The words you are searching are inside this book. To get more targeted content, please make full-text search by clicking here.
Discover the best professional documents and content resources in AnyFlip Document Base.
Search
Published by Ustazah Nadirah, 2022-12-31 20:36:12

PROSIDING SEPZON 2022

PROSIDING SEPZON 2022

SEMINAR PENYELIDIKAN PENDIDIKAN PERINGKAT KEBANGSAAN ZON SABAH TAHUN 2022 (SepZon22)

“FIND YOURS”: Aplikasi Firebase diciptakan melalui pelbagai aneka kode bagi memastikan
aplikasi ini dapat dilancarkan dengan baik dan lancarnya. Rajah 6.0 menunjukkan contoh code
bagi pembinaan aplikasi “FIND YOURS”. Asas bagi membina code ini dicapai melalui tutorial
dalam talian dan video yang terdapat dalam aplikasi youtube.

Rajah 7.0: Aplikasi Firebase
Rajah 7.0 menunjukkan aplikasi Firebase. Data yang dimasukkan oleh pengguna secara automatik
akan tersenarai dalam aplikasi ini apabila pengguna memasukkan input dalam aplikasi “FIND
YOURS”. Hal ini demikian kerana, aplikasi “FIND YOURS” berhubung kait dengan aplikasi

51


SEMINAR PENYELIDIKAN PENDIDIKAN PERINGKAT KEBANGSAAN ZON SABAH TAHUN 2022 (SepZon22)

Firebase ini yang berperanan menyimpan semua data dan maklumat yang didapati di dalam
aplikasi “FIND YOURS”.

Rajah 8.0: Aplikasi “FIND YOURS”
Pengguna baharu perlulah membuat akaun terlebih dahulu sebelum dapat memasuki aplikasi
“FIND YOURS” ini. Setelah mendaftarkan akaun, laman utama aplikasi ini memaparkan tiga
seksyen iaitu melaporkan barang hilang yang ditemui, barang hilang yang belum di tuntut serta
barang hilang sudah dituntut. Bahagian laporan item akan meminta pengguna untuk memasukkan
input jenis barang yang ditemui, maklumat peribadi, info kontak dan gambar barang yang
dijumpai. Barang hilang yang belum dituntut akan tersenarai dalam bahagian Unclaimed Item bagi
memudahkan proses pencarian . Pemilik yang sudah menuntut item yang hilang akan mengisi
maklumat diri di seksyen Claim Item dan sahkan barang tersebut sudah dituntut. Segala data yang
dimasukkan dalam aplikasi ini seperti laporan barang hilang yang dijumpai atau maklumat
pengguna akan dimasukkan ke dalam aplikasi firebase secara automatik bagi penyimpanan data.

52


SEMINAR PENYELIDIKAN PENDIDIKAN PERINGKAT KEBANGSAAN ZON SABAH TAHUN 2022 (SepZon22)

4.0 PERBINCANGAN DAN KEPUTUSAN
Dalam dapatan kajian yang dijalankan bahagian ini membincangkan analisa data dan memaparkan
hasil penemuan kajian yang telah dilakukan daripada soal selidik dalam talian yang telah diisi oleh
responden dan temuduga yang dijalankan. Data yang telah dimasukkan diproses bagi mendapatkan
statistik seperti nilai peratusan barang yang dituntut dan kekerapan kehilangan barang yang
berlaku di dalam kolej. Kajian mendapati bahawa sebanyak 52.8% bilangan pelajar tidak menuntut
barang mereka yang hilang. Hal ini dibuktikan melalui hasil soal selidik dalam talian menyebabkan
pelajar tidak menemui barang mereka semula.\
Melalui perkara ini, ‘FIND YOURS’ dicipta oleh JANTSTEM INNOVATION bagi mengatasi
masalah berikut. Inovasi ini meletakkan laman sesawang sebagai medium bagi penyelesaian
masalah. Pelajar yang menjumpai barang yang hilang dapat melayari laman sesawang ini dan
melaporkan barang tersebut. Seterusnya, pelajar yang mengalami kehilangan barang dapat
melayari laman sesawang ini untuk menjumpai barang mereka. Laman sesawang ini juga
mengandungi laporan kecemasan dimana barang yang hilang merupakan barang yang penting
antaranya seperti dompet, telefon pintar dan kad matrikulasi.
Impaknya, pelajar yang mengalami kehilangan barang dapat menjumpai barang mereka semula
dengan mudah dan menjimatkan masa.

Rajah 9.0: Graf hasil data yang dikumpulkan dan dianalisis

53


SEMINAR PENYELIDIKAN PENDIDIKAN PERINGKAT KEBANGSAAN ZON SABAH TAHUN 2022 (SepZon22)

Rajah 9.1: Graf sekiranya inovasi ini dilancarkan
Melalui gambar rajah 1.0, sebanyak 165 barang yang hilang tidak dituntut selama 100 hari
menjadikan bilangannya meningkat sebanyak 914 unit dalam masa 250 hari. Sekiranya inovasi
ini dilancarkan, 51% barang yang tidak dituntut akan menurun kepada 11%. Hal ini dibuktikan
dengan ramalan bahawa dalam masa 100 hari, barang yang hilang tidak dituntut diramalkan
sebanyak 36 unit manakala menjadikannya 198 unit selama 250 hari.
Justeru itu, ‘FIND YOURS’ memberikan impak positif kepada isu kehilangan barang dalam
kolej. Hal ini dapat membuatkan kualiti hidup pengguna beralih ke arah lebih baik lagi. Oleh
itu, Aplikasi “FIND YOURS” ini layaknya perlulah dilancarkan bagi memudahkan proses
pencarian dan penemuan barang yang hilang.
RUJUKAN
Edward A. Bender (2000). An Introduction to Mathematical Modeling. Courier Corporation
Liubov Zhoztonizhko (2019). What is Google Data Studio. OWOX BI
Nonanomad (2022). Cara Menggunakan Aplikasi Canva: Tutorial Lengkap. Mega Blog
Keptennews (2021). Format Kertas Kerja
Doug Stevenson (2018). What is Firebase. Firebase Developers

54


SEMINAR PENYELIDIKAN PENDIDIKAN PERINGKAT KEBANGSAAN ZON SABAH TAHUN 2022 (SepZon22)

THE RELATIONSHIP BETWEEN TEACHER READINESS AND TEACHER’S ATTITUDES
TOWARDS SECONDARY SCHOOLS QUANTUM PHYSICS TEACHING AMONG PHYSICS

TEACHERS IN SABAH

Stephanie Sungkim, Mohd. Zaki Bin Ishak

Universiti Malaysia Sabah

[email protected]

ABSTRACT
Quantum physics is no longer an unfamiliar concept in developed nations due to the rapid advancement of
quantum technologies in modern life. The majority of countries have included quantum physics in secondary
school physics curricula because of how crucial it is to modern living. To keep up with international trends,
Malaysia's physics curriculum begins to include quantum physics in 2021. Teachers' readiness to teach quantum
physics to students in secondary schools is seen as being challenged by this new topic of quantum physics. The
study aims to investigate how teachers' attitudes and readiness for teaching quantum physics in secondary schools
relate to one another. Data from physics teachers in Sabah were collected using a survey method. Through the use
of Pearson's correlation analysis, the responses from 175 physics teachers were analyzed using SPSS Version
28.0. Based on the analysis, it has been shown that the correlation is moderate and positive between teacher’s
attitudes and readiness to teach quantum physics (r=.60) with a significance of p < .05. The results of this study
suggest that despite the difficulty of understanding and teaching quantum physics, secondary school teachers are
ready to teach this topic to their students.

Keywords: Quantum physics, teacher readiness, teacher’s attitudes

1. INTRODUCTION
Quantum physics is no longer an unfamiliar concept in developed nations due to the rapid
advancement of quantum technologies in modern life. The majority of countries have included
quantum physics in secondary school physics curricula because of how crucial it is to modern
living. To keep up with international trends, Malaysia's physics curriculum begins to include
quantum physics in 2021. Teachers' readiness to teach quantum physics to students in
secondary schools is seen as being challenged by this new topic of quantum physics. The study
aims to investigate how teachers' attitudes and readiness for teaching quantum physics in
secondary schools relate to one another. According to research done on the topic of teacher
readiness, a teacher's knowledge, attitudes, and interest are among the most essential elements
in determining how well-ready they are (Park et al., 2016). This is supported by a study that
was conducted by Fan et al. (2019), which indicates that attitudes are a component of teacher
readiness.

The response to the quantum physics topics is highly dependent on the attitude of the teachers
regarding their readiness to confront the difficulties of teaching the new topic to students in
form 5. The attitudes of teachers become one of the essential aspects that influence how ready
they are to teach on this topic, which in turn will have an effect on the student’s level of
comprehension of the material (Barros & Elia, 1998; Huoy Tyan et al., 2020; Mohd Shahali et
al., 2015). In addition, when educators believe they are able to teach and are not overly reliant
on textbooks, they have more positive attitudes and are more ready to teach (van Aalderen-
Smeets & van der Molen, 2013). In addition, once teachers are made aware of the significance
of delivering quantum physics content knowledge to students, they will make the necessary
preparations to ensure that students are fascinated by the prospect of studying quantum physics
(Foppoli et al., 2018). Furthermore, Ramanan and Mohamad (2020) conducted a study in which
they came to the conclusion that change readiness plays an important part in determining
whether teachers are ready for change. Their findings extend previous theory and research on
the significance of change readiness among teachers working in educational settings. Aside

55


SEMINAR PENYELIDIKAN PENDIDIKAN PERINGKAT KEBANGSAAN ZON SABAH TAHUN 2022 (SepZon22)

from that, the readiness of teachers to embrace new changes in the curriculum had a big impact
on the new implementation in the educational curriculum, and it is essential for the success of
educational transformation change. This was vital for the success of the change. They also
asserted that the concerns of those who would be affected by the changes (the teachers) must
be taken into consideration for the education reforms to be successful. Therefore, in order for
educational transformation to be successful in terms of their attitudes, teachers need to be ready
to change.

When it comes to the teachers, one of the difficulties they face in teaching quantum physics is
that practically all of them did not study QP throughout their undergraduate studies (Lautesse
et al., 2015). When they generally relied on textbooks to teach a subject, it caused teachers to
lose confidence in their own abilities to teach the topic (Wook Cheong & Song, 2014).
According to the findings of Lautesse et al., (2015), placing an emphasis on conceptual choices
can encourage teachers to reflect on the historical and epistemological roots of quantum
physics, which in turn contributes to the development and implementation of appropriate
quantum physics teaching sequences. Wave and particle are basic concept in quantum physics
that contrasts with the wave and particle characteristics of classical physics (Héraud et al.,
2017). It presents the wave and particle characteristics of quantum physics. According to the
findings of a study done by (Bungum et al., 2015) teachers require a large quantity of readily
accessible quantum physics resources because of this problem. In order for them to be able to
explain the challenging topic that is covered in quantum physics, such as the wave-particle
duality of photons and Heisenberg's uncertainty principle (Wook Cheong & Song, 2014). In
spite of the fact that wave-particle duality is an essential aspect of quantum physics, it is also
one of the most challenging concepts to understand (Olsen, 2002).

Olsen (2002) also stated that we are able to conduct experiments in which electrons behave
similarly to classical particles and experiments in which they act similarly to classical waves;
however, we are unable to conduct experiments in which both natures of electrons are explored
simultaneously. The idea that an electron and light can behave in either the manner of a particle
or a wave at the same time is a common source of bewilderment for educators, not to mention
for secondary school students. This is because, according to the principles of classical physics,
electrons behave more like particles than waves; waves are only applicable to light. This is also
supported by Heisenberg (1930), which was cited in Rodriguez et al. (2020), who states that
the difficulty in understanding wave-particle duality stems from the fact that the two mental
pictures that experiments lead us to form - one of the particles, the other of waves - are both
incomplete and rely on analogies that are only accurate in limiting cases. Particles and waves
are both examples of mental pictures that are incomplete and rely on analogies that are only
accurate in limiting cases.

The attitudes of teachers can be used to determine whether or not they are ready to teach a new
topic (Richardson, 1996). This is reinforced by a study done in the past, which found that
attitude has a beneficial influence on a person's readiness to embrace change, and that good
attitudes show full support for the changes that are taking place, while negative attitudes
indicate the opposite (Kondakci et al., 2017; Richardson, 1996; Wan Mahmood et al., 2016).
According to González-Gómez et al. (2019) and Ulug et al. (2011), the positive attitudes of
teachers have a positive impact on student performance and a great impact on their
performance. As a result, it is important for teachers to be positive with this curriculum
transformation in physics education so that students will easily grasp the understanding of the
QP concept. The teachers should be passionate about the subject matter that will be addressed

56


SEMINAR PENYELIDIKAN PENDIDIKAN PERINGKAT KEBANGSAAN ZON SABAH TAHUN 2022 (SepZon22)

in order to assist the students in comprehending the material and provide constructive criticism
on it (Layang & Mahamod, 2019).

In most classroom setting, it is the role of the teachers to devise methods of instruction that are
geared specifically toward the needs of the students. The teacher – to have everything prepared
before entering the classroom in order to give an outstanding presentation of the material being
taught. In addition to their understanding of the subject matter, research have demonstrated that
teachers' attitudes are linked to their readiness (Mohd Shahali et al., 2015). According to Hill
et al. (1977), an individual's perspective, which can be good or negative depending on how
they feel about something or someone, is their attitude. A person's knowledge and beliefs about
the issue that concerns them are the basis for their attitudes, which are the sentiments that a
person has about anything. Attitudes are feelings that a person has about something (Holt et
al., 2007; Nilsson & van Driel, 2011; Yari et al., 2019). In the context of this discussion, the
attitudes of a teacher for teaching QP refer to the attitudes of a physics teacher, which involve
preparation, expectation, and efforts towards teaching quantum physics within the context of a
school setting.

The teachers’ attitudes are highly important in terms of learning how to teach, as well as in
terms of knowing how to teach procedures, classroom practises, and how to implement changes
(Richardson, 1996). Good teaching will result when teachers are passionate about the subjects
they teach, inspire their students to learn about science, and find ways to apply scientific
concepts to everyday life (Osborne et al., 2003). As a result, students will have a successful
grasp of the material being presented to them. The attitudes of the teachers will play a
significant role in determining how they evaluate the inclusion of new subject matter in the
curriculum (Vossen et al., 2019). The attitudes of the teachers will impact the attitudes of the
students to learn about the new subject. A study conducted by Sargioti and Emvalotis (2020)
discovered that students with a good attitude may be identified by the growing number of
students who participate actively in class activities, which in turn leads to a greater level of
comprehension of the material that is being presented.

On the basis of the logic and the problem that has arisen, the newly revised curriculum indicates
that it is required to evaluate the level of readiness of the teachers in order to teach QP, as well
as the extent to which attitude influences the level of readiness of the teachers. This can be
accomplished by gauging the degree of readiness possessed by the teachers. This is done to
make sure that the requirements of the teachers are met in order to improve the overall
performance of the students. Thus, this study aims to investigate how teachers' attitudes and
readiness for teaching quantum physics in secondary schools relate to one another.

2.0 METHODOLOGY
The researcher adopted a positivism paradigm for this study whereby founded on a
hypothetico-deductive method, which means to confirm the hypotheses that are commonly
expressed in quantitative terms of functional relationships between causal and explanatory
factors (independent variables) and outcomes (dependent variables). This is also a cross-
sectional study carried out among 175 physics teachers in Sabah. This study used a survey
design, which involved employing a questionnaire consisting of three parts with 24 items as an
instrument to gather data. The three parts of the questionnaire are demographic profile,
teachers’ attitudes, and teachers’ readiness to teach quantum physics. The first part of the
research instrument was designed to collect personal information from participants, such as
their gender, the location of their school, their level of experience teaching physics, and
whether or not they had studied QP during their undergraduate studies. The second and third

57


SEMINAR PENYELIDIKAN PENDIDIKAN PERINGKAT KEBANGSAAN ZON SABAH TAHUN 2022 (SepZon22)

part consist of 20-items which measure teachers’ attitudes and teacher readiness to teach
secondary schools quantum physics. The attitudes of teachers were assessed by means of a 10-
item scale that had been modified from Mohd Yusof and Ibrahim (2012). The readiness of the
teachers was assessed by using of a 10-item measure that was adapted from Veloo et al. (2015).
It was scored on a ten-point Likert scale from strongly disagree to strongly agree.

The researcher has requested permission from the Educational Planning and Research Division
(EPRD), Ministry of Education Malaysia (MOE) for data collection. The questionnaire with a
value of Cronbach alpha 0.87 was then distributed to the physics teachers in Sabah to rate their
perceptions. Research in the field was carried out on physics teachers in Sabah by employing
a multistage cluster sampling method. The respondents that fit this profile were secondary
school physics teachers who will be teaching the relatively new topic of quantum physics in
their classrooms. A total of 175 questionnaires were given out to physics teachers on a
voluntary basis and were completed through the use of the google form link survey method.
The period of time for data collection was from May to July of 2021. Text messages were used
to provide a total of two reminders to the recipient. There was a response rate of one hundred
percent received. Furthermore, according to the results of the normality test conducted with
IBM SPSS Version 28, all of the responses were fully gathered. As a result, there are 175
responses that are considered valid for this study.

Data collected were analyzed using IBM-SPSS version 28 after all the teachers have submitted
their responses via the google form link. The data were analyzed in two ways, namely
descriptive statistics (frequency and percentage) and inference statistics (Pearson correlation).
When there are two quantitative variables, Pearson's correlation will be used to determine the
relationship between the variables (Mukaka, 2012). In order to determine the correlation
between teacher attitudes and their readiness to teach quantum physics, the Pearson correlation
is used.

3.0 FINDINGS
Following is the summary of the respondents' profiles, which can be seen in Table 1. It can be
seen that the sample is slightly dominated by female respondents (58.3%). From the
perspectives of the school location according to their respective zones, there are 22.9% physics
teachers from zone 1, 16.0% physics teachers from zone 2, 16.0% physics teachers from zone
3, 16.0% physics teachers from zone 4, 10.9% physics teachers from zone 5, and 18.3% physics
teachers from zone 6. The majority of responders, or 44 percent, had between 11 and 20 years
of experience in teaching physics in secondary schools. Respondents had a background in
quantum physics in their undergraduate studies 66.3% of the time, whereas the remaining
33.7% did not study quantum physics in their undergraduate degrees.

58


SEMINAR PENYELIDIKAN PENDIDIKAN PERINGKAT KEBANGSAAN ZON SABAH TAHUN 2022 (SepZon22)

Table 1: Respondents’ Profile

Frequency Percent
41.7
Gender Male 73 58.3

Female 102

Zone 1 40 22.9
2 28 16.0
3 28 16.0
4 28 16.0
5 19 10.9
6 32 18.3

Years of Less than 5 years 22 12.6
teaching
5 – 10 years 50 28.6
11 – 20 years 77 44.0
20 years and above 26 14.9

Did you study Yes 116 66.3
quantum physics No 59 33.7

in your
undergraduate

studies?

A Pearson correlation test was carried out in order to determine whether or not there is a

relationship between the readiness of physics teachers to teach quantum physics and the

attitudes among those teachers. From the analysis, the results demonstrate a high and positive
correlation between teacher’s attitudes and readiness to teach quantum physics (r=.60) (Yan

Piaw, 2020). The inter-correlations are significant at p < .05. The Pearson correlation analysis
that was performed to determine the relationship between teachers’ attitudes and teacher

readiness to teach quantum physics is presented in Table 2.

