur balok laminasi kayu sengon dan kayu kelapa. Jurnal Teknik Sipil dan Perencanaan, 18(1), 39-46. [6] Huang, Y., Finell, M., Larsson, S., Wang, X., Zhang, J., Wei, R., & Liu, L. (2017). Biofuel pellets made at low moisture content – Influence of water in the binding mechanism of densified biomass. Biomass and Bioenergy, 98, 8–14. doi: 10.1016/ j.biombioe.2017.01.002. [7] Ismayana, A. 2011. Pengaruh jenis dan kadar bahan perekat pada pembuatan briket blotong sebagai bahan bakar alternatif. Jurnal Teknologi Industri Pertanian Institut Pertanian Bogor. Vol. 21 (3) : 186-193. [8] Jufri, M., Farosadid, I., Mulyono., & Mokhtar, A. 2018. Analisis variasi temperatur pengeringan dan persentase perekat terhadap lama waktu pembakaran biopelet sekam padi. Seminar Nasional Teknologi dan Rekayasa. [9] Mustamu, S., Hermawan, D., & Pari, G. 2018. Karakteristik biopelet dari limbah padat kayu putih dan gondorukem. Jurnal Penelitian Hasil Hutan, 36(3): 191-204. [10]Nawawi, M.A., 2017. Pengaruh suhu dan lama pengeringan terhadap karakteristik Briket Arang Tempurung Kelapa. Skripsi. Universitas Negeri Semarang. [11] Parinduri, L., & Parinduri, T. 2020. Konversi biomassa sebagai sumber energi terbarukan. JET (Journal of Electrical Technology), 5(2): 88-92. [12]Putri, M. S. O. 2020. Pembuatan biopelet briket dari limbah kulit kopi dengan perekat amilum. Phd Thesis. Politeknik Negeri Sriwijaya. [13]Rahmadani, R., Hamzah, F. & Hamzah, F.H., 2017. Pembuatan briket arang daun kelapa sawit (Elaeis guineensis jacq.) dengan perekat pati sagu (Metroxylon sago rott.) (Doctoral dissertation, Riau University). [14]Rahman. 2011. Uji keragaan biopelet dari biomassa limbah sekam padi (Oryza sativa sp.) sebagai bahan bakar alternatif terbarukan Skipsi. Bogor (ID): Institut Pertanian Bogor. [15]Sukarta, I. N., & Ayuni, P. S. 2016. Analisis proksimat dan nilai kalor pada pellet biosolid yang dikombinasikan dengan biomassa limbah bambu. JST (Jurnal Sains dan Teknologi), 5(1). [16]Zikri, A. 2018. Karakteristik biopelet dari variasi bahan baku sebagai bahan Bakar alternatif. Kinetika. 9(1): 26- 32. 225


LOMBA KARYA TULIS ILMIAH PERIKANAN DAN KELAUTAN NASIONAL BOFBLE: HIGH NUTRITION FISH FEED FROM FERMENTED TILAPIA (Oreochromis niloticus) BONE WASTE BASED ON ZERO WASTE-ZERO EMISSION Bioteknologi Disusun Oleh: (Devia Angelina Sopian B1A022155) (Elda Zaelita Nurul Raizma B1A022012) (Zia Rahmawati K1C022064) (Fajar Fatkhurrohman B1A021072) (Dea Mudrikah B1A020003) UNIVERSITAS JENDERAL SOEDIRMAN PURWOKERTO 2023 226


