The words you are searching are inside this book. To get more targeted content, please make full-text search by clicking here.

The Mechanical and Metal Trades Handbook is well-suited
for shop reference, tooling, machine building, maintenance
and as a general book of knowledge. It is also useful for educational
purposes, especially in practical work or curricula and continuing education programs.

Discover the best professional documents and content resources in AnyFlip Document Base.
Search
Published by Ts. Mohamad Faezal Omar Baki, 2021-09-01 11:28:23

Mechanical handbook

The Mechanical and Metal Trades Handbook is well-suited
for shop reference, tooling, machine building, maintenance
and as a general book of knowledge. It is also useful for educational
purposes, especially in practical work or curricula and continuing education programs.

Keywords: Mechanical handbook,handbook,mechanical

7/18/2019 Mechanical and Metal Trades Handbook

Produc tion engine ering 6.3 Ma chinin g processes, ools

Designation of  indexable and short indexable insert holders   c f  MOTW
Designation example:

Holder DIN 4984 - C T W N R 32 25 M 16

standard no.

of holder —
holding method
insert
shape1'
design of holder
normal clear, angle of insert1' a n  —
type of holder
height of cutting edge  h^ = h2  in mm
shank width w in m m
length of holder /•|  in m m

indexable insert size1' —

1) For indexable inserts, see page 296

http://slidepdf.com/reader/full/mechanical-and-metal-trades-handbook-56d51be067c7a 301/431

7/18/2019 Mechanical and Metal Trades Handbook

298  Produc tion engine ering 6.3 Ma chining processes, c an

Forces and pow er in turning and drilling

Turning

Fc  cutting force in N Correction factor  C  for
A  chip section in m m 2 the cutting speed

a p  cutting depth in mm Cutting speed
vc   in m/min
hf    fceheipd tpheicrkrneevsosluitniomn min mm C
x  cuttin g edge angle in degrees (°)
C   correction factor for the cutting 10-30 1.3
31-80 1.1
speed 81-400 1.0
v c  cutting speed in m/m in Chip section
kc   specific cutting force in N/ m m 2
A = ap  • f
(page 299)
P c  cutting power in kW Cutting force
P-\ drive pow er of the mac hine tool in kW
rj efficiency of the machine tool

Example: Fc   - A • • C

c

AS osuhgahf tt oaff t e1 6r:M  hn;C  r5, a p  = 5 mFmc; , Pf=-, w  0i.t3h2  rjm =m0, .v7c5 = 110 m/min,  x  = 75 Chip thickness
kc; C; A;
h = f • sinx
So l u ti o n :  h =  f  • s inx = 0.32 mm   • sin 75° = 0.31 m m

kc   = 3735N/mm 2  (see table on page 299), Cutting power

C   = 1.0 (see correction factor table) Pc = Fc. vc

A   =a p  -f  = 5 m m   • 0.32 mm  = 1.6 m m 2

= A  •  kc   •  C 1.6 m m 2  •  3735 N • 1.0 = 5976 N Drive power
mmz Pi
Pr
5976N • 110 m „ i l ™ 4 A <
= 14608 W = 14.6 kW —

0.75 • 60 s

Drilling

F c  cutt ing force per edge in N Correction factor  C   for
z num ber of cutting edges (twist drill z = 2) the cutting speed
A  chip section in m m 2
Cutting speed C
d  drill diameter in mm vc   in m/min
f   feed per revolution in mm
fz   feed per cutting edge in mm 10-30 1.3
o drill point angle in degrees (°) 31-80 1.1
h  chip thickness in mm
C  correction factor for the cuttin g speed Chip section per cu tting
vc  cutting speed in m/m in edge
kc specific cutting force in N /m m 2  (page 299)
Pc  cutting power in kW d•f
Pi drive power of the machine tool in kW
rj   efficiency of the machine tool 4=

Example: Cutting force per cutting edge1'
F r= * \. 2- A - k r - C

Material 42CrMo4,  d=   16 m m, v c = 2 8 m /m i n ,  f=  0.18 m m, o = 118c Chip thickness

Sought after:   h;  kc; C;   A; Fc; P c

^ . _. , f o  0.18 m m . sin o

So l u ti o n :  h   = - sin sin 59° = 0.08mm 22

222 Cutting power

k c   = 6 26 5 N / m m 2  (see table on page 299) pr vc
= d 4 f   16 m m 40.18 mm 0.72 m m 2 c~ 2

C   = 1.3 (see correction factor table)

Fc   =1.2  -A   •  kc   • C = 1.2 •  0.72 mm 2  • 6265 1.3 = 7037 N
mnr1
2 • 7037 N -2 8 m N  • m Drive power
P, = ~
• = 3284 = 3284W = 3.3 kW

2  60 s •  2 s
1 1  The specific cutting force values  ke  are assessed in turning tests.
1
The conv ersion to drilling is realized via the factor 1.2 in the form ula. 302/431

http://slidepdf.com/reader/full/mechanical-and-metal-trades-handbook-56d51be067c7a

7/18/2019 Mechanical and Metal Trades Handbook

Production engin eering 6.3 Ma chining processes, c an

Specific cutting force

The specific cutting force is the the force that is required to separate a chip
with a cross section of  A  =  1 m m 2  from a workpiece. The values are assessed in
turning tests and form the basis of the calculation of the cutting forces and the
drive power in chip-removing machining processes.

k c  specific cutting force N/ m m 2

h  chip thickness in mm
f   feed in mm
a p  cutting depth in m m
x angle of incidence in degrees (°)

The chip thickness  h depends on the applied m achining process.
Calculation of chip thicknesses: pages 298 and 300.