Table 2: Pearson Correlation of Relationship between Attitudes and Teacher Readiness

AT RT

Attitudes Pearson Correlation 1 .599**

Sig. (2-tailed) <.001

N 175 175

Readiness Pearson Correlation .599** 1

Sig. (2-tailed) <.001

N 175 175

**. Correlation is significant at the 0.01 level (2-tailed).

4.0 DISCUSSION
This study demonstrates a significant relationship between attitudes and the teacher readiness
to teach quantum physics. This conclusion is based on an analysis of the Pearson correlation
between the two variables. When students have questions or problems regarding a new topic,
teachers can, when they are ready, present a clear example for their students' understanding
and answer those questions or address those issues. According to the Theory of Reasoned
Action, the beliefs that teachers have on how they should behave significantly impact the
activities that they conduct (Yzer, 2017). In their research, Mohamed Hata and Mahmud (2020)

59


SEMINAR PENYELIDIKAN PENDIDIKAN PERINGKAT KEBANGSAAN ZON SABAH TAHUN 2022 (SepZon22)

found that teacher readiness has a significant positive relationship with both knowledge
components and attitudes that can boost the self-confidence of teachers, allowing them to better
instruct their students in the classroom. This opinion is supported by the findings of their study,
which shows that this relationship does exist.

In addition, the finding of this study is supported by the study that was conducted by
Muhammad and Ibrahim (2021); in their research, they discovered that there is a significant
relationship between the attitudes of teachers regarding their readiness to teach subjects that
fall under the STEM broader category. The purpose of this study is to encourage teachers to
make greater and more concerted efforts toward comprehensive preparation in the interest of
enhancing teaching efficacy, particularly with regard to the pedagogy of physics teachers.

This research came to the conclusion that there is a strong and important relationship between
attitudes and teachers' readiness in teaching quantum physics topics in secondary schools. The
findings also showed that this relationship is significant and mutually influential. When there
is a positive attitude among teachers, there is also a high level of readiness among teachers.
The results of this study also suggest that despite the difficulty of understanding and teaching
quantum physics, secondary school teachers are ready to teach this topic to their students.

REFERENCES
Barros, S. de S., & Elia, M. F. (1998). Physics Teacher’s Attitudes: How Do They Affect The

Reality Of The Classroom And Models For Change? International Commission on
Physics Education 1997,1998, 33(4), 87–91. https://doi.org/10.1088/0031-9120/33/4/021

Bungum, B., Henriksen, E. K., Angell, C., Tellefsen, C. W., & Bøe, M. V. (2015). ReleQuant
– Improving teaching and learning in quantum physics through educational design

research. Nordic Studies in Science Education, 11(2), 153.

https://doi.org/10.5617/nordina.2043

Fan, M., Leung, L. P., Leung, R., Hon, S., & Fan, K. L. (2019). Readiness of Hong Kong

secondary school teachers for teaching cardiopulmonary resuscitation in schools: A
questionnaire survey. Hong Kong Journal of Emergency Medicine, 26(3), 174–178.

https://doi.org/10.1177/1024907918797532

Foppoli, A., Choudhary, R., Blair, D., Kaur, T., Moschilla, J., & Zadnik, M. (2018). Public and
teacher response to Einsteinian physics in schools. Physics Education, 54(1), 1–14.

https://doi.org/10.1088/1361-6552/aae4a4

González-Gómez, D., Jeong, J. S., & Cañada-Cañada, F. (2019). Enhancing science self-

efficacy and attitudes of Pre-Service Teachers (PST) through a flipped classroom learning

environment. Interactive Learning Environments, 1–12.

https://doi.org/10.1080/10494820.2019.1696843

Héraud, J. L., Lautesse, P., Ferlin, F., & Chabot, H. (2017). Representing the Quantum Object
Through Fiction in Teaching: The Ontological Contribution of Gamow’s Narrative as Part

of an Introduction to Quantum Physics. Science and Education, 26(3–4), 299–322.

https://doi.org/10.1007/s11191-017-9890-6

Hill, R. J., Fishbein, M., & Ajzen, I. (1977). Belief, Attitude, Intention and Behavior: An

Introduction to Theory and Research. Contemporary Sociology, 6(2), 244.

https://doi.org/10.2307/2065853

Holt, D. T., Armenakis, A. A., Feild, H. S., & Harris, S. G. (2007). Readiness for organizational

change: The systematic development of a scale. Journal of Applied Behavioral Science,
43(2), 232–255. https://doi.org/10.1177/0021886306295295
Huoy Tyan, P., Abd Rahman, F., & Shafie Sarvestani, M. (2020). Teachers’ readiness in

60


SEMINAR PENYELIDIKAN PENDIDIKAN PERINGKAT KEBANGSAAN ZON SABAH TAHUN 2022 (SepZon22)

implementing and facilitating 21st century learning. Universal Journal of Educational
Research, 8(1 A), 24–29. https://doi.org/10.13189/ujer.2020.081304
Kondakci, Y., Beycioglu, K., Sincar, M., & Ugurlu, C. T. (2017). Readiness of teachers for
change in schools. International Journal of Leadership in Education, 20(2), 176–197.
https://doi.org/10.1080/13603124.2015.1023361
Lautesse, P., Vila Valls, A., Ferlin, F., Héraud, J. L., & Chabot, H. (2015). Teaching Quantum
Physics in Upper Secondary School in France: : ‘Quanton’ Versus ‘Wave–Particle’
Duality, Two Approaches of the Problem of Reference. Science and Education, 24(7–8),
937–955. https://doi.org/10.1007/s11191-015-9755-9
Layang, F. A., & Mahamod, Z. (2019). Tahap Pengetahuan, Kesediaan dan Sikap Guru Bahasa
Melayu Sekolah Rendah dalam Melaksanakan Pengajaran dan Pembelajaran Peta
Pemikiran i-Think. (Malay). Jurnal Pendidikan Malaysia, 44(1), 37–44.
http://10.0.68.168/JPEN-2019-44.01-
05%0Ahttp://proxy.libraries.smu.edu/login?url=http://search.ebscohost.com/login.aspx?
direct=true&db=eue&AN=136665630&site=ehost-live&scope=site
Mohamed Hata, N. F., & Mahmud, S. N. D. (2020). Kesediaan Guru Sains dan Matematik
Dalam Melaksanakan STEM dari Aspek Pengetahuan, Sikap dan Pengalaman Mengajar.
Prosiding Seminar Kebangsaan Pendidikan Negara (SKEPEN) Ke-6, 90(3), 85–101.
Mohd Shahali, E. H., Halim, L., Rasul, S., Osman, K., Ikhsan, Z., & Rahim, F. (2015). Bitara-
STEM (TM) training of trainers’ programme : Impact on trainers’ knowledge, belief,
attitudes and efficacy towards integrated STEM teaching. Journal of Baltic Science
Education, 85–95.
Mohd Yusof, S. B., & Ibrahim, N. B. (2012). Kesediaan Guru Matematik Tahun Satu Dalam
Pelaksanaan Kurikulum Standard Sekolah Rendah (KSSR) di Daerah Kluang. Journal of
Science and Mathematics Education, 6(June), 26–38.
Muhammad, S., & Ibrahim, N. N. (2021). Kesediaan Guru Stem Melaksanakan Pendidikan
Stem Di Sekolah Pesisir Pantai. 6(1), 1–15.
Mukaka, M. M. (2012). Correlation coefficient in medical research Statistics Corner: A guide
to appropriate use of. Malawi Medical Journal, 24(3), 69–71.
https://www.ajol.info/index.php/mmj/article/view/81576
Nilsson, P., & van Driel, J. (2011). How Will We Understand What We Teach? - Primary
Student Teachers’ Perceptions of their Development of Knowledge and Attitudes
Towards Physics. Research in Science Education, 41(4), 541–560.
https://doi.org/10.1007/s11165-010-9179-0
Olsen, R. V. (2002). Introducing quantum mechanics in the upper secondary school: A study
in Norway. International Journal of Science Education, 24(6), 565–574.
https://doi.org/10.1080/09500690110073982
Osborne, J., Simon, S., & Collins, S. (2003). Attitudes towards science: A review of the
literature and its implications. International Journal of Science Education, 25(9), 1049–
1079. https://doi.org/10.1080/0950069032000032199
Park, M., Dimitrov, D. M., Patterson, L. G., & Park, D. (2016). Early childhood teachers ’
beliefs about readiness for teaching science , technology , engineering , and mathematics.
Journal of Early Childhood Research, 1–17. https://doi.org/10.1177/1476718X15614040
Ramanan, B., & Mohamad, M. Bin. (2020). Validating a model of change readiness among
Malaysian school teachers: A structural equation modeling approach. International
Journal of Learning, Teaching and Educational Research, 19(2), 79–93.
https://doi.org/10.26803/ijlter.19.2.6
Richardson, V. (1996). The Role Of Attitudes And Beliefs In Learning To Teach. In Handbook
of research on teacher education (Second, pp. 102–119).
Rodriguez, L. V., van der Veen, J. T., Anjewierden, A., van den Berg, E., & de Jong, T. (2020).

61


SEMINAR PENYELIDIKAN PENDIDIKAN PERINGKAT KEBANGSAAN ZON SABAH TAHUN 2022 (SepZon22)

Designing inquiry-based learning environments for quantum physics education in
secondary schools. Physics Education, 55(6). https://doi.org/10.1088/1361-6552/abb346
Sargioti, A., & Emvalotis, A. (2020). Attitudes towards Science and the impact of epistemic
beliefs on pre- service primary teachers ’ scientific l iteracy. Educational Journal of the
University of Patras UNESCO Chair, 7(1), 174–189.
Ulug, M., Ozden, M. S., & Eryilmaz, A. (2011). The effects of teachers’ attitudes on students’
personality and performance. Procedia - Social and Behavioral Sciences, 30, 738–742.
https://doi.org/10.1016/j.sbspro.2011.10.144
van Aalderen-Smeets, S., & van der Molen, J. W. (2013). Measuring Primary Teachers’
Attitudes Toward Teaching Science: Development of the Dimensions of Attitude Toward
Science (DAS) Instrument. International Journal of Science Education, 35(4), 577–600.
https://doi.org/10.1080/09500693.2012.755576
Veloo, A., Krishnasamy, H. N., & Md-Ali, R. (2015). Teachers’ Knowledge and Readiness
towards Implementation of School Based Assessment in Secondary Schools.
International Education Studies, 8(11), 193–203. https://doi.org/10.5539/ies.v8n11p193
Vossen, T. E., Henze, I., Rippe, R. C. A., Van Driel, J. H., & De vries, M. J. (2019). Attitudes
of Secondary School STEM Teachers towards Supervising Research and Design
Activities. Research in Science Education, 1–21.
Wan Mahmood, W. B., Idris, K., Abu Samah, B., & Omar, Z. (2016). Teori Tingkah Laku
Berencana dan Tingkah Laku Menyokong Perubahan : Satu Sorotan Abstrak Theory of
Planned Behaviour ( TPB ) and Behavioural Support for Change : A Review Abstract
Pengenalan Tingkah Laku Menyokong Perubahan. Malaysian Journal of Social Sciences
and Humanities, 1(4), 27–36.
Wook Cheong, Y., & Song, J. (2014). Different Levels of the Meaning of Wave-Particle
Duality and a Suspensive Perspective on the Interpretation of Quantum Theory. Science
and Education, 23(5), 1011–1030. https://doi.org/10.1007/s11191-013-9633-2
Yan Piaw, C. (2020). Mastering Research Statistics (Second Edi). McGraw Hill Education
(Malaysia).
Yari, Y., Ramadany, S., Hadju, V., & Ramba, H. La. (2019). Relationship of Knowledge ,
Attitude and Training with Nursing Readiness in Handling Emergency Patients in Maros
District Health Center. International Journal of Science and Healthcare Research
(IJSHR), 4(3), 86–92. www.ijshr.com
Yzer, M. (2017). Theory of Reasoned Action and Theory of Planned Behavior. The
International Encyclopedia of Media Effects, 1–7.
https://doi.org/10.1002/9781118783764.wbieme0075

62


SEMINAR PENYELIDIKAN PENDIDIKAN PERINGKAT KEBANGSAAN ZON SABAH TAHUN 2022 (SepZon22)

A Concept for Flexible Integrated STEM in Malaysian Post-Pandemic Education

Kang Fairuz

Institut Pendidikan Guru Kampus Keningau

[email protected]

ABSTRAK
To curb the spread of COVID-19 infections, educational institutions across the country have been instructed to
close, causing a disruption to the learning norms of students. In ensuring the continuity of learning, teaching and
learning moved online. While this disruption is temporary, the experiences and learnings gain therefrom would
pave the way for educational reform. Against backdrop of STEM education in response to the 4th Industrial
Revolution, here we propose a framework for a flexible integrated STEM approach suited for the Malaysian post-
pandemic education. This framework seeks to incorporate characteristics of flexible learning, blended instructions
and self-regulated learning in an approach to adapt to the restrictions of the new learning norms. Practical
implications are discussed, recommending further research in affirming the usefulness of the framework in
designing future STEM learning experiences.

Key Words: Integrated STEM, flexible learning, blended learning

1.0 BACKGROUND
In an effort to reduce the spread and flatten the curve of the COVID-19 infection, the Malaysian
government has announced a Movement Control Order starting March 18, 2020. This drastic
action has proven fruitful when new COVID-19 infection cases declined in the following
months. While educational institutions across the country have been instructed to close and
postpone face to face sessions to curb the spread of the virus, this has caused a disruption to
the learning norms of students. In order to ensure the continuity of students' learning, teaching
and lectures shifted online, shrouded with much uncertainties and disorganization. The
disruption deemed to not only be a short-term problem but may led to long-term consequences
for the affected cohort and increased educational inequality.

Burgess and Sievertsen (2020) highlighted that disruption to the duration of instructional
sessions will have an impact on the development of students' skills. They cited a study by
Carlsson et al, (2015) that showed with just over 10 school days, the sample showed a 1%
increase in standard deviation in knowledge use tests. Lavy (2015) compared instructional time
between different countries and stressed that these instructional time differences may cause
significant differences in test results. In general, the shorter the interaction between educators
and students, the less opportunities for learning to take place. On the other hand, instructional
time is not the only factor that impact learning. The quality of the teaching and learning might
be affected by the sudden transition of face-to-face learning to virtual learning, depriving many
educators and students the ample time to adapt to new methods. This has also widened the gap
for the access to quality education. In addition, studies in the field of e-learning also indicated
that students’ focus during online learning is shorter than face-to-face learning. If teachers
adhere to lecture style instruction as in conventional classrooms, the period students spend in
front of their devices will increase, and this will be detrimental to the emotions, health and
learning of the students involved.

The universal access to learning opportunities is worsened by the differences in resources and
equipment available to each student. Ideally, virtual or online learning requires students to have
access to at least one device with internet connection. Previously, with school improvement
efforts, a large number of Malaysia students had access to this equipment in schools. However,
when the COVID-19 pandemic struck, the awareness of the inequality was compounded by the

63


SEMINAR PENYELIDIKAN PENDIDIKAN PERINGKAT KEBANGSAAN ZON SABAH TAHUN 2022 (SepZon22)

news of students having to go through various obstacles in order to gain these basic amenities
to continue their learning.

In contrast, amid the challenges and uncertainties, there exist opportunities to revisit
instructional methods that have been quite stubborn to change. If previously learning methods
that have been identified as effective through studies and research can only be implemented in
small groups, the impact of these studies can now be explored further as stakeholders seek for
options and innovation in light of the circumstances. Winthrop (2020) in his discussions with
two leading educators on the challenges and opportunities emerged highlighted that blended
learning approaches will be increasingly adopted by institutions at various levels. In addition,
he described the improvement in the quality of teaching and learning as a result of the curation
and refinement of materials sourced online. Most online education platforms have opened up
access to their previously paid services and materials, for free use. Along with that,
collaboration between educators increased and had a positive impact on their practices. This is
clearly evident when the sharing of best practices through webinars and online courses received
tremendous responses.

Another mutually beneficial opportunity also arose for the development of technology in the
delivery, implementation, support and evaluation in learning. The transition from “brick and
mortar” setting to online learning has encouraged the rapid development of various digital
platforms and the adoption rate by educators was very encouraging. OECD surveys reported
that educators viewed that the introduction of technologies and innovative solutions was the
most significant positive result from the changes caused by the pandemic (Reimers &
Schleicher, 2020).

Against the backdrop of the demands brought about by the 4th Industrial Revolution, initiatives
in Malaysia has been developed with focus on STEM education. An acronym for Science,
Technology, Engineering and Mathematics, STEM education aims to meet the needs of the
workforce in an increasingly STEM-based skills and knowledge. In response, the Malaysian
government is encouraging students to enroll in STEM fields through the integration of the
STEM approach in teaching and learning mentioned in the revised curriculum standard (KPM,
2016). This is also reflected in the 60:40 policy instituted by the education ministry,
envisioning that 60% students opting for STEM related fields in their secondary and tertiary
education. The implementation of STEM education is also an integral part of the Malaysia
Education Blueprint (2013-2025), formulated in three phases (KPM, 2015):

i. Wave 1 (2013-2015): Strengthening the quality of STEM education through new
learning approaches and an enhanced curriculum in order to raise student outcomes and
interest

ii. Wave 2 (2016-2020): Implementing campaigns and collaborations with relevant
agencies to cultivate public interest and awareness of STEM.

iii. Wave 3 (2021-2025): Scaling innovation and creating greater school autonomy.

Nevertheless, primary and secondary schools in Malaysia still have challenges in producing
students with the necessary interest, motivation, and skills. In 2011, only 45% of graduate
students came from the Science stream, including technical and vocational programs (KPM,
2013). In addition, the percentage of secondary school students, who are eligible to study
science after the national level examinations but choose not to do so, increased to about 15%
(KPM, 2013). Recently, only 42% of secondary school students in Malaysia chose to do
science, including technical and vocational programs in secondary schools (KPM, 2016). In

64


SEMINAR PENYELIDIKAN PENDIDIKAN PERINGKAT KEBANGSAAN ZON SABAH TAHUN 2022 (SepZon22)

their study, Fatin, Salleh, Bilal and Salmiza (2014) found that many lower secondary school
graduates have qualifications that require high interest as well as a positive attitude towards
science and mathematics. However, they found that students' worries about difficult subjects
and low level of academic confidence in science and mathematics were the main factors
causing many of them not to choose science streams at form four and above. In addition, teacher
teaching factors, assessment system, demographic factors and school management also
contribute to the reasons why students participate less in science streams.

Other studies have found that students tend to be passive preferring surface learning where
there is no effort to learn deeply and lack self-direction (Nordin, Halim & Malik, 2016).
Echazarra et al. (2016) stated that Malaysian teachers will generally instruct their students
rather than encouraging students to direct their own learning. There exists issues related to
teachers’ lack of knowledge in science and mathematics (Abdullah et al., 2014). In addition,
some teachers invest a lot in preparing their students to face exams, then sacrificing the
practical elements of the curriculum (KPM, 2013). Students do not conduct science
experiments because practical science exams (at the upper secondary level) have been replaced
by school-based assessments for more than 15 years resulting in teachers tending to let students
explore scientifically and mathematically due to lack of time, resources, tools, professional
support and infrastructure lab. This factor contributes to the reduction of students' level of
interest in this science (Shahali, Ismail, and Halim, 2017).