i LEMBAR PENGESAHAN 227


ii LEMBAR ORISINALITAS 228


iii KATA PENGANTAR Puji serta syukur kami panjatkan ke hadirat Allah SWT yang telah memberikan rahmat dan hidayah-Nya, sehingga kami dapat berpartisipasi dalam Lomba Karya Tulis Ilmiah Perikanan dan Kelautan Nasional (LKTIPKN) Universitas Jenderal Soedirman ini dengan judul “BOFBLE: HIGH NUTRITION FISH FEED FROM FERMENTED TILAPIA (Oreochromis niloticus) BONE WASTE BASED ZERO WASTE-ZERO EMISSION”. Lomba Karya Tulis Ilmiah ini merupakan salah satu ajang yang sangat berharga dan kami merasa terhormat dapat menjadi peserta yang mengikutinya. Karya tulis ini berupaya untuk menciptakan gagasan dan juga formula pakan ikan yang terbuat dari material yang tinggi nutrisi dengan memanfaatkan limbah organik berbahan dasar tulang ikan nila yang ramah lingkungan. Kami mengucapkan terima kasih kepada Bapak Eko Setiyono, S.Pd., M.S.i selaku dosen pembimbing yang telah memberikan arahan dan juga saran sehingga kami dapat menyusun karya tulis ilmiah ini dengan baik. Kami menyadari karya tulis ini tidak luput dari berbagai kekurangan, untuk itu penulis mengharapkan kritik dan juga saran yang membangun demi kesempurnaan karya ilmiah ini. Purwokerto, 26 Juni 2023 Penulis 229


iv DAFTAR ISI LEMBAR PENGESAHAN ................................................................................................i LEMBAR ORISINALITAS.............................................................................................. ii KATA PENGANTAR ..................................................................................................... iii DAFTAR ISI.....................................................................................................................iv ABSTRAK........................................................................................................................vi BAB I. PENDAHULUAN .................................................................................................1 A. Latar Belakang .......................................................................................................1 B. Rumusan masalah...................................................................................................2 C. Tujuan: ...................................................................................................................2 D. Manfaat: .................................................................................................................2 BAB II. TINJAUAN PUSTAKA.......................................................................................3 A. Fermentasi..............................................................................................................3 B. Limbah Tulang Ikan Nila .......................................................................................3 C. Limbah Sayur-sayuran ...........................................................................................3 D. Limbah Buah-buahan .............................................................................................4 E. Micropelet ..............................................................................................................4 F. Zero Waste – Zero Emmision .................................................................................5 BAB III METODOLOGI PENELITIAN ...........................................................................6 A. Teknik Pengambilan Data ......................................................................................6 B. Kerangka Berpikir Pengolahan Data ......................................................................6 C. Analisis Sintesis.....................................................................................................6 D. Pengambilan Keputusan .........................................................................................7 BAB IV. HASIL DAN PEMBAHASAN...........................................................................8 A. Hasil.......................................................................................................................8 B. Pembahasan............................................................................................................8 BAB V PENUTUP ..........................................................................................................10 A. Kesimpulan ..........................................................................................................10 B. Saran ....................................................................................................................10 DAFTAR PUSTAKA ......................................................................................................11 LAMPIRAN.....................................................................................................................13 230


v A. Format Biodata Ketua dan Anggota Tim..............................................................13 231


vi ABSTRAK Pakan ikan merupakan salah satu faktor penting dalam peningkatan hasil perikanan. Sebagian besar produksi pakan ikan banyak yang menghasilkan residu penyebab limbah baru, sehingga diperlukan inovasi dalam pembuatan pakan ikan. Pengembangan pakan ikan perlu terus ditingkatkan untuk memenuhi kebutuhan nutrisi, efisiensi penggunaan pakan, dan keberlanjutan budidaya perikanan. Pemilihan formulasi bahan pakan ikan yang tepat dan bermutu juga menjadi fokus penting dalam industri perikanan. Pemanfaatan limbah organik rumah tangga sejauh ini masih belum diolah secara optimal oleh masyarakat. Kondisi ini mengakibatkan dampak negatif yang signifikan, meliputi pencemaran perairan, kerusakan biota laut, bahkan menimbulkan sarang nyamuk dan bakteri. Dampak tersebut menyebabkan berbagai penyakit seperti gatal-gatal, diare hingga demam berdarah. Menurut penelitian Andriani et al. (2021), limbah organik rumah tangga seperti tulang ikan nila, buah-buahan, dan sayuran memiliki kandungan protein kasar sebesar 10,89-15,58%, lemak sebesar 7,77-9,70%, dan serat kasar sebesar 4,88-9,13%. Kandungan pada limbah organik tersebut dapat dimanfaatkan lebih lanjut untuk menjadi produk bioteknologi yang bermanfaat, oleh karena itu limbah organik yang berasal dari tulang ikan nila, buah-buahan dan sayuran dapat dijadikan bahan pakan ikan alternatif yang mengandung sumber protein dan energi tinggi. Karya tulis ini bertujuan untuk menguji potensi pemanfaatan fermentasi limbah organik dari tulang ikan nila, buah-buahan, dan sayuran sebagai bahan baku alternatif pembuatan pakan ikan yang tepat, dan menyediakan informasi kepada masyarakat mengenai cara mengolah limbah organik tersebut menjadi pakan ikan yang dapat meningkatkan hasil perikanan. Tahap pembuatan pakan ikan terdiri dari pemilahan limbah organik dan anorganik rumah tangga, fermentasi limbah organik tulang ikan nila, buahbuahan, dan sayuran menggunakan probiotik EM4, pencampuran fermentasi limbah organik dengan dedak, pengeringan di bawah matahari kemudian dilakukan pencetakan menjadi micro pellet. Berdasarkan pengujian yang dilakukan meliputi uji organoleptik, uji kadar air, uji protein dan karbohidrat, menunjukkan bahwa pakan ikan telah memenuhi kriteria sebagai pakan ikan yang mengandung nutrisi tinggi. Kata kunci: Pakan Ikan, Limbah organik, Tulang Ikan, Buah-buahan, Sayuran 232


