The words you are searching are inside this book. To get more targeted content, please make full-text search by clicking here.

The Mechanical and Metal Trades Handbook is well-suited
for shop reference, tooling, machine building, maintenance
and as a general book of knowledge. It is also useful for educational
purposes, especially in practical work or curricula and continuing education programs.

Discover the best professional documents and content resources in AnyFlip Document Base.
Search
Published by Ts. Mohamad Faezal Omar Baki, 2021-09-01 11:28:23

Mechanical handbook

The Mechanical and Metal Trades Handbook is well-suited
for shop reference, tooling, machine building, maintenance
and as a general book of knowledge. It is also useful for educational
purposes, especially in practical work or curricula and continuing education programs.

Keywords: Mechanical handbook,handbook,mechanical

7/18/2019 Mechanical and Metal Trades Handbook

A u t o m a t i o n : 7 .1 B as ic t e r m i n o l o g y

Symbols cf. DIN 19227-1 (1993-10)

L o c a ti o n o f o u t p u t & u s er c o n t r o l Effect on the c ontrolled s y s tem Measuring p oint, control point

CD o Servo motor, Reference line
general
or ocal,
general Servo motor; the V Measuring point,
o setting for m inimal sensor
Process c ontrol mass flow or flow of Example
room energy is set during Final control ele-
loss of aux iliary ment, control point
Local control con- power.
sole
Servo motor; the
r n Local, implem ented O setting for maxi- ok> temperature
\ by process control mum mass flow or rlRZ\   registration
flow of energy is set T
system during loss of auxil- automatic
iary power. closed
Local, impleme nted
by process Servo motor; the loop control
computer Temperature control
final control device and registration at local
remains in the most control stand measuring
recently acquired point 310
setting during loss
of auxiliary power.

Solution based symb ols for devices cf. DIN 19227-2 (1991-02)

Symbol Explanation Symbol Explanation Symbol Explanation

Sensors Controllers Final c ontrolling & us er c ontrol
elements

tSeemnpseo rr aftourr e , Controller, general Valve actuator with
or general motor drive

piox Two-point controller S Valve actuator with
with switching out- solenoid drive
p Sensor for pressure put and PID behav- >ki
ior Adjuster for electric
/ signal
Three-point con-
troller with switch- E
ing output

Sensor for level with
< 6 float
Adapters Signal designators

•-z^W Sensor for weight, Pressure trans ducer ~E  Sign al, electrical
scales; indicating with pneumatic A  Signal, pneumatic
signal output n Analog signal

Example: Temperature con troller Digital signal

Output devices

Basic symbol, PID controller signal amplifier for

manipulated actuating signal
>controlled variable x
general display variable/

temperature reference inp ut P I D )

Printer, analog, no. transducer valve
with electrical actuator,

onfumchearnanl els as a signal output ssiiggnnaall taodjaudsjtuesrt froerfeerleecntcreical motor
input variable w driven
temperature-
sensor [M steam

a Monitor water bath

http://slidepdf.com/reader/full/mechanical-and-metal-trades-handbook-56d51be067c7a 351/431

7/18/2019 Mechanical and Metal Trades Handbook

348 A u t o m a t i o n : 7 .1 B a sic t e r m i n o l o g y

Analog controllers

Analog (continuous) co ntrollers cf. DIN 19225 (1981-12) and DIN 19226-2 (1994-02)

In analog controllers the manipulated variable  y may assume any desired value within the control range.

Controller design Level control example, description Transition function S y m b o l1'
Block representatio n 2'

PP -r coopnotrrtoi ol lnear ls P controller xy   cmoanntripoullleadtevdarviaarbilaeble 3
controllers e  error
sstteepp rfeusnpcotniosne 4''

Output variable is outflow U 2
proportional to valve time  t
input variable. I controller /
P-controllers U
have steady-state time  t 2
errors.
U /
I-controllers

tIrnotlelegrrsal con-

I-controllers are
slower than
P-controllers, but
they eliminate all
errors.

PI-controllers P control LR PIX
Proportional part LN z
integral con-
trollers I control /
part
In PI-controllers a /
P-controller and a
I-controller are
connected in par-
allel.

D-controllers D-controller system s only occur with P- or PI-
Derivative con- controller systems, since pure D-controller
trollers behavior with constant error does not provide
any manipulated variable and therefore no
closed loop control.

PD-controllers PD-controllers are created when a P controller Lf y
Proportional and a D element are connected in parallel.
derivative con- II /
trollers The D part changes the outpu t variable at a rate
proportional to the rate of change of the input PIDX 352/431
PID-controllers variable. The P part changes the output variable
Proportional so that it is proportional to the input variable
integral itself.
derivative con-
trollers PD-controllers act quickly.

PID-con trollers are created by con nec ting P, I
and D-controllers in parallel.
Initially the D part reacts w ith a large change to
the control signal, afterwards this change is
reduced to approximately the magnitude of the
P element, and finally the effect of the I elem ent
causes the response to rise linearly.

1> Symbol as per DIN 19227-2 2> Block representation as per DIN 19226-2
3 ' Signal curve at contro lled system input 4 )  Signal curve at contro lled system outpu t

http://slidepdf.com/reader/full/mechanical-and-metal-trades-handbook-56d51be067c7a

7/18/2019 Mechanical and Metal Trades Handbook

A u t o m a t i o n : 7 .1 B a sic t e r m i n o l o g y

Discontinuous  and digital controllers

Switch ing (discontinuous) controllers cf. DIN 19225 (1981-12) and DIN 19226-2 (1994-02)

Switching controllers change the m anipulated variable  y  disco ntinuo usly by switch ing in several steps.

Controller design Ex ample, des c ription Transition fun ction, Symbol
s w i t c h i n g b e h av i o r Block representation

tTrwolole-pr oint c on- 9^9 heating coil

r^elay — WvW

f-V IHII

heat radiation
contacts

switch pos. 2 II y

set-point potentiometer switch pos. 1 error

Three-point c on- Air conditioning system switch pos. 3
troller switch pos. 2
In an air conditioning system three tem-
perature ranges are assigned three 0 error y
switch positions: switch pos.  1
3 1 -1
- heating ON
- heating/cooling OFF
- cooling ON

Digital controllers (software controllers) cf. DIN 19225 (1981-12) and DIN 19226-2 (1994-02)

The operating mode of the digital controller is implemented as a com puter program.

Contro ller design Examp le (simplified) Transient function Explanation

Computers StaI rt J  PDIiDgi-tcaol ntroller error step The computer program
Enter time t has the following tasks:
Programmable reference inpu t -generate error  e
Logic Controllers variable  w - calculate the manipu-
(PLC)
1 lated variable / based
Microcontrollers Aquire on programmed con-
controlled variable x trol algorithms
Microprocessors At the step response all
1 P,  D and I-parts are
summed.
Generate error
e =  w-x Sampling of analog sig-
nals and their conver-
v .""-I t l summing sion to digital values
PID and internal program
32 flow causes a time delay
control algorithm 1 step response
1 oabf lteh ex  c(soinmtriolallretdo vaari-
time t T-controlled system).
Output manipulated
variable  y



P-controlled systems w ith tim e delay (T part) cf. DIN 19226-2 (1994-02)

Controller design Example Trans ient func tion Explanation

P-controlled Filling a gas vessel time t If the pressure vessel is
s y s tem w ith delay Py time t filled by a flow of gas,
1st order time t pressure p-i in the ves-
(P-T-i controlled it it time t sel gradually reaches
system) the pressure of the gas
flow.
P-controlled Filling two gas vessels
s y s tem w ith delay If tw o vessels are con-
2nd order 1  ffl nected in series, pres-
(P-T2  controlled sure P2 increases in the
system) it- Jfez Py second vessel slower
t Pn than pressure p-\ in the
first vessel.
=1X3=

http://slidepdf.com/reader/full/mechanical-and-metal-trades-handbook-56d51be067c7a 353/431

7/18/2019 Mechanical and Metal Trades Handbook

350 Au tom ation : 7.1 Basic termin olog y

Function Binary logic cf. DIN EN 60617-12 (1999-04)
AND
Circuit symbols Function table Technical implementation
OR Logic al equation
11 12 O pneumatic electric
11 000
0 010 0 T—r
10 0
12 & 111 11 12

0 =  11 A 12 «0 12

H

11 12  A

11 12 O T TT
00 0
11 0 01 1
12 \ 10 1
11 1
111 12

0 = 11  V 12

NOT 11 O 5H ~J—t
01
10 i—\ •

0=I C1

NOT 12 & 11 12 0 5
AND 001
(NAND) 0 =  11  A 12 11 12
01 10 11
1 10

NOT-OR 11 12 0 X
(NOR) 00 1 I
0 10
0 =  11 V 12 10 0 --0-
110
11 I2

II 0 11 12 O
=1 00 0
Exclusive 01 1
OR 12 10 1
(XOR) 11 0
0 = (11 A 12) V H5 t XH
(11 A 12) t

12

11 s 11 12 0 1 0 2 01 ,02 ,1J J J J J
J 01 0 0 11 v ]( — 112
02 0 1 0 1 I — \ C 1 \ C 1 \ I — \ C 2 \C 2 \
12 C = relays, contacts
Memory R 10 10
(RS flip-
flop) S set • •1 1 C1 C2
R reset • • 01
I = inputs • state un- • • 02<^)
changed
condition

• indeterminate
state

O = outpu ts, e.g. lamps

http://slidepdf.com/reader/full/mechanical-and-metal-trades-handbook-56d51be067c7a 354/431

7/18/2019 Mechanical and Metal Trades Handbook

A ut om at ion : 7.2 Electrical circuits 351

Circuit symbols  CF. DIN EN 6O617-1 TO -12 0999-04)

General circuit s ymb ols

-C D— Resistor, Inductor, coil Lamps, Electrolytic
general general, component
Nonstandard optional rep-
Fuse representa- W resentation Converter,
Capacitor tion transducer
Permanent Buzzer
magnet
Horn

Conductors, connectors and term inals

Conductor, Grounded Connection
general conductor, to ground,
•i^- PE Junction,  f k 1 optional rep-
Conductor, optional rep- resentation
moveable Neutral con- resentation "=" Ground
ductor, PN Gn er oc tuonrdc oc no -n -
Ci nosnudl autcetdo r , Double nection
Neutral con- junction,
-t- dpruoctteocrtiwveith optional rep-
resentation
function PEN

Devices and m achines Semiconductor components

Measuring Transformer, V Semiconduc- v PNP
device, tor diode, transistor
machine I ^ A - J optional rep- general

resentation

Measuring Valve LED light v NPN
— device, emitting transistor
diode
recording

D e s ig n a t i o n s T y p es o f c u r r en t T y p es o f c o n n e c t i o n s
Adjustability
Function — DC T Y connection
general
adjustable H stepped AC with low

/ regulated / continuous frequency A Delta
connection
Effect
thermal AC with high YA Y-delta con-
frequency nection
radiation

C ir c u it s y m b o l s i n w i r i n g s y s t em d r a w i n g s

Circuit switch / Three-way l Three-pole •4 Motor circuit
switch, illu- switch, pro- breaker
c T d * a) single-pole X minated 4 tective sys-
te m   IP 4 4 Ground-fault
a) b) b) dou ble-p ole ® Grounding- circuit inter-
type Automatic rupter
K K ^ Sensor switch breaker
receptacle DC motor
Series s witch
Application examples Key button Three-phase
motor
Inductor, DC-AC Three-core
caodnj utsi nt aubolues l y converter, cable with
regulated
/ 1  Resistor, 3G 1,5 junction
H X I— 5 step DC or AC Cable w ith
variable (universal) 3 conductors,
/ with ground
conductor (G)
and 1.5 mm 2
cross section

http://slidepdf.com/reader/full/mechanical-and-metal-trades-handbook-56d51be067c7a 355/431

7/18/2019 Mechanical and Metal Trades Handbook

352 A uto m ati on : 7.2 Electrical circuits

Circuit symbols  CF. DIN EN 6O617-1 TO -12 (1999-04)

Relay con tacts Actuation types

NO contact, b Manual, T — By tilting CB- By pressure
normally open general energy
E By key
NC contact, By By pedal By proximity

normally > pressing >0/ -—— By touching
closed By
By bimetal
Single pole _F pulling o— By coil (thermal)
double throw
By Magnetic
turning sensor,
reacts to close
Electromech. relays Sw itc h behavior Sensors (Block representation) proximity of a
magnet (reed
Relay coil, Lock, <0 Capacitive O
general prevents sensor, switch)
automatic o
Timer on return Hl- reacts to Optical
delay proximity of sensor,
a) Delayed reacts to
Timer off action (para- all sub- reflection of
delay b) infrared beam
fcohrumteoevfef-ect) o stances
fx-7—I—| Tim er on off > ment Magnetic
• ' delay a) to the right Inductive proximity
t b)to the left sensor, switch with
reacts to NO contact,
Symbol for proximity of reacts to
"actuated metals proximity of
state" magnetic
material.
Examples of sw itch applications
Capacitive
a) NC contact proximity
switch with
h- NO contact b) NO contact Limit switch, NC contact,
manually Representa- NO contact reacts to prox-
tion in actu- imity of all
materials.
ated condi-

tion I<0>
NO contact Limit switch,
hvV- Double pole a) closes
single thro w t NC contact
b) delayed

opening w hen

actuated Valve with
electro-
NC contact =0
with roller
o— actuation Emergency magnetic
palm button actuation

Flip-flop elem ent s Delay elements

1) RS flip-flop RS flip-flop With rise-delay tim e
set dominant reset dominant
RS  flip-flop

When a sig-

11 12 01 02 11 12 01 02 11 12 01 02 I 0 nal is applied
to input I, out-
91 0 0 • • S1 1 91 0 0 S 1 91 0 0
12 02 0 1 0 1 12 R1 1 02 0 1 0 1 put O
R 1 02 0 1 0 1
assumes

10 10 10 10 10 10 value  1 after

Function Function Function time f-i elaps-
table table
• •t a b le2' es.
11 1110 1101

W i t h t u r n -o f f d e l ay

Flip-flops are integrated The n umeral 1 after an R or S input indicates that the I 10 t 21 0 With loss of a
circuits wh ich store signal
conditions. logical state of this input is dom inant. sinigpnuat l Ia, ot utpu t
If a signal s imultaneo usly lies at inputs  11 and 12 (11 = 1 O takes the
1>  R = reset and  12 = 1) the follow ing applies: value 0 after
S = set completion of
Input without the numeral 1 (R for set dominant, S for time  t2.
2 )  • un changed state reset dom ina nt RS flip-flop) is alway s set to logical
• indetermina te state state 0.

http://slidepdf.com/reader/full/mechanical-and-metal-trades-handbook-56d51be067c7a 356/431

7/18/2019 Mechanical and Metal Trades Handbook

A ut om at ion : 7.2 Electrical circuits 353

Designations in c ircuit plans*

D e s i g n a t io n o f d e v i c es i n c i rc u i t d i a g r am s cf. DIN EN 61346-2 (2000-12)

Example: S2E

Type of device Sequential num ber Device fu nction

Code letters Code letters for fun ction Example of circuit diagram
for type (selection) (not standardized)
F1 K1
B Sensor, proxim ity switch A Function OFF S1A E - -
F Fuse B Direction of mov eme nt
K Sw itch relay, tim ed relay E Function ON S2E  E - M1_c£>X
Q Circuit breaker, contacto r G Test
M Solenoid valve, solenoid K Jog operation K1 e g  
P Indicator light, horn S Save, set
R Resistor R Clear, reset
S Control switch, push-button

switch

Designation of wires and connections cf. DIN EN 60446 (1999-10) and DIN EN 60445 (2000-08)

Insulated wires

Designation

Type of wire Code Wire Symbols Example
letters color

DC network positive L+ Rectifier circuit

negative L- L1 — black
neutral wire M light blue
L2
—  b r o w n o
Phase conductor 1 L1 £
L3
— black D
AC network Phase conductor 2 L2
Phase conductor 3 L3 C

—  light blue (<J

neutral wire light blue PE —  green-yellow

Ground wire PE green-ylffiov L - black oi$—
PEN black <D
PEN wire (neutral wire with
ground function, PE + N) Oc

Ground Q

Device connections

Connections for Designation Example

Phase conductor 1 U Star-connected (squirrel) cage motor
Phase conductor 2 W
Phase cond uctor 3 M3~ Terminal board

1 )  Color is unspecified. Black is recommended, W2 L1
brown to differentiate. Green-yellow may not be L2
used. U2 V1

2 rv >r> r\ j

cPoEnNd-uwcitroerschoalovre. Taocoanvotiinduocounsfugsreioenn-wyiethlloPwE V V2 W1 L3
wires, PEN wires are additionally marked with
light blue on the ends of the wires, r
e.g. with a wire clip or adhesive tape.