Standard values for th e specific cutting forc e1)

Material Specific cutting force ^ in N/m m 2 for the ch ip thickness  h  i n m m
0.05 0.08 0.10 0.15 0.20 0.25 0.30 0.40 0.50 0.80 1.00 1.50 2.00

S235 3850 3555 3425 3195 3040 2930 2840 2705 2605 2405 2315 2160 2055
E295 5635 4990 4705 4235 3930 3710 3535 3285 3100 2740 2585 2330 2160

E355 4565 4215 4055 3785 3605 3470 3365 3205 3085 2850 2745 2560 2340

C15, C15E 4575 4125 3925 3590 3370 3210 3085 2895 2755 2485 2365 2165 2030
C35, C35E 4425 3895 3670 3290 3045 2865 2725 2525 2375 2095 1970 1765 1635
C45, C45E 4760 4210 3975 3575 3320 3130 2985 2770 2615 2315 2185 1965 1825

C60, C60E 4750 4365 4190 3895 3700 3555 3440 3265 3135 2880 2770 2575 2445
11S Mn Pb3 0 2675 2460 2360 2195 2085 2000 1935 1840 1765 1625 1560 1450 1375
16MnC r5 5950 5265 4965 4470 4150 3915 3735 3465 3270 2895 2730 2455 2280

20M nCr5 5775 5135 4855 4385 4085 3860 3690 3435 3245 2885 2730 2475 2295
18CrMo4 4955 4575 4405 4110 3915 3770 3655 3480 3350 3095 2975 2780 2645
34C rAIM o5 4930 4360 4115 3705 3435 3245 3095 2870 2710 2395 2260 2035 1890

42CrMo4 7080 6265 5915 5320 4940 4660 4445 4125 3890 3445 3250 2925 2715
50CrV4 6290 5565 5250 4725 4385 4140 3945 3660 3455 3060 2885 2595 2410
102Cr6 5895 4910 4500 3840 3435 3145 2930 2620 2400 2000 1835 1565 1400

90MnCrV8 5610 5080 4850 4455 4195 4000 3850 3625 3460 3135 2990 2745 2585
X210CrW12 5155 4565 4305 3875 3595 3395 3235 3005 2835 2510 2365 2130 1975
X5C rNi18-10 5730 5190 4955 4550 4285 4085 3935 3705 3535 3200 3055 2805 2640

X30Cr13 5155 4565 4305 3875 3595 3395 3235 3005 2835 2510 2365 2130 1975
T1AI6V4 3340 3025 2890 2655 2495 2385 2295 2160 2060 1985 1780 1635 1540

GJL-150 2315 2100 2005 1840 1730 1650 1590 1500 1430 1295 1235 1135 1065
GJL-200 2805 2495 2360 2130 1985 1875 1790 1670 1575 1405 1325 1200 1115
GJL-400 4165 3685 3480 3130 2905 2740 2615 2425 2290 2025 1910 1720 1595

GJS-400 2765 2455 2325 2100 1955 1845 1765 1645 1555 1380 1305 1180 1100
GJS-600 3200 2955 2845 2655 2530 2435 2360 2250 2165 2000 1925 1795 1710
GJS-800 5500 4470 4055 3390 2985 2710 2500 2200 1995 1625 1470 1230 1085

AlC uM gl 2150 1930 1835 1670 1565 1485 1425 1335 1265 1135 1080 985 920
AIMg3 2020 1810 1725 1570 1470 1395 1340 1250 1190 1065 1015 925 865
AC -AISi12 2150 1930 1835 1670 1565 1485 1425 1335 1265 1135 1080 985 920

MgAI8Zn 895 820 785 725 690 660 635 605 580 530 505 470 445

CuZn40Pb2 1740 1600 1535 1425 1355 1300 1260 1195 1150 1055 1015 945 895
CuS n7ZnP b 1760 1565 1480 1335 1245 1175 1125 1045 990 880 830 750 700

1 )  The standard values app ly to tools w ith h ard metal edges. Tool wear increases the specific cuttin g force by
approximately 30%. The values specified in the table include this addition. For turning, drilling (page 298) and
milling processes (page 300), the effect of the cutting speed on the standard values for the specific cutting force
is considered via correction factors C in the upper table.

http://slidepdf.com/reader/full/mechanical-and-metal-trades-handbook-56d51be067c7a 303/431

7/18/2019 Mechanical and Metal Trades Handbook

300  Produc tion engine ering 6.3 Ma chining processes, c an

Forces and p ower in m illing

Face m illing

cutting force per tooth in N Feed rate
A chip section per tooth in m m 2 Vj   = N - fz-   n

aP cutting depth in mm Chip cross section
per tooth
ae engagement (milling width) in mm
h chip thickness in mm A = ap-fz
f feed per revolution in mm
Cutting force per tooth11
fz feed per tooth in mm
d cutter diameter in mm Fc=1.2 A - kc   - C

vc cutting speed in m/min
Vf feed rate in mm/min
N number of teeth
/Vp numb er of teeth engaged

angle of engagement in degrees (°)
specific cutting force in N/mm 2

c(poargreec2ti9o9n) factor for the
cutting speed

cutting power in kW

Py drive power in kW
effective pow er of the m achine
tool

Example: Chip thickness
for d = (1.2-1.6)- a e 2 )
Material 16MnCr5;  d=   180 m m;   N  = 12; a e = 120 mm ; a p  = 6 m m ;
fz  = 0.10 mm ;  vc  = 8 5 m / m i n ; rj  = 0.8. h ~f7

Sought after:  A; h;  kc; Fc;   (p;   A/e; P c ;  Py m2
Solution: A  = a p -  fz  = 6 m m  • 0.1 m m  = 0.6 m

h fz  = 0.1 m m

kc   = 4965 N (table on page 299)

mm' Number of teeth
Fc   = 1.2 • A  • kc   •  C; C = 1.0  (table of correction factors C) engaged

' c 1.2 -0.6 m m 2 -  4965 N • 1.0 m m = 3575 N <P
mm"
d_ 180 m m = 1.5; <p = 83° (angle of eng age me nt  <p table) A/p = N 36 0c

a Q 120 m m

= 12 • 83° = 2.8

360°

Pc   = Ne-F c- vc=   2.8 - 35 7 5N •6^0s^ = 14181  14.2kW
P,  14.2 kW = 17.8 kW
Cutting power
0.8 Pc= Ne- Fc   •  VC

An g l e o f e n g a g e m e n t <p Correction factor C Drive power
for the cutting speed rj
d/ ae cp  in  ° d/ ae <p  in   0 d/ ae ip  in  °
96 1.50 83
1.20 113 1.35 1.55 80
1.60 77
1.25 106 1.40 91 Cutting speed C
vc   in m/min
1.30 100 1.45 87 1.1
30-80 1.0
d cutter diameter 81-400
ae engagement

1 )  The values of the specific c uttin g force kc (page 299) are assessed in turn ing tests. The conve rsion to mil ling is 304/431
achieved via the factor 1.2 in the formula.