1 BAB I. PENDAHULUAN A. Latar Belakang Indonesia merupakan negara maritim dengan sumber daya alam melimpah, sebagian masyarakat Indonesia bekerja pada sektor perikanan seperti nelayan dan budidaya (Wardhana & Sugiharto, 2022). Budidaya ikan menjadi salah satu tumpuan sektor ekonomi masyarakat Indonesia, budidaya ini mencangkup budidaya ikan hias dan ikan konsumsi. Keberhasilan budiaya ikan sangat bergantung terhadap hasil panen dan lama waktu pemeliharaan (Afifah & Damayanti, 2020). Aspek-aspek lain yang menyertai keberhasilan tersebut antara lain kondisi lingkungan, kesehatan ikan, dan nutrisi dalam pakan yang diberikan. Kondisi lingkungan yang cocok dan keadaan ikan yang sehat akan membuat pertumbuhan dan fisiologis ikan berada pada kondisi yang normal. Pakan ikan secara normal dapat berperan dalam pertumbuhan dan perkembangan ikan, namun pakan ikan yang berkualitas tinggi akan mempercepat pertumbuhan dan perkembangan ikan (Addini et al., 2020). Budidaya ikan yang banyak diminati oleh masyarakat Indonesia adalah budidaya ikan nila, ikan nila menjadi salah satu ikan konsumsi utama masyarakat Indonesia Menurut Sumbodo et al., (2018) ikan nila memiliki kontribusi sebesar 7,12% dari total budidaya perikanan nasional dan terus meningkat. Ikan nila banyak diminati masyarakat karena rasa dagingnya yang lezat dengan kandungan gizi yang cukup tinggi dan harganya yang terjangkau (Novianti et al., 2022). Ikan nila merupakan dengan tingkat adaptasi yang tinggi sehingga mudah dipelihara, ikan nila dapat dibudidayakan baik di kolam tambak maupun kolam tanah dengan masa pemeliharaan 6 bulan (Hasan et al., 2020). Seiring dengan tingginya tingkat produksi dan tingkat konsumsi ikan nila, budidaya ikan nila juga meninggalkan residu berupa limbah tulang ikan nila yang dibuang tanpa adanya pengolahan lebih lanjut (Wardhana & Sugiharto, 2022). Limbah tulang yang menumpuk akan menghasilkan emisi berupa bau yang tidak sedap sehingga mencemari udara. Menurut Sumbodo et al. (2019) tulang ikan memiliki kandungan protein yang tinggi, selain itu tulang juga mengandung banyak kalsium dan fosfor. Kandungan protein yang tinggi memungkinkan tulang ikan nila untuk dimanfaatkan sebagai bahan utama dalam pakan ikan. Limbah tulang ikan dapat diolah dengan 233