According to European Standards 357/431
http://slidepdf.com/reader/full/mechanical-and-metal-trades-handbook-56d51be067c7a

7/18/2019 Mechanical and Metal Trades Handbook

354 Au to m at ion : 7.2 Electrical circuits

Circuit diagrams   CF.  DIN  EN 61082 <1998-09)

C o n n e c t o r m a r k i n g s o n r e l ay s

Example: 2nd digit
Relay wi th 2 NOs Function number for contacts
and 2 NCs

NC NC NO NO SPDT SPDT
delayed delayed delayed

1st digit
Consecutive num bering o f contact sets

D e s ig n i n g c i r c u it d i a g r a m s

Current sections and dis tribution of electric circuits

Every electrical device is shown with a Control circuit Main circuit
vertical current section regardless of the L+ 1 ? 34
actual spatial arrangement of the ele- C1 C1
ments. S1  h ~
MlCp-% N3CpX
Current sections are numbered sequen- S2 H-A   5 3 h -
tially from left to right. ??

The   control circuit  contains devices for C2 \ C3
signal input and signal processing.

Th e m ain circuit   contains the necessary
final control elements for the working

Telheemsepnatsti.ally shared devices, e.g. relay C1 \C1
coil and relay contact, are not repre-
sented. L-

Designation of devices L+ 1 23
S1h A
Contacts and the associated relay coils r^ r
are marked with the same code numer-
al. C1\ c i N
Example: Current sections 1, 2 and 3
2 NO contacts belong to relay coil C1, S2 I — f S3 S4
both marked as C1. They are used to

Alaltlcchotnhteacrteslaoyf caoirle. lay are entered as a
complete contact set or as a table under
the current path of the relay. Both repre-
sentations indicate the current section
on which a contact is located.

M1 M3

o 1 0 o I C1 C2 C3
Cv Os O
C1 I C2 1 • car O
L- °
CNI Osl CM

o o O

Con- Con- Con-
taCc2ts tSioenc- taCc3ts tSioenc-
,13 14 s l L 14 61L 14 tacts tSi oenc -
23 - i * 23 ' 1 24 C1 13-14 5 13-14 6
33 -1 33 " 1 34 23 " ~ 2 4
13-14 2
33 " ru 23-24 3

Representation as contact set Representation as table

http://slidepdf.com/reader/full/mechanical-and-metal-trades-handbook-56d51be067c7a 358/431

7/18/2019 Mechanical and Metal Trades Handbook 355

Sensors  (selection) A uto m ati on : 7.2 Electrical circuits

Sensors that are sensitive Sensors
to proximity
Sensors Tactile sensors

Inductive Capacitive Photoelectric Ultrasound Magnetic sen- Limit
sensors sensors sensors sensors sors switches

Characteristics of sensors

Sensor Symbol Principle Advantages Disadvantages Object
type distance
Only objects with high elec-
Triggers if an object inter- High degree of protection trical conductivity, unsuit- 1 mm to
able where there is greater 150 mm
Inductive O feres with the alternating (IP67), very high switch accumulation of metal chips
magnetic leakage field of point precision, dirt

the sensor tolerant

oCapacitive Tferrigegsewrsithif tahne oabltjeecrnt aintitnegr- High degree of protection Slamrgaellr odbejseicgtn dtihsatannces, 20 mm to
electric leakage field of (IP67), detects all materials; comparable inductive sen- 40 mm
the sensor dirt tolerant sors
Hh

Photo- Triggers if an object Detects all materials, Sensitive to dirt, smoke and
electric <0 returns the infrared field large distances secondary light, auxiliary approx.
power necessary 2m
of the sensor

Ultra- oHDh Evaluates transit times of Tolerant to dust, dirt and Slow, use only with standard 60 mm to
sound reflected ultrasonic pulses light; detects very small pressure, not in areas sub- 6m
to determine the distance objects at large distances ject to explosion hazards and
to an object no high-frequency noise

A permanent magnet Suitable in rough environ- Risk of contact welding;
ment, high service life,
O actuates a proximity spuepapkrseossf eRsCthmeodcuurleresnt
suitable for switches in
Magnetic switch (reed contact) high frequency circuits Contact chatter, not
using two contact springs allowed in food and
Low price, robust, sm all, chemical industries
M>~M e c h a n i - Triggered by manual unaffected by interference
cal actuation or lever system fields, no auxiliary power
necessary

Designation of proxim ity sensors cf. DIN EN 60947-5-2 (2004-11)

Example: U  1  A30 A  F 2 N

J JTTTI

Type of Mechanical m ount- Design Circuit ele- Type of Type of NAMUR
detection ing conditions and size ment function output connection function

inductive flush FORM A NO contact P PNP output, 3 integrated N NAMUR 3'
C capacitive mounting or 4 DC connec- connection function
U ultrasound possible A cylindrical B NC contact tions line
D photoelec- flush plug Note:
mounting threaded C single pole N NPN output, 3 connection NAMUR
tric diffuse not possi- or 4 DC connec- screw sensors
reflected ble sleeve double tions connection are 2 wire
luminous sensors that
beam unspeci- B smooth cylin- throw D 2 DC connec- unused are connected
M magnetic fied tions1' to an external
R photoelec- drical sleeve P program- other switching
tric reflected F 2 AC connec- amplifier
C rectangular mable by tions2'

with square user U  2 AC or DC

cross-section S other
D square, with

rectangular

luminous S I ZcEr o s s - s e c t i o n connections tcyopneneocf tion
beam (2 digits) S other
photoelec-
tric direct for diameter 1 ' DC = Direct Current
luminous or side length 2 ' AC = Alterna ting Current
beam 3 ' NAMUR = Normenarbeitsgemeinschaft fur Mess- und Regelungs-

technik (Standardization Association for Measurement and Control)

http://slidepdf.com/reader/full/mechanical-and-metal-trades-handbook-56d51be067c7a 359/431

7/18/2019 Mechanical and Metal Trades Handbook

356 A ut om at ion : 7.2 Electrical circuits

Safety precautions cf. DIN VDE 0 100-410 (2003-06)

Safety precautions against electrical shock

Protection Protection Protection
against direct against electric shock against electric shock
under normal conditions: under fault conditions:
and agains t direc t c ontac t
indirect contact for indirect contact

Protection by: I Protection by: i Protection by: l

- Safety Extra Low Voltage (SELV) - protective insulation of active -  automatic disconnect or warning ,
parts, e.g . cable e.g. residual current protective
- Protective Extra Low
Voltag e (PELV) - c oatin g as in su lat io n, e.g . ho us- device
ings on electr. devices - potential equalization
- Functional Extra Low Voltage
FELV - distance, e.g. protective hood s, - non-conductive areas;
housings of machin e screen e.g. by insulating coverings

- barriers, e.g. protective screen, - protective insulation , e.g. housings

enclosure encapsulated with insulating material

ft ft

Additional protection by residual current circuit breaker GFI's:

Ground Fault Interrupter

E ff ec t s o f a l t er n a t i n g c u r r e n t vg l. IEC 60479-1 (1994)

Safety curves for AC 50 Hz from  hand to hand or Zone Physical effects
from hand to foot for adults AC-1 normally no effect
AC-2
10 000 AC-3

i ms AC-4.1 normally no dam aging physical effects
AC-4.2
I 2000 AC-4.3 usually no organic dam age, difficulty
AC-4 breathing (> 2 s), muscle cramps
£ 1000
o
5c= 500 AC-2
AC-1
§ 200

oo 100 Trigger curve 5% probability of ventricular fibrillation
c of a ground up to 50% probability of ventricular fibrillation
o 50 fault interrupt
dev < 3 0 m A
3 20
-o

10 over 50% probability of ventricular fibrillation

0 1 0.5 1 2 5 10 100 mA cardiac arrest, cessation of breathing, and
500 2000 extreme burns (increasing with exposure
02 time and current level)

leakage current

A u t o m a t i c f u s es a n d w i r e c r o s s -s e c ti o n al a re as cf. DIN VDE 0 1000-430 (1991-11)

Rated cur- Color M i n i m u m c r o s s - s ec t i o n al a r ea i n m m 2  f o r Rated cur- Color M i n i m u m c r o s s - s ec t i o n al a r ea i n m m 2  f o r
C u w i r e s b y m e t h o d o f i n s t a l la t i o n C u w i r e s b y m e t h o d o f i n s t a l l at i o n
rent of code rent of code
fuse of A1 B1 B2 C fuse of A1 B1 B2 C
fuse fuse
I n  in A and num ber of loaded strands I n  in A a n d n u m b e r o f l o a d ed s t r a n d s

23332323 23332323

10(13) 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 25 yellow 4 4 2.5 4 4 4 2.5 2.5

16 gray 1.5 2.5 1.5 1.5 1.5 1.5 1.5 1.5 35 66666644

20 2.5 2.5 2.5 2.5 2.5 2.5 1.5 2.5 50 w hite 10 16 10 10 10 10 10 10

M e t h o d o f i n s t a l l at i o n o f c a b l es a n d i n s u l a t e d w i r e s cf. DIN VDE 0 298-4 (2003-08)

Installation in thermally Installation in electrical con-
duit or in the wall, in cable
A1 insulated w alls, in electri- B2 channels or behind base

cal conduit

boards

Installation in electrical Installation directly on or in
B1 c onduit or in the wall or in the wall

cable channels

According to European Standards 360/431
http://slidepdf.com/reader/full/mechanical-and-metal-trades-handbook-56d51be067c7a

7/18/2019 Mechanical and Metal Trades Handbook

A ut om at ion : 7.2 Electrical circuits 357

Safety p recautions*

Protective sys tems for electrical devices  cf.  DIN EN 60529 (2000-09)

E x am p l e : IP3 4 C M

J TTII

1st code numeral

Protective system for vpi creo1t e* ct ion of 2fnodr pcorodteecntiuomn boefr Additional Supplemen-
designation IP de a gai nst the device1' code letters2' tary letters

(International Protection) penetration of against water with
damaging effect
solid foreign

objects

J

Code 1st code no. Code 2nd code number Additional
no letters
Protection against Protection from no Wa te r p r o te ctio n Sym b o l
accidental contact foreign objects

0 No protection No protection 0 No protection None Protected against
A contact by back of the
Protected against Protected against 1 Protected against
1 contact by back of penetration by foreign vertical drips hand
objects d> 50 mm
the hand Protected against * B cPornottaeccttewditahgafiinngset r
Protected against 2 drips if device is d=   12 mm , 80 mm long
Protected against penetration by foreign
2 contact with finger objects d> 12.5 mm inclined 15° Protected against

d  = 12 m m Protected against Protected against C contact with a tool
penetration by foreign 3 water spray impact- d  = 2.5 m m,
Protected against objects d> 2.5 mm
contact with a ing device at 60° 100 mm long
tool  d=   2.5 mm
Protected against 4 AProtected against Protected against
Protected against penetration by foreign D contact with a wire
contact with a wire objects d  > 1 m m water spray from all
d  = 1  m m directions d  = 1  mm , 100 mm long

Protected against Svmbol Supplementary letters
5 contact with a wire
Protected 5 Protected against AA Equipment for high
d  = 1 m m from dust water jets from all H voltage
* directions
Protected against Dust M Tested on wa ter intake
6 contact with a wire proof 4> Protected against in running machine
strong water jets
d  = 1  m m from all directions

1> If a code number is not given, the letter X is Protected against S Tested on wa ter intake
used in its place, e.g. IP X6 or IP 3X 7 temporary submer- on idle machine

2 )  Is only given if the protection is greater than sion in water W Suitable for specific
the 1st code number. weather conditions
Protected against
Electric equipment for explosive areas 8 continual sub-

mersion in water

...kPa

cf. DIN EN 13237 (2003-01)

Code Type of protec - Group II C Code Surface
tion AB temperature
T1
0 oil immersion Risk of explosion by occurrence of the follo\/ving gases: T2 450 °C
P pressurized T3 300 °C
methane, propane, butane, ethylene, acryl hydrogen, T4 200 °C
enclosure propylene, benzene, toluol, nitrite, hydrogen acetylene, T5 135°C
q sand filling T6 100°C

d felnacmloespuroreof npaeptrhotlheaulmen, eg,atsuorlpineen,tinfuee, l oil, cdyimaneitdhey,lether, ceat hr by lo nn i tbr iitseu l p h i d e , 85°C

increased diesel oil, carbon monoxide, propylene oxide,

e safety methanol, metaldehyde, coke oven gas,

inherent safety acetone, acids, chloride tetrafluoroethylene

i

* According to European Standards

http://slidepdf.com/reader/full/mechanical-and-metal-trades-handbook-56d51be067c7a 361/431

7/18/2019 Mechanical and Metal Trades Handbook

358 Au tom atio n: 7.3 Function charts and Function d iagram s

Function charts for sequ ential controls (GRAFCET)1*  CF. DIN EN 60848 (2002-12)

The function chart in accordance with GRAFCET is a graphical design language for sequential control. However, it
does not m ake any statement a bout the type of devices used, the direction of lines and the installation of electrical
equipment. Only the general representation via symbols is obligatory; dimensions and other details are left to the
user.

Example: hydraulic press wi th sequential control

- Start step - The ram of  a hydraulic
Start cycle (S1) and press forces bu shings into
cylinder in basic position (B1) and a plate. When the cylinder
bushing available (B4) is in its en d p osition (B1)
Cylinder A1   extends in fast mo tion and a bushing is available
(B4), the cylinde r extends
Cylinder A1 extended (B2) in fast m otion. The sensor
B2 switches to feed mode.
Cylinder A1 in feed mode As soon as the bushing is
forced in (B3) the cylind er
Cylinder A1 extended (B3) retracts in fast m otion .

Cylinder A1  retracts in fast mo tion

Cylinder A1 retracted (B1)

Symbol Explanation Examples Explanation
Steps
Closed cycle (step chain) This action is only valid as
long as the corresponding
Continuous action Cylinder  A1 retracts in fast motion step is active.
When the step is activated,
Stored with rising edge Solen oid valve M2 ON M2:=1 the value 1   is assigned to the
Stored with falling edge Signal light M5 ON M5:=1 solenoid valve M2. This action
remains active also after the
Step reset of the  step.
Start step When the step is activated,
the value 1   is assigned to the
sreigsneat ol fligthhet P s5te po.nly after the
The number must be in
the uppe r center of the
step field

Start step with step num-
ber 1

Set step Steps that are active at a
It displays which steps particular time can be
are set for a definite marked with a dot.
condition of the process

M Macro step E5 Macro step M5, shown in its
Individual representation detailed structure:
/ of a detailed part of a - The release of transition a
* sequential control
/ activates the access step
Inclusive step 5.1 E5 of the macro step M5.
7* S
^  / This step contains several M5 - The activation of the exit
steps that are referred t o step S5 releases transi-
tion g.
as included steps.
- The release of transition g
5.2 5.3 deactivates step S5.

TInhcislusitveep sctoanrt asitnesp several S5
steps that are referred to
as included steps.

1> GRAFCET French: GRAphe Fonctionnel de Comm ande Etape Transition. 362/431
English: specification language for function charts of sequen tial controls

http://slidepdf.com/reader/full/mechanical-and-metal-trades-handbook-56d51be067c7a

7/18/2019 Mechanical and Metal Trades Handbook

Au tom atio n: 7.3 Function charts and Function dia gram s 359

Basic d esigns  of  sequ ential charts cf. DIN EN 60848 (2002-12)

Symbol Explanation Examples Explanation
Sequential chart
A sequential chart con- 1. Sequential charts en-
1 step sists of a series of s teps
eprla. cSetedposnaenadftterar nasni-oth- - Start step - force a step structure
2 step tions alternate.
e.g. system "ON" developed from top to

m Start-up push button S1 bottom.
2. Within the sequence,

Pump motor ON only one step can be
active at a time.

3 step Tank FULL 3. The start step describes
Agitator motor ON the initial condition of
4 step 15s delay time the system.
OPEN drain valve
4. After execution of the
last step and release of
the transition , a feed-
back loop returns the
system to the start step.

Tank empty

Transistions The transition is com- Agitator motor ON 1. Step 3 is active, i.e. th e
-- transition posed of 15s delay time agitator motor is ON.
• a dash and OPEN drain valve
• a text describing the 2. If the condition for the
release of the transition
transition (the agitator runs for
15 sec.) is satisfied,
Transitions can be step 4 is set.
represented by:
• text statements 3. Step 4 resets step 3, i.e.
• Boolean algebra the ON signal for the agi-
tator motor is no longer
(equation) active. The mo tor is shut

• graphical symbols down.
4. The drain valve opens.