2 )  In order to ensure favorable cutting conditions, the cutter diameter should be selected in the range
d = (1.2-1.6) • a e .

http://slidepdf.com/reader/full/mechanical-and-metal-trades-handbook-56d51be067c7a

7/18/2019 Mechanical and Metal Trades Handbook

P ro du ctio n e ng in ee rin g 6.3 M a ch in in g processes, anas

Drilling

Twist drills of hig h-speed steel (HSS) cf. DIN 1414-1 (2006-11)

Helix angle Type1' Application Helix Point angle3)
angle2' 11 8c
11 8c
Universal application for materials 30°-40c 13 0c
up to  R m  « 1000 N/mm 2, e.g. structural, case-
hardened, quenched and tempered steels

Drilling of brittle, short-chipping 13°-19c
non-ferrous metals and plastics, e.g.
CuZn alloys and PMMA (Plexiglas)

Drilling of soft, long-chipping non-ferrous 40°-47c
W metals and plastics, e.g. Al and Mg alloys, PA

(polyamide) and PVC

Point angle 1 1  Tool application groups for HSS tools acco rding to DIN 1835
2 )  Depends on drill diameter and pitch
3 )  Standard version

S t an d a r d v a lu e s f or d r i l li n g w i t h H SS t w i s t d r i l l s 1)

Workpiece matesrial Cutting Drill d iameter  d  in mm
speed2'
2-3 >3-6 >6-12 >12-25 >25-50
Material group Tensile strength
Rm  in N/mm 2
m/min

or Feed f   in mm/revolution

Hardness HB

Steels, low strength Rm  < 800 40 0.05 0.10 0.15 0.25 0.35
Steels, high strength Rm   >  800 20 0.04 0.08 0.10 0.15 0.20
Stainless steels Rm  < 800 12 0.03 0.06 0.08 0.12 0.18
Cast iron, malleable cast iron <2 50 HB 20 0.10 0.20 0.30 0.40 0.60

Al alloys Rm  < 350 45 0.10 0.20 0.30 0.40 0.60
Cu alloys Rm  < 500 60 0.10 0.15 0.30 0.40 0.60
0.10 0.15 0.30 0.40 0.60
Thermoplastics - 50 0.05 0.10 0.18 0.27 0.35

Thermoset plastics - 25 >25-50

Standard values for drilling w ith carbide d rills 1) 0.40
0.40
Workpiece mate5rial Cutting Drill diameter  d  i in m m 0.40
speed2' 0.70
2-3 >3-6 I >6-12 >12-25 0.80
Material group Tensile s trength v  0.60
Rm  in N/mm2 0.40
m/min 0.40

or Feed f   in mm/revolution

Hardness HB

Steels, low strength Rm  < 800 90 0.05 0.10 0.15 0.25
Steels, high strength Rm   >  800 80 0.08 0.13 0.20 0.30
Stainless steels Rm  < 800 40 0.08 0.13 0.20 0.30
Cast iron, malleable cast iron < 250 HB 100 0.10 0.15 0.30 0.45
180 0.15 0.25 0.40 0.60
Al alloys flm   < 350 200 0.12 0.16 0.30 0.45
Cu alloys ftm   < 500 80 0.05 0.10 0.20 0.30
Thermoplastics 80 0.05 0.10 0.20 0.30
-

Thermoset plastics -

Standard values for m odified co nditions

Standard values for cutting speed and feed are valid for moderate usage conditions: short drill
• tool life approx. 30 min • average strength of material • hole depth < 5  •  d
Standard values are • increased for more favorable conditions,

• decreased for unfavorable conditions

1 )  For coo ling lubricants, see pages 292 and 293 2 >  Values for coated drills

http://slidepdf.com/reader/full/mechanical-and-metal-trades-handbook-56d51be067c7a 305/431

7/18/2019 Mechanical and Metal Trades Handbook

3 0 2  P ro du ctio n e ng in ee rin g 6.3 M a ch in in g processes, anas

Reaming and tapping

Standard values for reaming w ith HSS reamers 1*

Workpiece mater ial Cutting speed Tool cliameteir d  in m mi Reami ng allow.
ford ' in mm
Material group Tens, strength
Rm  in N/mm2
m/min 2-3 >3-6 >6-12 >12-25 >25-50 to 20 >20-50
or
Feed f   in mm/revolution
Hardness HB

Steels, low strength Rm   - 800 15 0.06 0.12 0.18 0.32 0.50
Steels, high strength Rm  > 800
Rm  < 800 10 0.05 0.10 0.15 0.25 0.40
tainless steels <2 50 HB
Cast iron, malleable cast iron 8 0.05 0.10 0.15 0.25 0.40 0.20 0.30

15 0.06 0.12 0.18 0.32 0.50

Al alloys Rm  < 350 26 0.10 0.18 0.30 0.50 0.80
Cu alloys Rm   < 500
26 0.10 0.18 0.30 0.50 0.80
hermoplastics -
14 0.12 0.20 0.35 0.60 1.00 0.30 0.60

Thermoset plastics - 14 0.12 0.20 0.35 0.60 1.00

S t an d a r d v a l u es fo r r e am i n g w i t h c ar b id e t o o l i n g 1)

Workpiece mater ial Cutting speed Tool dliametei d  in m m Reamiing allow.
ford ' in m m
Material group Tens, strength
Rm  in N/mm2
m/min 2-3 >3-6 >6-12 >12-25 >25-50 to 20 >20-50
or
Hardness HB Feed f   in mm/revolution

Steels, low strength Rm  < 800 15 0.06 0.12 0.18 0.32 0.50

Steels, high strength Rm   >  800 10 0.05 0.10 0.15 0.25 0.40

Stainless steels Rm  > 800 0.20 0.30
Cast iron, malleable cast iron < 250 HB 10 0.05 0.10 0.15 0.25 0.40
25 0.10 0.18 0.28 0.50 0.80

Al alloys Rm   < 350 30 0.12 0.20 0.35 0.50 1.00

Cu alloys Rm  < 500 30 0.12 0.20 0.35 0.50 1.00
hermoplastics
- 20 0.12 0.20 0.35 0.50 1.00 0.30 0.60

Thermoset plastics - 30 0.12 0.20 0.35 0.50 1.00

Standard values for tappin g and thread form ing 1*

Workpiece mater ial H<5S too l Carbicie tool

Material group Tens, strength Thread Tapping2' Thread
forming2' forming2'
Rm  in N/mm2 Tapping2'
or
Cutting sfDeed v c  m/min Cu tting spe<ed v c  m /m i n
Hardness HB