2 mengubahnya menjadi bentuk tepung terlebih dahulu. Tepung ikan nila ini akan diformulasikan ke dalam bahan pembuatan pakan ikan. Pakan merupakan faktor penting dalam budidaya ikan, pakan menjadi penyuplai utama kebutuhan nutrisi ikan yang secara langsung berdampak terhadap pertumbuhan dan perkembangan ikan. Pakan ikan dengan nutrisi tinggi umumnya ditunjukkan dengan kandungan protein mencapai ±30% (Alfarizi & Furqan, 2022). Karakteristik pakan ikan yang baik tidak hanya ditinjau dari kandungan nutrisinya, namun juga residu sisa pakan yang ditinggalkan. Residu yang ditinggalkan akan membentuk senyawa organik dan anorganik yang berdampak buruk bagi kondisi air media tumbuh ikan (Telaumbanua et al., 2023). Oleh karena itu diperlukan adanya inovasi pakan ikan yang tinggi nutrisi dan rendah residu, yaitu Bofble pakan ikan tinggi nutrisi dan rendah residu yang terbuat dari bahan tulang ikan nila dan sisa buah serta sayur yang difermentasikan dengan probosit EM4. B. Rumusan masalah 1. Bagaimana potensi Bofble sebagai pakan ikan tinggi nutrisi dan rendah emisi berbasis tulang ikan nila? 2. Bagaimana formulasi dalam pembuatan Bofble sebagai pakan ikan tinggi nutrisi dan rendah emisi berbasis tulang ikan nila? C. Tujuan: 1. Mengetahui potensi Bofble sebagai pakan ikan tinggi nutrisi dan rendah emisi berbasis tulang ikan nila. 2. Mengetahui formulasi dalam pembuatan Bofble sebagai pakan ikan tinggi nutrisi dan rendah emisi berbasis tulang ikan nila. D. Manfaat: 1. Memberikan pengetahuan tentang pemanfaatan tulang ikan nila sebagai bahan pembuatan Bofble untuk pakan ikan tinggi nutrisi dan rendah emisi 2. Memberikan inovasi tentang formulasi pembuatan Bofble untuk pakan ikan tinggi nutrisi dan rendah emisi 234


3 BAB II. TINJAUAN PUSTAKA A. Fermentasi Fermentasi merupakan suatu cara untuk menguraikan senyawa dari bahanbahan protein kompleks menjadi protein lebih sederhana melalui bantuan mikoorganisme (Pelczar & Chan, 2008). Pelet pakan ikan dapat difermentasi untuk meningkatkan nilai gizi dan kecernaannya. Fermentasi dapat membantu memecah karbohidrat kompleks dan protein dalam pakan, membuatnya lebih mudah dicerna oleh ikan. Proses fermentasi digunakan untuk mengolah limbah tulang ikan nila menjadi pakan yang lebih mudah dicerna dan bernutrisi tinggi. Proses Fermentasi limbah sayuran dan buah untuk mikropelet ikan menggunakan probiotik EM4 dilakukan dengan masa inkubasi selama 7 hari. Penggunaan EM4 untuk memfermentasi sayuran limbah menghasilkan peningkatan yang signifikan dalam kualitas nutrisi dari pakan yang dihasilkan. EM4 dapat digunakan dalam kombinasi dengan bahan lain seperti dedak dan tepung tulang ikan nila untuk menciptakan campuran pakan yang seimbang untuk ikan. B. Limbah Tulang Ikan Nila Limbah perikanan berupa kepala, tulang, sisik, dan kulit ikan dapat mencapai 20 juta ton, dimana setara dengan 25% dari total produksi penangkapan ikan di dunia, hal tersebut disebabkan konsumsi ikan di Indonesia terus meningkat sehingga meningkatkan jumlah limbahnya (Jung dkk., 2008). Pemanfaatan Limbah tulang ikan digunakan dalam pembuatan produk-produk berupa penyedap rasa, tepung dan bahan baku pakan ikan. Limbah tulang ikan mengandung mineral tinggi seperti kalsium dan fosfor yang penting untuk nutrisi ikan, sehingga dapat dimanfaatkan sebagai pakan ikan. Limbah tulang ikan nila dimasak dengan cara dikeringkan dengan suhu 70oC, karena protein akan mengalami denaturasi dan degradasi (Yazid, 2006). Tulang ikan nila yang sudah dikeringkan, dihancurkan hingga berbentuk bubuk sebagai bahan baku pembuatan mikropelet. Kandungan protein pada tepung ikan nila lebih banyak dibandingkan ikan mujair yaitu, sebanyak 63,63 gram per 100 gram sedangkan ikan mujair hanya sebesar 16,03 gram per 100 gram (Fongin et al, 2020). Kandungan protein pada tulang ikan nila sangat cocok dijadikan dalam bahan baku pembuatan pakan ikan yang bernutrisi tinggi. C. Limbah Sayur-sayuran 235