Sequence selection  (alternative branch)

cAd- --cAd A sequence branches to Sequence branch:
several sequences start- The sequence occurs if
ing at a single or several -- e —f -I- step 5 is set
steps. I a) branching to step 6 if the

A difference is made cond ition for the release
between: of transition "e" is satis-
fied, (e=1) o r
• sequence branch b) branching to step 8 if
the condition for the
1  T • sequence junction release of trans ition "f"
Example: is satisfied (f=1).
sequence
branch A sequence from step 2 to
steps 22, 24 etc. only
Simu ltaneous sequences   (parallel branch) occurs if,
a) step 2 is set
A sequence branches to
and
multiple sequences that b) the condition for the

are simultaneously acti- release of the c om mo n
transition "a" is satisfied
-- a vated but run indepen- -- a (a=1).
dently of each other.
363/431
The next individual step is

carried out o nly after all 22 24

branches are processed. ._, l

=E=

- b -f b

3

1
http://slidepdf.com/reader/full/mechanical-and-metal-trades-handbook-56d51be067c7a

7/18/2019 Mechanical and Metal Trades Handbook

360 Au tom atio n: 7.3 Function charts and Function d iagra ms

Function charts for sequential controls, Examples   cf.  DIN EN EO848 (2002-12)

Example: Lifting device

Workpieces are lifted by a lifting cylinde r and p ushed on to a roller conveyor by a transfer cylinder.
Actuating the m ain valve and start button S1 causes the lifting cylinde r 1A1 to extend, lifting the workpiece and acti-
vating the limit switch 1B2 in the end position. This causes transfer cylinder 2A1 to extend, pushing the workpiece
onto the roller conveyor and activating limit sw itch 2B2. Cylinder 1A1 returns to its initial p ositio n, actuates 1B1 there-
by causing cylinder 2A1 to be retracted.

transfer cylinder 2A1 System "ON".
2B1 2B2 Cylinders 1A1 and 2A1
in initial position
si-art
Start button S1

lifting cylinder 1A1 Extend cylinder 1A1
1B2 (Cylinder 1A1 is extended)
Example: Stirring machine con trol - Extend cylinder 2A1
2B2 (Cylinder 2 A1 is extended)
Paint flows into a mixing tank, is stirred there and then - Retract cylin der 1A1
pumped back out. Opening valve 01 causes the paint to 1B1 (Cylinde r 1A1 is retracted)
fill to a level mark. Afterwards mo tor M 1 is turned on and - Retract cylind er 2A1
the paint is stirred 2 minutes. After shutoff of stirring 2B1 (Cylinder 2A1 is retracted)
motor M1 and activation of pump motor M2 (running
time at least 10 sec), the container is pumped empty. System "ON"
Shutoff criterion for pump motor M2 is drop of motor Start button S1
power below  1 kW (container is empty).
Valve Q1 OPEN

stirring ,  M start- p > 0.4 bar (Fill level mark reached)
mo tor M1 v I I Valve Q1 CLOSED
Stirring motor M1 ON

t=   2 m i n

Stirring motor M1 OFF
Pump motor M2 ON

pressure pump motor P <  1 kW (container emp ty)
fsiellnlseovrelf or M2 & t>=   10s

- P um p m o t or M 2 OFF

=1

http://slidepdf.com/reader/full/mechanical-and-metal-trades-handbook-56d51be067c7a 364/431

7/18/2019 Mechanical and Metal Trades Handbook

Au tom atio n: 7.3 Function charts and Function d iagram s

Function d iagrams

Path diagram F unc tion diagr am State diagram

Simple m otion sequences Description of  a working sequence by 2 coordinates

cp ^ ^ SO: signal element ON Step 1: idle pos ition i Pneumatic
S1: fast m otion up to S1  Step 2: fast forward time in s cylinder

nJ SI S2 S2: feed up to S2 motion step o 0 1 4 10 11
S3: fast reverse mo tion step 3: feed
1: 345
U P t 0 S 3 
Step 4: end position

Step 5: fast reverse motion

S y m b o l s o f a f u n c t io n d i ag r a m

M o v e m e n t s a n d f u n c ti o n s

Paths and mov eme nts Function lines Path and movement limits

Straight line Idle and initial p osition Path limits
working movement of subassemblies general

Straight line For all conditions devi- Path limits using
idle movement ating from the idle or signal elements
initial position

Signal elements

Manual actuation Mechanical actuation Hydraulic or pneumatic
actuation

9 ON 9 JOG Limit switch actuated in ~ 6 bar  P r e s s u r e  switch set to
OFF MODE end position 6 bar

o ON/ AUTO- Limit switch actuated 71 2 s Time element set to
MATIC over longer path length 2 sec.
OFF MODE

Signal combinations ON

The signal line begins at AND state:
marked with a slash
the signal output and V The signal branch is
marked with a dot. OR state:
t V ends at the point where a V marked with a dot
change of state is intro-
duced. x

Execution of a function diagram (state diagram)

C y li n d er Valve wit h t w o swit ch positions Signal element activated m anually

0 12 3 4 Sintietipal1p: omsoitvioenf r1o mto 012345 fSrotemp 1in: istiwailtcphosi-
position 2 tion b to position a
/S Step 2: remain in Step 2: switch on;
position Step 2 and 3: control element
remain in p osition switches from b
Step 3: move to a
from position 2 to Step 4: switch
initial position 1 from position a to
initial position a

Example: Final control elem ent mechanically activated

0 1 2 3 4 5 6 step Step 1: Final control elemen t switches directional co ntrol valve from b to
a and causes extension o f cylinder 1A1.
i
Step 2: Cylinder actuates signal element 1S1
\/1A1 1S1 Signal element 1S1 controls timer element
t Timer runs out (2 sec).
yi 2s
J N, Step 3: Timer element controls directional control valve from a to b
Cylinder 1A1 retracts to initial state.
/

http://slidepdf.com/reader/full/mechanical-and-metal-trades-handbook-56d51be067c7a 365/431

7/18/2019 Mechanical and Metal Trades Handbook

362 Au tom atio n: 7.3 Function charts and Function dia gram s

Function diagrams . Example

Example: Pneumatically c ontrolled lifting device

Layout Function diagram

transfer cylinder 2A1

Pneumatic c irc uit diagram

Parts list Designations Name

Designations Name

1A1 Cylinder, double acting 151 3/2 DCV, roller activated
2A1 Cylinder, double acting 152 3/2 DCV, roller activated

153 3/2 DCV, activated by push button

0V1 3/2 DCV with detent, manually activated 251 3/2 DCV, roller activated

1V1 Two pressure valve 252 3/2 DCV, roller activated

1V2 5/2 DCV, pressure activated

2V1 5/2 DCV, pressure activated

http://slidepdf.com/reader/full/mechanical-and-metal-trades-handbook-56d51be067c7a 366/431

7/18/2019 Mechanical and Metal Trades Handbook

Au tom atio n: 7.4 Hydraulics, Pneumatics 363

Circuit symbols  CF. DIN ISO  1219 1  (1996-03)

Func t ion el ement s

Hydraulic ill Direction of (( Direction of V W  S pr ing
fluid flow flow rotation
+ / Flow restric-
> Compressed Line junction Adjustability tion
airflow
~ m > M uffle r Filter or
Power transmission screen
Line crossing Tank
Hydraulic Water
pressure Quick Air separator
source coupling receiver
Exhaust Hydraulic
Pneumatic accumulator
press, source wc oi tnhnoeuctt i o n
Exhaust with T ® 7 _ Service unit
Working line connection (FRL)

Control line — A i r dryer
Leakage cur-
V Lubricator
rent line

Enclosure
around
subassemblies

Pumps , c ompr es s or s , m ot or s

Fixed displace- O Fixed dis- Variable dis- Hydraulic
ment hydraulic placement placement oscillating
pump, unidi- hydraulic hydraulic drive
rectional motor, u nidi- motor, bidi-
rectional rectional Pneumatic
Variable dis- oscillating
placement Fixed dis- Variable dis- ®=
hydraulic placement drive
pneumatic- placement
pump, bidirec- motor, unidi- pneumatic Electric motor
tional rectional motor, bidi-
rectional
Compressor,
unidirectional

Si ngl e- ac t i ng c y l i nders Double-acting cylinders

II Single-acting AH Single-acting Aj Double-acting JL Double-acting
cylinder, cylinder, II cylinder w ith simpli- ' cylinder with
simplified: return stroke II return stroke one-sided fied: / one-sided
by undefined by integrated simplified: piston rod piston rod
power source simplified: spring and two-
sided
adjustable

N z end cushion

Check, and /or v alves Pressure v alves Flow control v alves

Check valve, Pilot operated TM Pressure 4- Adjustable
unloaded check valve relief valves throttle valve
t
— C h e c k valve, r ^ i 1M Sequence Adjustable
spring loaded LL valve £ 2-way flow-
control valve
One-way flow 2-way pres-
sure regula- Adjustable
3-way flow-
Shuttle valve control valve tor, direct- control valve,
(OR function) acting relief open-
Dual-pressure - w Pressure ing to tank
Quick exhaust valve (AND switch, emits
valve electrical sign al 367/431
function) for  a preset
pressure

http://slidepdf.com/reader/full/mechanical-and-metal-trades-handbook-56d51be067c7a

7/18/2019 Mechanical and Metal Trades Handbook

364 Au tom atio n: 7.4 Hydraulics, Pneum atics

Circuit symbols

Connection d esignations and codes for d irectional control valves cf. DIN ISO 1219-1 (1996-03)
DIN ISO 5599 (2005-12)

Example: • 6V/ 42 Connection designations for
5/2 directional control valve 14 12 pneumatic  and hydraulic equipm ent
w it h c o n n e c tio n d e s ig n a tio n
5 P1 3I
as per DIN obsolete:

Designator Connection with with
numbers l e tte r s 1 '21
Code designation
5 / 2 - d irectional con trol valve 6 V 7 Inflow, 1 P
pressure
I port

Working 2,  4 , 6 A,  B, C
ports

Number of Number of Circuit Part Part Vent, 3, 5,7 R, S, T
number designation number drain

connections switch positions Leakage L
oil port
-

Switch positions1* Part designation Control 10,11, X, Y, Z

pumps and 3
compressors
Valve with 2 drives 1p1o Lrtestte'rs are s1ti2ll,1f4requently used in
positions drive motors hydraulic circuit diagrams.
signal pick-up
a 0 b Valve with 3 valves 2 1 The sequence of the letters does not
positions all other parts necessarily correspond to the number
sequence.
1 )  Num ber of rectangles
Numbe r of positions 3 ) A  pulse at control port 12, for example,
connects ports 1 and 2.

Designs of directional control valves

2/ direc tional c ontrol v alv es 3/ direc tional c ontrol v alv es 4/ direc tional c ontrol v alv es 5/ direc tional c ontrol v alv es

3/2  DCV,  nor- 4/2 directional 5/2 directional
control valve
2m/ 2a l Dl yCcVl ,o sneodr - s. . T, mally closed control valve M
H1 3/2  DCV,  nor- 5/3 DCV,
2/2 DCV, 5 mally open 1 Xi - i 4/3 DCV. NC in SQl NC in middle
normally middle pos. position
open 3/3  DCV,  NC i 4/3 DCV, wit h
in middle X float in middle
Flow paths position position

A c t u a t i o n o f d i r ec t i o n a l c o n t r o l v a l v e s

Manually activated Mechanical actuation Pressure actuation

One flow path General, no H I Plunger — "C D i re c t
type of actua- hydraulic Indire ct us ing
•m Two closed Plunger with pilot valve
c tion indicated adjustable --EC
ports stroke limit
Push button pneumatic
O K I Two flow C Spring j—
paths k : Lever
HI Roller Electrical actuation
Two flow HI Pull button plunger
paths and By solenoid
one closed
port ®c By electric
motor
e Two intercon- Combined actuation
nected flow
paths

in: One flow path a) Push and pull Roller lever, C aBnydspoilleont oid
in bypass ^L button one direction valve
JZL switch and of actuation Mechanical components
two closed
Notch
ports ft

Foot pedal

http://slidepdf.com/reader/full/mechanical-and-metal-trades-handbook-56d51be067c7a 368/431

7/18/2019 Mechanical and Metal Trades Handbook

Au tom atio n: 7.4 Hydraulics, Pneuma tics 365

Circuit diagrams   CF DIN ISO 1219 2 <1996-11)

Designing a circuit plan

circuit 1 circuit 2 The circuit is sub- 3 e5 V 7 If the circuit diagram
1A1 1S2 divided into subcircuits is made of several
with related control 1 H h t Part units, the unit number
functions. Circuit desig-
nmiunsgt wbiethgnivuemne, rbael g1in. -
1S2 Tahrreanagcteumael snpt aotfiatlhe number nation
W components is not
®= Equipment Part
considered. number number

Components are 1S3 Tl 2S2 Similar components
arranged from bottom Xh ® or subassemblies are
a to top in the direction shown at the same
of power flow and height with in a circuit.
H t ly w v H t J T y M from left to right.

Subassemblies such 2S1 dDreivveicse, se.agc.tuliamtietd by
as throttle check switches , are repre-
valves or service units sented at their point of
(FRL) are en closed by activation by a dash
a dash-dot line. and their designator.

Hydraulic components 2S1 2S2 For roller plunger
are show n in their ini- valves operating on
tial positions in the one side only, a direc-
equipment before tional arrow is also
pressure is applied. placed at the dash.

ti Com ponents of a circuit

u5 Pneumatic compo- Drive elements Motors, cylinders, valves
nents are show n in Actuators Valves for contro lling drive ele-
their initial positions ments
in the equipment Control elements Valves for signal combination
before pressure is Signal elements Components used to trigger
applied. a switching action
Supply elements Service un it (FRL), main valve

E x am p l e : P n e u m a t ic c i r c u it d i a g r a m w i t h t w o c y l in d e r s  (lifting device)

circuit 1 1A1 1S1 1S2 circuit 2  2A1 2S1 2S2

drive elements

1V2 4 final control 2V1  4 12
1V1 71 J 2 elements 14

T\ 5 v v 3 I control 5 v f
JL 2S2 element
1S3 2S1 1S2 ISI

/w Xlw signal ®
L P elements
'3 11 3

0Z1 o v Tl % 5 supply elements

TW

http://slidepdf.com/reader/full/mechanical-and-metal-trades-handbook-56d51be067c7a 369/431

7/18/2019 Mechanical and Metal Trades Handbook

366 Au tom atio n: 7.4 Hydraulics, Pneu matics

Layout Electropneumatic controls
transfer cylinder 2A1
F u n c t io n d i a g r a m

up B2

lifting cylinder 1A1 < pV 7 B1

transfer down ?<11  1 B3
cylinder 2A1 forward
/X
back

P n e u m a t i c c i r c u it d i a g r a m

Lifting Pushing
B1 B2 B3 B4

8 2  ~~ f i

lifting cylinder 1A1

Circuit diagram

U5

iiii

B2 B/f B1 C1 C2 C3 C4

C2 C3 C4 1M1 2M1 1M2 2M2

3 C M C M El*

witching NCNI O NCINO  NC NO  NCNI O NC = norm ally closed
e l e m e n t t a b l e 1 )  NO = n o r m a l l y o p e n e d
~'6

C i rc u i t d i a g r am w i t h t h e a d d i t i o n a l f u n c t i o n s - m a g a z in e q u e r y a n d c o n t i n u o u s o p e r a t io n

I-2A- V r r — r r9 10  1  11 t2 — r3

continuous B2 B4 T—T TT
operation
ON E - V c s V  S O E --V C 5\  VVV

START B1 C1 C2 C3 C4

continuous — B3 1M1 2M1 1M2 2M2
operation C5 d ^ Z I 
OFF C1 C=2 I  j C3 C4 cm CM
1
0V

switching NC N10O N-C1IN5O N-C|N6O~ NC [INTO NC N8O £NC = nor ma lly closed
element table1* -
NO = n o r m a l l y o p e n e d
11

Example for relay K5: Relay K5 has a norm ally open switch in section 10 and a no rmally open switch in section 11.

1> The switching element table is similar to the contact table (pg. 354) and is often used in practice. However it is not
standardized. The table indicates the section in which a NC or NO relay contact can be found.

http://slidepdf.com/reader/full/mechanical-and-metal-trades-handbook-56d51be067c7a 370/431

7/18/2019 Mechanical and Metal Trades Handbook

Au tom atio n: 7.4 Hydraulics, Pneu matics 367

Sequence control  of a feed unit via PLC according to GRAFCET

Technological scheme Description

fast X feed The hydraulic cylinder extends in fast motion and
motion is switched into feed mode by switch B2. In the
/, fully extended position, the proximity switch B3
m o+to r switches to fast reverse after a time delay of
feed unit fast
rmeov et irosne 2 seconds.