Steels, low strength Rm   s  800 40-50 40-50 - 40-60

Steels, high strength Rm   > 800 20-30 15-20 - 20-30

Stainless steels Rm   > 800 8-1 2 10-20 - 20-30

Cast iron, malleable cast iron < 250 HB 15-20 - 25-35 -

Al alloys Rm   < 350 20-40 30-50 60-80 60-80

Cu alloys Rm   s 500 30- 40 25-35 30-40 50-70

Thermoplastics - 20-30 - 50-70 -

Thermoset plastics - 10-15 - 25-35 -

For cooling lubricants, see pages 292 and 293 306/431
2 ' Upper limit values: for material group s wi th lower strengths; short threads

Lower limit values: for material groups with higher strengths; long threads

http://slidepdf.com/reader/full/mechanical-and-metal-trades-handbook-56d51be067c7a

7/18/2019 Mechanical and Metal Trades Handbook

P ro du ctio n e ng in ee rin g 6.3 M a ch in in g processes, anas

Turning

Roughness d epth depending on tool nose radius and feed

flth   theoretical  r   tool nose radius Theor. rough-
roughness depth  f   feed ness depth
a p  cutting depth
Example: ^th ~ 8 •  r

flth   = 25 pm;   r=   1.2 mm;  f = ?

= V8 • 1.2 mm -0.025 mm ~ 0.5 m m hh R,

Roughn. depth 0.4 Nose radius r in mm 1.6
ftth | 0.8 I 1.2
0.07 0.14
in pm 0.11 Feed f   in mm 0.23
0.18 0.36
1.6 0.23 0.10 0.12 0.45
4 0.28 0.16 0.20 0.57
10 0.25 0.31
16 0.32 0.39
25 0.40 0.49

S t an d a r d v a l u es f or t u r n i n g w i t h H SS t o o l s 1 ) 2 )

Material group Workpiece mate rial Cutting Feed C u t t i nagpd e p t h
speed  vc f
Tensile s trength in in
Rm  i n N / m m 2  or in mm
m/min mm
Hardness HB
40-80
Steels, low strength flm   < 800
30-60
Steels, high strength Rm  > 800
30 -60
Stainless steels Rm  > 800
20-3 5
Cast iron, malleable cast iron <250 HB 0.1-0.5 0.5-4.0

Al alloys Rm  < 350 120-180
Cu alloys flm   < 500 100-125
Thermoplastics 100-500
-

Thermoset plastics - 80-400

Standard values for turn ing using coated carbide to ol s 2)

Material group Workpiece matesrial Cutting Feed Cutting depth
speed  vc f
Tensile strength in aP
Rm  in N/m m 2  or in in
m/min mm mm
Hardness HB
200-350
Steels, low strength Rm  < 800
100-200
Steels, high strength > 800

Stainless steels Rm  > 800 80-2 00 0.1-0.5 0.3-5.0
Cast iron, m alleable cast iron <250 HB 100-300

Al alloys f?m < 350 400-800
Cu alloys Rm  < 500 150-300
Thermoplastics 500-2000
-

Thermoset plastics - 400-1000

App lication of the cutting data range

Example: Standard values for turning of steels with lower strengths using carbide tools

Upper values Application Lower values Application

vc   = 350 m/ min finish ma chinin g (finishing) vc   = 200 m/m in premachining (roughing)
stable tool and workpiece unstable tool or workpiece

f= 0.5 mm, premachining (roughing) f=  0.1  m m , finish machining (finishing)
a p  = 5.0 mm stable tool and workpiece a p  = 0.3 m m unstable tool or workpiece

1 )  HSS lathe tools have for the mos t part been replaced by lathe tools 2 )  Ma chining coolan t, see pages 292
with carbide indexable inserts. and 293

http://slidepdf.com/reader/full/mechanical-and-metal-trades-handbook-56d51be067c7a 307/431

7/18/2019 Mechanical and Metal Trades Handbook

304 P ro du ctio n e ng in ee rin g 6.3 M a c hin in g p ro ces se s, a n i n g

Taper turning

Terminology for tapers D  large taper diame ter cf. DIN ISO 3040(1991-09)
d  small taper diameter
^   1: x   (taper ratio) L  taper length y taper incline

a taper angle 1: x   taper:
a taper-generating angle on a taper length of  x   m m
2 (setting angle) the taper diameter
C  taper ratio changes by  1 m m .

Taper turning on CNC lathes

CNC program according to DIN 660251)  to produce a
workpiece with a taper (see figure):

N10 GOO X0 Z2 Approach at rapid speed

N20 G01 X0 Z0 F0.15 Traversing motion to P1

N30 G01 X50 Traversing motion to P2

N40 G01 X60 Z-25 Traversing motion to P3
N50 G01 Z-40 Traversing motion to P4
Traversing motion over P5
N60 G01 X72 Tool change point

N70 GOO X10 0 Z150

1) Compare to page 387

Taper turnin g b y setting the com pou nd rest

Example: Setting angle

D = 22 5 m m ,  d=   150 mm ,  L = 100 m m ; a _C

tan—

a  D-d a 2 ~D-2d
tan —  = tan—2 = 2-L

2 (22 2• 5L- 150) m m = 0.375 Taper ratio
2-  100 m m

- =20.556° = 20° 33 22

2 (225 - 150) m m = 0 . 7 5 -1 : 1.33
D-d  

C=
L ~  100 m m

Taper turnin g by offsetting the tailstock

tailstock offset Tailstock offset

lathe axis Wm ax maximum allowable
tailstock offset
Lw
workpiece length

Example:

tailstock D = 20 mm ;  d   =18 mm ; Maximum allowable
centerline L  = 8 0 m m ; L w  = 100 m m tailstock offset1'

parallel to V T   =  ?; V m- ax = ? 1/ <
lathe axis T max -  5 Q
1  2 L

(20 -18 ) mm 100 mm = 1. 2 5 m m
2 80 mm

L^ 100 m m _
VT   = 2 m m
—=
T m a x  ~ 50 50

1 )  If the tailstock offset is too large the workpiece cannot be secured betwee n the lathe centers. 308/431

http://slidepdf.com/reader/full/mechanical-and-metal-trades-handbook-56d51be067c7a