4 Limbah sayuran adalah salah satu sumber protein asal nabati yang dapat dijadikan bahan dalam pembuatan pakan ikan mikropelet. Ketersediaan limbah sayuran sangat melimpah sehingga dapat menyebabkan polusi lingkungan, limbah sayuran juga belum dimanfaatkan secara optimal untuk penunjang budidaya ikan, hal tersebut karena limbah sayuran sangat mudah busuk. Padahal limbah sayuran memiliki zat-zat makanan yang dapat dimanfaatkan oleh ikan. Berdasarkan penelitian Fakultas Peternakan UNPAD (2005), limbah sayuran mengandung kadar air 80%; Protein kasar 12,64-23,50%; dan serat 20,76-29,18%. Penting untuk dicatat bahwa dalam pembuatan pelet ikan menggunakan limbah sayuran, perlu memastikan limbah tersebut tidak mengandung bahan kimia berbahaya atau pestisida yang dapat membahayakan kesehatan ikan. Beberapa contoh limbah sayuran yang bisa dijadikan pelet pakan ikan antara lain kubis dan kangkung. D. Limbah Buah-buahan Limbah buah-buahan seringkali tidak dimanfaatkan secara optimal. Limbah ini merupakan hasil buangan yang biasanya dibuang secara langsung tanpa pengelolaan lebih lanjut, seperti open dumping, yang dapat menyebabkan dampak negatif terhadap lingkungan dan menghasilkan bau yang tidak sedap. Limbah buah-buahan memiliki kandungan gizi yang rendah, dengan kandungan protein kasar sekitar 1-15% dan serat kasar sekitar 5-38% (Jalaluddin, 2016). Pemanfaatan sisa makanan seperti limbah buah-buahan pada pelet pakan ikan merupakan pendekatan berkelanjutan dan ramah lingkungan untuk mengurangi limbah dan menghasilkan pakan ikan berkualitas tinggi. Limbah makanan, termasuk limbah buah, dapat digunakan untuk memformulasi pelet pakan ikan. Beberapa contoh limbah buah yang bisa dijadikan pelet pakan ikan antara lain kulit pisang, kulit mangga, dan kulit jeruk. E. Micropelet Pakan ikan merupakan faktor penting dalam budidaya ikan dalam peningkatan hasil perikanan. Pakan ikan berbentuk micropelet. Micropelet merupakan makanan buatan yang terbuat dari berbagai bahan yang dicampur dan dibentuk menjadi adonan. Bahan tersebut dicetak menjadi bulatan kecil dengan ukuran sekitar 500-800 mikron. Pelet ini berbeda dari tepung, butiran, atau larutan (Setyono, 2012). Pembuatan mikropelet ikan harus menggunakan bahan baku yang memiliki kandungan gizi yang baik, terutama dalam hal sumber protein. Beberapa bahan nabati yang dapat digunakan sebagai sumber protein antara lain, limbah sayuran, limbah buah-buahan, kedelai, jagung, bungkil kelapa, ampas 236


5 tahu, bungkil kacang tanah, dan dedak, serta bahan hewani berupa limbah tulang ikan nila. Bahan yang digunakan adalah Proses ekstrusi biasanya digunakan untuk membuat pelet pakan ikan, yang melibatkan pemanasan dan pemberian tekanan pada pakan untuk membuat pelet yang padat. Pembuatan mikropelet sebagai upaya untuk mengurangi limbah rumah tangga, dan tentunya mengembangkan pakan ikan tinggi nutrisi dari limbah tulang nila. F. Zero Waste – Zero Emmision Zero waste tersebut mencakup proses untuk memaksimalkan recycling, meminimalisasi limbah, mengefektifkan konsumsi dan memastikan suatu produk dapat didaur ulang sehingga limbah yang dihasilkan mendekati nilai nol. Prinsip zero waste termasuk mengurangi, menggunakan kembali, mendaur ulang, dan membuat kompos bahan untuk mengalihkannya agar tidak berakhir di tempat pembuangan sampah atau insinerator (Fitriyani, 2014). Zero emisi mengacu pada tujuan untuk sepenuhnya menghilangkan atau menetralkan pelepasan emisi gas rumah kaca ke atmosfer, dalam karya tulis ini Zero emisi dimaksudkan untuk meminimalisir polusi udara dari gas bau tidak sedap yang ditimbulkan dari limbah. Konsep zero waste-zero emisi berfokus pada pengelolaan sumber daya dengan cara yang meminimalkan limbah dan dampak negatif terhadap lingkungan. Dalam konteks pakan ikan, pendekatan ini mencakup pemanfaatan limbah tulang ikan sebagai bahan baku untuk menghasilkan pakan berkualitas tinggi, sehingga mengurangi limbah dan menghindari emisi yang merugikan lingkungan. 237