Description

— B4 A1 B1 B2 B3

i i / single V2
J auto-
matic ra W
1M1
B1 B2 B3 operating CT
panel O
lift cylinder A1 START W X w V1
STOP 2M1CH
O t ± ISD2M2
o

Function chart and GRAFCET CAo lml op co naetni ot sn alni ds ta c t i o n Component Address Remarks
designation
- Start step - Mode switch E0.0/E0.1 NO contact/
AUTOMATIC/STEP S0/S1 E0.2 NC contact
Cylinder in basic position (B1) Push button START S2 E0.3 NO contact
Workpiece available (B4) Push button STOP S3 NC contact
Start button ON (S2) Proximity switch E0.4-E0.7 NO contact
Solenoid valve Q11 B1-B4
Cylinder A1 extends in fast motion Cylinder in feed mode A1.0
Cylinder A1 in position of Solenoid valve 012 1M1
proximity switch B2 Extend cylinder A1.1
2M1
Cylinder A1 in feed mode
Cylinder A1 is extended to B3
and dwell time is 2 sec.
Cylinder A1 retracts in fast mo tion

Cylinder A1 retracted (B1) Solenoid valve Q14 2M2 A1.2
Retract c ylinder

Function block language FBL Instruction list IL

Operating modes Network 4: Step 2 Network 1 Network 5
Network 1: Function block FB1 CALL FB1 Step 3:
Extend in fast motion Feed mode
FUNCTION   BLOCK Network 2 U M0.1
Operating modes M0.1 Basic position U E0.5
U E0.4 U M2.0
ON Controller M0.3 & RS U E0.7 S M3.0
OFF M1.0 S MO.3 U MO.2
M2.0 O M4.0
M0.2 R1 1 H Z I Network 3 R M3.0
Step 1:
M3.0 >1 Network 6
Start step Step 4:
EO.O [ Operating  panel \ Network 5: Step 3 U E0.2 Fast reverse
Extend in feed mode UN E0.3 U M0.1
Automatic mode M0.1 U M0.1 U E0.6
U E0.4 U M3.0
Single Release -CZ] U M4.0 = T1
0 MO.2 U T1
step MO.2 ME00..51 & RS S M1.0 S M4.0
START Reset - E H U M2.0 U MO.2
M2.0 M3.0 R M1.0 O M1.0
STOP M0.2 R1 1 h m R M4.0
Network 4
Network 2: Basic position M4.0 >1 Step 2: Network 7 to 9
E0.4 M0.3 Fast ex tension Steps 5 to 7:
Network 6: Step 4 U M0.1
E0.7 & - G O CUoMm2m.a0nd output
M0.1 Fast reverse w ith d well time U MO.3 = A1.1
Step chain U M1.0 U M3.0
E0.6 T1 S M2.0 = A1.0
Netw ork 3: Step 1 M3.0 O MO.2 U M4.0
Start step & 2 0 RS O M3.0 = A1.2
R M2.0 PE
MO.2 M02 M4.0
>1 RS M1.0 >1 R1 1 b e n

E03 c M2.0 R1 1 M1.0 Command output

M0.1 & Networks 7 to 9

M4.0 M 2 . o £ l l  Cylinder extends
L=-l in fast mo tion
Color marking: step flag in  red
Transition in  blue MIOSIS  Cylinder in
I——  feed mode

MU)/4n Cylinder retracts
in fast motion

http://slidepdf.com/reader/full/mechanical-and-metal-trades-handbook-56d51be067c7a 371/431

7/18/2019 Mechanical and Metal Trades Handbook

368 Au tom atio n: 7.4 Hydraulics, Pneum atics

Hydraulic fluids

Mineral oil based hydraulic oils cf. DIN 51524-1 to -3 (2006-04)

Type Standard Effec t of the ingredients Applications
HL DIN 51524-1 Hydraulic units up to 200 bar, with
Increase in - high temperature requirements
HLP DIN 51524-2 ) corrosion
+ Reduction of wear due to scoring Hydraulic units with hydro pumps
VLP DIN 51524-3 +resistance in mixed friction area and hydro motors above 200 bar
operating pressure and with high
Increase in + Reduction of wear due to scoring temperature requirements
aging in mixed friction area
resistance
+ Improvement of viscosity-tempera-
ture behavior

Properties HL 10 HL 2 2 HL 32 HL 46 HL 68 HL 100
HLP 10 HLP 22 HLP 32 HLP 46 HLP 68 HLP 100

a t - 2 0 °C 6 00 - - - - -

Kinematic at 0°C 90 300 420 780 1400 2560
viscosity in mm2/s at 40 °C 9-11 19.8-24.2 28.8-35.2 41.4-50.6 61.2-74.8 90-110
at 100°C 2.4 4.1 5.0 6.1
7.8 9.9
1 30 °C - 2 1 °C -18°C -15°C
125°C 165°C 175°C 185°C -12°C -12°C
Pour point ' equal to or lower than 195°C 205 °C
Flash point above

1 )  The pour point is the temperature at whic h hydraulic oil still flows under the force of gravity.

Hydraulic oil DIN 51524 - HLP 46:  Hydraulic o il of type HLP, kinematic viscosity = 46 m m 2 /s at 40°C

V i s c o s i t y - t e m p e r a t u r e b e h a v i o r o f H L a n d HL P h y d r au l i c o i l s Example of reading from diagram:
A gear pump operates at an average
200 operating temperature of 40°C.
During operation the allowable
i2   •  HL 100/HLP 100 kinematic viscosity of the hydraulic
oil is allowed to fluctuate between
HL 68/HLP 68 20 to 50 m m 2/sec.
HL 46/HLP 46
HL 32/HLP 32
HL 22/HLP 22

HL 10/HLP 10 According to the diagram there are
6 hydraulic oils that would be suitable:

20   40 • HL 22/HLP 22
temperature • HL 32/HLP 32
• HL 46/HLP 46

100

N o n - f l a m m a b l e h y d r a u li c f lu i d s

Type ISO Suitability for Applications
HFC Viscosity temperatures Characteristics
HFD classes Mining, printing machines, welding
°C machines, forging presses
15, 22, 32, Hydraulic equipm ent with high oper-
46, 68, 100 -20 to +60 Aqueous monomer and/or polymer ating temperatures
solutions, good wear protection

Water free synthetic liquids, good
-20 to+150 resistance to aging, lubricating prop-

erty through w ide temperature range

Biodegradable hydraulic fluids cf. VDMA 24569 (1994-03)

Suitability and properties

Hydraulic Low tempe- High tempera- Rust Compatibility Seal compati- Cost
fluid protection with inner bility effectiveness
rature ture oxidation coatings Fluid life

flowability stability £

Unsaturated •

esters • • • (3 G I
Saturated • II
esters C average (3 I

Polyglycol (3 limited /poor
oils

Suitability: • very go od £ good

http://slidepdf.com/reader/full/mechanical-and-metal-trades-handbook-56d51be067c7a 372/431

7/18/2019 Mechanical and Metal Trades Handbook

Au tom atio n: 7.4 Hydraulics, Pneu matics 369

Pneumatic cylinders

D i m e n s i o n s a n d p i s t o n f o r c es

Piston diameter 12 16 20 25 32 40 50 63 80 100 125 160 200

Piston rod diameter (mm) 6 8 8 10 12 16 20 20 25 25 32 40 40

Coupling thread M5 M5 G 1 / 8 G 1/s G 1 / 8 G V 8 G 1 / 4 G 3/8 G 3/ 8 G 1 / 2 G 1 / 2 G 3/ 4 o
 
0P ush. i.na f,orce 1' single-act. cy l.2' 50 96 151 241 375 644 968 1560 2530 4010 - -
at p e  = 6 bar in N double-act. cyl. 58 -

106 164 259 422 665 1040 1650 2660 4150 6480 10600 16600

Pulling forc e 1'a t   d o u b l e . a c t . 54 79 137 216 364 560 870 1480 2400 3890 6060 9960 15900
p e  = 6 bar in N

single-act. cyl. 10, 25, 50 25, 50, 80, 100 -

strike double-act. cyl. to to to 10, 25, 50, 80, 100, 160, 200, 250, 320, 400, 500
i n m m  160 200 320

1 ' For a cylinder efficiency rj = 0.88 2> The return force of the spring is considered.

Calculating air consu mp tion

Single-acting cylinder Q  air consumption A  piston surface Air consumption1'
A$ p e  gage pressure in area Single-acting cylinder

cylinder q  specific air con- Q = A-s-n- P e + P a m b
Pamb ambient air pressure sumption per cm Pamb
n  num ber of strokes piston stroke
Air consu mption1'
Example: s piston stroke Double-acting cylinder

Pe  Pamb Single-acting cylinder with d= 50 mm; Q«2 -A-s-n- P e + P a m b
s = 100 mm; p e = 6 bar; n = 120/min; Pamb
Double-acting cylinder Pamb = 1  bar; air consu mption   Q in l/min?
A
Q = A-s-n- Pamb

Pamb

—V j i  • (5 c m )2 • 10 c m  •  120 (6 + 1) bar
min 1 bar
J
Pe  Or Pamb = 164934 cm -5 165
(on return) Pamb  o r  pe min min
(on return)

Air consumption taken from diagram

1.256 A i r c o n s u m p t i o n 1'
Single-acting cylinder

Q= q  • s  •  n

Air consumption1'
Double-acting cylinder

2  q- s- n

Example:

0.0125 10 12 14 16 20 25 32 35 40  50  63 70mm 100 Calculate the air consum p-
tion of a single-acting cylin-
piston diameter d • der of d = 50 mm, s= 100 mm
and n= 120/min from the
11.89 15.96 2 0 . 6 diagram for p e = 6 bar.
10.76 13.49 According to the diagram
the piston stroke is
q =  0.14 l/cm.

Q= q- s- n =
= 0.14 l/cm • 10 cm  •  120/min
= 168 l/min

1 ' W hen it fills dead space, actual air consu mp tion m ay be up to 25% greater. Dead spaces include com pressed air
lines between the directional control valve and the cylinder and unused space in the end po sition of the piston. The
cross-sectional area of the piston rod is not taken into cons ideration.

http://slidepdf.com/reader/full/mechanical-and-metal-trades-handbook-56d51be067c7a 373/431

7/18/2019 Mechanical and Metal Trades Handbook

370 Au tom atio n: 7.4 Hydraulics, Pneu matics

Force calculation

Piston forces pe  gage pressure dy  piston Effective piston force
Ay,   A2  piston areas diameter F=p e-A-rj
^ Extending Fy   piston force whe n
1 Fy d2  piston rod
extending diameter
m1 F2   piston force when
efficiency
d, retracting
Pe
Example:
^ Retracting
Hydraulic cylinder with dy   = 100 mm; d2  = 70 mm; Pressure units
T7J rj = 0.85 and p e = 60 bar.
Wh at are the effective piston forces? 1 Pa = 1 - ^  = 1 0-5  bar
i r pe nv

Hydraulic press Extending: 1 bar = 10 =01
F ^ P e - A ^ e o o A - " 
000"1' -0.85 cm' mm'
cnr
40055 N 1 m bar = 100 Pa =  1  hPa

Retracting:
F2   = PeA2rl

. 6 0 0 ^m-2 J t - [ ( 1 0 c m) 2 - ( 7 c m ) 2 ] . 0 . 8 5
c
4

= 20 428 N

In confined liquids or gases, pressure is d istributed Dis plac ed v olum e
uniformly in all directions. A   • S i  = A2  • s 2

Fy   force on pressure piston Work on both pistons
F2   force on working piston ^ • ^ = F2  • s 2
Ay   area of pressure piston
A2  area of wo rking piston Ratios:
forces, areas, travel
Sy trave l of pressure pis ton
s2  travel of working piston F2 _A 2
/' hydraulic transm ission ratio A

s2

Example: Transmission ratio

Fy   = 200 N; Ay   = 5  c m 2 ;  A2  = 500 c m 2 ;
s2  = 3 0 m m ;  F2  = ?; Sy   = ?;  / = ?

Fo = Ft • A2  _ 200 N -500 cm=2 20000 N =20   kN
A 5 cm2

30 mm  • 500 c m 2
2 = 3000 m m

 =s, A 5 cm
_ Fy_ _  200 N 1
F2   20000 N "  100

Pressure intensifier

P e  1 Ay,   A2  piston surface areas Gage pressure
Pei gage pressure at pisto n area  Ay
Com- Pel Pel gage pressure at pisto n area  A2 Pe 2  =  Pe l A '
pressed rj   efficiency of pressure intensifier ' M2
air
oil
Example:

\— ir A t  = 20 0 cm 2 ;  A2  = 5 c m 2 ;  rj  = 0 . 8 8 ;
ir P e i =7 b ar = 70 N /cm 2; p e 2  =?

1 A __ N 200 cm 2
A2  cmz 5 c m 2 • 0.
¥1
Circuit sym bols A = 2464 N/ cm 2  = 246.4 bar

accord, to DIN ISO 1219-1

http://slidepdf.com/reader/full/mechanical-and-metal-trades-handbook-56d51be067c7a 374/431

7/18/2019 Mechanical and Metal Trades Handbook

Au tom atio n: 7.4 Hydraulics, Pneu matics 371

Speeds, Power

Flow rates

Q, Q ^ Q 2  volume flow rates Vo lu me flo w r a te
A, A^, A2  cross-sectional areas
v,  v-i,   v2   flow rates Q = A •v

  ,Q   Continuity equation Q I =  Q 2

^ In a pipeline of variable cross-section the volume
flow rate  Q is constan t throu gho ut all cross-sec-
tions over time t.

Example: Ratio of flow rates

Pipeline with >An = 19.6 cm 2 ;  A2  = 8.04 c m 2  and V1= A2
v2   A
Q= 120 l/min; v, = ?; v 2  = ?

v   _ Q _ 120000 c m 3 / m i n _ 6 r o  c m _ m

1  A,  19.6 c m 2  min "  s

v 1 • A,  1.02 m/s  • 19.6  c m 2 2 4 Q  m
 

V2 2

~  A2  8.04 c m   ~  ' s

Piston speeds Q  volume flow rate
A-i,  A2  effective piston areas
Extending
v2  piston speeds
4k
Example: Piston speed

Hydraulic cylinder with piston diameter
d-\  =  50 mm; piston rod diameter
d2   = 32 mm and  Q = 12 l/min.
How high are the piston speeds?

Extending:
Q  12000 c m 3 /min _ cm _ m
= 611 —  = 6.11
j i  • (5 c m )2
m in   m i n

Retracting:
Q 12000 cm 3/ m i n

V l   ~ A2  ~ tc • (5 c m )2  n • (3.2  c m )2

= 1 0 3 5 ^ = 10.35^- Input power
m in   m i n

Power of pum ps and cylinders

P< \  input powe r on pu mp drive shaft
P 2  output power on pum p outlet
Q  volum e flow rate
p e  gage pressure
rj efficiency of the pum p
M  torque
n  rotational speed
9550 conversion factor
600 conversion factor

Example:

Pump with  Q = 40 l/min; p e = 125 bar; r\ = 0.84; Formulae for input and
P1 =  ?;P 2  = ?
output power with:
D  4 0 ^ 2 5  k w = 8 > 3 3 3 | < w Pi n kW, M i n N  •   m ,
n in 1/min,  Q in l/m in,
600 600 p e  in bar

=  ^  =  a333  k W = 9 g 2 0 k W
1  rj 0.84

http://slidepdf.com/reader/full/mechanical-and-metal-trades-handbook-56d51be067c7a 375/431

7/18/2019 Mechanical and Metal Trades Handbook

372 Au tom atio n: 7.4 Hydraulics, Pneu matics

Tubes

Seamless precision steel tubes for hydraulic and pneum atic lines (selection) cf. DIN EN 10305 1   (2003-02)

—\ Materials E235 (St37.4), E355 (St52.4) according to DIN 1630

Material Tensile strength Yield strength Elongation at
Am N/mm2 fracture  EL

N/mm2 %

V ) Mechanical E235 340 to 480 235 25
properties E355 490 to 630 355 22

Good cold workability, surface phosphatized or electroplated and

D chromed

AnnliratinnQ P n r l i n o c i r1 h x / H r u i i l i ^  r\ r  n n o i nm ^ t i r Q \ / Q t p m Q a t m ly im p l r a f p H n r p c -
R \ F J P 1 I L - Q L I U  1  1 O i i i i i i y u i u u u v   \J i  p i 1   u 11id i ll s o y o i c i i l o a l i l lc i a i i i i c j I i a i c u p i c o

sures up to 500 bar

Delivery type:  Normal manufactured length: 6 m, normalized. Tubes have a surface quality of   Ra < 4 pm.