7/18/2019 Mechanical and Metal Trades Handbook

P ro du ctio n e ng in ee rin g 6.3 M a ch in in g processes, anas

Milling

Standard values for m illing w ith HSS milling cutters

Workpiece mater ial Cutting Feed ft  in mm
speed
Material group Tensile strength Milling cutter End m i l l  d   in m m
Rm  in N/m m 2  or in m/min (except for
50-100
Hardness HB 30-60 end mill) 6 20
15-30
Steels, low strength Rm  < 800 25-40 12
50-150
Steels, high strength Rm  > 800 50-100
100-400
Stainless steels Rm  > 800 100-400

Cast iron, malleable cast iron < 250 HB 0.05-0.15 0.06 0.08 0.10

Al alloys Rm  < 350

Cu alloys Rm  < 500

Thermoplastics -

Thermoset plastics 0.10-0.20 0.10 0.15 0.20

-

Standard values for m illing w ith coated carbide Feied ft  in mm

Workpiece m aterial Cutting

Material group Tensile stren gth speed Milling cutter End m i l l  d   in m m
Rm  i n N / m m 2  or (except for
vc
Hardness HB in m/min end mill) 6 12 20

Steels, low strength Rm  < 800 200-400

Steels, high strength Rm  > 800 150-300

Stainless steels Rm  > 800 150-300

Cast iron, malleable cast iron < 250 HB 150-300 0.05-0.15 0.06 0.08 0.10

Al alloys Rm  < 350 400-800

Cu alloys Rm  < 500 200-400 0.10-0.20 0.10 0.15 0.20
Thermoplastics 500-1500
-
Thermoset plastics 400-1000
-

Increasing th e recom mend ed feed per cutting edge ft  f or s l o t t in g w i t h s i d e m i ll i n g c u t t er s

side milling cutter Cutting depth ae, based on the milling cutter 0  d

Feed 1/3 - d 1/6 - d i / i o  -  cy 1/20 •  d
per tooth

increase 1A 1.15- ft 1.45 •  ft 2- ft

to be adjusted 0.25 mm 0.29 mm 0.36 mm 0.50 mm

Meanings of cu tting data ranges

Example: Standard values for milling of low-strength steels using HSS milling cutters

Upper values Application Lower values Application

v c  = 100 m/ min finish ma chinin g (finishing) vc  = 50 m/min premachining (roughing)
rigid tool and workpiece ft = 0.05 m m low rigidity of tool or w orkpiece

ft = 0.15 mm premachining (roughing) finish machining (finishing)
rigid tool and workpiece low rigidity of tool or w orkpiece

Calculation of feed rate

Vf feed rate in m m /m in n rotational speed of milling cutter in 1/min
N  number of teeth
ft  feed per tooth in mm
Example: Feed rate

v c = 1 00 m /m i n ; d = 4 0 m m ; ft  = 0.12 mm; N= 10 V f= n - ft- N
v c  100 m/m in
= n~d =  jt 0 04 m  = 7 9 6 1/mi n; v i = n ,/r t -  A/ = 796/min  • 0.12 m m • 10 = 95 5 m m / m i n

http://slidepdf.com/reader/full/mechanical-and-metal-trades-handbook-56d51be067c7a 309/431

7/18/2019 Mechanical and Metal Trades Handbook

306 P ro duc tio n e ng in ee rin g 6.3 M a ch in in g processes, a n a s

Troubleshooting for drilling , turning and m illing

Processes and pro blem s 1' Possible corrective measures

Drilling

CD

TCJ/3

1c -o 4— oo 0 en  w D CD vc ,>
.2E? eCDn O
™oQ.o C>DcoOcCJ 0) 4-" 1s = "D tO <•4—-= 00
=Qi -  COET3 c5  t;  «
CO  E CD ® CO <13 II 1—
Q.jE>
0 CO °  M .a
X JS §1 >
> "D

Check cutting geometry

Increase supply of lubricant

Decrease feed  f

Increase cutting speed vc

Decrease projection length
Check cutting parameters

Check type of carbide

Turning

TJ _0)
C JxcDo
C CD OCD) ^'T0QOlcC<DCaD/3.DL.TtCoCCCC=sDDJ3DD JtC;DZ<D  C3/ ~cCoD
co O   (D 4-
CD  O) o CD
LJ o
Ec CO
CCOD BCD t

O CD •4oO— )" OO<)» Oco <Dw CA C/3

4=  TJ oaE c
COcD. =CcoL
CEO Co•cD=> =C   CE'ED O
co
O co
CD £
CL  5

D o O o (J1_ CO o .V- C - I c3 >.a

Change cutting speed vc

Change feed  f

Decrease cutting depth

Choose a more wear-resistant carbide type

Choose tougher carbide type

Choose a positive cutting g eome try

Milling

"O _Q)

-Q

±cco o o0)> "OCQD) CD XCO COD cCo/3
"O "OCCD tCO
oc§oi C <D O <D CD •iz   a) >4— QOO- Cc1Or3 CO
HOOc-)C"CD^DD
sz 4O=  C-aD C3 o £CCD O -19—
g> 3 =E
CO CD O CD
QCO-  ' X^
£ 05 CD Bt
CO o
O£ OCO CDc/3 i
."r c

Change cutting speed vc

Change feed ft
Choose a more wear-resistant carbide type

Choose tougher carbide type

Use milling cutter with w ider spacing

Change milling cutter position

Dry milling

1 )  • problem to be solved ft increase value of cutting parameter decrease value of cutting parameter

http://slidepdf.com/reader/full/mechanical-and-metal-trades-handbook-56d51be067c7a 310/431

7/18/2019 Mechanical and Metal Trades Handbook

P r od u c ti on e n g in e e ri ng 6.3 M a c h i ni n g p ro ce ss es , n i n g

Indexing w ith a dividing head

Direct indexing

dividing head indexing In direct indexing the dividing head spindle, along with Indexing step
spindle / plate the indexing plate and workpiece, is turned by the
desired index ing step. The worm is disengaged from the
1 worm wheel.