Lessons Learned from a Pandemic
Although the COVID-19 pandemic has proven to be disastrous, the period of volatility,
uncertainty, complexity and ambiguity have offered the opportunity for education reforms
based on the learnings gained from the disruption of schools and education institutions.
Researchers from the University of Peking learnt that 15 to 30 minutes is the optimal time for
productive online sessions, as they require more concentration, both from the teacher and
student (Delgado, 2020). This has reminded us to rethink our current models of education
where students are continuously engaged in hours of instruction with few breaks for reflection
and rest.

Another related issue in ensuring educational continuity during the pandemic is the gap in
digital access. The lack of this access negatively impacts learning opportunities as shown in
studies related to school disruption during natural disasters and pandemics. The pandemic has
also proven to be a wakeup call to reflect on the goals of universal education. Shani (2020) in
response to the educational disruption in India elucidated that “curricula must be grounded in
students’ realities, cultivating critical, creative, and flexible thinking, resilience, and empathy
in students”. The future world citizens require symbiotic relationships with the environment
and our education must be based on these goals.

Against the backdrop of the Fourth Industrial Revolution, students would be growing up into
a digital-first world that will require new skills and new ways of thinking. Schooling
reconceptualized should seek to support students’ social, emotional, and academic needs
through personalized and flexible learning experiences. Technology advances in data and
artificial intelligence are generating prospects transform practices, structures, and even cultures
in schools. Sean Tierney, Microsoft’s Director for Teaching and Learning Strategy, Asia urges
the shift from a culture of teaching to a culture of learning in schools with the aid of technology
(Spencer, 2020). This shift of culture highlights the empowerment of students to be
independent learners, learning through flexible and collaborative ways, unrestricted by the
boundaries of traditional “brick and mortar” institutions. Teachers redefined as curators and

65


SEMINAR PENYELIDIKAN PENDIDIKAN PERINGKAT KEBANGSAAN ZON SABAH TAHUN 2022 (SepZon22)

facilitators of learning experiences, would have access to individualized real-time data to be
able to provide feedback and devise new challenges for each learner. Parents would be engaged
more in their child’s education with the additional details and transparency afforded by
technology.

While much emphasis is given in the continuity of teaching during the pandemic, it is learnt
that students’ interaction and feedback were sorely missed during the suspension of face-to-
face sessions. Remote learning mechanism should seek to incorporate two-way engagement as
demonstrated by an example in Uganda - leveraging radio for content delivery, with robocalls,
SMS, and remote mentorship for follow-up assessment, engagement, and guidance (Amporo
& Nabbuye, 2020). Building data-rich feedback systems establish opportunities for data-driven
education decisions and are critical to developing personalized learning.

The anxiety, uncertainty, fear and isolation faced by many during the pandemic have also call
us to be more mindful of our students’ basic social, mental and emotional needs. Future
educational models in schools should strive for a balance between future proofing the younger
generations and building social, mental and emotional resilience, while developing students’
responsibility and commitment to their community. Hughes (2020) is concerned that while
most education systems focusses on academics, they do not pay enough attention on the
emotional well-being of students. The significance was highlighted during the pandemic, where
anxiety, uncertainty, and feeling of isolation have perpetuated, while disrupting learning and
life in general. This raises the question whether class rules are attentive to the basic social and
emotional needs of children in most schools.

This pandemic has also compelled teachers to reinvent their roles from merely transferring
information to facilitating learning. When traditional lecture style teaching has proven to be
ineffective during online interactions, teachers have sought for innovative ways to continue
engaging students. The circumstances have created avenues for diversifying education
approaches, promoting teacher autonomy and student agency, while encouraging sharing of
resources and best practices among a wider community. With such foundations established,
more teachers found themselves freed from the physical boundaries of their own workspace
and have gain a plethora of new skills and pedagogical knowledge. The future of educational
planning and professional development must leverage on these affordances. An example in
Yew Wah International School of Education in Guangzhou describe the collaboration among
teachers to establish an online learning platform in just one week (Delgado, 2020). Supported
by the school’s management and local community, their effort demonstrates the capabilities of
schools to act independently, customizing their solutions to students’ needs and contexts.

Another significant learning gained from the disruption of schools is the often-forgotten role
of the family and community in students’ learning. Empowering the community and family to
be part of a child’s education should be a crucial part of the post pandemic learning system.
Such system would be decentralized, democratic community-based, where community
ownership of education is cultivated. Survey data from OECD reports that a stronger
involvement and cooperation of parents and a greater societal interest in education were among
the silver lining caused by the COVID-19 crisis (Reimers & Schleicher, 2020). Further, a
number of studies (Henderson & Mapp, 2002; Desforges & Abouchaar, 2003; Van Voorhis, et
al. 2013) show that academic achievement increases when communities and parents are
engaged in students’ learning.

66


SEMINAR PENYELIDIKAN PENDIDIKAN PERINGKAT KEBANGSAAN ZON SABAH TAHUN 2022 (SepZon22)

Albert Einstein once said that, “in the midst of every crisis, lies great opportunity.” Echoing
this idea, John F. Kennedy was quoted saying that “The Chinese use two brush strokes to write
the word 'crisis.' One brush stroke stands for danger; the other for opportunity. In a crisis, be
aware of the danger--but recognize the opportunity.” While the foremost priority during the
COVID-19 pandemic was safety, health and wellbeing, opportunities arose for education to be
reinvigorated with innovative ideas and research-backed interventions, not only to ensure the
continuity of learning, but to pave the way for future educational reforms. In response to the
learnings gained from the crisis, this article proposes a conceptual framework for a post-
pandemic education based on the integrated STEM approach. Beginning by defining integrated
STEM, the following sections then discuss the elements of the approach and proceeds to
elaborate a framework assimilating flexible learning components. Finally, the implications for
future research are detailed.

Defining Integrated STEM

“School subjects tend to be taught in isolation from each other, at a time when
solutions to societal challenges and the nature of work are becoming increasingly
cross-disciplinary” (Masters, 2016).

The above expression describes the disparity between the general educational model in schools
and the current state of the world, which essentially requires a paradigm shift. Integrated STEM
education is generally defined as an approach to explore teaching and learning between two or
more STEM components or between one STEM component and another branch of knowledge.
Integration can take place in specific learning units as well as through other related activities.
This is an effort to produce students with STEM literacy - defined as the ability to identify and
integrate concepts from science, technology, engineering, and mathematics to understand
complex and innovative problems to solve problems. STEM education allows various subjects
to work together to create meaningful learning opportunities. Encouraging collaboration
between subjects means learning time can be optimized to achieve planned and coordinated
learning objectives.

However, the simple definition of integration as above does not clearly map the relationship
between STEM disciplines. Various conceptualizations to integrated STEMs are built based on
their respective backgrounds. At the macro level, policy makers consider STEM integration as
a correlation between school education and social economic development which implies that it
is expected to contribute to further economic competitiveness. At the micro level, educators
view STEM integration as an educational approach that develops literacy and critical thinking,
while in the long run, preparing students for their future careers. Honey et al. (2014) define
STEM integration as learning in the context of complex phenomena or situations that require
students to apply knowledge and skills from various disciplines. Sanders (2009) define it as
“approaches that explore teaching and learning between/among any two or more of the STEM
subject areas, and/or between a STEM subject and one or more other school subjects” (p. 21).
Moore et al. (2014) define it as “an effort to combine some or all of the four disciplines of
science, technology, engineering, and mathematics into one class, unit, or lesson that is based
on connections between the subjects and real-world problems” (p. 38). Sanders (2012) and
Wells (2013) further differentiate integrated STEM and integrative STEM, with integrative
describing a continuous, dynamic, and student-centered teaching and learning process; whereas
the term integrated suggests a more static and teacher-directed process. The concept of STEM
education in this article assimilates the definitions above, describing an integrated process with
the learning outcomes from one or two of the STEM disciplines and based on multidisciplinary

67


SEMINAR PENYELIDIKAN PENDIDIKAN PERINGKAT KEBANGSAAN ZON SABAH TAHUN 2022 (SepZon22)

authentic contexts. Nevertheless, the authors acknowledge that such integration might not be
feasible in all circumstances and could limit the depth of content knowledge taught for each
discipline.

Despite the differences of definitions, many agree with the advantages of integrated STEM
education. The approach is found to be effective in developing creative problem-solving skills
(Meyrick, 2011), promote student-centered learning (), increase motivation (_) and interest (_)
in STEM disciplines, cultivate higher thinking skills (), provides meaningful learning
experiences (), guide students to address real-world problems (), increase achievement scores
(_), and increase the importance of multidisciplinary cooperation in various professions(). The
results of a meta-analysis study demonstrated that integrated approaches positively correlated
to students’ motivation, interest, achievement, performance, attitude and perception (Mustafa,
Ismail, Tasir, and Mohamad Said, 2016).

In the attempt to conceptualize a framework for a post pandemic STEM education, it is essential
that the building blocks of the approach is clearly defined. Based on the literature review of
Wei and Chen (2020), four main features have been identified as elements in integrated STEM
education.

Discipline Knowledge and Practices
Integration would generally revolve around STEM discipline knowledge and practices. Chen
(2020) pointed out that a higher STEM integration would imply a wider scope and greater
intensity. Drake and Burns (2004) indicated that would take into account two main factors: the
depth of knowledge within the discipline and the relationship between or outside the discipline.
Some differentiated four levels of integration: disciplinary, multidisciplinary, interdisciplinary,
and transdisciplinary (Meeth, 1978; Jacob, 1989; Drake, 1998; Vasquez, 2013). Others suggest
three levels of integration: correlated, shared, and reconstructed. At the highest level, and
commonly the most challenging, two or more disciplines are reassembled in the form of
authentic and ill-structured problems. While content knowledge may differ between
disciplines, their practices may have similarities. Practices reflect what practitioners do when
they do their jobs and the training that needs to be conducted for students to understand and
learn a field (Lee et al. 2013). The expert committee of STEM practitioners and educators
recommend lessening the emphasis on learning content knowledge only (i.e. facts) and instead
prioritizing the learning of disciplinary practices (NRC, 2012). Students who are able to engage
in a particular practice demonstrate the application of knowledge similar to that of practitioners
in the discipline (Kelley and Knowles, 2016). Reynante, Selbach-Allen, and Pimentel (2020)
listed some examples of practices referred to above such as: communicating, investigating,
modeling, using tools, working with data, understanding problems or phenomena, solving
problems, and evaluating ideas or solutions.

Teaching Strategies
A systematic review of STEM instructional practices done by Deprez et al., (2018) studied 23
papers and found that all 7 papers, which mentioned their underlying learning theory, referred
to learning theories from the social constructivist category. Under the tenet of social
constructivism, learning is deemed as a social process, whereby students construct their own
understanding through the interaction with others, which forms the basis of the integrated
STEM approach. Switching the perspective, teaching strategies should thus enable and support
this learning process. It should also be student-centered. Mustafa, Ismail, Tasir, and Mohamad
Said (2016) analyzed 18 articles related to integrated STEM education and found that 13 of the
total articles used a project-based learning approach. Applying project-based learning in STEM

68


SEMINAR PENYELIDIKAN PENDIDIKAN PERINGKAT KEBANGSAAN ZON SABAH TAHUN 2022 (SepZon22)

education has a positive effect on meaningful learning, thus helping to develop students'
confidence in choosing a STEM career in the future (Mustafa et al., 2016). In addition, students
build on learning based on experience by collaborating in teamwork, then improving their
presentation skills and building solutions for their projects. It allows students to build
knowledge through teamwork and problem solving with scientific methods. Many researchers
and researchers have sought to introduce this approach in integrated STEM education to
enhance the attitudes and career aspirations of students in STEM, and the results are often
positive. An example from the Malaysian schools context is the BTEM module which has been
developed and implemented by Hiong and Kamisah Osman (2015). BTEM allows students to
master biological knowledge and at the same time to follow other disciplinary skills. Students
master knowledge of facts about 21st century biology and skills simultaneously. The two main
teaching and learning strategies implemented in BTEM are problem-based learning and
inquiry-based learning. Students are exposed to real-world problems that require them to
undergo an investigation process to find solutions. In addition to project-based learning, there
are various other approaches that can drive integrated STEM learning such as inquiry-based
learning and problem-based learning.

Expectations
The third element in structuring integration is the expectations, which are usually related to the
learning goals. This element is described in various terms such as literacy, skills, abilities, and
competencies. While literacy, skills and abilities are fundamental in learning, integrated STEM
education strives to advance students competencies, which refers to the combination of
knowledge and skills (Wei & Chen, 2020). The reason for such emphasis is the demand for
competence in the workplace. The focus on competencies enables learning objectives to be
described more broadly, contextualized, and they are more dependent on learning and
performance related to the workplace. In several integrated STEM frameworks, these
expectations are stated as “key competency” (), “core literacy” (), “21st century skills” ().

Learning system
Supporting the integrated STEM education environment is the learning system. As learning
institutions such as schools are open to engagement with the community, organizations and the
public in general, the boundaries of the traditional school system are blurred. Integrated STEM
education, which thrives in authentic environments, seeks to expose students to real-life
situations and problems. An expansive learning system affords learning opportunities outside
of school, creating seamless and more meaningful experiences. The collaboration between _
and _ in their STEM initiatives in _ provides an apt example of such learning system.

The Role of Context in Integration
Essentially the four elements described above form a general outline of integrated STEM
education, while context contributes to establishing stronger integration among the elements.
Taking a philosophical stance, the local historical, political, and economic contexts should be
embedded in STEM education. In this ideal model, the relationship of these four elements
depend on the social system and cultural background. Currently, the integrated STEM
education paradigm is largely dominated by western countries, and their main context revolves
around the STEM labor deficit situation and the global competitive crisis (Wei & Chen, 2020).
In defining the context of Malaysian STEM education, the critical evaluation to produce a more
contextualized integrated model based on the societal background and circumstances is a
prerequisite. In addition, more explicit contexts such as curriculum development mechanisms,
teaching, and learning traditions should also be considered. Most studies highlight disciplinary
knowledge as the key element to contextualize integrated STEM. Teaching strategies, on the

69


SEMINAR PENYELIDIKAN PENDIDIKAN PERINGKAT KEBANGSAAN ZON SABAH TAHUN 2022 (SepZon22)

other hand, links disciplinary knowledge and expectations through contextualized instructions.
In other words, this model can provide a method to translate social aspirations into an
individual’s abilities, as long as disciplinary knowledge and teaching strategies are built in a
good combination.

Examining the current context, efforts to integrate the elements of STEM education should be
relevant to the post-pandemic educational context. Cahapay (2020) suggested a greater focus
on preparedness as a learning goal, while also recommending integrating and reducing content.
With the shift to online instruction during the pandemic and changes that will be implemented
post-pandemic, teaching strategies is the element most needed to be reviewed. Instruction that
depends on face-to-face interaction will not guarantee their effectiveness in remote learning.
Learning in the new norm would depend more on the decisions and actions of the individual
students. In addition, the learning system has seen more support given by various agencies in
ensuring the continuity of learning. Educators should see this development as an opportunity
to expand the reach of the integrated STEM education learning system. The boundaries of
traditional schools are increasingly blurred as educators begin to take the opportunity to work
with various parties and agencies who are willing to contribute to their educational institutions.
Another positive opportunity that emerged is the higher involvement of parents in the education
of their children. Integrated STEM education in the context of these new norms needs to
leverage on these opportunities to create seamless and meaningful learning experiences.

Proposed Conceptual Framework
The discussion above calls for an action to reevaluate our model for STEM education in light
of the challenges and opportunities emerged from the pandemic. A conceptual framework is
helpful to build a research agenda that will inform stakeholders and educators of the potentials
of integrated STEM in forming the foundations of our post-pandemic education. Proposed here
is a framework built upon the concepts of flexible learning and integrated STEM approach.

Kelley & Knowles (2016) proposed a conceptual framework for integrated STEM education
which presents an image of a block and tackle pulley to life a load. The representation links
situated learning; the load, and engineering design, scientific inquiry, technological literacy
and mathematical thinking; each an interconnected pulley. The pulleys are bound by the rope
of community practice and the illustration depicts a symbiotic relationship between the STEM
discipline. The authors’ conception of integrated STEM education for post-pandemic learning
environment builds upon the foundations of Kelley and Knowles (2016) framework, while
assimilating the characteristics of flexible learning to contextualize learning in the new norm.

Flexible Learning
When students were asked to respond to questions during the Youth Voice Workshop, one
advice for teachers transitioning back to post-pandemic education is to allow students’ their
own pace, be flexible and understanding, implying a more personalized approach for each
student (O’Mara, 2020). During the pandemic, China have delineated flexible learning as the
solution to the disruption of learning (Huang et al., 2020). Mcloughlin and Lee (2010) defined
flexible learning as a “set of educational approaches and systems concerned with providing
learners with increased choice, convenience, and personalization to suit their needs. Flexible
learning is also closely related to personalized learning where students have a say in the
decisions on the learning process and are afforded more flexibility through online and blended
instructions (Johnson, Adams, & Cummins, 2012; Keamy, Nicholas, Mahar, & Herrick, 2007;
OECD, 2006). Learner-centered constructivism philosophy serves as an underpinning theory
of flexible learning (Lewis & Spenser, 1986) implying that students take more responsibility

70


SEMINAR PENYELIDIKAN PENDIDIKAN PERINGKAT KEBANGSAAN ZON SABAH TAHUN 2022 (SepZon22)

in their learning, a shared characteristic of self-directed learning. This aids in building students’
self-regulation skills in terms of goal setting, self-monitoring and make adjustments (Collis,
1998).
Ryan & Tilbury (2013) further delineated that such flexibility “should be considered as an
attribute of both learners and educators and can also be understood as a characteristic of
institutional educational strategies” (p. 9). Collis & Moonen (2002) expressed flexibility in
terms of four main components; technology, pedagogy, implementation strategy and
institutional framework. These components would encompass time, content, entry
requirements, instructional approach (Gordon, 2014; Ryan & Tilbury, 2013), resources,
delivery and logistics (Collis & Moonen, 2002), assessment methods (Casey and Wilson, 2005;
Keamy et al., 2007; Taras, 2002). Nikolova & Collis (1998) outlined several dimensions that
are frequently chosen by institutions. These includes flexibility of learning location, flexibility
of learning programme (subjects, modules, courses, etc), flexibility of learning interaction,
flexibility of communication method and flexibility of learning materials. Huang et al. (2020)
further proposed eight key dimensions; location and timing, content and pedagogy, delivery
mechanism, organization of learning activities, resources, technologies, assessment and
evaluation, and support for both students and teachers.
Nikolova & Collis (1998) described a method for flexible instructional module development
which helps concretize the process of developing a flexible integrated STEM education model.
Figure 1.0 below illustrates the process.

Figure 1.0 Flexible Learning Design

In the design above, the generic module is design for a particular subject domain. It consists of
content elements which includes the content, pedagogical profile and instructional materials.
On itself, the generic module is not a complete and detailed instructional module, but rather a
resource from which adaptations are produced. In such, the generic module forms the outline

71


SEMINAR PENYELIDIKAN PENDIDIKAN PERINGKAT KEBANGSAAN ZON SABAH TAHUN 2022 (SepZon22)

of the subject. In developing a flexible integrated STEM model, the design above would lend
to the process of determining the structure and products of the instructional modules. A generic
module comprising of the STEM disciplines would be developed in the first phase. This would
involve defining an “umbrella” goal, curating content, designing the pedagogical profile and
developing generic materials. During this phase, a resource bank is also created and co-
developed by teachers involved. The development of the generic module involves an iterative
process of revision, which would develop over the years.