Tube HPL-E235-NBK-20 x 2: Seamless precision steel tube for hydraulic and pneumatic applications, made of
E235, normalized, bright-drawn, outside diameter 20 mm, wall thickness 2 mm

Outside Wall Flow s ec - Outside Wall Flow sec- Outside Wall Flow s ec -
diameter thickness tional area diameter thickness tional area diameter thickness tion al area

D s c A 2 D s c A 2 D s c A 2
mm mm mm
mm m mm m mm m
0.8 2.0 2.5
4 1.0 0.05 20 2.5 2.01 38 4.0 8.55
4 0.8 0.01 20 3.0 1.77 38 5.0 7.07
5 1.0 0.10 20 4 .0 1.54 38 7.0 6.16
5 1.0 0.07 20 1.0 1.13 38 10.0 4.52
6 0.13 22 3.14 38 2.55
1.5 2.0 2.0
6 1.0 0.07 22 3.0 2.54 42 5.0 11.34
8 1.5 0.28 22 3.5 2.01 42 8.0 8.04
8 2.0 0.20 22 1.5 1.77 42 4.0 5.31
8 1.0 0.13 25 2.5 3.80 50 5.0 13.85
10 0.50 25 3.14 50 12.57
1.5 3.0 8.0
10 0.39 25 2.84 50 9.08

120 21.0 0.2789 25 43.5 2.5051 50 103.0 47.0527
4.0 17.35
12 1.5 0.64 25 6.0 1.33 55 6.0 14.52
8.0 11.95
12 2.0 0.50 28 1.5 4.91 55 10.0 9.62
5.0 19.64
14 1.0 1.13 28 2.0 4.52 55 8.0 15.21
10.0 12.57
14 1.5 0.95 28 3.0 3.80 55 12.5 9.62
5.0 28.27
14 2.0 0.79 28 3.5 3.46 60 8.0 22.90
19.64
15 1.0 1.33 28 4.0 3.14 60 10.0 15.90
12.5
15 1.5 1.13 30 2.0 5.31 60 3362..3127
68..00 28.27
15 2.5 0.79 30 2.5 4.91 60 10.0 23.76
12.5
16 1.0 1.54 30 3.0 4.52 70 400
320
16 2.0 1.13 30 5.0 3.14 70 1.5
1.0 2.0
16 3.0 0.79 30 6.0 2.55 70 1.5
16 3.5 0.64 35 2.5 7.07 70 2.0
1.5 2.5
1188 11..05 21..0771 3355 34..50 56..7163 8800 2.0
3.0
18 2.0 1.54 35 5.0 4.91 80 2.5 4.0
3.0
18 3.0 1.13 35 6.0 4.16 80 5.0
4.0 6.0
Rated pressure  depending on w all thickness 5.0
8.0
Outside 64 100 Rated pressure   p  in bar 6.0 10.0
diameter 8.0
D  in mm 1.0 1.0 160 250 376/431
1.0 1.0 Wall thickness s in mm
6
8 1.0 1.0
1.0 1.5

10 1.0 1.0 1.0 1.5
12 1.0 1.0 1.5 2.0

16 1.5 1.5 1.5 2.0
20 1.5 1.5 2.0 2.5

25 2.0 2.0 2.5 3.0
30 2.5 2.5 3.0 4.0

38 3.0 3.0 4.0 5.0
50 4.0 4.0 5.0 6.0

http://slidepdf.com/reader/full/mechanical-and-metal-trades-handbook-56d51be067c7a

7/18/2019 Mechanical and Metal Trades Handbook

A u t o m a t i o n : 7 .5 P r o g r a m m a b l e l og i c c o n t r o l 373

Programm ing langu ages cf. DIN EN 61131 (2003-12)

PLC pr og r am m i ng l anguages  (overview) 

C om m o n el em ent s of all PLC languages  (selection)

Delimiters (selection) cf. DIN EN 61131 (2003-12)

Symbol Use Symbol Use
(**) At beginning and end of comment
+ Leading prefix for decimal numbers Step names and variable/type separators
Addition operator (ST) Stateme nt label separators (ST)
Netw ork label separators (LAD and FBL)

= YLeeaadr-imngonptrhe-fdixayfosredpeacraimtoarl numbers () Instruction lists modifier/operator (ST)
# Subtraction, negative operator (ST)
Horizontal line (LAD and FBL) Function arguments (ST)
e o r  E Delimiter for FBL input lists (ST)
Initialization operator
Assignment operator (ST) Separator for type declaration
Separator for statements (ST)
Base num ber and tim e literal separator
« Separator for areas
Beginning and end of character strings Separator for CASE areas (ST)

Beginning of special characters in strings Bulleted lists, initial values and field index
separators, operand lists, function argument
Wh ole number/fraction separator lists and CASE value lists separators (ST)
Separator for hierarchal addresses and struc-
tured elements % Direct representation prefix1*

Real-exponent delimiter I or Vertical lines (LD)

Indiv idual element v ariables for s torage loc ations

Variable Meaning Variable Mean ing Exam ple (AWL)

1 storage location input B byte size (8 bit) S T % Q B 5 1) :
Q storage location output W word size (16 bit) Stores current result in byte size in
M storage location tag D double word size (32 bit) output storage location 5
X (individual) bit size L long word size (64 bit)

Operators Elementary data types

Name Sym bol Meaning Key word Data type Bits

ADD + addition BOOL Boolean 1
8
SUB - subtraction SINT short whole number 16
MUL multiplication INT whole number 32
DIV / division DINT double whole number 64
AND Boolean AND L IN T long whole number 32
OR ^1 Boolean OR REAL real num ber 64
XOR =1 Boolean exclusive OR L R E AL long real num ber _4)
NOT 3 negation STRING variable long num ber sequence
S sets Boolean operator to "1" TIME duration _4)
R 3) sets Boolean operator to "0" DATE date
GT 3) comparison: greater than -4)
GE comparison: greater than or equal to BYTE bit sequence of length 8
EQ > com parison: equal to WOR D bit sequence of length 16 8
16
>=
=

LNEE <> ccoommppaarriissoonn:: lneosts etqhuaanl otro equal to LDWWOORRDD bbiitt sseeqquueennccee ooff lleennggtthh 3624 3624

<=

LT < comparison: less than

1 )  Directly represented individua l elemen t variables have a leading % symb ol.
2> This symbol is not allowed as operator in text language.
3> No symbol
4 )  Manufac turer specific

http://slidepdf.com/reader/full/mechanical-and-metal-trades-handbook-56d51be067c7a 377/431

7/18/2019 Mechanical and Metal Trades Handbook

374 A u t o m a t i o n : 7 .5 P r o g r a m m a b l e l o g ic c o n t r o l

Programm ing langu ages

Ladder diagram (LD) cf. D IN EN 61131 (2003-12)

A ladder diagram represents the flow in an electromechanical relay system.

Sy m bol Des c ription Sy m bol Des c ription Symb ol D e s c ri p t i o n
Coils
Lines and blocks Contacts

Horizontal line ... 1) NO contact —- O(/^ Coil output energize
Vertical line H I— logic condition "1"
.. .  1 ) Coil output deenergize
Line junction ... NC contact —(s)—
Crossing without logic condition  0 Latching coil,
connection —l/l— stores an operation

Blocks with — |P| Contact for sensing ... 1) Unlatching coil
connection lines r is in g e dg e,
signal from   0 to "1 Coil for sensing
positive slopes,
Contact for sensing signal from "0 " to "1"
f al li ng e dg e,
Left power rail 1 signal from "1" to "0' .. .  1 ) Coil for sensing
Right power rail -(N)- negative slopes,
— |N |— signal from "0" to "1"

1 ) component designator

Function block languag e (FBL) cf. DIN EN 61131 (2003-12)

Function block language consists of individual function blocks with statistical data. They are useful in implementing
frequently recurring functions.

Symbol Description Symbol Description

Elements are rectangular or square. _  AND J OR Elements must be interconnected by hori-
OR zontal and vertical signal flow lines.
Input parameters are placed on the left side
and output parameters on the right side.

FB 1.2 The block's functionality is entered as a Negation of Boolean signals is shown by a
ADD name or symbo l within the block. circle on the input or output.

The block designator is located above the o cf. DIN EN 61131 (2003-12)
block.

Structured text (ST)

Structured text is a high level language and builds on the syntax of ISO-PASCAL.

A : = A + B  ( B - C ) Statement Type

IF caosnsidgintimoneanlt statement
CASE selection statement
FOR repeat statement
WHILE repeat statement
REPEAT repeat statement
EXIT leaving a repeated statement

Comparison of Function Block Language (FBL) and Structured text (ST)

Func tion bloc k s (ex amples ) Struc tured tex t (ex amples )

B or C+A A:= ADD (B, C, D)
c ADD A or
D
D A:= B + C  + D

F E or F E:= AN D (F, G, H)
G AND or
G &E
H E:= F  &  G & H
H

http://slidepdf.com/reader/full/mechanical-and-metal-trades-handbook-56d51be067c7a 378/431

7/18/2019 Mechanical and Metal Trades Handbook

Au tom ation : 7.5 Program mab le logic control 375

Programm ing langu ages

Instruction list (IL) cf. DIN EN 61131 (2003-12)

Instruction list is a machine-oriented textual programming language, similar to assembly language.

Structure of an instruction

Start: AND N %MX51 ("blocked*) Operator modifiers
N Boolean negation of the operand.

Label Operator Operand Comment Statement is only executed if the evaluated result
is a Boolean 1.

Standard Modifier Separates multiple.
operator
Evaluation of the operator is deferred until
")" appears.

Standard operators

Ope- Modi- Meaning Ope- Modi- Meaning
rator fier setting an operand fier
LD rator division
N DIV ( comparison: >
GT ( comparison: >=
ST N storing on operand addresses GE ( comparison: =
EQ ( comparison: <>
S- sets Boolean operator to 1 NE ( comparison: <=
LE ( comparison: <
R- sets Boolean operator back to 0 LT ( jum p to label
JMP call of a function block
AND N,( Boolean AND CAL C ,N jum p back
RET C,N processing of deferred operations
N,( Boolean AND C,N
) cf. VDI 2880 (1985-09)
OR N,( Boolean OR -

XOR N,( Boolean exclusive OR

ADD ( addition

SUB ( subtraction

MUL ( multiplication

Inform ation list (IL) according to VDI1>

Structure of an instruction

Label 1: R A1.2 Set solenoid Y2 back'

I Operator I I
Label O p e r an d Com ment

Operators for U Operators for Operators
program organization 0 signal processing
N ZV count forwards
L load UN AND operation ZR count backwards
ON OR operation XO exclusive OR
( open parenthesis negation
) closed parenthesis = NAND operation Operand
NOR operation E input
NOP null operation ADD assignment A output
SP unconditional jum p SUB addition M tag
SPB conditional jump subtraction K constant
BA call of a block
BAB conditional call of a block

BE block end MUL multiplication T timer
comment beginning DIV division Z counter

« comme nt end S set P program block

PE program end R reset F function block

1> In practice, man y mo re PLC controls exist whic h are progra mm ed according to the VDI guidelines.

http://slidepdf.com/reader/full/mechanical-and-metal-trades-handbook-56d51be067c7a 379/431

7/18/2019 Mechanical and Metal Trades Handbook

376 A u t o m a t i o n : 7 .5 P r o g r a m m a b l e l o g i c c o n t r o l

Programm ing langu ages

C o m p a r is o n o f t h e m o s t c o m m o n l y u s ed PL C p r o g r a m m i n g l an g u a g es

Functions as Instructio n list (IL) Function block language Ladder d iagram
compo nents of according to VDI (FBL) (LD)
programs
U Ell E11
AND U E12 E12
with 3 inputs UN E13
8c
A10 E13 E11 E12 E13 A10

A10 I  1  I l/l 0

OR Ell A10
with 3 inputs
E12 E11 -o—
A ND  before  OR E13 E11 E12
E13 A10
A10 E12 >1
E13
A10

E11
E12 E11
E12 E11 E12
E13
E14 E13 >1 A10 E13 E14

A10 E14 &

OR  before   AN D E11 E11 M1
with intermediate E12
tag M1 E12 > 1 M1 A10 pE12 M 1  A10
E13
E x c l u s i v e  O R E14 1-1-1 & E13 •3E (
(XOR)
AM110 E14 E14
RS flip-flop
Set dominant U E11 E11 E11 E12 A10
UN E12 E11 E12
RS flip-flop O (UN E ll E12 =1 A10
Reset dominant
U E12) E11 A11 E11 A11
A10 S1 1 A12 S1 1
A12
U E121>  E12
R A11 R1 E12 R 1
U Ell
S A11 E11 A11 E11 A11
S1 A12 S1
U E111> A12
S A11 E12
U E12 R1 1 E12 R1 1
R A11

Turn on Ell E11 T1
delay T1 T1 T1 A10

T1 E11 t 0• A10

A10 i i

Latch, U E12 E11 A10 A10
dOoNm(iEn a1t2i)n g E12
0U N AE1l 0l E11 &
A10 >1
E12
A10

1> The following applies to flip-flops: If S =  1  an d R  = 1, the last function progra mm ed in the IL dominates. 380/431

http://slidepdf.com/reader/full/mechanical-and-metal-trades-handbook-56d51be067c7a

7/18/2019 Mechanical and Metal Trades Handbook

A u t o m a t i o n : 7 .5 P r o g r a m m a b l e l o gi c c o n t r o l 377

PLC con trolled embossing m achine tool

Technological scheme Description

cylinder A1 / ? Workpieces are to be fitted with a work-
B1 single piece number on an embossing machine
auto- step tool. The sensor B7 detects whether work-
matic pieces are still available in the stacker. The

v pneumatic cylinder A1 pushes the work-
piece out of the stacker into the working
STcARrT oSTOP position. After  this, the embossing cylinder
A2 extends and embosses the workpiece.
O o/ After a delay time of 1 sec., first the
embossing cylinder A2 and then the
operating pushing cylinder A1 are retracted. Cylinder
panel A3 serves as an ejector of the embossed
workpiece. Sensor B8 detects whether the
workpiece was actually ejected.

Function chart in accordance with GRAFCET A l l o c a t i o n l i s t Component Address Remarks
designation
Component and action NO contact/
S0/S1 E0.0/E0.1 NC contact
Mode switch NO contact
AUTOMATIC/STEP S2 E0.2 NC contact
Push button START S3 E0.3
Push button STOP B1-B4 E0.4-E0.7 NO contact
B5-B8 E1.0-E1.3
Proximity switch 1M1 und 1M2 A0.0/A0.1
2M1 und 2M2 A0.2/A0.3
Solenoid valve (with cyl. A1) 3M1 und 3M2 A0.4/A0.5
Solenoid valve (with cyl. A2)
Solenoid valve (with cyl. A3)

Network 7: Step 5

Step chain Retract cylinder A1

Network 3: Step 1 M0.1
Start step
E0.6 & RS
M0.2 M4.0
M5.0
>1 RS M0.2 HZI

E0.3 M6.0

M0.1 & M2.0 M1.0 Network 8: Step 6
EOA R1 1 b m
Extend cylinder A3
M7.0
M0.1
RS
Network 4: Step 2 E0.4 &
M5.0 M6.0
Extend cylinder A1 -GH

Function block lang uage (FBL) M0.1 M0.2

M0.3 & RS M7.0
M1.0 M2.0
Networ k 9: Step 7
M0.2 Retract cylinder A3
M0.1
M3.0 >1 R1 1

Network 5: Step 3 E1.B RS
Extend cylinder A2
E1.1 &

M0.1 M6.0 M7.0
M0.2 KZI
E0.5 M1.0 >1
RS
E1.3 &

M2.0 M3.0 Command output
M0.2 R1 1 b e n
M4.0 >1 Network s 10 to 15
M ? n  AOO
Network 2:  Basic position ^ 4 Z I (E xtend A1)

Network 6: Step 4 3.0 A0.2
Retract cylinder A2 £ 3 ( Exte n d A2 )

EE10..06 & M0.1 T1 M4.0 A0.3
E1.2 (Retract A2)

M0.3 ^ - m (R etract A 1)

-m

Color marking: step flag in  red M7.0 A0.5 (Extend A3)
Transition in  blue G H (Retract A3)

http://slidepdf.com/reader/full/mechanical-and-metal-trades-handbook-56d51be067c7a 381/431

7/18/2019 Mechanical and Metal Trades Handbook

378 Au tom atio n: 7.6 Han dling and robot system s

Robot axes Coordinate systems and axes  c f D , N E N 1 3 0 9 7 8 7  2°™,

Coordinate system Robot main axes for positionin g Robot auxiliary axes
f o r o r i e n t at i o n

To manipulate workpieces To reach a desired point in space, 3 robot ma in axes are 3 robot auxiliary axes for
or tools in space, the follow- necessary. spatial orientation
ing are necessary: • R (roll)
• 3 degrees of freedom for Cartesian robots Articulated arm robots
3 translation axes 3 rotational axes • P (pitch)
positioning and
• Y (yaw)

• o3rdieengtraetieosn of freedom for X(T, aYxaens)d dZes ignated (AR,-aBxaens)d dCesignated

Coordinate systems  cf. DIN EN ISO 9787 (2000-07)

Base
coordinate system

The base coordinate
system references
• the level mounting sur-

face for the X-Y plane
• the center of the robot for

the Z axis

Flange

coordinate system
The flange coordinate sys-
tem references the end
surface of the term inating
main axis of the robot.