6 BAB III METODOLOGI PENELITIAN A. Teknik Pengambilan Data Pengumpulan data diperoleh melalui berbagai literatur, seperti artikel, jurnal ilmiah, e-book, skripsi dan sumber lainya yang terpercaya dan relevan dengan objek kajian. Studi literatur merupakan metode pengumpulan data yang digunakan dalam karya tulis ini, sehinga dapat dibuktikan secara empiris oleh pembuat literatur. Karya tulis yang kami susun memuat data-data penelitian terdahulu yang diperoleh melalui berbagai sumber jurnal dan artikel nasional maupun internasional seperti Google Scholar, MDPI dan Pubmed. Kami menggunakan kata kunci antara lain Pakan Ikan, Limbah organik, Tulang Ikan, Buah-buahan, Sayuran. B. Kerangka Berpikir Pengolahan Data Kerangka berpikir karya tulis ilmiah ini dapat dilihat pada gambar 3.1 di bawah ini. Gambar 3.1 Kerangka Berpikir Pengolahan Data Karya Tulis C. Analisis Sintesis 238


7 Kami menggunakan teknik analisis sintesis dalam menganalisis permasalahan yang ada. Metode analisis sintesis yang baik mampu mengembangkan pertanyaan mendalam dan menyesuaikan fokus dengan tema dan topik penulisan yang dikembangkan. Analisis sintesis dari permasalahan yang ada dalam karya tulis ini dapat dilihat dalam gambar 3.2 Gambar 3.2 Analisis Sintesis Permasalahan D. Pengambilan Keputusan Berdasarkan permasalahan dan analisis yang dilakukan maka dapat diperoleh kesimpulan bahwa “BOFBLE: High Nutrition Fish Feed from Fermented Tilapia (Oreochromis niloticus) Bone Waste based on Zero WasteZero Emission” dapat menjadi solusi untuk meningkatkan kualitas pakan ikan yang kaya akan nutrisi dan mampu mengurangi limbah di lingkungan sehingga mampu mendukung program Zero Waste-Zero Emission di Indonesia. 239


8 BAB IV. HASIL DAN PEMBAHASAN A. Hasil Bofble merupakan sediaan micropellet sebagai pakan ikan yang efektiv untuk sumber protein dan serat ikan yang tinggi. Hal tersebut dapat sejalan dengan penelitian Achadri et al. (2018), didapatkan hasil bahwa limbah organik seperti tulang ikan, buah-buahan dan sayuran dapat menjadi bahan pembuatan pakan ikan yang efektiv dan tinggi nutrisi. B. Pembahasan 1. Potensi Bofble sebagai Pakan Ikan Tinggi Nutrisi dan Rendah Emisi Berbasis Tulang Ikan Nila Bofble merupakan pakan ikan berbahan dasar limbah tulang ikan nila, buah-buahan dan sayuran yang mengandung tinggi nutrisi. Kandungan nutrisi tersebut seperti protein dan serat. Kandungan protein pada bofble berasal dari limbah tulang ikan nila sebanyak 63,63 gram per 100 gram (Fongin et al, 2020). Selain protein, Bofble juga mengandung serat kasar sebesar 5-38%, total kandungan tersebut didapatkan berdasarkan penelitian Jalaluddin et al. 2016, yang berasal dari limbah sayuran dan buah-buahan. Penggunaan limbah tulang ikan, buah-buahan dan sayuran juga dapat menjadi solusi penanganan limbah organik rumah tangga yang dihasilkan tiap harinya oleh masyarakat. Pemanfaatan limbah tulang ikan, sayuran dan buah-buahan dapat mengurangi penumpukan limbah organik penyebab pencemaran lingkungan yang dapat menimbulkan penyakit. Hal tersebut sejalan dengan konsep zero waste-zero emission, dimana memiliki tujuan untuk memaksimalkan penggunaan sumber daya alami, mengurangi polusi dan dapat mendorong sistem ekonomi yang berkelanjutan melalui lingkungan yang lebih bersih dan sehat dengan mengurangi penumpukan limbah organik yang 240