On the other hand, adaptations are derivatives of the generic module and they comprise of
ready-to-use instructional modules. They are constructed for the instruction of a particular
group of learners and are built based on the content, pedagogical profile, and materials from
the generic module and resource bank. In the second phase, adaptations are designed with
specific instructional goals, content, pedagogical profile, and materials, which are suited to the
learner. These adaptations enable flexible learning while the generic module outlines the
integrated STEM instruction.

Blended Learning
In general, blended learning would combine online interaction and materials with traditional
classroom instruction. While there is no single framework for blended learning (Collis &
Moonen, 2002), similar characteristics define its affordances. Blended learning enables
increased flexibility and personalization due to diversified learning pathways (Horn & Staker,
2015); expanded opportunities for interactivity (face-to-face as well as online and synchronous
as well as asynchronous; Means, Toyama, Murphy, & Baki, 2013); technical advantages
(immediate feedback, online tracking data, etc.); preservation of the humanness and
spontaneity in face-to-face instructional activities; and increased learning time and
instructional resources (Means et al., 2013); improved cognitive engagement through reflection
and critical discourse (Garrison & Kanuka, 2004; Nystrand & Gamoran, 1991); agentic
engagement (Reeve & Tseng, 2011) via added learning pathways; and emotional engagement
through the face-to-face interactions.

Suited to the context of post-pandemic education, blended learning enables flexibility of
individual learning while affording opportunities for structured and directed learning. Blended
instructions would pair asynchronous learning and synchronous learning, thus affording the
benefits of both approaches. Online technologies that support asynchronous learning include
email, online discussion boards, social media, wikis, blogs and learning management systems.
A model for post-pandemic education would leverage on these technologies to enhance
synchronous learning instructions. Studies demonstrated that the time required to design
asynchronous instructions is comparable to that of a traditional synchronous course (Bourne,
1998), however it is found that the perceived additional workload is a significant barrier
(Garrison, 2004) which could be overcome with training and experience. This shift from a
teacher-centred environment to a student-centred environment requires the teacher to take on
multiple roles. When repositories of knowledge are available online, teachers now act as
instructional designers, facilitators and assessors. The ideal scenario depicts STEM teachers in
collaboration to develop a contextualized curriculum, plan activities and curate resources while
leveraging on suitable technologies to facilitate synchronous and asynchronous instructions.

Alammary et al. (2015) identified five different blended learning components and are classified
based on the type of interaction that each of them supports in the table below.

72


SEMINAR PENYELIDIKAN PENDIDIKAN PERINGKAT KEBANGSAAN ZON SABAH TAHUN 2022 (SepZon22)

Components Affordances

Face-to-face instructor-led Instructor present materials with little interaction, hands-on or

practice

• Higher instructor control learning and teaching strategies

Face-to-face collaboration • Higher efficiency of delivery
Encourages learners’ collaboration on tasks

• Deeper learner understanding of content

• Better engagement

Online instructor-led • Develops critical thinking skills
• Develops learners’ autonomy
Instructions delivered online based on instructor’s pacing

• Control and efficiency

• Unconstrained by location

Online collaboration Students working online support by collaboration platforms

• Similar to face-to-face collaboration

• Unconstrained by time and location

Online self-paced Students study material on their own pace, location and time.

• More flexibility on timing, location, pace, and learning

strategies

Table 1: Five components of blended learning (Alammary et al., 2015)

Two approaches towards designing blended learning instruction are the program-flow model

and the core-and-spoke model (Bersin, 2004). The first approach is similar to traditional

classroom model where a step-by-step curriculum dictates the learning chronology. There is a

strict structure which requires learners to go through material in a linear fashion. This approach

is usually fit for the initial transition into blended learning environment. As instructors and
learner accustom to this environment, a gradual inclusion of the “core-and-spoke” model would
allow for more learners’ autonomy and flexibility. In this model, instructors design a

fundamental learning approach and provides other materials, activities, resources and
assessments as “supporting materials” which may be optional or mandatory, but are not

organized linearly.

Initially to establish an infrastructure and to develop an asynchronous learning environment
require most of the time and cost. Nevertheless, once established, the system would
accommodate following learning units with several adjustments to content and approaches. In
terms of the infrastructure, post pandemic education could benefit from the exponential growth
of online and offline technologies, training and services provided throughout the disruption of
formal schooling during the crisis. On the other hand, the flexible learning design described in
figure 1.0 would serve well as a framework for designing integrated STEM instructions which
are blended with synchronous and asynchronous learning opportunities. The generic module
structure, once developed by collaborating teachers, outlines the general learning pathway
throughout the academic year. This module reflecting the core of the “core-and-spoke” model
(Bersin, 2004) would be improved throughout the cycles of implementations. Blended
adaptations, the “spokes”, are then planned with a balance of synchronous and asynchronous
interactions, adapted to the needs and contexts of the current learners, content, and pedagogical
profile.

73


SEMINAR PENYELIDIKAN PENDIDIKAN PERINGKAT KEBANGSAAN ZON SABAH TAHUN 2022 (SepZon22)

Self-Regulated Learning

The student-centred nature of asynchronous learning requires students to take more

responsibility for their own learning. In addition to their normal duties as learners, students are

required to: Become proficient with required technology;
• Use new methods of communication;
• Strengthen their interdependency through collaboration with their peers.


The increase of such capacities wouldn’t occur naturally in response to the need of
circumstances. Self-regulation is a skill required by post-pandemic learners and ought the be
taught in formal education. Incorporating self-regulated learning as a goal of integrated STEM
education would enable learners reap its optimum benefit while navigating through a reduction
in dependency towards their instructors.

Autodictatism or self-directed learning once referred to in andragogy (Knowles, 1975) is now
a highly regarded skill in light of the digital revolution. A wider access to information and
resources with the aid of technology has expanded the scope self-directed learning. Self-
regulated learning, a more recent conception, stem from educational psychology and cognitive
psychology (Saks & Leijen, 2014). SDL mostly used to describe learning activities outside
school environment while SRL is mostly studied in school environments. Fundamentally SDL
comprised a wider scope, encompassing SRL which is more specific. SRL is more suitable an
approach in an integrated STEM education model for school as it is the teacher’s task to define
learning tasks. An alternative conception of this distinction is between the macro-level concept
of SDL compared to the micro-level concept of SRL (Jossberger et al., 2010). SDL involves
learner’s initiation and control of the learning course where a skilful learner is able to diagnose
his learning needs and goals, curate resources and regulates activities while SRL focuses on
the micro level, where learners given the flexibility to dictate the execution of a predetermined
task. Ultimately, one of the essential characteristics of life-long learners is the ability to self-
direct learning, hence the training in self-regulation is essential during their formative years in
school.

Self-regulated processes was described by Zimmerman (1990) in three constructs;

metacognitive, motivation and behavioural. These three inform self-regulating strategies aimed
to scaffold post-pandemic learners’ learning in a more flexible and independent environment.

Table 1.0 describe the abilities related to each construct.

Constructs Ability

Metacognitive • Plan learning

• Set goals

• Organize

• Self-monitor

• Self-evaluate

Motivation • High self-efficacy

• High self-attribution

• High intrinsic task interest

Behavioural • Select learning environment

• Structure learning environment

• Create learning environment

Table 2: Self-regulating constructs and abilities (Barry J. Zimmerman, 1990)

74


SEMINAR PENYELIDIKAN PENDIDIKAN PERINGKAT KEBANGSAAN ZON SABAH TAHUN 2022 (SepZon22)

It is also important to identify the phases of self-regulation. Zimmerman's (2000) SRL model
proposed three phases: forethought, performance and self-reflection.

Figure 2.0: Cyclical phases model. Adapted from Zimmerman (2000)

The most recent model, tweaked to include new strategies (Table 2.0), forms the SRL
component of the conceptual framework proposed. The phases organize learning tasks to
include opportunities for students to practice these SRL strategies in line with the needs and
affordances of flexible and blended learning aspect of the framework.

Forethought Phase Performance Phase Self-reflection Phase
Task Analysis Self-control Self-Judgement

Goal setting Task strategies Self-evaluation
Strategic planning Self-instruction Causal attribution
Imagery
Self-Motivation Beliefs Time management Self-Reaction
Self-efficacy Environment structuring* Self-satisfaction/affect
Outcome expectations Help-seeking* Adaptive/defensive
Task interest/value Interest incentives*
Goal orientation Self-consequences*
*new strategies Self-Observation
Metacognitive monitoring*
Self-recording

Table 3: Updated version Cyclical phases model (B.J. Zimmerman & Moylan, 2009)

Zimmerman’s multi-level model delineates the learning curve in developing SRL skills in
learners, hence enabling the evaluation of learners’ self-regulation.

75


SEMINAR PENYELIDIKAN PENDIDIKAN PERINGKAT KEBANGSAAN ZON SABAH TAHUN 2022 (SepZon22)

Level Name Description
1
2 Observation Vicarious induction of a skill from a proficient model

3 Emulation Imitative performance of the general pattern or style of
a model’s skill with social assistance
4
Self-control Independent display of the model’s skill under

structured conditions

Self-regulation Adaptive use of skill across changing personal and

environmental conditions

Table 4: Multi-level model (Zimmerman, 2000)

By defining self-regulated learning through its three components, describing the phases
involved and levels of self-regulation, integrated STEM instructors who are structuring a
blended environment to afford more learners’ autonomy and flexibility could benefit from a
structure to incorporate SRL (Lehmann et al., 2014). Furthermore, while integrated STEM
approaches such as inquiry-based learning and problem-based learning indirectly encourage
self-regulation, learners could benefit from instructional support and scaffolding to apply SRL
strategies. In blended learning environment, this could be included in face-to-face instruction
or through personalised learning platform designs. Hill & Hannafin (2001) identified four
functionalities of supports: (i) conceptual support to help learners prioritize information, (ii)
metacognitive support to assist learners in gauging their learning, (iii) procedural support to
aid use of resources, and (iv) strategic support to provide additional options to complete a task.
These types of support can come in the form of tools (e.g., organizers and search functions),
additional cues (e.g., questions for learners to reflect and suggestions to use certain resources),
feedback (e.g., evaluation of learning), or guidance (e.g., intelligent tutoring system) during
learning (Zheng, 2016).

Discussions and Practical Implications
Methods for integrating STEM education in schooling are usually through a process ranging
from standard educational documents to curriculum products and related classroom practices.
In this process, there are three interdependent and sequential steps. First, educational standard
documents on STEM education refer to curriculum standards, frameworks, or learning
materials that have STEM elements. Because the mathematics and science curricula are two
traditional curricula in the school context after so long, most educators consider technology
and engineering as applied sciences, with the primary function of providing a learning
environment that reflects real life. Through this approach, students will process and apply the
knowledge and skills acquired in science and mathematics to engineering products using
technology. In other words, STEM education expands the reach of the science and mathematics
curriculum. According to Wei (2015), integrated science can be defined by specialization in
scientific processes, or learning content organized based on topics, themes, or problems that
require a multidisciplinary approach. In science education reform in the United States, for
example, STEM is supported as the direction of science education reform today. In particular,
engineering, technology, and other disciplines are considered scientific applications, which fall
within one domain of key ideas. Mathematics is implicitly applied in all sciences, where the
models, arguments, and explanations of science are all based on evidence, and the evidence is
mathematically based.

Second, when cross-disciplinary knowledge is combined with other key elements, several
integrated STEM education products can be produced. One of these products is called STEM
focused program. Because these programs are typically developed for out-of-school
organizations, they are free to plan and implement most of the integrated STEM ideas. They

76


SEMINAR PENYELIDIKAN PENDIDIKAN PERINGKAT KEBANGSAAN ZON SABAH TAHUN 2022 (SepZon22)

are more likely to pursue a more in-depth STEM education, and these programs are less
constrained by the boundaries of standard curriculum in schools. In these programs, teachers
and schools are provided with a complete STEM curriculum organized by units or semesters
and use project-based learning or engineering design to build an authentic learning
environment. In addition, they also provide opportunities for professional development of
teachers and interaction between students and teachers. Other products are the frameworks on
how integrated STEM education is implemented. This framework is designed with emphasis
on students 'cognitive level (or proximal developmental zone) and teachers' knowledge base
should be aligned with each other to ensure successful integrated STEM practices. For
example, Vasquez, Comer, and Villegas (2017) have established a two-dimensional integrated
STEM framework on the STEM integration hierarchy. Within this framework, each level of
discipline integration can be adjusted to the depth of its knowledge by adapting different
teaching and learning approaches to higher levels of STEM integration. This means that a more
thorough and tidier and relevant integration can be achieved. In summary, this framework also
requires the awareness of students and teachers to learn when and how to apply knowledge and
practices from all STEM disciplines.

The framework published by Vasquez, Schneider, and Comer (2013) in turn suggests a cross-
disciplinary approach that exists on a line of continuity of ascending levels of interdisciplinary
knowledge. Starting with a disciplined-focused approach, where concepts and skills are learned
separately, this line of continuity develops into a multidisciplinary form that involves concepts
and skills from each discipline learned separately but in the same theme. At the end of this
continuation line is a cross-disciplinary approach that encompasses the knowledge and skills
learned from two or more disciplines applied in real-world problems and projects, thus shaping
the overall learning experience. Offering a more detailed approach to STEM integration, Bryan
et al. (2015) proposed a “STEM Roadmap”. They emphasize that STEM integration is not just
about teaching two disciplines together or using one as a tool to teach the other; many educators
have already done this. Instead, STEM integration needs to be deliberate and specific, as well
as need to place emphasis on content and learning contexts. They identified three forms of
STEM integration: (a) content integration where the learning experience has various STEM
learning objectives, (b) support content integration in which one area is addressed (e.g.,
mathematics) for adoption ng main content learning objectives (e.g., science) and (c) context
consolidation where context from one discipline is used for learning objectives from another.

How can the above integration be the backbone of pandemic learning? What are the advantages
over conventional virtual learning? Once an integrated STEM-based learning system has been
practiced in an educational institution, its transition to virtual learning will take place smoothly.
Learning is no longer centered on separate subject slots but guided by projects or themes that
have shared objectives. Therefore, this approach is more student-centered by focusing on the
learning process taking place with meaningful continuity. An ideal situation is where subject
teachers start a learning unit by presenting a project or theme and then discuss learning
objectives as well as success criteria with students. These success criteria detail assessment
methods throughout the learning unit. Depending on the readiness of the students, different
levels of autonomy are given to the students to select and plan learning activities. These
activities will be more individual, but if the infrastructure allows, virtual group interaction will
create richer learning. Because the success criteria have been discussed and agreed upon,
students have knowledge of each level of learning, then empower students to plan and direct
their own learning process. This skill does require a period of learning for students but it is one
of the very useful objectives. By basing the learning process with success criteria, teachers of
each subject can also provide specific feedback and guidance when the need arises. Thus,

77


SEMINAR PENYELIDIKAN PENDIDIKAN PERINGKAT KEBANGSAAN ZON SABAH TAHUN 2022 (SepZon22)

online interaction time can be minimized and focused on two-way interaction between students
and teachers. Classroom synchronous learning will occur several times throughout the learning
unit for the introduction of projects, problems or themes, developmental discussions,
communication with experts, presentation of results, and conclusions. Teachers and students
can also plan meetings in person to discuss problems and questions while conducting learning
activities. This method is asynchronous and reflects the definition of Blended Learning.

There is no denying that the above approach has its own challenges. Efforts to integrate STEM
education require a long period of planning and implementation as well as changes in the
attitudes and approaches of educators and school administrators. It also requires professional
development for the educators involved. However, its advantages have been proven in previous
studies. The impact of the drastic transition of learning methods during this pandemic has called
for changes from traditional learning approaches and opened up golden opportunities for
educational institutions to rebuild their educational foundations, in line with current student
needs, technological developments, and national economic pressures.

The lessons learned during this pandemic, especially in the response of educational institutions
to face-to-school securitization measures, are crucial to be the starting point for more effective
teaching and education methods. Post-pandemic education should look at the challenges that
have been encountered and come up with measures to overcome those supported by the study.
Integrated STEM education, an effort that was gazetted before the onset of this pandemic, has
the definition of an appropriate educational approach to the needs of the fourth industrial
revolution. In the above sections, we have discussed the challenges faced by educators and
students throughout adapting to learning throughout the COVID-19 pandemic and the response
of educational institutions in ensuring the continuity of this learning. We highlight the
Integrated STEM Education approach as the foundation for more authentic, meaningful and
borderless learning. The four elements of integrated STEM education, namely knowledge and
skills, teaching strategies, learning objectives and learning systems have been examined to
become constructs in the production of integrated learning units. We then present a practical
method for planning and implementing such an approach.

Behind the challenge there are opportunities offered by the COVID-19 pandemic incident to
education. If the history of the economic system tells of the decline of companies and
enterprises that fail to change with the development of the times, the education system that still
adheres to traditional methods and approaches will be left behind and no longer effective. The
challenges that have arisen as a result of disruption to the school system have made many
educators aware of the importance and effectiveness of approaches such as Integrated STEM
Education. Educators and administrators of educational institutions should see this as an
opportunity to revamp their aspirations, approaches and educational structure, not only in
response to school disruptions, but also to build the foundation for a comprehensive and
sustainable education system for the future.