Tool
coordinate system

The origin of the tool coor-
dinate system lies at the
tool center point  TCP Tool
Center Point).
The speed of the tool cen-

ter po int is referred to as
the robot speed and the
path of tool travel as the
robot trajectory.

Sym bols for representing robots  (selection)  cf. VDl 2861 (1988 06)

Designation Sym bol Des ignation Symb ol Ex ample RRR robots

Translation axis Rotation axis -< l> -0 382/431
(T-axis)D (R-axis)2>

Translation aligned Rotation
(telescoping) aligned

Tarliagnnsmlaetniotn out of aRloigtantmioennot ut of

Gripper Auxiliary axis
1> Translation = straight line motion  (e.g. for roll, pitch
and yaw)

2> Rotation = rotational mo tion

http://slidepdf.com/reader/full/mechanical-and-metal-trades-handbook-56d51be067c7a

7/18/2019 Mechanical and Metal Trades Handbook

Au tom atio n: 7.6 Han dling and robot system s

Robot designs cf. DIN EN ISO 9787 <2000-
07)
Mechanical structure1) Kinematics2* and working Examples of
Cartesian robots space design types Characteristics, areas of
application
TTT-Kinematics
Main axes:
Gantry robot • 3 translational

Cylindrical robots RTT-Kinematics Areas of application:

CD ) • floarrgeeofwteonrkiinn govseprahceea,dthere-
gantry

• tool and workpiece feed in
production ceils

• sheet processing with laser
beam and water jet cutting

• palletizing

Main axes:
• 1 rotational
• 2 translational

Areas of application:
• suitable for heavy masses

• haannddcliansgt poaf rhtseavy forged
• transport of pallets

and tool cartridges
• pick and place

Base robot

Polar robo t 1 RRT -Kinematics Main axes:
• 2 rotational
•  1 translational

Areas of application:
• telescoping type axis 3,

consequently deeper

Vertical • pwooirnktinagndspsaimceple path
swivel arm robot welding, e.g. on car bodies

• pick and place w ith die
casting machines

Polar rob ot 2 RRT-Kinematics Main axes:
Type: SCARA3> robot • 2 rotational as horizontal

revolute joint
•  1 translational

Areas of application:
• primarily in vertical

assembly area

• pwoeilndti nagnd simple path
• pick and place work

Horizontal
swivel arm robot

Articulated arm robots R R R - K i n e m a t i cs Main axes:
• 3 rotational

Areas of application:
• handling and

assembly area
• complex path welding
• painting work
• adhesive bonding

Vertical • yloewt lsaprgaeceworerkqiunigresmpeancte
swivel arm robot

1 )  Axes are designated with numbers, where axis  1 is the axis of the first mo tion.
2 )  R = rotational axis; T = translational axis (Designations " R " and " T" are not standardized.)
3> SCARA = Selective Compliance Assembly Robot Arm

http://slidepdf.com/reader/full/mechanical-and-metal-trades-handbook-56d51be067c7a 383/431

7/18/2019 Mechanical and Metal Trades Handbook

380 Au tom atio n: 7.6 Han dling and robot system s

Gripper Grippers, Job safety

cf. DIN EN ISO 14539 (2002-12) an d VDI 2740 (1995-04)

Gripper

mechanical pneumatic magnetic adhesive

suction gripper electromagnets velcro fastener
articulated finger gripper permanent magnets gripper

Finger grippers Jaw grippers Clamp grippers Needle grippers

Linear Characteristics Scissors Characteristics Spring Characteristics
grippers grippers loaded

1 degree of Both gripper Clamping
movement fingers turn force is creat-
about an axis ed by a
Flat fixed in the spring.
gripper frame.
tOhpeegnri ni pgp eorf
Frequently by pressure.
used
grippers.

3 degrees of Parallel Weight
movement gripper loaded

Spatial Both gripper Clamping Used in tex-
gripper fingers are force created tile industry.
pushed by the ow n Four nail
6 degrees of parallel to weight of the plates are
movement each other gripping extended by a
opposite to object. tapered plug
and grip the
thhoeusgirnipgp. er Opening of fabric.

JP tbhye pgrreispspuerre.

Work safety for h andling and rob ot s ystems* cf. DIN EN ISO 10218-1 (2007-02) & VDI 2854 (1991-06)

protective curtain with sensors that can Concepts Explanations
distinguish between human and robot
because of workpiece change Maximum Area encompassing:
space • mov ing parts of robot
• tool flange
Restricted • workpiece
space
A portion of the max imum space which should
not be entered in case of an eventua l break-
dow n of the robot system

Separating Containmen t fences, coverings, permanent
safeguards encasements, locking devices
(DIN EN 1088)

Protective Hazardous area security: light curtains and
systems with light barriers
contactless
activation Area monitoring: laser scanners
Access security: light grills and light barriers

Important safety relevant standards

DIN EN 292 Safety stand, for machines, basic terminology
DIN EN 61496 Safety standards for machines, contactless
activation of safety systems
DIN EN 418 Safety standards for machines, em ergency

area bordered by safety DIN EN 294 OSaFfFetsyysatreomunsd machines, safe distances
protective fence switching mat DIN EN 457 Acoustical hazard signals
CSA Z 434-03 Industrial Robots and Robot systems
ANSI R 15.06 American Standard for Industrial Robots

According to European Standards

http://slidepdf.com/reader/full/mechanical-and-metal-trades-handbook-56d51be067c7a 384/431

7/18/2019 Mechanical and Metal Trades Handbook

Coordinate system Automation: 7. technology 381

Right hand rule Coordinate axes  CF. DIN 66217 <1975-12)

Cartesian coordinate system Coordinate axes X, Y and Z are
perpendicular to each other.
This arrangement can be repre-
sented by thumb, index finger

and middle finger of the right
hand.

Axes of rotation A, B and C are
assigned to coordinate axes X, Y
and Z.

When looking down one axis in
the positive direction, the positive
direction of rotation is clockwise.

Coordinate axes in programming

Vertical milling machine Lathe Coordinate axes and the resulting
directions of motion are aligned
Horizontal m illing m achine Lathe tool to the main slideways of the CNC
behind turn- machine and are essentially rela-
ing center tive to the clamped workpiece
with its workpiece zero point.
Lathe tool
ftuorrwnianrgd coefnter Positive directions of motion al-
ways result in greater coordinate
values on the workpiece.

The Z axis always runs in the
direction of the main spindle.

To simplify programming it is
assumed that the workpiece

remains motionless and only the
tool moves.

Example:
2-carriage lathe with programmable
main spindle

Reference po ints

^ ^ ^  M a c h i n e ze r o p o i n t M
Origin of the machine coordinate system and is set by the
machine manufacturer.

Program zero poin t PO
Indicates the coordinates of the point at which the tool is located
before start of the program .

Reference poin t R

Origin of incremental position measurement system with a dis-
tance to the m achine zero point set by the machine manufacturer.

T ool holder reference p oint T
Lies central to the limiting face of the tool holder. On milling
machines this is the ab utting surface of the tool sp indle, on lathes
the abutting face of the tool holder on revolver.

1> not standardized

Workpiece zero reference point W
Origin of the workpiece coordinate system and is set by the pro-
grammer based on engineering principles.

http://slidepdf.com/reader/full/mechanical-and-metal-trades-handbook-56d51be067c7a 385/431

7/18/2019 Mechanical and Metal Trades Handbook

382 Automation: 7. techn ology

Program structure

T as k s o f t h e c o n t r o l p r o g r a m

Block structure

r N 1 0 G01 X30 Y40 F150 S900 T01 M03 Explanation of words:
N10 block num ber 10
Positional Technical G01 feed, linear interpolation
data information X30 coordinate of target point in X direction
Y40 coordinate of target point in Y direction
Prep, Miscella- F150 feed 150 mm/min
function neous S900 speed of main spindle 900/min
(G function) function T01 tool no. 1
M03 spindle clockwise
(M function)

Block Coordinates of Feed Speed Tool
number target point

Program s truc ture

CNC program

%01 F0.2 M04
N1 G90 X20 S180
N2 G96 X30 Z2
N3 GOO Z-3
N4 G01 X200 Z-15
N5 Z200
N6 GOO M30
N7

Preparatory functions

Prep, Effective- Meaning Prep, Effective- Meaning
functions ness functions ness

GOO Positioning at rapid rate G53 Cancel shift
G01 Linear interpolation
G02 Circle interpolation clockwise G54- Shift 1-
G03 Circle interpol. counterclockwise G59 -Shift 6
G04 Dwell time predetermined
G09 Exact stop G74 Approach reference point
G17 Plane selection XY
G18 Plane selection ZX G80 Cancel fixed cycle
G19 Plane selection YZ
G33 Thread cutting, constant G81- Fixed cycle 1-
G89 -Fixed cycle 9
pitch
G40 Cancel tool offset G90 Absolute dimensional notation

G91 Incremental dimensional notation

G94 Feed rate
in mm/min

G95 Feed in mm

G41 Cutter compensation, left G96 Constant cutting speed

G42 Cutter compensation, right G97 Spindle speed in 1/min

mo dal: Preparatory functions that remain effective until they are overw ritten by a similar type of
non-m odal: condition.

Preparatory functions that are only effective in the block in wh ich they are progra mm ed.

Universal miscellaneous functions   (m-functions, selection) cf. DIN 66025-2 (1988-09)

MOO Program med stop M04 Spindle counterclockwise M07 Cooling lubricant ON

M02 Program end M05 Spindle stop M09 Cooling lubricant OFF

M03 Spindle clockwise M06 Tool change M30 Program end wit h reset

http://slidepdf.com/reader/full/mechanical-and-metal-trades-handbook-56d51be067c7a 386/431

7/18/2019 Mechanical and Metal Trades Handbook

Automation: 7. technology 383

Tool offset  and Cutter com pensation

http://slidepdf.com/reader/full/mechanical-and-metal-trades-handbook-56d51be067c7a 387/431

7/18/2019 Mechanical and Metal Trades Handbook

384 Automation: 7. techn ology

Program structure of  CNC machines according to DIN

Machining motion for vertical milling machines cf. DIN 66025-2 (1983-01)

G01 Linear mo tion
Designation and machining example:

N30 Gl >1 X 50 Y 19 Z-8

Linear interpo lation, Coordinates of target point
machining m otion in
programmed feed I
in X direction in Y direction in Z direction

19 N... CNC program Z1 (P1)
N10 ZO (P2)
10 N20 GOO X20 Y10
0- Pz G01 Z - 8 | | (P3)
| N30
C<=s> X50 Y19

o N...
LTI

G02 Clockwise circular mo vem ent

Designation and machining example:

N40 G02 X32 Y38 I26 J-10.39

Clockwise circular Coordinates of Incremental input of the
interpolation, circle endpoint center point relative to
machining motion circle starting point
in programmed II in X direction in Y direction
feed in X in Y
direction direction

CNC program

N...

N10 G41 (P1)
N20 G01 X6 Y4 (P2)
N30 Y20.39

N 40 G 02 X 32 Y 38 I26 J -10. 3 9| (P3)

N50 G01 X40 (P4)
N...

G03 Counterc loc k wis e c irc ular mo v em ent
Designation and machining example:

N40 G03 X32 Y38 18 J16.12

Counterclockwise Coordinate of Incremental input of the
circle interpolation, circle endpoint center point relative to
machining motion in circle starting point
programmed feed II
in X in Y II
direction direction in X direction in Y direction

38- y >4 CNC program

f R» N...
N10 G41
88 P2 •II
NN3200 G01 X6 YY421.88
((PP21))
P1 N40 G03 X32 Y38 18 J16.12 (P3)
(P4)
50 G01 X40
388/431
N...

CX o
m -j-

http://slidepdf.com/reader/full/mechanical-and-metal-trades-handbook-56d51be067c7a

7/18/2019 Mechanical and Metal Trades Handbook

Automation: 7. techno logy 385

Program structure of  CNC machines according to DIN

Machining motions of lathes cf. D IN 66025-2 (1983-01)

G01 Linear mo vemen t

Designation and N20 G< i X I50 z-50
machining example:

Linear interpolation, machining Coordinates of target point
motion in programmed feed I

in X direction in Z direction

CNC program

q •si N... X60 Z2 (P1)
Z-50 (P2)
m N10 GOO X 80 (P3)
X102 Z-61 (P4)
50 N20 G01
N30
6 N40
N...

G02 Cloc k wis e c irc ular mo v em ent

Designation and machining example: I20 KO
N30 G 02 X100 Z-60

Clockwise circular Coordinates of Incremental input of
interpolation, circle endpoint center point relative to
machining motion in circle starting point
programmed feed II r—..-tlr-^'-v  I
in X inZ in X direction in Z direction
direction direction

CNC program

Q Id N... (P1)
P2 N10 GOO X60 Z2 (P2)

P1 N20 G01 Z-40

| N30 G02 X10 0 Z-60 I20 KO | (P3)

.40 N40 G01 X110 (P4)
N...
6

G03 Counterc loc k wis e c irc ular mo v em ent

Designation and machining example: 10 K-15
N40 G03 X 90 Z-55

Counterclockwise Coordinates of Incremental input of
circle interpolation, circle endpoint center po int relative to
machining motion in circle starting point
programmed feed II
in X inZ 1i
direction direction in X direction in Z direction

CNC program

N...

N10 G01 XO ZO (PI)

N20 G03 X60 Z-11.46 10 K-45 (P2)

N30 G01 Z-40 (P3)

N40 G03 X9 0 Z-55 10 K-15 (P4)

N...

http://slidepdf.com/reader/full/mechanical-and-metal-trades-handbook-56d51be067c7a 389/431

7/18/2019 Mechanical and Metal Trades Handbook

386 Automation: 7. technology

Program structure  of CNC machines according to PAL1)

Linear interpolation w ith G1 for lathes and milling machines

Turning Milling

I n c re m e n t al p r o g r a m m i n g w i t h X I , Y l a n d Z l c o o rd i n at es i n N C p r o g ra m s w i t h G 9 0

NC program NC program

N10... N10... ;P2
N15G90 N15 G42 ;P3
N20... N20G0 X...
N25G1 X68Z-16 ;P2 N25  G1  X72
N30 G1 XI31 ZI-54 ;P3 N3 0G1 XI-17 YI57
N35... N35...

55 72

A b s o l u t e p r o g r a m m i n g w i t h X A , YA a n d Z A c o o r d in a te s i n N C p ro g r a m s w i t h G 9 1

NC program NC program

N10... N10...
N15G91
N20... N 1 5 G 4 2  GO X - 1 6 Y 1 8
N25G1 X68Z-16 ;P2
N3 0G1 XA130 ZA-70 ;P3 N20 G91
N35...
N25G1 X88 ;P2
Start angle AS with coordinate value X
N30G1 XA55YA78 ;P3

N35...

NC program ;P2 m' |AS| NC program ;P2
;P3 120° ;P3
N10... \ N10...
16 0 N15 P2 N15G42
N20... 18 N20G0 X... Y18
N25G1 X60Z-16 72 N25G 1 X72
N30 AS150X130 E N30  G1 |AS120 X38
N35... 38 N35...

Start angle AS with coordinate value Z

P3 140°   [as] NC program NC program

^^  ^  y^

P1\ NN1105.G. .9 0 NN 11 05.G. .4 2 ;P2
N20... N20G 0 X... Y18 ;P3
P2]B R  v  ° N25  G1  X50
N25G1 X60Z-16 ;P2 N30G1 AS65Y66
m 1•Hjr+X   vo N3 0G 1 AS 140 Z-80 ;P3 N35...
N35...
\1   Amj. Tz^

8 16 0

Transition elemen ts radius RN+ and phase RN-
The radius RN+ and the phase RN- are transition elements be ween two contour elements (circles, straight lines)

10x45° NC program NC program
30 0
N10... N10...
N15G42
N15G90 N20 GO X... Y18
N25  G1  X75IRN-23I ;P2
N20  GO X48 ZO P1 N30 G1  X60 Y80[RN+12|;P3
N35...
N25G1 Z-30 RN-10 P2

N30G 1 X82 P3

N35G 1 Z-74 |RN+30 P4

90 74 N40G 1 X140Z-90 P5

1 )  Priifungsaufgaben- und Lehrmittelentwick lungsstelle (PAL) (Institute for the developm ent of training and testing material)

http://slidepdf.com/reader/full/mechanical-and-metal-trades-handbook-56d51be067c7a 390/431

7/18/2019 Mechanical and Metal Trades Handbook

Automation: 7. techno logy 387

Program structure of  CNC m achines according to PAL

C ir c u la r i n t e r p o l a t i o n f o r l a th e s a n d m i l l in g m a c h i n e s

Turning Milling

Circular interpolation with absolute center point coordinates

Block structure: Block structure:

G90

G190 X.. Z.. ;P2 G1 X.. Z.. ;P2
G2 X.. Z.. IA.. KA.. ;P3 G2 X.. Z.. IA.. JA.. ;P3

NC program NC program

N10 ... D 3  m P3 N10 ...