7 Dn h    nnoo.. ooff dhivoilessionins the indexin g plaat e angular division
r\\ index ing step; no. of hole spacings to be indexe d
/orkpiece
Example:
Worm disengaged n h  =24 ; D = 8; =? = —D   = —8   = 3

Indirect indexing

In indirect indexing the dividing head spindle is driven Indexing step
by the worm and worm wheel.

worm gear dividing head D no. of divisions  a  angular division n0r   =  —
spindle   D

workpiece n/' c  ginedaer xriantgio sotef pd;ivniod.inogf inhedaexding crank revolutions i  • a
for one division
360°

Example 1: _i_ 40 10 Circles of holes on
D = 6 8;  /' = 40;   nc  = ? "c   ~ D ~ 68 ~ 17 indexing plates
15 16 17 18 19 20
worm Example 2 : 21 23 27 29 31 33
locking pin 37 39 41 43 47 49
(engaged) a = 37.2°; / = 40;  nc  = ? or
2187 2199 3203 3214 3263 2377
indexing i-a   40 •  37.2° 37.2 186 _ 2 39 41 42 43 47 49
plate 51 53 57 59 61 63
indexing n r   = 360° 360° 9 9 •  5 ~ 15
crank Indexing step

Differential indexing ncr    = —D ,

dividing head In differential indexing the dividing head spindle is No. of teeth on
spindle driven with worm and worm wheel like indirect index- change gears
ing. Simultaneously the dividing head spindle drives
workpiece the indexing plate using change gears. A/dn  D'

worm gear locking D  no. of divisions a angular division
pin (dis-
indexing engaged) D'   auxiliary no. of divisions
crank
ndexing /' gear ratio of dividin g head
plate
n   indexing step; no. of indexing crank revolutions
c for one division

A /dg  no. of teeth of driving gears {N-\,   /V3)
/V dn  no. of teeth of driven gears (N 2, /V4)

For selecting  D'  the following applies:

D'> D\  Indexing crank and indexing plate must rotate

in the same direction.

D'< D:  Indexing crank and indexing plate must rotate

in opposite directions

If necessary the required direction of rotation is
achieved by means of an idle gear.

Example:

i = 40; D  = 97;  nCc   Nda = ?; D 'selected = 100
=7;-^

/Vdn

(Indexing crank and indexing plate must rotate in No. of teeth on
change gears
the same direction). 24 24 28
36 40 44
_ / _ 40 8 56 64 72 32
84 86 96 48
n° ~ D '~   100 20 80
100
1% = — - (D '- Dl = —1400 0 •  (100-97) = - -3 = - = —8
^dn D' 40

http://slidepdf.com/reader/full/mechanical-and-metal-trades-handbook-56d51be067c7a 311/431

7/18/2019 Mechanical and Metal Trades Handbook

3 0 8  P ro du ctio n e ng in ee rin g 6.3 M a ch in in g processes, anas

Grinding

Surface grinding vc  cutting speed Cutting speed
grinding wheel Vr   = K • d n •  n r
workpiece dg  diameter of grinding wheel
Feed rate
n'gn  rotational speed of grinding wheel
Vf feed rate VF   =  /_   • N<
L travel
Vf   = j t •  d |   • n
n s no. of strokes Surface grinding
di diameter of workpiece 

Cylindrical grinding work- n workpiece rotational speed Cylindrical
piece q speed ratio grinding

Example:

vc   = 30 m/s; vf = 20 m/m in;  q = ? Speed ratio
q = f—
grinding vr   30 m/s •  60 s/m in 1800 m/m in 90
wheel Vf 20 m/m in 20 m/min

S t a n d a r d v a l u e s fo r c u t t i n g s p e ed  v c  feed r ate v f, speed ratio  q

<Surface grindir >g Cylin drical   <j r i n d i n g
Material Peripheral gr inding Si ii n g External cyl. grindiing Inter ir i d ing
Steel d e whe e l v c Vf ial cyl. g r i i
v c Vf vc Vf n vc Vf q
m/s m/min q m/s q m/s m/min q m/s
m/mi m19/ m-2i3n 80
30 10-35 80 25 6-25 50 35 10 125 25

Cast iron 30 10-35 65 25 6-3 0 40 25 11 100 25 23 65

Carbide 10 4 115 8 4 115 8 4 100 8 8 60

Al alloys 18 15-40 30 18 24-45 20 18 24-30 50 16 30-40 30

Cu alloys 25 15-40 50 18 20-45 30 30 16 80 25 25 50

Grinding data for steel and cast iron w ith corundum or silicon carbide grinding wh eels

P r o c es s e s Grain size Grinding allow ance Depth of cut in mm Rz  in pm

Rough grind 30-46 0.5-0.2 0.02-0.1 3-10
Finishing 46-80 0.02-0.1 0.005-0.05 1-5
Precision grinding 80-120 0.005-0.02 0.002-0.008 1.6-3

M a x i m u m s p e ed o f g r i n d in g w h e el s cf. DIN EN 12413(2007-09)

Shape of grinding wheel Type of grinding machine G u i d e 11 Miaximu m s p eed   v c  iin m /s fo r  be>nd ty|pe2>

B BF E M R RF PL V

Straighhtt grinding wheel stationary pd or ho 50 63 40 25 50 - 50 40

hand-held grinder free-hand 50 80 - - 50 80 50 -

Straight cutting w heel stationary pd or ho 80 100 63 - 63 80 - -

hand-held grinder free-hand - 80

1 >  pd positively driven: feed by mechan ical means; ho hand operated: feed by operator-
free-hand grinding: grinding machine is guided entirely by hand;  2 )  Type of bond, see page 309

Restrictions for use of grinding to ols 3*' cf. BGV D12 4)  (2001-10)

VE Meaning VE Meaning

VE1 Not allow ed for free-hand or hand operated VE6 Not allowed for side wheeling
grinding VE7 Not allowed for free-hand grindin g
VE8 Not allowed with backing pad
VE2 Not allowed for free-hand abrasive cutting V E 10 Not allowed for dry grinding
VE3 Not allowed for wet grinding VE11 Not allowed for free-hand or hand operated abra-
VE4 Not allow ed in enclosed work area sive cutting
VE5 Not allowed witho ut vacuum exhaust

3 )  If no restriction is given, the grinding to ol is suitable for all applications.