78


SEMINAR PENYELIDIKAN PENDIDIKAN PERINGKAT KEBANGSAAN ZON SABAH TAHUN 2022 (SepZon22)

REFERENCE

Abdullah, A., Hamzah, M. H., Ibrahim, N., Surif, J., & Ali, M. (2014). Non-routine
mathematical problems among in-service and pre-service mathematics teachers. 2014
International Conference of Teaching, Assessment and Learning (TALE), 18–24.
https://doi.org/10.1109/TALE.2014.7062620

Alammary, A., Carbone, A., & Sheard, J. (2015). Identifying criteria that should be considered
when deciding the proportion of online to face-to-face components of a blended course.
Proceedings of the Annual Hawaii International Conference on System Sciences.
https://doi.org/10.1109/HICSS.2015.19

Bersin, J. (2004). The Blended Learning Book.
Cahapay, M. B. (2020). Rethinking Education in the New Normal Post-COVID-19 Era: A

Curriculum Studies Perspective. Aquademia, 4(2), ep20018.
Collis, B., & Moonen, J. (2002). Flexible Learning in a Digital World. Open Learning: The

Journal of Open, Distance and e-Learning, 17(3), 217–230.
https://doi.org/10.1080/0268051022000048228
Deprez, J., Van de Velde, D., De Cock, M., Hellinckx, L., Van Petegem, P., Struyf, A., Boeve-
de Pauw, J., Dehaene, W., Struyven, K., Knipprath, H., Goovaerts, L., Depaepe, F.,
Thibaut, L., De Meester, J., Langie, G., De Loof, H., & Ceuppens, S. (2018). Integrated
STEM Education: A Systematic Review of Instructional Practices in Secondary
Education. European Journal of STEM Education, 3(1), 1–12.
https://doi.org/10.20897/ejsteme/85525
Hill, J. R., & Hannafin, M. J. (2001). Teaching and Learning in Digital Environments.
Educational Technology Research and Development.
Huang, R. H., Liu, D. J., Tlili, A., Yang, J. F., Wang, H. H., & others. (2020). Handbook on
facilitating flexible learning during educational disruption: The Chinese experience in
maintaining undisrupted learning in COVID-19 Outbreak. Beijing: Smart Learning
Institute of Beijing Normal University.
Jossberger, H., Brand-Gruwel, S., Boshuizen, H., & van de Wiel, M. (2010). The challenge of
self-directed and self-regulated learning in vocational education: A theoretical analysis
and synthesis of requirements. Journal of Vocational Education and Training.
https://doi.org/10.1080/13636820.2010.523479
Kelley, T. R., & Knowles, J. G. (2016). A conceptual framework for integrated STEM
education. International Journal of STEM Education, 3(1).
https://doi.org/10.1186/s40594-016-0046-z
Lehmann, T., Hähnlein, I., & Ifenthaler, D. (2014). Cognitive, metacognitive and motivational
perspectives on preflection in self-regulated online learning. Computers in Human
Behavior. https://doi.org/10.1016/j.chb.2013.07.051
Mcloughlin, C., & Lee, M. J. W. (2010). Personalised and self regulated learning in the Web
2.0 era: International exemplars of innovative pedagogy using social software.
Australasian Journal of Educational Technology, 26(1), 28–43.
https://ajet.org.au/index.php/AJET/article/viewFile/1100/355
Mustafa, N., Ismail, Z., Tasir, Z., & Mohamad Said, M. N. H. (2016). A meta-analysis on
effective strategies for integrated STEM education. Advanced Science Letters, 22(12),
4225–4288. https://doi.org/10.1166/asl.2016.8111
Nikolova, I., & Collis, B. (1998). Flexible learning and design of instruction. British Journal
of Educational Technology, 29(1), 59–72.
Saks, K., & Leijen, Ä. (2014). Distinguishing Self-directed and Self-regulated Learning and
Measuring them in the E-learning Context. Procedia - Social and Behavioral Sciences.
https://doi.org/10.1016/j.sbspro.2014.01.1155

79


SEMINAR PENYELIDIKAN PENDIDIKAN PERINGKAT KEBANGSAAN ZON SABAH TAHUN 2022 (SepZon22)

Wei, B., & Chen, Y. (2020). Integrated STEM Education in K-12: Theory Development, Status,
and Prospects, Theorizing STEM Education in the 21st Century (p. 13). http://dx.doi.org/
10.5772/intechopen.88141

Zheng, L. (2016). The effectiveness of self-regulated learning scaffolds on academic
performance in computer-based learning environments: A meta-analysis. Asia Pacific
Education Review, 17(2), 187–202.

Zimmerman, B.J., & Moylan, A. R. (2009). Self-Regulation: Where Metacognition and
Motivation Intersect. Handbook of Metacognition in Education.

Zimmerman, Barry J. (1990). Self-Regulated Learning and Academic Achievement: An
Overview. Educational Psychologist. https://doi.org/10.1207/s15326985ep2501_2

Zimmerman, Barry J. (2000). Attaining self-regulation: A social cognitive perspective. In
Handbook of self-regulation (pp. 13–39). Elsevier.

Delgado, P. (2020). Lessons from COVID-19 in the Education Sector. Retrieved from
https://observatory.tec.mx/edu-news/lessons-from-covid19-education

Reimers, F. M., & Schleicher, A. (2020). A framework to guide an education response to the
COVID-19 Pandemic of 2020. OECD. Retrieved April, 14, 2020.

Sahni, U. (2020). COVID-19 in India: Education disrupted and lessons learned. Retrieved from
https://www.brookings.edu/blog/education-plus-development/2020/05/14/covid-19-in-
india-education-disrupted-and-lessons-learned/

Spencer, G. (2020). Schools after COVID-19: From teaching culture to a learning culture.
Retrieved from https://news.microsoft.com/en-my/2020/06/23/schools-after-covid-19-
from-a-teaching-culture-to-a-learning-culture/

Henderson, A. T., & Mapp, K. L. (2002). A New Wave of Evidence: The Impact of School,
Family, and Community Connections on Student Achievement. Annual Synthesis, 2002.

Desforges, C., & Abouchaar, A. (2003). The impact of parental involvement, parental support
and family education on pupil achievement and adjustment: A literature review (Vol.
433). London: DfES.

Van Voorhis, F. L., Maier, M. F., Epstein, J. L., & Lloyd, C. M. (2013). The impact of family
involvement on the education of children ages 3 to 8: A focus on literacy and math
achievement outcomes and social-emotional skills. MDRC.

Masters, G. (2016). Policy insights: Five challenges in Australian school education.
Melbourne, Australia: Australian Council for Educational Research.

O’Mara, M. (2020). Students Call for More Empathy in Education during COVID-19.
Retrieved from https://hundred.org/en/articles/students-call-for-more-empathy-in-
education-during-covid-19

80


SEMINAR PENYELIDIKAN PENDIDIKAN PERINGKAT KEBANGSAAN ZON SABAH TAHUN 2022 (SepZon22)

Hubungan Pengetahuan Pedagogi,Pengetahuan Kandungan dan Komitmen Guru Terhadap Kualiti
Pengajaran

Abdul Said Ambotang, Lena Anuar & Christina Andin

Fakulti Psikologi dan Pendidikan, Universiti Malaysia Sabah.

ABSTRAK
Kajian ini bertujuan untuk mengenal pasti hubungan Pengetahuan Pedagogi, Pengetahuan Kandungan dan
Komitmen Guru terhadap Kualiti Pengajaran Guru sekolah rendah di Sabah, Malaysia. Kajian mengaplikasikan
kaedah tinjauan dengan menggabungkan teknik persampelan kebarangkalian berstrata, kluster dan rawak mudah.
Berpandukan formula Krejcie dan Morgan, sampel dipilih sebanyak 500 orang. Data dikumpul menggunakan satu
set borang soal selidik yang diadaptasi. Data dianalisis menggunakan perisian Statistical Package for Social
Sciences. Dapatan ujian Korelasi Pearson menunjukkan wujud hubungan signifikan Pengetahuan Pedagogi
(r=0.608, p<0.01), Pengetahuan Kandungan (r=0.822, p<0.01), dan Komitmen Guru (r=0. 777, p<0.01) dengan
Kualiti Pengajaran Guru. Hasil Kajian membuktikan bahawa variabel kajian yang dijalankan iaitu pengetahuan
pedagogi, pengetahuan kandungan dan komitmen guru secara keseluruhannya mempunyai hubungan yang kuat
dengan kualiti pengajaran guru di sekolah. Secara perbandingan pengetahuan kandungan menunjukkan hubungan
yang paling kuat dengan kualiti pengajian guru. Ini bermakna untuk memastikan kualiti pengajaran guru yang
baik, aspek pengetahuan kandungan guru perlu diberi perhatian serius tanpa mengabaikan faktor pengetahuan
pedagogi dan juga komitmen guru. Dapatan kajian diharapkan dapat memberi input dan panduan yang jelas
kepada pihak guru, pentadbir dan pihak penggubal kurikulum khususnya pembuat dasar dalam usaha
meningkatkan kualiti pengajaran guru pada masa akan datang sesuai dengan keperluan kontemporari.

Kata kunci : Pengetahuan Pedagogi, Pengetahuan Kandungan, Komitmen Guru, Kualiti Pengajaran Guru.

1.0 PENGENALAN
Persekitaran kehidupan terus berubah dengan cepat dan berkembang dengan pantas. Arah
kehidupan dunia menjadi semakin terbuka. Persaingan di peringkat global, antara organisasi
dan antara individu tidak dapat dielakkan. Persaingan sengit ini hanya mampu diatasi melalui
peningkatan dalam kualiti pendidikan sama ada dengan mengubah paradigma, menyiapkan
sarana fizikal, menyediakan guru-guru yang kompeten, menyiapkan kurikulum yang relevan,
dan memenuhi dana. Dalam Pelan Pembangunan Pendidikan 2013-2025 (PPPM), guru dilabel
sebagai penggerak yang paling utama dan kritikal di peringkat sekolah untuk menentukan
keberhasilan murid berada pada tahap optimum bersandarkan kualiti pengajaran mereka
(PPPM, 2013).

Kualiti pengajaran sering dirujuk kepada penyampaian kandungan berdasarkan aplikasi
pelbagai amalan terbaik pedagogi, penglibatan aktif semua murid dalam aktiviti pembelajaran,
pemilihan pendekatan yang berpusatkan murid, dan akhir sekali pelaksanaan penilaian bagi
tujuan pentaksiran sumatif dengan menerapkan kemahiran berfikir aras tinggi (PPPM, 2013).
Keyakinan kerajaan melalui PPPM justeru meletakkan pengajaran guru yang berkualiti dan
dinamik mendepani isu persaingan semasa. Di samping itu, kurikulum yang dinamik turut
dapat dilaksanakan, seterusnya berkebolehan memainkan peranan guru dengan berkesan demi
memenuhi aspirasi serta kehendak individu, masyarakat, dan negara (Ford et. al, 2019).

Falsafah Pendidikan Kebangsaan (FPK) adalah asas serta panduan bagi seseorang guru
mendidik muridnya untuk memenuhi aspirasi murid (PPPM, 2013). Kajian tinjauan dan
Dialog Nasional yang dijalankan Kementerian Pendidikan Malaysia (KPM) melibatkan 24 000
guru dan pemimpin sekolah serta 26,000 wakil pelbagai pihak berkepentingan, mendapati
keperluan untuk mempertingkatkan kualiti guru khususnya kualiti pengajaran dan kepimpinan

81


SEMINAR PENYELIDIKAN PENDIDIKAN PERINGKAT KEBANGSAAN ZON SABAH TAHUN 2022 (SepZon22)

sekolah adalah mendesak (PPPM, 2013). Beswick & Fraser (2019) menyatakan bahawa kualiti
sistem sekolah tidak boleh melebihi kualiti gurunya. Sebaik mana pun pendidikan, tanpa
ditunjangi guru yang berkualiti, segala usaha ke arah peningkatan mutu pendidikan hanya
menemui kegagalan. Lazimnya, peningkatan mutu pendidikan memerlukan guru yang
berkualiti, sentiasa bertenaga sesuai dengan harapan, dan komitmen pada tugas dalam
mencerdaskan kehidupan modal insan.

Kepentingan perlunya suatu piawaian kualiti pengajaran di Malaysia sebenarnya termaktub
dalam Akta Pendidikan 1996 (Subseksyen 117a). Melalui akta tersebut, jelas bahawa
penekanan terhadap tahap pengajaran yang memuaskan perlu diwujudkan serta dikekalkan
dalam institusi pendidikan. Jemaah Nazir dan Jaminan Kualiti merupakan dua badan yang
dipertanggungjawabkan bagi memastikan kualiti pengajaran guru sentiasa berada pada tahap
tinggi. Justeru, kualiti pengajaran guru merupakan penentu paling penting bagi keberhasilan
murid sejajar dengan Falsafah Pendidikan Kebangsaan (FPK) iaitu melahirkan insan yang
seimbang dari segi intelek, rohani, emosi dan jasmani di semua peringkat sekolah sama ada
pra, rendah mahupun menengah.

Peringkat sekolah rendah merupakan tahap pendidikan yang amat kritikal kerana menjadi
medan permulaan dalam mendidik murid menjadi modal insan yang dapat memenuhi
keperluan pembangunan negara (Muhammad Faizal A. Ghani & Abd. Khalil Adnan, 2015).
Kementerian Pendidikan Malaysia (KPM) menyatakan objektif pendidikan sekolah rendah
ialah membantu perkembangan diri murid, persediaan persekolahan menengah, pemahaman
budaya dan kemahiran sosial, pembinaan minat, keagamaan dan moral serta kesediaan
memberi sumbangan terhadap masyarakat dan negara. Sehubungan itu, guru sekolah rendah
perlu mempunyai tanggungjawab dan komitmen tinggi melalui pengajaran mereka yang
berkualiti dan efektif bagi memastikan segala objektif yang ditetapkan dapat dicapai. Dalam
perkara ini, meningkatkan kualiti pengajaran guru adalah merujuk kepada tahap pengetahuan
dan komitmen guru terhadap pembelajaran murid, pengetahuan tentang subjek yang diajar serta
mengetahui kaedah pengajaran yang terbaik untuk menyampaikan ilmu, berkebolehan untuk
mengurus dan mengawas pembelajaran murid (Price & Weatherby (2018) .

1.1 Latar Belakang Kajian
Kurikulum Standard Sekolah Rendah (KSSR) mula diimplementasikan sejak 2011 bagi
menggantikan Kurikulum Baru Sekolah Rendah (KBSR). Dalam proses membuat perubahan
kurikulum sekolah rendah, Kementerian Pendidikan Malaysia (KPM) telah melaksanakan
program penanda aras di negara-negara yang mempunyai sistem pendidikan terbaik seperti
Singapura, New Zealand, United Kingdom dan Australia. Hal ini bertujuan memastikan
kurikulum sekolah rendah baharu ini dapat memenuhi kehendak semasa negara, mencapai
piawaian antarabangsa, dan seterusnya menjadikan kurikulum baharu negara setaraf
pendidikan peringkat global (KPM, 2013). Oleh itu, KSSR dibangunkan berdasarkan prinsip
yang terdapat dalam kurikulum sebelumnya iaitu Kurikulum Bersepadu Sekolah Rendah
(KBSR), Falsafah Pendidikan Kebangsaan, dan Akta Pendidikan Nasional.

Pelaksanaan kurikulum Pendidikan di Malaysia dibahagikan kepada tiga dimensi iaitu
kurikulum bertulis, kurikulum yang diajar dan kurikulum yang ditaksir. Kurikulum bertulis
merangkumi pengetahuan, kemahiran dan nilai yang membentuk kandungan kurikulum dan
menggariskan apa yang perlu diajar oleh guru. Manakala kurikulum yang diajar terdiri

82


SEMINAR PENYELIDIKAN PENDIDIKAN PERINGKAT KEBANGSAAN ZON SABAH TAHUN 2022 (SepZon22)

daripada pengetahuan yang diperoleh, kemahiran yang dikembangkan, dan nilai yang dipupuk
dalam diri murid dan kurikulum yang taksir merangkumi pengetahuan, kemahiran dan nilai
murid yang ditaksir sama ada dalam peperiksaan awam sumatif seperti UPSR, PT3 dan SPM
atau melalui pentaksiran berasaskan sekolah secara formatif dan sumatif yang menjadi asas
panduan bagi proses pengajaran.

Kementerian Pendidikan Malaysia (KPM) membangunkan kurikulum bertulis menggunakan
pelbagai tanda aras supaya selaras dengan standard antarabangsa dengan penekanan pada aspek
pengetahuan dan kemahiran sesuai dengan peringkat umur murid. Tanda aras antara bangsa ini
juga diselaraskan dengan Falsafah Pendidikan Kebangsaan bagi menghasilkan kurikulum yang
sesuai dalam konteks Malaysia. Kurikulum bertulis sekolah rendah terdiri daripada Dokumen
standard KSSR berasaskan tiga komponen iaitu standard kandungan, standard pembelajaran
dan standard prestasi. Standard kandungan menyatakan secara jelas pengetahuan, kemahiran,
dan nilai khusus yang perlu dikuasai oleh murid. Standard pembelajaran pula menerangkan
tahap kemahiran yang perlu dikuasai oleh murid bagi setiap standard kandungan tahun demi
tahun. Manakala standard prestasi yang memberikan tahap penguasaan bagi standard
kandungan dan standard pembelajaran yang boleh dicapai oleh murid.

Pelan Pembangunan Pendidikan Malaysia 2013-2025 menjelaskan terdapat beberapa punca
berlakunya kegagalan kurikulum sebelum ini. Antaranya, adalah kemahiran dan kandungan
yang dianggap guru tidak akan diuji dalam peperiksaan awam. Justeru, kemahiran dan
kandungan tersebut kerap kali tidak dimasukkan dalam rancangan pengajaran kerana memberi
ruang kepada kurikulum yang kerap diuji dalam peperiksaan. Kedua, sesetengah guru kurang
berkesan memupuk kemahiran berfikir aras tinggi dalam pengajaran. Jelas dalam keadaan ini,
penekanan terhadap kualiti pengajaran menjadi peranan utama guru dalam melaksanakan
keberkesanan kurikulum seperti yang dihasratkan melalui KSSR (KPM, 2013).

Sering kali isu guru mengajar untuk tujuan peperiksaan menjadi polemik sehingga timbul
persoalan sama ada peperiksaan awam seperti UPSR, PT3 dan SPM patut dimansuhkan. Hal
ini demikian kerana peperiksaan awam yang dilaksanakan sekarang dikatakan tidak menguji
semua kemahiran yang dihasratkan dalam sistem pendidikan negara. Isu berbangkit ini yang
dilaporkan oleh Pearson Education Group ke atas kertas peperiksaan Bahasa Inggeris UPSR
2010 dan 2011 menunjukkan bahawa 70 peratus daripada soalannya hanya menguji kemahiran
asas iaitu pengetahuan dan pemahaman (PPPM, 2013). Dalam perkara ini, kepentingan kualiti
dalam pengajaran sebagai isu penting yang menjadi dasar dalam pendidikan sesebuah negara.

Punca kedua kegagalan KBSR ialah pengajaran guru tidak menekankan kemahiran berfikir
aras tinggi (KBAT). Pendekatan pengajaran dan pembelajaran KBAT yang efektif perlu
menggunakan pelbagai alat berfikir dan penyoalan aras tinggi. Bagi menerapkan KBAT dalam
kalangan murid, maka peranan guru sangat signifikan. Justeru, usaha ke arah itu perlu
dilakukan secara bersungguh-sungguh. Pengetahuan dan keupayaan kemahiran berfikir guru
perlu terus ditingkatkan supaya dapat memberikan yang terbaik kepada murid dalam
pengajaran mereka. Selaras dengan itu, guru perlu didedahkan dengan pengetahuan dan
kemahiran pelaksanaan KBAT secara berterusan sama ada melalui pembelajaran
profesionalisme dan pembangunan profesionalisme sepanjang perkhidmatan mereka.
Kepentingan pembelajaran atau pembangunan profesional semakin meningkat apabila

83


SEMINAR PENYELIDIKAN PENDIDIKAN PERINGKAT KEBANGSAAN ZON SABAH TAHUN 2022 (SepZon22)

berlakunya pembelajaran perkembangan pesat pengetahuan dalam disiplin dan mata pelajaran
(Schulman, 1992).

Falsafah Pendidikan Kebangsaan, antara lain menekankan agar pendidikan di Malaysia
memupuk masyarakat yang harmonis dan mempunyai nilai-nilai yang seimbang dari segi,
intelek, rohani, jasmani dan emosi (KPM 2012a; 2012b). Aspek nilai ini sering diabaikan
semasa proses penyampaian guru untuk dimasukkan dalam pengajaran mata pelajaran bermula
dengan Kurikulum Baru Sekolah Rendah (KBSR) hingga bertukar kepada Kurikulum Standard
Sekolah Rendah (KSSR). Guru lebih fokus memilih penyampaian pengetahuan kandungan
semata-mata tanpa memberi ruang kepada nilai-nilai murni untuk diterapkan secara tidak
langsung (Tolochko, S. (2019).