9 menyebabkan polusi lingkungan dan udara bau tidak sedap. Bofble diharapkan dapat menjadi pakan ikan yang bersifat zero waste-zero emission untuk pengembangan dunia berkelanjutan. 2. Formulasi Pembuatan Bofble sebagai Pakan Ikan Tinggi Nutrisi dan Rendah Emisi Berbasis Tulang Ikan Nila Pembuatan Bofble menggunakan bahan-bahan antara lain, limbah tulang ikan nila, buah-buahan dan sayuran, dedek, air dan EM4. Limbah tulang ikan nila berperan sebagai sumber protein pada Bofble sedangkan limbah buah-buahan dan sayuran berperan sebagai sumber nutrisi pada Bofble. Selain limbah organik, dedek juga menjadi bahan alami yang dihasilkan dari pengolahan padi, yaitu kulit gabah yang terpindah saat proses penggilingan. Penambahan dedek berfungsi sebagai bahan untuk memadatkan pakan ikan, selain itu juga sebagai sumber nutrisi dan protein. Berdasarkan penelitian Utami (2011), didapatkan hasil bahwa dedek padi mengandung protein kasar 12,39% dan serat kasar 12,59%. Air merupakan salah satu bahan formulasi pembuatan pakan ikan sebagai bahan pelarut untuk mencampurkan berbagai bahan z pakan lain. Selain air, pembuatan pakan ikan juga menggunakan EM4, yang berfungsi sebagai probiotik. 241


10 BAB V PENUTUP A. Kesimpulan Berdasarkan hasil dan pembahasan, maka dapat disimpulkan sebagai berikut: 1. Pemanfaatan limbah tulang ikan Nila (Oreochromis niloticus) dengan kombinasi limbah buah-buahan dan sayuran berpotensi untuk menjadi alternatif pakan ikan bernutrisi tinggi dan rendah emisi yang ramah lingkungan. 2. Formulasi pakan ikan berbasis tulang ikan Nila (Oreochromis niloticus) dikombinasikan dengan limbah limbah buah-buahan dan sayuran yang dapat diaplikasikan untuk pakan ikan adalah perbandingan lebih banyak proprosi limbah tulang ikan nila dibandingkan dengan limbah sayur dan buah-buahan. B. Saran Berdasarkan pembahasan dan kesimpulan, maka beberapa saran yang dapat diberikan adalah sebagai berikut: 1. Bagi masyarakat disarankan untuk menggunakan pakan ikan yang berasal dari tulang ikan nila (Oreochromis niloticus) dengan bahan tambahan limbah sayuran dan buah-buahan sebagai pakan ikan alternatif yang dapat mendukung program Zero Waste Zero Emission. 2. Perlunya peningkatan pengetahuan di kalangan masyarakat mengenai pemanfaatan limbah tulang ikan nila (Oreochromis niloticus) dengan bahan tambahan buah-buahan dan sayuran menjadi pakan ikan yang kaya akan nutrisi dan mampu mengurangi limbah di lingkungan 3. Diperlukan penelitian lebih lanjut untuk mengetahui efektifitas micropelet dari tulang ikan Nila (Oreochromis niloticus) sehingga diperoleh formulasi pakan ikan yang lebih baik 242