Color stripes for m axim um allowable peripheral speeds > 50 m/s^ cf. BGV D12 4)  (2001-10)

Color stripe blue yellow red green blue & y ellow blue & red blue & green

v c  max  in   m /S 50 63 80 100 125 140 160
Color stripe yellow & red yell. & green red & green blue & blue yellow & yell. red & red green & green

Vc max  in m/s 180 200 225 250 280 320 360
4 )  BGV Berufsgenossenschaftliche V orschrift (Employers' Liability Insurance Asso ciation Provisions)
*) According to European Standards

http://slidepdf.com/reader/full/mechanical-and-metal-trades-handbook-56d51be067c7a 312/431

7/18/2019 Mechanical and Metal Trades Handbook

P roduction engineering 6.3 Machining processes, as

Abrasives, Bonds

Abrasives cf. DIN ISO 525 (2000-08)

Sym- Abrasive Chemical com position K n o op - Areas of application
bol hardness

Norm, corundum A l 2 0 3  + additions 18000 Carb. steel, unhardened steel, cast steel, malleable cast iron

A white fused alu- A l 2 0 3  in crystalline 21000 High and low alloyed steel, hardened steel, case hardened
mina form steel, tool steel, titanium
- Stainless steels
Z zircon corundum A l 2 0 3  + Z r 0 2 Hard materials: carbide, cast iron, HSS, ceramic, glass;
24800 soft materials: copper, aluminum, plastics
c silicon carbide SiC + additions 47000
60000 Lapping, polishing of carbide and hardened steel
BK boron carbide B4C in crystalline form 70000 High-speed steels, cold and hot work steels
CBN boron nitride BN in crystalline form Carbide, cast iron, glass, ceramic, stone, non-ferrous met-
als, not for steel; dressing of grinding wheels
D diamond C in crystalline form
cf. DIN ISO 525 (2000-08)
Hardness grade

Designatio n Hardn. grade Applic ation Designatio n Hardn. grade Application
External cylindrical grind-
extremely soft A B C D Deep and side wheeling of hard P Q R S ing; soft materials
hard materials
very soft EFG very hard TUVW
Conventional metal
soft H I J K grinding extremely hard X Y Z

medium LMNO

Grain size cf. DIN ISO 525 (2000-08)

Grain design ation for bo nded abrasives

Grain ranges coarse medium fine very fine
F30, F36, F46 to F60 F70, F80, F90 to F220 F230 to F1200
Grain designation F4, F5, F6 to F24
* 5-2.5 « 2.5-1.0 * 1.0-0.4
Attainable   Rz  in (jm « 10-5

Structure cf. DIN ISO 525 (2000-08)

Code 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14, etc. up to 30
Structure
dense (nonporous) open (porous)

Bond cf. DIN ISO 525 (2000-008) and VDI 3411 (2000-08)

Code Ty p e of b o n d Properties Areas of app lication

B synthetic resin bond, Nonporous or porous, elastic, Rough or cut-off grinding, form grinding with
diam. and boron nitride, high pressure grinding
BF fiber reinforced resistant to oil, cool grinding

E shellac bond Sensitive to temperature, tou gh wSahweetlofootrhcgernitnedrilensgs, fgorrimndignrginding, control
G galvanic bond elastic, impact resistant Internal grinding of carbide,
M metal bond hand grinding
MG magnesite bond Tight grip due to protruding Form and tool grinding using diamond
PL plastic bond grains or boron nitride, wet grinding
R rubber bond,
RF fiber reinforced Nonporous or porous, tough, Dry grinding, knife g rinding
insensitive to pressure and heat
Plastic abrasive material for finishing,
Soft, elastic, sensitive to precision finishing and polishing
water
Cut-off grinding
Soft, elastic depending upon
plastic and degree of hardening

Elastic, cold grinding,
sensitive to oil and heat

V vitrified (ceramic) bond Porous, brittle, insensitive cRooruugnhduamndafnindisshiligcroinndcinagrboidf esteels using
to water, oil, heat

Grind ing wh eel ISO 603-1 1 N-300 x 50 x 76.2 - A /F 36 L 5 V - 50:  Form   1 (straight grinding wheel), w heel 313/431
face N, outside diameter 300 mm, width 50 mm, hole diameter 76.2 mm, abrasive A (normal corundum or
white fused alumina), grain size F36 (medium), hardness grade L (medium), structure 5 vitrified (ceramic)
bond (V), maximum peripheral speed 50 m/s.

http://slidepdf.com/reader/full/mechanical-and-metal-trades-handbook-56d51be067c7a

7/18/2019 Mechanical and Metal Trades Handbook ls

3 1 0  P r o d u c t i o n e n g i n e e r i n g 6 .3 M a c h i n i n g p r o ce s s e s, i n i n g

Selecting grinding w heels

Standard values for selecting grinding wh eels (excluding d iamo nd and boron nitride)

Cylindrical grinding

Abrasive R o u e| h i n g Finishling with  >/vheel diarneter Fine firlishing

Material up to 5 00   m m over 51DO  m m

Steel, unhardened Grain size Hardness Grain size Hardness Grain size Hardness Grain size Hardness
Steel, hard., un alloy. and alloy. A 54 M -N 80 M-N 60 L-M 180 L-M
Steel, hardened, high alloyed
Carbide, ceramic A 46 L-M 80 K- L 60 J- K 240-500 H - N
Cast iron
Non-ferr. met., e.g. A l, Cu, CuZn A, C 80 M - N 8 0 N - 0 6 0 M -N 240-500 H - N

C 60 K 80 K 60 K 240-500 H - N

A, C 60 L 80 L 60 L 100 M

C 46 K 60 K 60 K - -

Internal cylindrical g rinding

Abrasive Grindiiig wheel diameter in mm

Material up t o 20 from 2Oto 40 from 4Oto 80 over 80

Grain size Hardness Grain size Hardness Grain size Hardness Grain size Hardness

Steel, unhardened A 80 M 60 L-M 54 L-M 46 K
Steel, hard., unalloy. and alloy. A 80 K-L 120 M - N 8 0 M - N 80 L
J
Steel, hardened, high alloyed A, C 80 J-K 100 K 80 K 60 G
M
Carbide, ceramic C 80 G 120 H 120 H 80 J

Cast iron A 80 L-M 80 K-L 60 M 46

Non-ferr. met., e.g. Al, Cu, CuZn C 80 l-J 120 K 60 J-K 54

I  Peripheral face grind ing

Abrasive Cu p  vvheel Str aight griniding w he>els Abrcisive
D< 3010  m m segnlents
Material D <  3010  m m D > 3010  m m