Format pentaksiran baharu membolehkan murid dinilai berdasarkan keberhasilan yang lebih
luas dalam jangka masa lebih relatif. Format ini juga dapat memberi guru maklumat secara
tetap bagi mengambil langkah pemulihan untuk murid mereka. Perubahan ini diharapkan dapat
mengurangkan penekanan kepada pengajaran untuk peperiksaan supaya guru dapat
menumpukan lebih masa bagi melaksanakan proses pengajaran yang berkualiti seperti
terkandung dalam kurikulum. Namun begitu, maklum balas awal yang diterima mengenai
pelaksanaan pentaksiran menunjukkan guru masih belum memahami dan menguasai
sepenuhnya perubahan yang berlaku. Sesetengah guru dan sekolah menghadapi kesukaran
menyediakan tugasan dan instrumen pentaksiran untuk komponen pentaksiran sekolah (PPPM,
2013). Oleh itu, KPM berusaha mengukuhkan relatif guru untuk memastikan guru berupaya
menghasilkan item dan instrumen pentaksiran yang dapat menilai dengan tepat standard yang
ditetapkan dalam kurikulum. Prestasi murid ditanda aras mengikut tahap yang ditetapkan
dalam dokumen standard prestasi dan bukan mengikut standard relatif.

Sesuai dengan peranan guru sebagai pendidik wajarlah melakukan tanggungjawab ini bukan
saja menyampaikan suatu kandungan dan kemahiran mata pelajaran itu tetapi bersedia untuk
menerapkan nilai-nilai murni di dalam mata pelajaran yang diajar. Hal ini bermakna, bukan
nilai semata-mata yang hendak diajar pada sesuatu ketika, tetapi semasa mengajar kandungan
sesuatu mata pelajaran, nilai-nilai diterapkan secara tidak langsung. Melalui KSSR, nilai juga
merupakan salah satu aspek yang ditaksir dalam pelaksanaan pentaksiran selain daripada
pengetahuan dan kemahiran yang terdapat dalam suatu mata pelajaran (BPK, 2011).

Justeru perubahan kandungan, kemahiran dan pentaksiran dalam mata pelajaran KSSR
memerlukan guru bertanggungjawab mendidik dengan berperanan sebagai perancang,
pengelola, pembimbing, pendorong dan penilai bagi menghasilkan pengajaran yang berkualiti
(Jemaah Nazir, 2016). Guru yang pandai mendidik akan memudahkan murid memahami
sesuatu konsep atau sesuatu kemahiran, manakala guru yang tidak pandai mendidik atau
mengajar akan menyebabkan murid sukar untuk memahami sesuatu konsep atau sesuatu
kemahiran, malah ia akan menyebabkan pengajaran guru akan membosankan, murid tidak
memberi tumpuan dalam pelajarannya atau murid tidak mahu masuk ke kelas (Silvri & Balci,
2015).

Oleh itu, pengajaran dianggap berkualiti jika guru tersebut berupaya mempelbagaikan kaedah
pengajaran, menyediakan alat bantu mengajar, mendalami isi kandungan yang hendak diajar.

84


SEMINAR PENYELIDIKAN PENDIDIKAN PERINGKAT KEBANGSAAN ZON SABAH TAHUN 2022 (SepZon22)

Selain itu, guru juga perlu mengetahui akan kebolehan murid menerima pelajaran, memberi
motivasi kepada murid supaya belajar bersungguh-sungguh, dapat mengawal kelakuan murid,
mengumpulkan murid mengikut kumpulan dan memberi penilaian atau ujian yang kerap
kepada murid. Dengan kata lain pengajaran yang bermutu merupakan kebolehan guru itu
sendiri untuk mengajar dengan baik dan berkesan dan dapat memotivasikan muridnya untuk
terus belajar bagi mencapai kecemerlangan dalam bidang akademik.

Menurut PPPM 2013-2025, kriteria kualiti pengajaran merujuk kepada pengajaran yang
disampaikan dengan mengaplikasikan banyak amalan terbaik pedagogi, memilih pendekatan
berpusatkan murid, melibatkan semua murid dalam aktiviti pembelajaran dan melaksanakan
penilaian bagi tujuan pentaksiran sumatif dengan menerapkan kemahiran berfikir aras tinggi.

Dalam menghasilkan amalan pedagogi yang cemerlang, guru berupaya merancang objektif,
kaedah, bahan bantu mengajar dan kaedah pentaksiran terlebih dahulu dan bersedia untuk
menyampaikan isi pengajaran secara tersusun dan sistematik (Kallison, 1986). Semasa
menyampaikan isi pengajaran, guru menggunakan bahasa yang jelas dan mudah (Leite, Hoji
dan Júnior, 2018), penerangannya yang jelas dan memberi contoh-contoh yang berkaitan
(McTighe, & Silver. (2020). ) bagi memudahkan guru berkomunikasi dengan berkesan dan
mendapat menarik perhatian murid.

Guru juga perlu mahir memberi penekanan kepada isi-isi penting dan pelajaran itu cuba
dikaitkan pula dengan pengetahuan dan pengalaman murid yang lalu dan yang sedia ada (King
& Menke, 1992). Guru mempunyai kemahiran menggunakan bahan bantu mengajar (BBM),
alat bantu mengajar (ABM), bahan bantu belajar (BBB) dan teknologi multimedia dan
komunikasi (TMK) bagi membantu menerangkan sesuatu konsep (Zeng, Y, 2020; Kim, 2012).
Selain itu, objektif pelajaran hendaklah jelas dan khusus, isi kandungan adalah mencukupi dan
pada akhir sesuatu pelajaran, guru perlu mengadakan pentaksiran atau penilaian.

Guru tersebut berupaya mempelbagaikan kaedah pengajaran, menyediakan alat bantu mengajar
(ABM), mendalami isi kandungan yang hendak diajar. Selain itu, guru juga perlu mengetahui
akan kebolehan murid menerima pelajaran, memberi motivasi kepada pelajar supaya belajar
bersungguh-sungguh, dapat mengawal kelakuan pelajar, mengumpulkan pelajar mengikut
kumpulan dan memberi penilaian atau ujian yang kerap kepada pelajar. Dengan kata lain
pengajaran yang bermutu merupakan kebolehan guru itu sendiri untuk mengajar dengan baik
dan berkesan dan dapat memotivasikan muridnya untuk terus belajar bagi mencapai
kecemerlangan dalam bidang akademik.

Pemilihan kaedah pengajaran yang berpusatkan murid juga adalah salah satu yang kaedah yang
dijelaskan dalam PPPM 2013-2025 bagi memenuhi kualiti dalam pengajaran. Dalam kaedah
ini, murid memiliki kebebasan, tetapi dengan bimbingan. Guru berada di belakang dan murid
menjadi tumpuan perhatian. Nilai penting yang dipupuk ialah ekspresi kendiri yang kreatif.
Iklim bilik darjah dibina bertujuan mengembangkan kreativiti murid supaya mempunyai lokus
kawalan dalam disebabkan yang menggerakkan murid itu ialah diri sendiri. Murid bersaing
dengan dirinya sendiri dan standard yang hendak dicapai adalah relatif kepada dirinya sendiri.
Pemikiran kritikal dipupuk sebab proses pembelajaran ialah induktif. Proses pembelajaran
ialah berbentuk pencarian dan penerokaan, iaitu jawapan tidak diberi tetapi murid harus cuba

85


SEMINAR PENYELIDIKAN PENDIDIKAN PERINGKAT KEBANGSAAN ZON SABAH TAHUN 2022 (SepZon22)

mencari idea dan konsep baru yang memberi makna kepada prestasinya seterusnya (Rodriguez,
2020).

Pendekatan pembelajaran yang melibatkan semua murid secara aktif dan bertanggungjawab ke
atas setiap ahli kumpulannya membuat guru memilih pendekatan pembelajaran koperatif.
Kaedah ini menekankan matlamat dan pencapaian kumpulan yang hanya dapat dicapai jikalau
semua ahli dalam kumpulan itu belajar semua objektif yang diajar. Ada tiga konsep yang
berkait dengan pendekatan ini iaitu ganjaran kumpulan, tanggung jawab individu dan peluang
yang sama untuk berjaya. Melalui teknik ini, kumpulan akan mendapat pengiktirafan atau
ganjaran lain jikalau mereka menunjukkan prestasi melebihi standard yang diletakkan. (Rabl,
T., del Carmen Triana, M., Byun, S. Y., & Bosch, L. (2020).) Kaedah ini menunjukkan bahawa
ganjaran kumpulan dan kebertanggungjawaban individu merupakan elemen penting untuk
menghasilkan pencapaian kemahiran asas (Slavin, 1983).

PPPM 2013-2025 mencadangkan penilaian dan pentaksiran yang dilaksanakan ke atas murid
perlulah berunsurkan kemahiran berfikir aras tinggi. Mengikut aras taksonomi Bloom, soalan-
soalan aras yang rendah iaitu pengetahuan dan kefahaman selalu digunakan oleh guru dalam
membuat penilaian dan perlu diubah kepada berbentuk aplikasi, analisis dan sintesis. Penilaian
dan pentaksiran secara berterusan perlu dilaksanakan bagi memastikan murid tidak lalai semasa
pengajaran berlangsung. Dengan soalan-soalan yang dikemukakan, guru boleh menggalakkan
mutu pemikiran yang lebih tinggi. Sebagai contoh, jika guru mengemukakan soalan pada tahap
rendah seperti hanya untuk mendapatkan pengetahuan atau kefahaman murid akan hanya
sampai ke tahap itu sahaja. Akan tetapi jika guru memandu dengan soalan yang lebih mencabar,
yang memerlukan murid membuat penganalisisan atau sintesis atau penilaian, murid akan
berpandu ke arah tahap yang tinggi.

Kajian Tajularipin, Ahmad, dan Suriati (2015) mendapati guru menolak untuk menerima
KSSR kerana guru berpendapat suatu perubahan menuntut kepada pertambahan dan beban
tugas yang mana mereka telah pun dibebani oleh tugas yang banyak. Dapatan kajian Rosi
(2016) bahawa tugasan yang bertambah akan mempengaruhi komitmen guru. Kebanyakan
guru memberi pandangan bahawa program dalam kurikulum yang baru menandakan
kemahiran pengajaran baru atau kompetensi baru perlu dibangunkan dengan menghadiri kursus
dan bengkel. Namun begitu, dapatan Tajularipin et al. (2015) ada guru-guru sekolah rendah
menolak perubahan KSSR kerana mereka tidak mempunyai pengetahuan dan kemahiran yang
diperlukan dalam KSSR dan pada masa yang sama, mereka enggan dilabel sebagai tidak
kompeten mengajar KSSR.

Sehubungan itu guru perlu mempunyai ilmu pengetahuan yang tinggi dan bersesuaian dengan
mata pelajaran yang hendak diajar dan mempelajari kaedah terbaik untuk menyampaikan ilmu
pengetahuan kepada murid (O’Leary, M., & Wood, P. 2019). Untuk memahami pengajaran,
"sistem pengetahuan" guru hendaklah difahami terlebih dahulu agar guru dapat membina
pengetahuan dan membuat penilaian tentang pengetahuan tersebut. Justeru, ilmu pengetahuan
merupakan aset penting yang perlu dimiliki oleh seorang guru. Tanpanya, guru tidak mampu
memiliki apa-apa kekuatan dan wibawa. Menurut Phelps, G., Gitomer, D. H., Iaconangelo, C.
J., Etkina, E., Seeley, L., & Vokos, S. (2020), melihat tiga jenis pengetahuan yang perlu
dimiliki oleh seorang guru, iaitu: pengetahuan keperluan untuk diri sendiri dan murid,

86


SEMINAR PENYELIDIKAN PENDIDIKAN PERINGKAT KEBANGSAAN ZON SABAH TAHUN 2022 (SepZon22)

pengetahuan mata pelajaran dan pengetahuan tentang teori dan penyelidikan pendidikan
terutama teori-teori mengenai murid dan pembelajaran, motivasi, gaya pembelajaran dan
kemahiran berfikir secara kritis.

Dalam konteks kajian, pengetahuan yang diperlukan ialah pengetahuan dan penguasaan
mengenai pedagogi dan kandungan mata pelajaran yang diajar dapat menghasilkan kualiti
pengajaran guru. Di samping itu, komitmen guru yang tinggi juga diperlukan bagi
melengkapkan keupayaan guru dalam menghasilkan pengajaran guru yang berkualiti dan
berkesan. Penguasaan guru terhadap pengetahuan pedagogi, kandungan mata pelajaran yang
diajar dan komitmen guru untuk sebarang mata pelajaran yang diajar seperti yang dinyatakan
adalah amat penting dalam menjamin kualiti pengajaran yang disampaikan kepada murid
(Hirsch, 2019).

1.2 Penyataan Masalah Kajian
Dalam persekitaran pendidikan Malaysia, masalah kualiti pengajaran guru menjadi lebih serius
dan meruncing. Akademik Kepimpinan Pengajian Tinggi, Kementerian Pendidikan Malaysia
(AKPT, 2013) melaporkan bahawa kualiti pengajaran guru masih banyak perlu
dipertingkatkan. Daripada pemerhatian terhadap 125 pengajaran di 41 buah sekolah seluruh
Malaysia, didapati hanya 12 peratus daripada pengajaran disampaikan pada standard yang
tinggi iaitu mengaplikasikan banyak amalan terbaik pedagogi, manakala 38 peratus lagi
mencapai standard yang tidak memuaskan. Manakala, 50 peratus daripada pengajaran yang
dicerap seperti yang dilaporkan dalam kajian ini tidak disampaikan dengan memuaskan.

Laporan kajian tersebut adalah selari dengan dapatan pemeriksaan pihak Jemaah Nazir dan
Jaminan Kualiti (JNJK) pada tiga tahun berturut-turut iaitu 2011, 2012 dan 2013 di Malaysia
yang mendapati peratusan tinggi pencapaian kualiti pengajaran guru berada di tahap penarafan
sederhana, lemah dan sangat lemah. Atas keperluan dan permasalahan inilah kajian ini
bertujuan mengetahui tahap pengetahuan pedagogi, pengetahuan kandungan dan komitmen
guru dalam melaksanakan tugasan mereka agar dapat memenuhi kehendak dan harapan bagi
menghasilkan kualiti pengajaran dan memberi impak kepada keberhasilan murid.

Situasi ini sangat membimbangkan pihak kementerian dan ditambah dengan satu eviden yang
dikemukakan oleh pihak Jemaah Nazir Jaminan Kualiti(JNJK). Mereka telah membuat satu
kajian tinjauan dari 2011 hingga 2013 dengan hasil menunjukkan kualiti guru masih berada
pada tahap memuaskan. Daripada jumlah 30 564 guru yang dicerap hanya 3.22 peratus sahaja
mencapai tahap cemerlang dan 14.2 peratus berada pada tahap baik. Situasi ini memaparkan
berlaku ketidakseimbangan terhadap pengurusan pengajaran guru. Sejajar dengan itu, semua
pihak yang berkepentingan digesa untuk mewujudkan satu transformasi untuk menjulang
semula kedudukan pendidikan negara.

Kajian UNESCO (2012) melaporkan kurangnya bukti yang menunjukkan bahawa guru
mengetahui dan menguasai konsep amalan pedagogi di bilik darjah yang merupakan asas
falsafah dan objektif kurikulum seperti pembelajaran bersepadu, pendidikan holistik, kreativiti
dan inovasi. Ironinya, guru masih kurang mengamalkan sepenuhnya fungsi kualiti pengajaran
kerana pengaruh dan teori kualiti pengajaran itu sendiri yang mempunyai kepelbagaian (Abdul
Ghani et.al, 2009, Fatimah Binti Affendi, 2014) dalam kajiannya pula mendapati

87


SEMINAR PENYELIDIKAN PENDIDIKAN PERINGKAT KEBANGSAAN ZON SABAH TAHUN 2022 (SepZon22)

kecemerlangan kepimpinan sekolah mempengaruhi peningkatan kualiti pengajaran guru.
Ghazali Darulsalam & Sufean Hussin, 2016), dalam kajiannya di sekolah rendah kerajaan di
Bangladesh turut mendapati kualiti pengajaran guru berkait rapat dengan persekitaran
pembelajaran, pengurusan bilik darjah, bahan bantu mengajar, dan latar belakang pendidikan
guru.

1.3 Objektif Kajian
a. Mengenal pasti hubungan pengetahuan pedagogi dengan kualiti pengajaran
guru sekolah rendah di Sabah.
b. Mengenal pasti hubungan pengetahuan kandungan dengan kualiti pengajaran
guru sekolah rendah di Sabah.
c. Mengenal pasti hubungan komitmen guru dengan kualiti pengajaran guru
sekolah rendah di Sabah.

2.0 METODOLOGI
Kajian ini merupakan kajian kuantitatif secara tinjauan dengan tujuan untuk mengenal pasti
secara menyeluruh Pengetahuan Pedagogi (PP), Pengetahuan Kandungan (PK) , Komitmen
Guru (KG) dan Kualiti Pengajaran Guru (KPG) dalam kalangan guru sekolah rendah di Sabah.
Kajian berbentuk kuantitatif dipilih kerana ia melibatkan analisis statistik data numerik untuk
memahami dan menjelaskan sesuatu fenomena yang berlaku di samping membolehkan
penjelasan tentang pemboleh ubah dan hubungan antara variabel kajian (Creswell, 2012).

Bagi melaksanakan kajian, pengkaji telah mengenal pasti pemboleh ubah bersandar iaitu
Pengetahuan Pedagogi (PP), Pengetahuan Kandungan (PK), Komitmen Guru (KG) dan
pemboleh ubah bebas iaitu Kualiti Pengajaran (PK). Proses kenal pasti ini telah dilakukan
dengan merujuk kepada kajian literatur yang berkaitan. Perkara ini dilakukan bagi memastikan
reka bentuk yang dibina adalah sesuai (Meschede, N., Fiebranz, A., Möller, K., & Steffensky,
M. (2017). Pendapat ini bertepatan dengan pendapat Kerlinger (1986), menyatakan bahawa
data yang didapati melalui kaedah tinjauan lazimnya tepat, dalam lingkungan “sampling
error”, jika faktor kebolehpercayaannya ialah .80 dan ke atas. Manakala Fullan (2002), pula
menyatakan bahawa terdapat banyak kelebihan menggunakan kaedah tinjauan ini. Di antara
kelebihannya ialah kaedah ini amat berguna untuk mengukur pendapat, sikap dan tingkah laku
serta mampu digeneralisasikan dari sampel kepada populasi (Creswell, 2005).

Pengkaji memilih reka bentuk tinjauan (survey) dengan tujuan untuk meninjau dan mengumpul
maklumat berkaitan Pengetahuan Pedagogi, Pengetahuan Kandungan, Komitmen Guru (KG)
dan Kualiti Pengajaran (KPG) guru sekolah rendah di Sabah. Penggunaan reka bentuk ini
membolehkan pengkaji melihat soalan kajian dari skop yang lebih luas dan menyeluruh, dapat
memperoleh banyak maklumat daripada sampel yang besar dan memperoleh keputusan analisis
dalam masa yang singkat. Di samping itu, penggunaan reka bentuk ini dapat memberi
gambaran mengenai fakta dan ciri-ciri sesuatu populasi dengan fakta yang tepat seperti jenis
soalan, isu dan permasalahan dari pelbagai sudut, terutamanya mengenai sikap, pandangan,
kepercayaan, perasaan, tingkah laku dan sebagainya.