11 DAFTAR PUSTAKA Addini, N., Tang, U. M., & Syawal, H., 2020. Fisiologis Pertumbuhan Ikan Selais (Ompok hypophthalmus) Pada Sistem Resirkulasi Akuakultur (SRA). Berkala Perikanan Terubuk, 48(2), pp. 450-463. Alfarizi, L. M., & Furqan, B. R. N., 2022. Formulasi Pakan Ikan Berbasis Bioslurry dan Pengaplikasiannya di Masyarakat Petani Ikan. Abdinesia: Jurnal Pengabdian Kepada Masyarakat, 2(2), pp. 26-28. Alfiah, A., & Damayanti, D., 2020. Aplikasi E-Marketplace Penjualan Hasil Panen Ikan Lele (Studi Kasus: Kabupaten Pringsewu Kecamatan Pagelaran). Jurnal Teknologi Dan Sistem Informasi, 1(1), pp. 111-117. Fitriyani, R., 2014. Pemanfaatan Limbah Tulang-tulang Ikan Menjadi Pelet Pakan Ikan untuk Menciptakan Kawasan Zero Waste di Pantai Baru Pandansimo Kabupaten Bantul. Master Program of Systems Engineering. Fongin, Suwalee & Phosri, Pattarapan & Suttiprapa, Suttikarn & Pimpangan, Tanabodee & Utama-ang, Niramon., 2020. Effect of Substitution of Wheat Flour with Nile Tilapia Bone Powder on The Quality Characteristics of Cashew Nut Cookies. Chiang Mai University Journal of Natural Sciences, 1(2), pp. 2-10. Hasan, H., Afifa, N., Maulana, I., Elihami, E., & Aminullah, A., 2020. Budidaya Ikan Nila pada Kolam Tanah. Maspul Journal of Community Empowerment, 2(2), pp. 24-33. Jalaluddin, Nasrul ZA, Rizki Syafrina, 2016, Pengolahan Sampah Organik Buahbuahan Menjadi Pupuk Dengan Menggunakan Effective Microorganism, Aceh: Jurnal Teknologi Kimia Unimal, 2(2), pp.21-29. Kementerian Kelautan dan Perikanan. 2015. Analisis Data Pokok Kelautan dan Perikanan 2015. Jakarta: Pusat Data Statistik dan Informasi. Nabil, M. 2005. Pemanfaatan Limbah Tulang Ikan Tuna (Thunnus sp.) sebagai Sumber Kalsium dengan Metode Hidrolisis Protein. [Skripsi]. Institut Pertanian Bogor. Bogor, pp. 67-69. Novianti, N., Umar, N. A., & Budi, S., 2022. Pengaruh Berbagai Konsentrasi Anggur Laut Caulerfa Lentillirea Pada Pakan Terhadap Pertumbuhan Ikan Nila. Journal of Aquaculture and Environment, 4(2), pp. 45-49. Pelczar, M.C., Chan, E.C.S and Krieg, N.R. 2008. Microbiology Concepts and Applications. McGraw-HM, Inc., New York. Sanchez, F.H. dan Moracles, M.E.A. 2012. Nutritional Richness and Importance of the Consumption of Tilapia in the Papaloapan Region. Revista Electronica de Veterinaria. 13(6): 1-12. 243


12 Setyono, B., 2012. Pembuatan Pakan Buatan. Kepanjen, Malang: Unit Pengelola Air Tawar.ine. Sagu. 3(1), pp. 20-27. Sumbodo, J., Amalia, U., & Purnamayati, L., 2019. Peningkatan gizi dan karakteristik kerupuk pangsit dengan penambahan tepung tulang ikan nila (Oreochromis niloticus). Jurnal Ilmu dan Teknologi Perikanan, 1(1), pp. 30-36. Susangka, I., Haetami, K., & Andriani, Y., 2007. Evaluasi Nilai Gizi Limbah Sayuran Produk Cara Pengolahan Berbeda dan Pengaruhnya Terhadap Pertumbuhan Ikan Nila. Fakultas Perikanan dan Ilmu Kelautan, Universitas Padjajaran, Bandung. Telaumbanua, B. V., Telaumbanua, P. H., Lase, N. K., & Dawolo, J., 2023. Penggunaan Probiotik EM4 Pada Media Budidaya Ikan. TRITON: Jurnal Manajemen Sumberdaya Perairan, 19(1), pp. 36-42. Wardhana, K. W., & Sugiharto, A., 2022. Pembuatan Gelatin dari Tulang Ikan Nila (Oreochromis niloticus) Menggunakan Metode Asam untuk Pengental Sirup Nanas. Jurnal Teknik Kimia USU, 11(1), pp. 44-48. Yazid, E. dan Nursanti, L., 2006. Penuntun Praktikum Biokimia. Yogyakarta: Penerbit Andi. 244


Click to View FlipBook Version