N15G90 i t29 N15G90
N20  GO  X38 Z4
N25G1 Z-40 ;P1 m N20G0 X... Y9 ;P1
;P2 +Y -
mN30 G2 X98 Z-70 IA49| KA 40|;P3 N25  G1  X40 ;P2

N30 G3 X60 Y29 |lA40|| JA29 ;P3

70 40 N35 ... 40 60 N35 ...

S e le c t i o n c r i t er i a f or m u l t i p l e s o l u t i o n s

Wh en u sing the radius R or the aperture angle AO, several arc solutions may result. The program mer can select
the desired arc by defin ing an arc or a start angle wi th the he lp of the tw o addresses O and/or R and H.

Selec tion of th e arc length us ing the address O or R

Block structure: Block structure: Block structure: Block structure: ;P2
or:   G1 X.. Z..
G1 X.. Z.. ;P2 o r:   G1 X.. Z.. ;P2 G1 X.. Z.. ;P2 G2 X.. Z.. R-.. ;P3
G2 X.. Z.. R.. O.. ;P3 G2 X.. Z.. R.. 0.. ;P3
G2 X.. Z.. R+.. ;P3

shorter   arc NC program lo n g e r   arc NC program

N10 ... ;P2 N10 ... ;P2
N15G90 N15G90
N20... ;P3
N25G 1 X70 Z-25 N20... ;P 3

oNr3: 0G 2X100Z-70 R26 |0 ] ;P3 N25G1 X12Y15
N30G2X100Z-70 R0 26 ;P3 N30G2X66Y15 R26 [a
or: ^
N30G2X66Y15 R026

Selection of the s tart angle using th e address H

Block structure: Block structure:
G90
G1 X.. Z.. ;P2 G1 X.. Z.. ;P2
G2 Z.. R.. AO.. H.. ;P3
G2 X.. R.. AO.. H.. ;P3

smaller start angle  [Rj] NC program larger NC program

P3  ,115° ascent angle N10 ...
N15G90
N10 ... N20...

N15G90

N20...

NN3205 GG12X Z5-05Z5- R1826 A0 115 [H i];P;P23 NN3205 GG12 XZ3620 YR2266 A0115 H2;;PP23

Contour routing for lathes (selection)

Where open contour routing is concerned, the starling point as well as the target point may still be undefined. The
control system calculates the starting and end point of the open element on the basis of the specified addresses.

G61 Open line section G62/G63 Open arc Three-point routing

Block structure: Block structure:

G1 X.. Z.. N15 G1 X50 Z-30 ;P1 G1 X.. Z.. N15 G1 X40 Z-30 ;P1 N15 ...
G61 AS.. G62 AS.. R.. N20 G62AS210 R50 N20G1 X40Z-20 ;P1
N20   G61  AS 160 N20  G61 AS210 ;P2

N30 G62 Z-72 R+26 ;P3

P >P3 / 2 1 0 ^ o
/W o   ^ S P1 j -J-

_jiiiir + X ik 
J"P2

— -TTz

72 2

http://slidepdf.com/reader/full/mechanical-and-metal-trades-handbook-56d51be067c7a 391/431

7/18/2019 Mechanical and Metal Trades Handbook

388 Automation: 7. technology

Program structure  of CNC m achines according to PAL

PA L f u n c t i o n s f o r l at h e s a n d m i l l in g m a c h i n es

Programming coordinates and interpolation parameters

XA, YA, ZA Absolute input of coordinate values relative to the workpiece zero point

XI, Yl, Zl Incremental inp ut of coordinate values relative to the current tool position

IA, KA Abso lute input of the interpolation parameters relative to the workpiece zero point

T-addres s es for too l c hange

T Tool storage place in the tool revolver or holder
TC Selection of the number of the offset memory
TR Incremental tool radius or cutting edge offset in the selected offset me mory
TL Incremental tool length offset in the selected offset me mo ry (milling)
TZ Incremental tool length offset in Z  direction in the selected offset m em ory (turning)
TX Incremental diameter offset in X  direction in the selected offset me mory (turning)
Ad d i ti o n a l M - fu n c ti o n s 1' according to PAL

M13 Clockwise spindle rotation, coolant ON M17 End of sub program
M1 4 Counter clockwise spindle rotation, coolant ON M60 Constant feed
M15 Spindle and coolant OFF M61 M60 + corner shaping

PA L fu n c t i o n s f o r l at h e s

G-functions

Types of interpolation Cutter co mpensation

GO Rapid travel/motion G40 Cancel tool radius offset TRO
G1 Linear interpolation with feed rate G41 Tool radius offset TRO to the left of the
G2 Circular interpolation, clockwise
G3 Circular interpolation, cou nter c lockwise programmed contour
G42 Tool radius offset TRO to the right of the

G4 Dwell time programmed contour
G9 Exact stop Feeds and speeds
G14 Travel to configured tool change point
G61 Linear interpolation for co ntour routing G92 Rotational speed lim itation
G62 Circular interpolation for contour routing, G94 Feed in mm per minute
G95 Feed in mm per revolution
clockwise G96 Constant cutting speed
G63 Circular interpolation for contou r routing, G97 Constant rotational speed

counter clockwise Program features

Reference points G22 Call sub program
G23 Repeat program section
G50 Cancellation of incremental zero point
shift and rotations

G53 Croatnactieolnlastion of all zero point shifts and G29 Conditional jumps
Adjustable absolute zero points
G54- Cycles
G57 Incremental Cartesian zero point shift and
G59 rotation G31 Thread cycle
G32 Tapping cycle
Machining planes and rechucking G33 Thread chasing cycle
G80 Completion of a machining cycle contour
G18 Selection of the plane of rotation
G17 Face machining planes description
G19 Shell surface/segment surface mac hining G81 Longitudinal rough-turning cycle
G82 Rough facing cycle
planes G83 Rough-turning cycle parallel to the contour
G84 Drilling cycle
G30 Rechucking/opposed spindle takeover G85 Undercut cycle
G86 Radial grooving cycle
Dimensions G87 Radial contour cutting cycle
G88 Axial grooving cycle
G70 Inch input confirmation G89 Axial contour cutting cycle
G71 Metric input confirmation (mm)
G90 Absolute dimensions
G91 Input of incremental dimensions

http://slidepdf.com/reader/full/mechanical-and-metal-trades-handbook-56d51be067c7a 392/431

7/18/2019 Mechanical and Metal Trades Handbook

Automation: 7. technology 389

Program structure of  CNC m achines according to PAL

G-functions for lathes

G22 Call s ub program

Structure of NC block Main program %900 Sub program L911 Machining example
G22 L [H] [/]

OL blignautomrby ear dodfrethseses:
sub program

Optional addresses:
H number of

repetitions
/ extract level

G23 Repeat program s ec tion

Struc ture of NC bloc k N10.. Machining example
N15G0 X58 Z-15 M4
G23 N N [H] N20 G91 a
N25G1 X-11
Obligatory addres s es : N30G1 X11
N35G0Z-16
N bsetarrtepbeloactek dnumbe r of the program section to N40 G23 N20 N35 H2
N end block number of the program section to N45 G90
N50 ...
be repeated

Option al addres s es :
H num ber of repetitions

G14 Trav el to too l c hange point

Structure of NC block H1_
G14 [H] H2

Option al addres s es : m
HO travel to too l change poin t simultan eou sly in all axes
H1 first X axis, then Z axis H2 first Z axis, then X axis

PAL cycles for lathes

G84 Drilling cycle

Struc ture of NC bloc k

G84 ZI/ZA [D] [V] [VB] [DR] [DM] [R] [DA] [U] [O] [FR] [E] VB >-

Obligatory addres s es : k+X

Zl depth of hole, incremental depth relative to the current too l position / E? \ uL
ZA depth of hole, absolute depth \ V Tz

Optional addresses (se lection): AV
D pecking amount Zl

(if D is not specified, pecking depth is Machining example
equal to the final drilling depth)

VVB ssaaffeettyy ddiissttaannccee to the hole bottom 27 31 35
DR reduction value of the pecking a mou nt
DM minimum infeed IF K
R retract level/distance
DA spot-drilling depth 130 2
U dwell time at hole bottom
0 dwell time selection N10 G90
N15 G84 Z-130 D30 V5 VB1 DR4 U0.5
01 in seconds N20..
02 in revolutions
FR rapid travel reduction in %
E spot-drilling feed

G32 Tapping cycle

SGt3r2ucZtu/ZrIe/ZoAf NF C block — Mi nagc h i n - 35 M20x3.5/45
example
Obligatory addres s es : i Zl
Z, Zl, ZA thread end point in •2.5

Z direction N10 G90
N15 G32 Z-35 F2,5 S.. M..
I incremental, A absolute

F pitch of thread

http://slidepdf.com/reader/full/mechanical-and-metal-trades-handbook-56d51be067c7a 393/431

7/18/2019 Mechanical and Metal Trades Handbook

390 A u t o m a t i o n : 7 .7 N C t e c h n o l o g y

Program structure of  CNC m achines according to PAL

PAL cycles for lathes Radial Flank Flank Alternating
infeed infeed infeed infeed
G31 Thread cycle HI/H11 left H2/H12 right H3/H13
H4/H14
Structure of NC block £ 0 0
G 3 1 Z / Z I / Z A X / X I / X A F D [ Z S] [ X S ]
Machining example
[DA] [DU] [Q] [O] [H]
N10 G90
Obligatory addres s es : N15 G31 Z-40 X30 F3.5 D2.15 ZS-10 XS30 Q12 013 H14
Z, Zl, ZA thread end point in Z direction N20 ..

Z controlled by G90/G91;
I incremental, A absolute
X, XI, Zl thread end point in X direction;
X controlled by G90/G91,
I incremental, A absolute
F thread pitch
D thread depth

Optional addresses [..]:
ZS thread starting point, absolute in Z
XS thread starting point, absolute in X
DA approach

QDU onvuemrrbuenr of cuts
O number of idle cycles
H selection of infeed type a nd residual cuts (RC)

H1 wi tho ut offset (radial infeed), RC OFF
H2 infeed at left flank, RC OFF
H3 infeed at right flank, RC OFF
H4 alternating infeed, RC OFF
H11 wi tho ut offset (radial infeed), RC ON
H12 infeed at left flank, RC ON
H13 infeed at right flank, RC ON
H14 alternating infeed, RC ON
Residual cuts Vi, 1 A , 1/s, Vs x (D/Q)

G81 Long itudinal rough-turning cycle G82 Rough fac ing c y c le

Structure of NC block
G81 (or G82) H4 [A K] [AZ] [A X] [AE]

[AS] [AV] [O] [Q] [V] [E]
or
G81 (or G82) D [H1/H2 /H3/H24]

Obligatory addres s es :
D infeed

Optional addresses [..]: Longitudinal rough turning Rough facing cycle with G82
cycle with G81
H type of machining
H1 rough machining, removal below 45° Machining example: longitud inal rough-machining cycle
H2 stepwise angle-cutting along the contour =o.P9
H3 like H1 w ith final contour cut

H244 croungtohu-mr aficnhisinhing with H2 and subsequent 170 125 110 77 55 20  0 3
finishing
N10
AK contour allowance parallel to the contour
AZ contour allowance in Z direction N15 G81 D3 H3 E0.15 AZ0.1 AX0.5
AX contour allowance in X direction
AE immersion angle (final angle of the tool) N20 X44Z3 P1
AS emergence angle (lateral adjustment angle of tool)
AV safety angle reduction for AE and AS N25   G1  Z-20 P2
O mach ining starting p oint
N30 G1 Z-55 AS135 RN20 P3
01: current tool position
N35   G1  Z-77 AS 180 P4
02: calculated from contour
N40 G1 Z-110X64 P5
Q idle step optimization
N45 AS 180 P6
Q1: optim ization OFF
Q2: optimization ON N50 AS110 X88 Z-125 P7

V safety distance for idle step optimization N55 AS 180 P8
G81: in Z direction
G82: in X direction
immersion feed

N60 AS130 X136 Z-170 P9

N65 G80

http://slidepdf.com/reader/full/mechanical-and-metal-trades-handbook-56d51be067c7a 394/431

7/18/2019 Mechanical and Metal Trades Handbook

Automation: 7. techn ology 391

Program structure of  CNC m achines according to PAL

PAL cycles for lathes

G86 Radial grooving cycle G88 Ax ial groov ing c y c le

Structure NC block
G86 Z/ZI/ZA X/X I/XA ET [EB] [D]  [..] (selection)
G88 Z/ZI/ZA X/X I/XA ET [EB] [D]  [..] (selection)

Obligatory addres s es :

Z, Zl, ZA grooving position in Z direction;

Z contro lled by G90/G91,

Zl incremental, ZA absolute

X, XI, XA grooving position in X direction;

X controlled by G90/G91,

XI incremental, XA absolute

ET G86 absolute diameter of grooving depth

G88 absolute grooving depth

Optional addresses [..]:

EB grooving width and position

EB+ grooving in direction Z+ relative to the

programmed grooving position P

EB- grooving in direction Z- relative to the

programmed grooving position P

D pecking am ount (if no value is specified, the

pecking depth is equal to the groove depth ET)

AS flank angle of grooving at the starting point

relative to the grooving direction (X or Z) Radial groo ving cycle wit h G86 Axial groo ving cycle wi th G88
AE flank angle of grooving at the end point

relative to the grooving direction (X or Z)

RO rounding or chamfering of upper corners

R0+ rounding

RO- chamfer width

RU rounding or chamfering of lower corners M a c h i n i n g e x a m p l e : r a d ia l g r o o v i n g c y c le w i t h G 8 6:

RU+ rounding

RU- chamfer width

AK contour allowance parallel to the contour

AX contour allowance in X direction (contour offset)
EP setpoint definition for groove cutting (position P)

EP1: setpoint in upper corner of the groove

EP2: setpoint in bott om co rner of the groo ve

H type of processing

H1 rough ing cut H14 rough ing and finishing

H2 plunge turning H24 plunge turnin g and finishing

H4 finishing

DB infeed in % of the cutting tool width for grooving N10G0 X82 Z-32
V safety distance above groov e N35 G86 Z-30 X80 ET48 EB20 D4 AS10 AE 10 RO-2.5 RU2 H14
E feed rate into solid material

G85 Undercut and thread undercut cycle

Struc ture of NC bloc k Thread undercuts acc. to DIN 76 Undercuts acc. to D IN 509
G85 Z/ZI/ZA X/XI/XA l/[l] K[K] [RN] [SX] [H] [E]

Obligatory addres s es : RN , ^ 3 0 ° "

Z, Zl, ZA undercut position in Z direction ;

Z contro lled by G90/G91,

Zl incremental, ZA absolute outside
X, XI, XA undercut position in X direction;

X controlled by G90/G91, M a c h i n i n g p r o c es s w i t h D I N 76

XI incremental, XA absolute 0.2 shapeF

I undercut depth; obligatory parameter for DIN 76 (H1)

K undercut length; obligatory parameter for DIN 76 (H1)

Optional addresses [..]: N10G0..
RN corner radius N15G85 ZA-18 XA16 11.5 K5 RN1 SX0.2 H1 E0.15
SX grinding allowance
Further information on p. 89 and p. 92
EH fueneddercautet fsohrapleung ing
H1 DIN 76 H2 DIN 509 E  H2 DIN 509 F

G80 Com pletion of a c ontour des c ription in a rough-mac hining c y c le

Structure of NC block Optional addresses  [..]: ZA absolute Z-coordinate of the m achining limit parallel to the X axis

G80 [ZA] [XA] XA absolute Z-coordinate of the mac hining limit parallel to the Z axis

http://slidepdf.com/reader/full/mechanical-and-metal-trades-handbook-56d51be067c7a 395/431