3.0 RINGKASAN DAPATAN KAJIAN
Analisis Hubungan Pengetahuan Pedagogi (PP), Pengetahuan Kandungan (PK), Komitmen
Guru (KG) Dan Kualiti Pengajaran Guru (KPG)

88


SEMINAR PENYELIDIKAN PENDIDIKAN PERINGKAT KEBANGSAAN ZON SABAH TAHUN 2022 (SepZon22)

Analisis penentuan hubungan variabel PP, PK, KG dan KPG telah dibuat menggunakan ujian
korelasi Pearson’s dengan merujuk kepada nilai r. Hasil analisis mendapati kesemua variabel
kajian menunjukkan hubungan yang signifikan antara satu sama lain pada tahap sederhana
tinggi dan tinggi. Terdapat tiga hipotesis telah diuji bagi menentukan hubungan kesemua
variabel bersandar kajian. Hasil analisis korelasi menunjukkan semua tiga hipotesis nul kajian
ditolak. Terdapat bukti yang kukuh untuk membuat kesimpulan bahawa kesemua variabel
kajian berhubung secara signifikan berdasarkan data empirikal kajian.

Jadual 1: Ringkasan keputusan Ujian Hipotesis Ho1 – Ho3

Bil Hipotesis Kaedah Ujian Keputusan

Tidak terdapat hubungan yang signifikan

Ho1 variabel pengetahuan pedagogi dengan Analisis Korelasi ( r =.608, p<0.01)

kualiti pengajaran guru sekolah rendah di Pearson Ditolak
Sabah.

Tidak terdapat hubungan yang signifikan

Ho2 variabel pengetahuan kandungan dengan Analisis Korelasi ( r = .822, p<0.01)

kualiti pengajaran guru sekolah rendah di Pearson Ditolak

Sabah.

Ho3 Tidak terdapat hubungan yang signifikan Analisis Korelasi (r = .777, p < 0.01)
variabel komitmen guru dengan kualiti Pearson
pengajaran guru sekolah rendah di Sabah. Ditolak

4.0 PERBINCANGAN
Kajian merumuskan bahawa wujud hubungan antara pengetahuan pedagogi dengan kualiti
pengajaran guru. Kekuatan hubungan antara kedua-duanya kuat membuktikan bahawa
pengetahuan pedagogi mempunyai hubungan secara statistik dengan kualiti pengajaran guru
dalam kalangan guru di negeri Sabah. Dapatan ini adalah sejajar dengan kajian Blomeke et al.
(2017) membuktikan penguasaan pengetahuan pedagogi yang meliputi kepercayaan dan
kesungguhan guru adalah mempunyai hubungan dengan keberkesanan pengajaran dan
pembelajaran. Penguasaan Pedagogi yang tinggi merupakan unsur penting guru dalam
menghasilkan kualiti suatu pengajaran itu.

Dalam hal ini, hubungan pengetahuan pedagogi guru itu dengan kualiti pengajaran adalah
selari dalam mencapai tujuan suatu organisasi. Kajian ini turut menyamai dapatan Khoza
(2016) dan Lloyd (2019) yang mendapati adanya hubungan antara pengetahuan pedagogi dan
kualiti pengajaran. Khoza (2016) menunjukkan betapa pentingnya persoalan tentang apa dan
bagaimana sesuatu pengajaran dapat dilaksanakan dikaitkan dengan kefahaman dan
pengetahuan guru. Kajian Lloyd (2019) menyokong bahawa guru sepatutnya tahu membuat
keputusan tentang apa, bila dan bagaimana untuk mengajar. Sewajarnya, guru secara proaktif
boleh mengubahsuai kurikulum, kaedah pengajaran, sumber, aktiviti pengajaran dan hasil
murid bagi mencapai keperluan setiap murid di dalam bilik darjah.

Kajian ini turut mendapati wujudnya hubungan antara pengetahuan kandungan dengan kualiti
pengajaran guru. Dapatan kajian yang menunjukkan wujudnya hubungan antara pengetahuan
kandungan dengan kualiti pengajaran guru pada aras kekuatan sangat kuat membuktikan
bahawa guru mempunyai amalan pengetahuan kandungan pada tahap tinggi. Perkara ini

89


SEMINAR PENYELIDIKAN PENDIDIKAN PERINGKAT KEBANGSAAN ZON SABAH TAHUN 2022 (SepZon22)

adalah menyokong dapatan Norsita Ali, Zainal Madon, 2014). bahawa amalan pengetahuan
kandungan mempunyai hubungan yang tinggi dengan pengajaran berkesan. Persamaan
dapatan dalam kajian Nur Hanani Hussin & Ab. Halim Tamuri. (2017) pengetahuan kandungan
guru mempunyai hubungan dengan kreativiti dan inovasi dalam pengajaran guru. Dapatan ini
juga selari dengan dapatan (Pea, 2020). bahawa pengetahuan kandungan yang dipunyai oleh
guru meningkatkan keberkesanan pengajaran guru.

Selain daripada itu, Denise et.al (2010) dalam kajian mereka menyatakan wujud hubungan
positif penguasaan pengetahuan kandungan agar pengajarannya bermakna dan berkesan
terhadap pembelajaran murid. Dengan penguasaan pengetahuan kandungan mata pelajaran
yang diajar, guru dapat mengambil kira tahap kecerdasan pembelajaran murid, kecenderungan
dan kemampuan mereka untuk belajar sesuatu. Guru yang mempunyai pengetahuan kandungan
yang luas dapat mengambil kira tiga aspek, iaitu aspek kandungan yang diberikan mengikut
tahap murid, aspek proses murid melakukan aktiviti yang sama, tetapi melalui proses yang
berbeza dan aspek hasil di mana murid berlainan menghasilkan hasil kerja yang berbeza.

Penelitian lanjut terhadap kajian Tengku Satina Aini Tengku Kasim (2017),. turut memberikan
dapatan yang sama dengan Denise et.al (2010) Sungguhpun variabel kajian yang berbeza
digunakan dalam kajian Tengku Satina Aini Tengku Kasim (2017), mengenal pasti hubungan
dengan pengetahuan kandungan dengan kompetensi guru namun dapatan kedua-dua kajian ini
adalah selari khususnya berkaitan variabel pengetahuan kandungan itu sendiri. Guru
berkemahiran dalam mengamalkan penguasaan pengetahuan kandungan dapat memenuhi
keperluan pembelajaran murid yang berbakat kerana ia memperuntukan peluang pembelajaran
yang sama pada setiap murid. Yahaya, A., Maalip, H., Yahaya, N., & Theng, L. T. (2018).
dalam kajiannya menyatakan kejayaan dan kecemerlangan sesuatu mata pelajaran mustahil
direalisasikan sekiranya guru masih menggunakan kaedah lapok dan tradisional. Justeru, guru
perlu berusaha untuk mendapatkan maklumat dan pendekatan terkini sejajar dengan
pendidikan abad ke-21 agar keupayaan murid dapat diperkembangkan dengan lebih drastik.

Keputusan kajian ini juga menunjukkan komitmen guru dan kualiti pengajaran guru
mempunyai hubungan yang kuat. Data empirikal kajian berdasarkan maklum balas responden
guru sekolah rendah di negeri Sabah menegaskan bahawa variabel komitmen guru
berhubungan dengan kualiti pengajaran. Hasil dapatan turut mengakui bahawa komitmen
merupakan salah satu unsur yang perlu diambil perhatian dalam melahirkan guru yang
bersungguh-sungguh dan bertanggung jawab terhadap kecemerlangan murid melalui kualiti
pengajarannya.

Penyelidikan ini selaras dengan dapatan kajian Puteri Darishah et.al (2017) bahawa guru yang
mempunyai kesungguhan dan rasa tanggungjawab yang tinggi mempunyai hubungan yang
signifikan pencapaian prestasi murid. Kajian beliau juga mendapati komitmen adalah elemen
penting dalam pengajaran yang berkesan. Didapati semakin tinggi komitmen guru dengan
perkembangan murid mereka, semakin tinggi usaha untuk memenuhi tanggungjawab dalam
meningkatkan mutu pengajaran guru.

Kajian semasa ini turut menyokong kajian Zarina Abdullah Rashid. 2016) dalam penelitiannya
terhadap hubungan ekonomi, hubungan manusia, pengetahuan guru, sekolah, sistem nilai, ciri-

90


SEMINAR PENYELIDIKAN PENDIDIKAN PERINGKAT KEBANGSAAN ZON SABAH TAHUN 2022 (SepZon22)

ciri guru dan sikap guru dalam komitmen guru. Dapatan kajian mendapati komitmen
mempunyai keperluan-keperluan dalaman yang diperlukan oleh guru agar komitmennya dalam
pekerjaannya dapat dipertingkatkan. Jelas menunjukkan adanya hubungan komitmen guru
dengan pekerjaannya dalam konteks pengajaran guru.

Selaras dengan dapatan kajian ini yang menyokong kajian Roland Berger & Martin Hanze
(2014). dengan mengutarakan pandangan bahawa hubungan komitmen guru dengan
organisasi meningkatkan kualiti sekolah. Oleh itu, komitmen guru menurut beliau akan
berhubung secara positif dengan sekolah melalui polisi sekolah, kejayaan sekolah dan
bertanggungjawab terhadap masa depan sekolah. Komitmen guru dalam konteks hubungan
meningkatkan kualiti sekolah secara langsung dapat melambangkan kualiti pengajaran guru.

Di samping itu, dapatan kajian White et.al, (2019) juga melaporkan terdapat hubungan
komitmen guru dengan kualiti pengajaran guru berdasarkan beberapa subkonstruk yang dikaji.
Beliau mendapati bahawa kewujudan hubungan yang kuat antara variabel adalah dipengaruhi
oleh komitmen guru dalam pengajaran. Komitmen guru dalam meningkatkan kualiti
pengajaran dipamerkan melalui kesungguhan guru mencari ilmu baru khususnya dalam
pedagogi , sentiasa membuat refleksi untuk penambaikan dan meningkatkan pengetahuan
kandungan mata pelajaran yang diajar.

5.0 KESIMPULAN
Secara tuntasnya, kesemua variabel bebas telah menunjukkan pengaruh masing-masing
terhadap variabel bersandar. Pengetahuan kandungan terbukti menghasilkan nilai tertinggi
dalam meramal pengaruhnya terhadap kualiti pengajaran guru dengan nilai sumbangan
melebihi empat puluh peratus. Diikuti oleh variabel komitmen guru dan diakhiri oleh variabel
pengetahuan pedagogi yang merupakan penyumbang pengaruh yang paling sedikit terhadap
variabel bersandar. Maka ketiga-tiga variabel ini perlu diberikan keutamaan yang dalam usaha
memartabatkan pendidikan negara.

RUJUKAN

Abdul Ghani Abdullah, Abdul Rahman Abd.Aziz dan Mohammed Zohir Ahmad.2008. Gaya-
gaya Kepimpinan dalam Pendidikan. Kuala Lumpur: PTS Professional Publishing Sdn
Bhd.

Beswick, K., & Fraser, S. (2019). Developing mathematics teachers’ 21st century competence
for teaching in STEM contexts. ZDM, 51(6), 955-965.

Blömeke, S., Jenßen, L., Grassmann, M., Dunekacke, S., & Wedekind, H. (2017). Process
mediates structure: The relation between preschool teacher education and preschool
teachers’ knowledge. Journal of Educational Psychology, 109(3), 338.

Creswell, J. W. (2012). Educating research: Planning, conducting and evaluating quantitative
and qualitative research. (4th ed). Boston: Pearson Education.

Creswell, J.W. 2005. Educational Research. New Jersey: Pearson.
Denise A. Schmidt, Baran, E., Thopson, A.D., Mishra, P., Koehler, M.J. & Shin, T.S (2010).

Technological pedagogical content knowledge (TPCK). Journal of Research and
Technology Education 42(2): 123-149.

91


SEMINAR PENYELIDIKAN PENDIDIKAN PERINGKAT KEBANGSAAN ZON SABAH TAHUN 2022 (SepZon22)

Fatimah Binti Affendi (2014), Tahap Kepuasan Kerja Dan Komitmen Organisasi Dalam
Kalangan Guru Kolej Vokasional: Pendekatan Structural Equation Model, Fakulti
Pendidikan Teknikal dan Vokasional Universiti Tun Hussein Onn Malaysia.

Ford, T. G., Olsen, J., Khojasteh, J., Ware, J., & Urick, A. (2019). The effects of leader support
for teacher psychological needs on teacher burnout, commitment, and intent to
leave. Journal of Educational Administration.

Fullan, M. (2002). The new meaning of educational change (3rd ed). New York: Teachers
College Press.

Ghazali Darulsalam, Sufean Hussin, (2016). Metodologi Penyelidikan Dalam Pendidikan,
Amalan dan Analisis Kajian. Kuala Lumpur. Universiti Malaya.

Hiebert, J. (1991). Fourth graders gradual constructions of decimal fractions during instruction
using different representation. Elementary School Journal, 97, 301-341.

Hirsch, E. D. (2019). Why knowledge matters: Rescuing our children from failed educational
theories. Harvard Education Press.

Kallison, (1986). Effect of lesson organization achievement. American Educational Research
Journal, 23, 337-347.

Kementerian Pelajaran Malaysia. (2001). Pembangunan pendidikan 2001-2010: perancangan
bersepadu penjana kecemerlangan pendidikan: 8.1-8.32. Bahagian Perancangan dan
Penyelidikan Dasar Pendidik

Kementerian Pelajaran Malaysia. (2009). Laporan Tahunan 2009, Kementerian Pelajaran
Malaysia.

Kementerian Pelajaran Malaysia. (2010). Pekeliling Ikhtisas Bilangan II Tahun 2010
Pelaksanaan Kurikulum Standard Sekolah Rendah (KSSR) Tahap Satu Mulai 2011. Bil.
KP(BPSH-SPDK) 201/005/01/Jld. 3(5).

Kementerian Pelajaran Malaysia. (2012). Kurikulum Standard Sekolah Rendah (KSSR).
Kementerian Pelajaran Malaysia.

Kementerian Pelajaran Malaysia. (2013). Kurikulum Standard Sekolah Rendah (KSSR).
Kementerian Pelajaran Malaysia.

Kementerian Pendidikan Malaysia 2013. Pelan Pembangunan pendidikan Malaysia 2013-
2025, Putrajaya: KPM.

Kementerian Pendidikan Malaysia. (1997). Peraturan-peraturan pendidikan (kurikulum).
Kuala Lumpur.

Kementerian Pendidikan Malaysia. 2013. Pelan Pembangunan Pendidikan Malaysia (PPPM)
2013-2025. Putrajaya:Kementerian Pendidikan Malaysia.

Kerlinger, F. N. (1986). Foundation of behavioral research (2 th edition). New York: Holt
Rinehart and Winston.

Khoza, S. B. (2016). Is teaching without understanding curriculum visions and goals a high
risk?. South African Journal of Higher Education, 30(5), 104-119.

Kim, C. Y. 2012. Policing School Discipline. Brooklyn Law Review, 77(3), 861-903. Brooklyn
Law School.

King, D. & Menke, J. (1992). Providing the instructors note: An effective additional to student
notetaking. Educational Psychologist, 20,33-39.

Leite, F. N., Hoji, E. S., & Júnior, H. A. (2018). Collaborative teaching and learning strategies
for communication networks. The International journal of engineering education, 34(2),
527-536.

92


SEMINAR PENYELIDIKAN PENDIDIKAN PERINGKAT KEBANGSAAN ZON SABAH TAHUN 2022 (SepZon22)

Lloyd, C. A. (2019). Exploring the real-world decision-making of novice and experienced
teachers. Journal of Further and Higher Education, 43(2), 166-182.

McTighe, J., & Silver, H. F. (2020). Teaching for Deeper Learning: Tools to Engage Students
in Meaning Making. ASCD.

Meschede, N., Fiebranz, A., Möller, K., & Steffensky, M. (2017). Teachers' professional
vision, pedagogical content knowledge and beliefs: On its relation and differences
between pre-service and in-service teachers. Teaching and teacher education, 66, 158-
170.

Muhammad Faizal A. Ghani, Abd. Khalil Adnan, 2015. Bil 2, Isu 2. Model Program
Perkembangan Profesionalisme Guru Malaysia : Satu Kajian Analisis Keperluan Di
Sekolah Berprestasi Tinggi dan Sekolah Berprestasi Rendah. Fakulti Pendidikan
Universiti Malaya. Jurnal Kepimpinan Pendidikan.

Norsita Ali, Zainal Madon. (2014). Tinjauan Awal Interaksi Guru - Kanak-Kanak Dalam
Pemupukan Pemikiran Kreatif Kanak-Kanak Prasekolah. Kota Kinabalu, Sabah,
Malaysia. Proceeding of the Social Sciences Research ICSSR. 735-746.

Nur Hanani Hussin & Ab. Halim Tamuri. (2017). Faktor Perkembangan Pengetahuan
Kandungan Pedagogi Dalam Kalangan Guru Cemerlangan Pendidikan Islam. The Online
Journal Of Islamic Education. Vol.5, Issue 2.

O’Leary, M., & Wood, P. (2019). Reimagining teaching excellence: why collaboration, rather
than competition, holds the key to improving teaching and learning in higher
education. Educational Review, 71(1), 122-139.

Pea, R. D. (2020). Putting knowledge to use. Technology in education: Looking toward, 169-
212.

Phelps, G., Gitomer, D. H., Iaconangelo, C. J., Etkina, E., Seeley, L., & Vokos, S. (2020).
Developing Assessments of Content Knowledge for Teaching Using Evidence-centered
Design. Educational Assessment, 25(2), 91-111.

Price, H. E., & Weatherby, K. (2018). The global teaching profession: how treating teachers as
knowledge workers improves the esteem of the teaching profession. School Effectiveness
and School Improvement, 29(1), 113-149.

Puteri Darishah Dali, Dr. Yaakob and Prof. Dr. Mohd Sofian Okar,(2017) The Relationship
between Teachers’ Quality in Teaching and Learning witu students’
Satifaction,International Journal of Academic Reseach in Business and Social Sciences ,
Vol.7,No.7.

Rabl, T., del Carmen Triana, M., Byun, S. Y., & Bosch, L. (2020). Diversity management
efforts as an ethical responsibility: How employees’ perceptions of an organizational
integration and learning approach to diversity affect employee behavior. Journal of
Business Ethics, 161(3), 531-550.

Rodriguez, J. C. C. (2020). Bringing Zull’s Four Brain-derived Pillars of Learning into the
English Classroom. English Language Teaching Educational Journal, 3(1), 14-25.

Roland Berger & Martin Hanze , (2014). Impact of Expert Teaching Quality on Novice
Academic Performance in the Jigsaw Cooperative Learning Method. International
Journal of Science Education, 37: 2. Germany. Routledge. 294-320.

Rozi et.al.(2016), Komitmen guru dan kepuasan kerja guru di sekolah menengah harian
berprestasi tinggi dan berprestasi rendah di daerah Kota Baharu, Kelantan International
Seminar on Generating Knowledge Through Research, UUM-UMSIDA,Universiti
Malaysia , Malaysia.

93


SEMINAR PENYELIDIKAN PENDIDIKAN PERINGKAT KEBANGSAAN ZON SABAH TAHUN 2022 (SepZon22)

Shulman, L. S. (1992). Knowledge and teaching: Foundation of the new reform. Harvard
Educational Review, 57 (1), 1-22. Smith, D. C. & Neale, D. C. (2003). The construction
of subject matter knowledge in primary science teaching. Teaching & Teacher Education,
5(1), 1-20.

Silvri,H.,&Balci, E.2015. Pre-Service Teachers’ Classroom Management Self-Efficacy
Beliefs. International Online Journal of Education Sciences.7(4), 37 -50.

Tajul aripin,Ahmad Fauzi & Suriati (2015), Curriculum change in English language
Curriculum Advocates Higher Order Thinking skills and Standards-Based Assessments
in Malaysian Primary Schools, “Mediterranean Journal of Social Sciences: Vol 6 No.2

Tolochko, S. (2019). Integrated competence of teaching and academic staff for the system of
postgraduate pedagogical education. ScienceRise: Pedagogical Education, 1 (28), 22-29.

White, L., Lockett, A., & Currie, G. (2019). How does the availability and use of flexible leave
influence the employer–employee relationship?. Human Resource Management.

Yahaya, A., Maalip, H., Yahaya, N., & Theng, L. T. (2018). Hubungan gaya kepimpinan guru
besar dengan faktor-faktor kepimpinan di sekolah cemerlang. Journal of Education
Management, 1(4), 1-23.

Zarina Abdullah Rashid. 2016. Tahap Kesediaan Guru Dalam Aspek Pengetahuan Dan
Keperluan Latihan Berfokuskan Aplikasi KBAT. Fakulti Pendidikan Teknikal dan
Vokasional, Universiti Tun Hussein Onn Malaysia. (Tidak diterbitkan) ( Tesis Ijazah
Sarjana Pendidikan Teknikal).

Zeng, Y. (2020). Evaluation of physical education teaching quality in colleges based on the
hybrid technology of data mining and hidden Markov model. International Journal of
Emerging Technologies in Learning (iJET), 15(01), 4-15.

94


SEMINAR PENYELIDIKAN PENDIDIKAN PERINGKAT KEBANGSAAN ZON SABAH TAHUN 2022 (SepZon22)

SCRUTINISING TEACHERS’ EXPERIENCE IN THE MALAYSIAN DUAL LANGUAGE
PROGRAMME (DLP) IMPLEMENTATION

Ashairi Suliman1, Mohamed Yusoff Mohd Nor2 & Melor Md Yunus3

Jabatan Pendidikan Negeri Sarawak1, Universiti Kebangsaan Malaysia2,3

[email protected], [email protected], [email protected]

ABSTRACT
The Dual-Language Programme (DLP) is advocated to nurture bilingualism for enhancing bilingual education. In
Malaysia, the DLP highlights the use of English as the instructional medium in the teaching and learning of science
and mathematics. This study depicts teachers’ experience in the implementation of the programme besides
unveiling the challenges faced along the programme execution. Contextualising into the teachers’ points of view,
435 DLP teachers from all over Malaysia were involved in this study. From the findings, it was unravelled that
though teachers’ perceptions were on the positive level, several prominent and persistent challenges were revealed
by the respondents. These challenges need to be addressed and resolved to ensure the success of this programme.
Specifically, teachers’ role is indispensable as they exude a positive vibe in students’ engagement. Thus, teachers’
welfare in the programme are of paramount importance to be considered as this would escalate their confidence,
positivity and readiness in the DLP lessons.

Keywords: Dual-Language Programme (DLP); science and mathematics teachers; English as second language

1.0 INTRODUCTION
The need to produce bilingual students in the school setting is increasing. Bilingual education
is advocated as the result of integration and equality and as a mean for social communication
(Shah & Ahmad, 2007). This type of education aims to ease non-native speakers into English
academic environments by teaching content in their native language (Freeman, 1996).
Developing a bilingual student means enabling him to be connected to a wide context of life
and engaging him in a diverse community. A bilingual individual may perceive things in
different ways, develop his thinking and relate himself with peers of different backgrounds.
Bilingualism can enhance students’ affective, cognitive, linguistic and social perspectives,
promotes benefits beyond the command languages, affects future employment, access to higher
education and identity development (Hopp et al., 2019; Edele, Kempert & Schotte, 2018;
Lindholm-Leary, 2016; Jong & Bearse, 2014). As a result, bilingual policy is the mean to
modernisation and globalisation (Yamat, Umar & Mahmood, 2014). The Dual-Language
Programme (DLP) aims to promote and inculcate bilingual education.

DLP involves the teaching of content subjects using two languages. It encompasses the use of
the native language and the target language in a specific context. DLP also offers academic
learning and literacy apart from content instruction using two languages; the partner language
is utilised half of the time (Watzinger-Tharp, Rubia & Tharp, 2018; Freire & Valdez, 2017).
DLP is highly related to bilingual education as it includes English learners and native English
speakers; the programme is designated for the development of bilingualism and bi-literacy for
all students, academic performance and multicultural competence (Hamman, 2018; Christian,
2016; Thomas & Collier, 2012). The number of DLPs has increased due to the aim of educators
and policy makers to increase achievement and attainment for students of diverse backgrounds
(Li et al., 2016). Many languages have been partnered with the target language in DLP.
Spanish, Mandarin, French and Korean are amongst the languages that are partnered with
English in DLPs. The pressure in expanding the programme to other languages, such as Arabic,
Russian and Vietnamese, is also growing; however, the limitations in resources and experience
hinder such implementation (Christian, 2016).

95


SEMINAR PENYELIDIKAN PENDIDIKAN PERINGKAT KEBANGSAAN ZON SABAH TAHUN 2022 (SepZon22)

The Malaysian DLP was implemented in 2016 with a different form of execution. DLP
resembles a previous policy in the Malaysian education system, namely, the Policy of Teaching
Science and Mathematics in English (PPSMI). PPSMI was executed in 2002 to develop human
capital and assist Malaysia in becoming a developed country. The policy regulated all science
and mathematics subjects to be taught using English in primary and secondary levels of
education for a duration of 10 years. By contrast, DLP, which commences in primary and
secondary school levels, opens opportunities for global competition. Ultimately, the Malaysian
DLP shares similar aim to other DLPs and focuses on enhancing students’ English proficiency.
In particular, the programme gives opportunity to use either Malay or English only as the
instructional medium in the learning of science and mathematics (Shamsudin, Abdullah & Noh,
2018; Bullah & Yunus, 2019). However, the Malaysian DLP differs from the common practice
of DLP. The latter uses both languages in the teaching and learning context, whereas the former
fixes the use of only one language on the basis of the choice made by the teachers and students.

A few studies have been carried out from the perspectives of DLP teachers. Unting and Yamat
(2017) revealed that lack of support and guidance to teachers is as a major challenge in the
programme implementation. In the study of Bullah and Yunus (2019), the urban DLP teachers
revealed that they were positive towards the implementation but feared that lack of facilities
and resources might impede the implementation. Shamsudin, Abdullah and Noh (2018)
revealed that teachers’ readiness towards DLP was on the moderate level in terms of skills,
knowledge and interest. Therefore, teachers’ role should be explored to ensure smoothness of
DLP implementation. To accentuate, every educational reform opens new expectations on
teachers and therefore entails for research on teachers’ educational needs (Madalinska-
Michalak & Bavli, 2018). In consideration of the above-mentioned issues, this study aims to
investigate teachers’ experience in the DLP implementation and identify the challenges faced
by DLP teachers in the programme implementation.

2.0 METHODOLOGY
This study used a mixed-method approach. Questionnaires and focused group interviews were
used to gather data. The survey questionnaire, which is a four-point Likert-scale questionnaire,
was adopted from past studies (Tan 2006; Othman 2006; Tan 2009). The questionnaire
consisted of four sections: the demographic profile of the respondents followed by their
perceived language abilities, confidence and students’ response towards DLP constructs. The
total number of items in the questionnaire was 20.

The pilot test involved 30 DLP teachers who are also teaching in several secondary schools.
Reliability test was generated, and the Cronbach alpha indicates reliability of the instrument.
As for the focus group discussion, participants were asked to discuss (1) their opinions about
the programme and (2) the challenges faced in teaching science and mathematics in English.
These questions were designed to capture the respondents’ unheard voices and support the
findings of the questionnaire.

The sample of this study comprised DLP science and mathematics teachers. The respondents
are secondary school DLP teachers from the whole Malaysia. From the Ministry of Education
Malaysia database, there are about 4 015 DLP teachers teaching science and mathematics
nationwide. For the purpose of this study, it finally involved 435 respondents from the whole
country.

96


SEMINAR PENYELIDIKAN PENDIDIKAN PERINGKAT KEBANGSAAN ZON SABAH TAHUN 2022 (SepZon22)

Table 1: Demographic Profile of the Respondents

Option Science 52.4%

Mathematics 47.6%

Gender Male 19.5%

Female 80.5%

Number of 1 Class 43.0%

Science/Mathematics 2 Classes 24.4%

Classes Taught in 3 Classes 11.7%
English 4 Classes 12.0%

5 Classes 8.7%

Involved with PPSMI Yes 77.8%

Policy No 22.2%

The findings from the questionnaire were later analysed using a statistical software. Given the
survey research design, the researcher used descriptive statistics involving frequency,
percentage and mean. The researcher also conducted independent samples t-test to identify any
significant difference between the two groups of respondents (science and mathematics
teachers). As for the three constructs, the mean score was interpreted into four categories (very
negative, negative, positive and very positive).

The focus group discussion was conducted with six groups of respondents. Each group had two
science and two mathematics teachers. The recordings from the session were later transcribed
and given to respective groups to be validated. After verification and amendments, the final
version of each transcription was extracted to develop codes and categories. The collation was
later analysed by two inter-raters. Cohen’s k was also run to calculate the agreement between
the raters. Once the analysis was done, three main themes were identified for determining the
challenges faced by the teachers.

3.0 RESULTS

3.1 Teachers’ Perceptions on Teaching Science and Mathematics in English
Teachers’ perceptions encompassed three domains: perceived language abilities, confidence
and students’ responses towards DLP. The results were compared between respondents in the
science and mathematics groups. Table 2 describes the teachers’ perceived language abilities.

Table 2: Perceived Language Abilities

No. Item Science Maths. Interpretation p
Positive 0.906
1 I have adequate listening skill 3.58 3.59 Positive 0.436
Positive 0.388
2 I have adequate speaking skill 3.34 3.28 Positive 0.744
Positive 0.116
3 I have adequate reading skill 3.78 3.72

4 I have adequate writing skill 3.38 3.40

5 I have adequate vocabularies to teach 3.21 3.33

in English

6 I have adequate grammar to teach in 3.11 3.19 Positive 0.313

English

As illustrated above, the respondents were asked to indicate their perceived language abilities.

The table comprises four main language skills added with vocabulary and grammar knowledge

as paramount importance in teaching content subject in the target language. Overall, the
respondents’ perceived language abilities were positive with slight differences between the

science and mathematics groups. Both groups demonstrated receptive skills (listening and

97


SEMINAR PENYELIDIKAN PENDIDIKAN PERINGKAT KEBANGSAAN ZON SABAH TAHUN 2022 (SepZon22)

reading) as their strongest language abilities. In particular, the respondents in the science group

were mostly confident with their listening skills and indicated low competency in grammar.
The respondents in the mathematics group reported high competency in reading but low
competency in grammar. The low competency in grammar reported by the mathematics group
may be the results of mathematics deals more on calculation than language. Table 3 depicts the
DLP teachers’ confidence levels.

Table 3: Confidence Level

No. Item Science Maths Interpretation p

7 Using English to teach 2.72 2.80 Positive 0.328

Science/Mathematics does not

burden me

8 Using English to teach 2.73 2.81 Positive 0.295

Science/Mathematics does not

worry me

9 I find teaching Science/ 2.85 2.85 Positive 0.987
Positive 0.574
Mathematics in English enjoyable Positive 0.759
Positive 0.655
10 I feel comfortable teaching 2.79 2.83

Science/Mathematics in English

11 I teach Science/Mathematics 3.03 3.05

bilingually

12 I feel confident in teaching after I 2.91 2.89

attended language proficiency

courses

13 I always make an effort to 3.16 3.20 Positive 0.457
Positive 0.801
improve my English proficiency

14 I am ready to teach 2.96 2.98

Science/Mathematics in English

Although most items in this construct demonstrated positivity, the respondents in the science
group disclosed that they were uncomfortable teaching in English compared with the
mathematics group. This result may be related to the teachers’ confidence levels as obtained
from the open-ended answers. The respondents claimed that their own proficiency led them to
feel uncomfortable. More respondents in the mathematics group resorted to teach bilingually
than respondents in the science group. This result is evident for item (11), in which 73% taught
in English and Malay even if bilingual strategy is not encouraged in this programme. Moreover,
for item (12), the mean score for the science group was higher than those for the mathematics
group. Therefore, science teachers need assistance and coaching to boost their confidence level
in the programme. Another crucial issue is the respondents’ readiness to teach in English (item
14). Approximately 21% of the respondents stated that they were still unready. This issue needs
serious action. Teaching process will be affected if the teachers lack confidence as shown in
Table 4.

Table 4.: Students’ Responses towards DLP

No. Item Science Maths Interpretation p
0.145
15 My students are interested to learn 2.89 2.99 Positive
0.362
Science/Mathematics in English

16 My students try to answer 2.92 2.99 Positive

Science/Mathematics questions

given in English

98


SEMINAR PENYELIDIKAN PENDIDIKAN PERINGKAT KEBANGSAAN ZON SABAH TAHUN 2022 (SepZon22)

17 My students can understand 2.82 3.00 Positive 0.014
Science/Mathematics lessons 2.99
taught in English 2.81 3.02 Positive 0.634
2.36
18 My students pay attention when I 2.89 Positive 0.555
teach Science/Mathematics in
English 2.50 Negative 0.047

19 My students request me to teach
Science/Mathematics bilingually

20 My students’ performance
increases ever since they learnt
Science/Mathematics in English

Respondents’ perceptions on their students’ responses towards DLP were also examined. This
construct highlighted that students were moderately positive except for one item (My students’
performance increases ever since they learnt Science/Mathematics in English). No single item

reached 80% agreement. As mentioned in the previous section, students requested their
teachers to teach using both languages. In fact, item (17) revealed a significant difference
between the two groups besides item (20). Out of the 20 items in the questionnaire, the last

item denoted a negative result from both science and mathematics options. A total of 52%
confessed that their students’ performance decreased since joining the programme. Overall,
both groups had nearly similar perceptions towards the programme implementation, and certain

answers revealed differences that the respondents in the mathematics group were more positive
than their counterparts.

3.2 Challenges Faced in The Programme Implementation

Unsurprisingly, teachers are facing many obstacles as they have been working towards drastic
changes in the bilingual programmes’ structure, function and goals as well as the result of

globalisation and proliferation in knowledge society and economy (Madalinska-Michalak &

Bavli, 2018; Palmer et al., 2016). These hurdles are also prevalent in the Malaysian context.

From the findings, three main themes emerged. Language proficiency of students and teachers

and scarcity of materials and resources were the main concerns in the DLP implementation.

Students from Malay or Chinese medium primary schools are still adjusting and adapting to

the new environment in learning science and mathematics in English. In addition, those who

have limited competency are struggling to engage with the lesson. The respondents mentioned
the following aspects ‘The second one is to cater to students who have low proficiency in

English. Thus, when they come to science, the trouble becomes evident. Their basic knowledge
of English is weak, and the science term is different from before’. Moreover, ‘The students from

the feeder school were learning in Malay language. Thus, when they came to this school, they

switched to English; some of them have problems especially in Science because they have to
explain in English’.

Given that these students have been learning science and mathematics in Malay or Chinese
language during their primary education, the difficulties are inevitable in transitioning to
English, especially for Science lessons.

Teachers’ proficiency in English also serves as a hindrance in the success of this programme.
Some teachers have been assigned to teach in the programme by the school due to their
seniority despite they are not proficient in the English language themselves. Moreover, some
newly posted teachers are not learning science and mathematics in English during their
schooling years. This situation creates concern as they are not supported by any coaching or
courses that can enhance their language proficiency. The second discussion revealed that, ‘For

99


SEMINAR PENYELIDIKAN PENDIDIKAN PERINGKAT KEBANGSAAN ZON SABAH TAHUN 2022 (SepZon22)

teachers’ proficiency, I am not up to the standard. We know that our proficiency does not
satisfy the standard. Thus, our delivery of the content is quite limited because of the language
problem’. This situation is alarming because, if the teachers face difficulties in expressing and
comprehending in English, then the teaching and learning process may indirectly be affected.
The respondents asserted that they would mostly need to refer to the English teachers in
understanding the lesson, preparing teaching materials and setting the exam questions.
Insufficient language proficiency may irrefutably dampen the smoothness of the lesson.

The programme implementation is also affected by the materials and resources, such as
textbooks, reference books and other teaching materials that may assist the learning process.
Insufficient and late supply of textbooks from the local publishers and the Ministry of
Education have caused problems. Limited reference books in bookstores add further
disappointment to teachers. A respondent asserted that, ‘Less reference materials in English in
bookstores add to the problems of DLP implementation’. A respondent mentioned that, ‘Few
reference materials are available in the market, especially books. Thus, I have to resort to the
Internet and share materials via Telegram and WhatsApp groups’. The respondents said they
hope the authority would solve the issue as soon as possible because the effect is significantly
experienced by the teachers and students who are involved directly in DLP.

4.0 DISCUSSION
The findings of this study reveal that teachers’ perceived language abilities, confidence level
and students’ responses towards DLP are positive. Although teachers’ perceptions are positive,
some issues need to be addressed to ensure the success of DLP. The first issue involves
teachers’ language proficiency. Given that the respondents are not language teachers, their
proficiency may not be as competent as language teachers. This finding is similar to that of
Braden et al. (2016), who argued that DL teachers’ role is becoming increasingly complex
because they have to teach academic content whilst nurturing students’ English development.
If the purpose of using English as the medium of instruction is to achieve English and content
learning, then teachers need to be equipped with English proficiency and teaching skills
similarly to students who need to learn the meaning and content as well as the target language
(Jiang, Zhang & May, 2019; Cuenca & Moore, 2018). The supports Dimova and Kling (2018),
who reported that respondents have difficulty in grammar and vocabulary. Therefore, teachers
should arm themselves with sufficient vocabulary and grammar knowledge. If a teacher’s own
language proficiency is weak, then the teaching process may be hindered because the teachers
cannot express themselves in the target language.

The use of bilingual strategy should be limited to avoid students’ confusion. A proposition
should be provided on how often national and target language should be used if a bilingual
strategy is permitted. This proposition is in line with those in past studies dealing with bilingual
strategy (Lee & Jeong, 2013; Mokiwa & Msila, 2013; Lo, 2015; Tavares, 2015; Domingo,
2016). Bilingual strategy in teaching the content subjects is used when students have limited
English proficiency. This situation occurs because teachers and students share a common first
language. This use may also foster teachers’ confidence in the class. Mthiyane (2016) argued
that lack of confidence in teaching using English leads to the use of code-switching by teachers.
The amount of national language instructions to be used in the teaching process should be
clearly outlined. Allowing first language in the classroom may lead to its overuse by teachers
and students, and this situation may affect teaching in the second language (Wach & Monroy,
2019). The teachers need to be reminded that the target languages should dominate in the
teaching and learning process.

100


Click to View FlipBook Version