7/18/2019 Mechanical and Metal Trades Handbook

392 Automation: 7. technology

Program structure  of CNC m achines according to PAL

PA L f u n c t i o n s f o r m i l l i n g m a c h i n e s Tool offsets
G40 Cancel cutter com pensation
G-functions G41- Cutter compensation left
G42 Cutter compensation right
Types of interpolation, contours
Feeds and s peeds
GO Rapid motion G94 Feed in mm per minute
G1 Linear interpolation wit h feed rate G95 Feed in mm per revolution
G2 Circular interpolation, clockwise G96 Constant cutting speed
G3 Circular interpolation, counterclockwise G97 Constant spindle speed
G4 Dwell time
G9 Exact stop Program features
G10 Rapid mo tion in polar coordinates
Gil Linear interpolation with polar coordinates G22 Call sub program
G12 Circular interpolation wi th polar coordinates, G23 Repeat program section
G29 Conditional jumps
clockwise
Fixed cycles
G13 Ccoirucnutlearr icnlotecrkpwoilsaetion wi th polar coordinates,
G45 Linear tangential approach to a contou r G34 Start-up of the contour pocket cycle
G46 Linear tangential retraction from a contour G35 Rough-m achining technology of the con tour
G47 Tangential approach to a contour in a
pocket cycle
quarter circle G36 Residual material technology of the contour
G48 Tangential retraction from a contou r in a
pocket cycle
quarter circle
G61 Linear interpolation for contour routing G37 Finishing techno logy of the contour pocket cycle
G62 Circular interpolation for contour routing, G38 Contour description of the contour pocket cycle
G80 Com pletion of the G38 cycle
clockwise G39 Call contour pocket cycle with material removal
G63 Circular interpolation for contour routing,
either parallel to the contour or in m eanders
counter clockwise G72 Rectangular pocket milling cycle
G73 Circular pocket and spigot milling cycle
Referenc e poin ts , rotation , mirror images , s c aling G74 Slot milling cycle
G75 Circular slot m illing cycle
G50 Cancellation of the increme ntal zero point shift
and rotations
G53
Cancellation of all zero point shifts and
G54- rotations
G57
Adjustable absolut zero points

G58 Incremental zero point shift, polar and G81 Drilling cycle
rotation G82 Deep drilling cycle wit h pecking
G83 Deep drilling cycle with pecking and full retraction
G59 Incremental Cartesian zero point shift and G84 Tapping cycle
rotation G85 Reaming cycle
G86 Boring cycle
G66 Mirror image across the X or Y axis, G87 Plunge milling cycle
mirror image off G88 Internal thread milling cycle
G89 External thread milling cycle
G67 Scaling (enlarging or reducing or cancellation) G76 Multiple cycle call on a straight line (line of holes)
G77 Multiple cycle call on a pitch circle (line of holes)
Plane selection, dim ensions G78 Cycle call at a particular poin t (polar coordina tes)
G79 Cycle call at a particular poin t (Cartesian
G17- P la ne s el ec ti on , 2V2 D p ro ce s si ng
G19 coordinates)
Inch input confirmation
G70 Metric input confirmation (mm)
G71 Input of absolute dimensions
Input of incremental dimensions
G90
G91

http://slidepdf.com/reader/full/mechanical-and-metal-trades-handbook-56d51be067c7a 396/431

7/18/2019 Mechanical and Metal Trades Handbook

Automation: 7. technology 393

Program structure  of CNC m achines according to PAL

PAL cycles for m illing machines

G1 Linear interpolation w ith feed rate Machining example

Structure of NC block 74
G1 [X /XI/XA ] [Y/YI/YA] [Z/ZI/ZA] [D] [AS] .. (s elec tion) N10 ...
N15G1 X74Y16RN-12 ;P2
Obligatory addresses: N20  G1 D65 AS 120 RN+14 ;P3
X, XI, XA X coordinate of the target point
Y, Yl, YA Y coordinate of the target po int
Z, Zl, ZA Z coordinate of the target point

Optional addresses [..]:
D length of travel distance
AS ascent angle relative to the X axis
RN transition element to the next contour element

RN+ rounding radius R N- chamfer width
H selection among tw o solutions via angle criterion

HI small ascent angle H2 greater ascent angle
TC selection of the offset mem ory number
TR incremen tal change of the tool radius value
TL incremen tal change of the tool length offset

G11 Linear interpolation wi th polar c oordinates

Struc ture of NC bloc k P3 Machining example
G11 RP AP/AI [J /J A ] [Z/ZI/ZA ] [RN] .. (Aus wahl)
N15 G42 G47 R20 X30  Y0 Z-3 P2
Obligatory addresses: JA 5 N20G11 I AO J AO RP30 A P90 P3
RP polar radius NN3250   GG1111  II  AAOO  JJA AOO RRPP3300AAPP217800 PP54
AP polar angle relative to the positive X axis hJr IA N35G 11 IA0 JAO RP30 APO P2
Al incremental polar angle

Optional addresses [..]:

I, IA X coordinate of the polar center

J, JA Y coordinate of the polar center

Z, Zl, ZA infeed in Z direction

RN transition to the next contour element

RN+ rounding radius RN -chamfer width

TC selection of the offset mem ory number
TR incremental change of the tool radius value
TL incremen tal change of the tool length offset

G2/G3 Circ ular interpolation w ith Cartes ian c oordinates Machining example
shorter
Struc ture of NC bloc k arc (01)
G2 [X /XI/XA ] [Y/YI/YA] [Z/ZI/ZA] ((l/IA [J /J A]) /
N10...
([l/lAj J/JA ) / R / AO [RN] [O] [F] [S] [M]
G3 [X/XI/XA] N15G1 X38Y70RN+15 ;P2

Optional addresses [...]: N20 G3 XA80 R30 A01 35 RN-8 02 ;P3
X, XI, XA X coordinate of the target point
Y,Yl, YA Y coordinate of the target point
Z, Zl, ZA Z coordinate of the target point

IR, IA, rJa, dJiAuscoefntaerrc paonidnt coordinates
selection of solution via arc length criterion
R+ shorter arc R - longer arc

AO aperture angle
RN transition element

RN+ rounding radius RN - chamfer wid th
0 selection of solution via arc length criterion

01 shorter arc 02 longer arc

G12/G13 Circ ular interpolation w ith polar c oordinates

Struc ture of NC bloc k JA PU Machining
G12 AP/A I [l/lA] [J /J A] [ Z/ZI/ZA] [RN] [F] [S] [M] example
G13 AP/A I [l/lA] [J /J A] [ Z/ZI/ZA] [RN] [F] [S] [M]

Obligatory addresses: ^/AP) 0 45
AP polar angle of target point
Al incremental polar angle +Y' N15G1X60Y15 ;P2
i tx
Optional addresses [...]: IA N20 G12 IA45 JA45 AP50 ;P3
I, IA X coordinate of polar center
J, JA Y coordinate of the polar center
RN+ rounding radius RN - chamfer wid th

http://slidepdf.com/reader/full/mechanical-and-metal-trades-handbook-56d51be067c7a 397/431

7/18/2019 Mechanical and Metal Trades Handbook

394 Automation: 7. technology

Program structure of  CNC m achines according to PAL

PAL functions for milling machines

G45 Linear tangent ial approac h to the c ontour G46 Linear tangen tial retrac tion from the c ontour

Structure of NC block Machining example
G41/G42 G45 D [X/XI/XA ] [Y/YI/YA] [Z/ZI/ZA]
N10...
[W] [E] [F] [S] [M]
N15G42 G45 XO Y8 D13 ;P1
G 4 6 G 4 0 D [ Z / Z I /Z A ] [ W ] [ F] [ S ] [ M ]
N20  G1  X50 ;P2
Obligatory addresses:
wi th G45: D distance to the first conto ur point, N25G 1 Y40 AS80 ;P3

unsigned N30 G40 G46D 13 ;P4
wit h G46: D length of the retracting m otion ,
Tangential ret rac tio n  from the contour  in a quarter circle
unsigned

Optional addresses [..]:
X, XI, XA X coordinate of the first contour point
Y, Yl, YA Y coordinate of the first contour point
Z, Zl, ZA wi th G45: infeed at approach point in the Z axis

with G46: retracting motion at the end point
in the Z axis
W absolute position in fast mo tion in the infeed axis

E feed rate for plun ging
G47 Tangential approach to the contour in a quarter circle G48

Structure of NC block Machining
G41/G42 G47 R [X /XI/XA ] [Y/YI/YA ] [Z/ZI/ZA] example

(W] [E] [F] [S] [M] N10 ...
G48G 40 R [Z/ZI/ZA] [W] [F] [S] [M]
NN2105 GG412  XG5407 XO Y8 R13 ;;PP21
Obligatory addresses:
with G47: R  radius of the approach mo tion relative N25G 1 Y40 AS80 ;P3

to the center path of the cutter N30 G40 G48R13 ;P4

wit h G48: R radius of the retracting mo tion relative
to the center path of the cutter

Optional addresses [..]:
X, XI, XA X coordinate of the first contour point
Y, Yl, YA Y coordinate of the first contour point
Z, Zl, ZA infeed at the approach po int in the Z axis
W absolute position in fast mo tion in the infeed axis
E feed rate for plung ing

G54-G57 Adjus table abs olute z ero point s hift

Structure of NC block workpiece
G54   or  G 55   or  G5 6  or  G57 zero point  W
machine
Explanatory notes: zero point  M
The workpiece zero point W is determined by the
commands G54 to G57 and has a defined distance to
the machine zero point. The operator enters the shift
values into the zero point register of the co ntroller
before starting the program. The zero point is always

specified in absolute coordinates (XA, YA, ZA) relative
to the machine zero point.

G59 Inc remental z ero point s hift and rotation workpiece
zero point W 2
Structure of NC block
G59 [XA] [YA] [ZA] [AR] •i Kmachine  3  .

Optional addresses [..]: \ /zero point M j®
XA absolute X coordina te of the new workp iece zero point L>  / I
YA absolute Y coordinate of the new workp iece zero point
ZA absolute Z coordinate of the new workpiec e zero point *x '+X'
AR angle of rotation of the new coordinate system relative
XA workpiece
to the X axis zero point W 1

ExplaIfntahteorcyoonrodtiensa:te system of the workp iece is rotated in N10 ..
its current position, only the angle of rotation is specified:
N... G59 AR- N15G54 ;W1

The zero point shift launched via G54...G57 is reset by: N20 G59 X20 Y40 Z30 AR45 ;W2
N... G50

http://slidepdf.com/reader/full/mechanical-and-metal-trades-handbook-56d51be067c7a 398/431

7/18/2019 Mechanical and Metal Trades Handbook

Automation: 7. techno logy 395

Program structure of  CNC m achines according to PAL

PAL cycles for m illing mach ines

G81 Drilling cycle

Struc ture of NC bloc k GO rapid The center of the Machining example
G81 ZI/ZA V [W] [F] [S] [M] motion hole is the point ZA
G1  fe e d where the cycles
Obligatory addresses: are called G76-G79
Zl depth of bore in the feed axis XI/YI
ZA absolute depth of bore relative to the W

coordinate system of the workpiece Zl N10 ...
V safety distance from the top edge of XI/YI N15  G81  ZI-18 V6 W15
N2 0G7 9X.. Y.. Z.. ;cycle call
the hole
Optional addresses [..]:
W retract level relative to the coordinate

system of the workpiece

G82 Deep drilling c y c le wi th pec k ing G83 Deep drilling cycle w ith pecking and full retraction

Structure of NC block G83 has the following features:
G82 ZI/ZA D V [W] [VB] [DR] [DM] - the same addresses as G82
- retracts to the safety distance V for chip remo val
[U] [O] [DA] [E] [F] [S] [M ]

G83 Z[UI/]Z[AO]D[DVA[]W[E] ][V[FBR] ][D[FR] ][S[D] M[M] ] aFnRd rianpiadddmitoiotinon reduction in %

Obligatory addresses: — G O r ap id

ZI/ZA depth of bore in the feed axis motion

Zl incremental depth from the top edge of the hole G1  feed

ZA absolute depth in workpiece coordinates ZA

D pecking amou nt Machining example
ZA
V safety distance above the top edge of the hole

Optional addresses [..]:

W retract level relative to the coordinate

system of the workpiece

VB retract distance to the current hole bottom

DR reduction value of the last pecking amo unt

DM m inim um pecking amo unt (unsigned)

U dw ell tim e at hole botto m (relative to pecking) N10...
0 unit of the dwell time N15 G82 ZI-30 D10 V3 W4 VB1.5 DR3 U1 01 DA6
N20 G79 X.. Y.. Z.. ;cycle ca ll
01 dwell time in seconds
02 dwell time in number of revolutions
DA increme ntal spot-drilling depth of the first infeed
E spo t-drilling feed rate

G84 Tapping cycle

Struc ture of NC bloc k

G84 ZI/ZA F M V [W] [S] G1 feed

Obligatory addresses:

Zl incremental depth from the top edge of the hole
ZA absolute depth in workpiece coordinates

FM tdhirreeactdiopnitocfhtool rotation for plunging N15 G84 ZI-12 F1.25 M 3 V4 W 7 S800
M3 right-hand thread M4 left-hand thread N20 G79 X.. Y.. Z.. ;cycle call

V safety distance to the top edge of the hole Machining
e x a m p l e  ZA
Optional addresses [..]:
W retract level relative to the coordinate XI/YI
N10 ...
system of the workpiece N15G 85 ZI-17 V3 W8 E260
G79 X.. Y.. Z.. ;cycle call
G85 Reaming cycle

Struc ture of NC bloc k r i  reaming
G85 ZI/ZA [W] [E] [F] [S] [M] feed

Obligatory addresses:
ZI/ZA drilling dep th in the infeed axis
Zl incremental depth from the top edge of the hole

ZVA asabfseotylutdeistdaenpcteh frionmwotrhkeptioepceedcgoeorodfitnhaetehsole
Optional addresses [..]:
W retract level relative to the coordinate

system of the workpiece
E feed speed of the retracting mo tion

http://slidepdf.com/reader/full/mechanical-and-metal-trades-handbook-56d51be067c7a 399/431

7/18/2019 Mechanical and Metal Trades Handbook

396 Automation: 7. technology

Program structure  of CNC m achines according to PAL

PA L c y cl es f o r m i l l i n g m a c h i n e s Machining example

G86 Boring cycle

Struc ture of NC bloc k
G86 ZI/ZA V [W] [DR] [F] [S] [M]

ZOIb/ZliAgatdoerpythadtodrbeessbeosr:ed out - aZAXA/YAi  i ;DR-W Zl  ZA Mzsi 1 Zl
Zl depth of bore in the infeed axis XA/YA —  T
ZA absolute depth of bore relative to the coordinate >
m & XI/
system of the workpiece E Z ZA Zl 119 Yl
V safety distance from the top edge of the hole
N10 ...
Optional addresses [..]: N15G86ZI-9 V2 W10 DR2
W retract level relative to the coordinate system N20 G79 X.. Y.. Z.. ;cycle call

of the workpiece
DR radial retract distance to the conto ur

G87 Plunge milling cycle Machining example

Struc ture of NC bloc k ZA
G87 ZI/ZA R D V [W ] [BG] [F] [S] [M l X l /  ft   XA/YA
Yl
Obligatory addresses: (OJ
ZI/ZA depth of hole to be bored out BG2
Zl incremental depth from the top edge
ZA absolute depth of bore relative to the N10...
N15 G87 ZI-8,5 R10.92 D3 V3 W13 D3 BG2
coordinate system of the w orkpiece N2 0G 79X .. Y.. Z.. ;cycle call
R radius of the hole to be milled out
D infeed per helical line

(pitch of the helical motion)
V safety distance from the top edge of the hole

Optional addresses [..]:
W retract level relative to the coordinate

system of the workpiece
BG2 machining , clockwise
BG3 machining, counter clockwise

G88 Internal thread milling cycle

Struc ture of NC bloc k Machining example
G88 ZI/ZA DN D Q V [W] [BG] [F] [S] [M] rfn

Obligatory addresses: M24x2
ZI/ZA depth of thread N10...
Zl incremental depth of thread from the top edge N15 G88 ZA-16 DN24 D2 Q7 V1.5 W 10 BG3 F..
ZA absolute depth of thread relative to the N20 G79 X.. Y.. Z.. ;cycle call

coordinate system of the workpiece
DN nom inal diameter of the internal thread
D thread pitch
Q number of thread grooves of the tool
V safety distance from the top edge of the hole

WOptionarel taradcdtrelesvseelsre[.l.a]:tive to the
coordinate system of the w orkpiece

BG2 machining, clockwise
BG3 machining, counter clockwise

G89 Ex ternal thread milling c y c le

Struc ture of NC bloc k Machining example
G89 ZI/ZA DN D Q V [W ] (BG] [F] [S] [M ]

Obligatory addresses: XA /YA tq ZA 13  Zl
Zl incremental depth of thread from the top edge I—J]—L 8M0/YI
ZA absolute depth of thread relative to the
XA/YA i £ : 3 r
coordinate system of the workpiece
DN nominal diameter of the external thread

D thread pitch 3-M20x1,5
Q number of thread grooves of the tool BG3 +018.16
V safety distance to the top edge of the hole

Optional addresses [..]: N10 ...
W retract level N15 G89 ZI-8 DN18.16 D1.5 07 V5 W13 BG3 F..
BG2 m achining, clockwise N2 0G 79X .. Y.. Z.. ;cycle call
BG3 mach ining, counter clockwise

http://slidepdf.com/reader/full/mechanical-and-metal-trades-handbook-56d51be067c7a 400/431


Click to View FlipBook Version