Grain size Hardness Grain size Hardness Grain size Hardness Grain size Hardness

Steel, unhardened A 46 J 46 J 36 J 24 J

Steel, hard., una lloy. and alloy. A 46 J 60 J 46 J 36 J

Steel, hardened, high alloyed A 46 H-J 60 l-J 46 l-J 36 l-J

Carbide, ceramic C 46 J 60 J 60 J 46 J

Cast iron A 46 J 46 J 46 J 24 J

Non-ferr. met., e.g. A l, Cu, CuZn C 46 J 60 J 60 J 36 J

I  Tool grinding

C u tti n g to o l ma te r i al Abrasive Straighlt grinding wheels Dish whee Is CiJP
D < 225 D  > 225 D < 100 D>  100 w h i eels
Tool steel
High-speed steel Grain size Grain size Hardness Grain size Grain size Hardness Grain size Hardness
Carbide
A 80 60 M 80 60 M 46 K

A 60 46 K 60 46 K 46 H

C 80 54 K 80 54 K 46 H

I  Cutting on stationary machines

Abrasive Straight <;u t-o ff w h eels  vc  upto 80 m/s Straight c:ut-off  wh<aels  vc  up :ot   100 m/s

Material D <  2010  m m D>   2010  m m 0 < 5 C )0 mm D> 5C)0 mm

Steel, unhardened Grain size Hardness Grain size Hardness Grain size Hardness Grain size Hardness
Cast iron
Non-ferr. met., e.g. A l, Cu, CuZn A 80 Q-R 46 Q-R 24 U 20 Q-R

A 60 Q-R 46 Q-R 24 U -V 20 U-V

A 60 Q-R 46 Q-R 30 S 24 S

Grinding and cutting wit h hand tools

Abrasive Cut-off wheels Rc>ugh grimJing whe<sis Mounted points
v  u p to180 m /s i 45 m/s v  up to
c vc  up to c
Material size Hardness Grain size Hardness sizei 80 m /s Grain size Hardness
Grain Grain Hardness
Steel, unhardened
Steel, corrosion resistant A 30 T 24 M 24 R 36 Q-R
Cast iron
Non-ferr. met., e.g. Al, Cu, CuZn A 30 R 16 M 24 R 36 S

A, C 30 T 20 R 24 R 30 T

A, C 30 R 20 R - - - -

http://slidepdf.com/reader/full/mechanical-and-metal-trades-handbook-56d51be067c7a 314/431

7/18/2019 Mechanical and Metal Trades Handbook

P r o d u c t i o n e n g i n e e r i n g 6 .3 M a c h i n i n g p r o ce s s e s, i n i n g ls

Grinding w ith diamond and boron nitride

Grain designation ranges cf. DIN ISO 848(1998-03)

Areas of application Rough grind F i n is h i n g Precision grinding Lapping

Grain diamond D251-D151 D126-D76 D64, D54, D46 D20, D15, D7
designation11   boron nitride B251-B151 B126-B76 B64, B54, B46 B30, B6

Attainable  Ra  in pm 0.55-0.50 0.45-0.33 0.18-0.15 0.05-0.025

1 )  Mesh size of test sieve in pm

Standard values for c utting speeds

Process Abrasive Cuttiiig speed  v »( in m/s by b o n d typ e i)
I3 A (
\/
dry wet dry wet dry wet dry wet
- 30-60
Surface grinding CBN - 30-50 - 30-60 - 30-60 - 25-50
- 30-60
D - 22-50 - 22-27 20-30 22-50 - 25-50
- 30-50
External cylindrical CBN - 30-50 - 30-60 - 30-60 - 25-50
grinding2' D - 22-40 - 20-30 22-40 - 30-50
20-30
--
Internal cylindrical CBN 27-35 30-60 - 30-60 24-40 30-50
8-15 18-27 12-20 18-40 --
grinding D 12-18 15-30
--
Tool CBN 27-35 30-50 22-30 30-40 27-35 30-50

grinding D 15-22 22-50 15-22 15-27 15-30 22-35
Cut-off CBN 27-35 30-50 30-60 27-40 30-60
-

grinding D 12-18 22-35 - 22-27 18-30 22-40

1 )  Bond types, see page 309  2 )  App rox. four times the value for high speed grind ing (HSG)

S t an d a r d v a lu e s fo r d e p t h o f c u t a n d f ee d o f d i a m o n d g r i n d in g w h e el s

Process Depth per stroke in m m for grain size Feed Crossfeed rela-
m/min tive to wheel
Face grindin g 1 ' D181 D126 D64
External cyl. gr indin g 11 10-15 width  w
Internal cyl. grinding 0.02-0.04 0.01-0.02 0.005-0.01 0.3 - 2.0
0.01-0.03 0.0-0.02 0.005-0.01 0.5 -2.0 -
0.002-0.007 0 . 0 0 2 -0 . 0 0 5 0 . 0 0 1 - 0 .0 0 3 -

TGor oolo vger i ngdr ii nn gd i n g 0.01-0.03 0.010.50--05..0015 0.000.25--03..0005 00..031- -42..00 -
-
-

1 )  App rox. three times the value for high speed grinding (HSG)

Standard values for dep th of cut and feed of CBN grinding wh eels

P r o c es s Dep th pe r stroke in m m for  <grain size Feed Crossfeed rela-
m/min tive to wheel
B252/B181 B151/B126 B91/B76
width  w

Surface grinding 0.03-0.05 0.02-0.04 0.01-0.015 20-30 V 4 - V  w
0.5-2.0
External cyl. grinding 0.02-0.04 0 . 0 2 - 0. 0 3 0.015-0.02 0.5-2.0 -
0.5-4.0 -
Internal cyl. grinding 0.005-0.015 0.005-0.01 0.002-0.005 0.01--2.0 -
-
Tool grinding 0.002-0.1 0.01-0.005 0.005-0.015

Groove grinding 1.0-10 1.0-5.0 0.5-3.0

High-performance grinding with CBN grinding wheels cf. VDI 3411 (2000-08)

Grinding processes achieving extremely high material removal rates by utilization of special machines and tools with
increased cutting speeds (> 80 m/s) and appropriate mac hine coolant. P redomina ntly used for side and external cy lin-
drical grinding of metallic materials.

Grinding wheel preparation (conditioning) Dres sing 4 Cleaning
Processing step Sharpening

Truing

Action Removal of grain and Reduction of the No effect on abrasive
bond bond layer

Goal Establishing concen tricity Creating the grinding Remove chips from pores

and wheel profile wheel surface structure

Maximum allowable peripheral speeds in high-performance grinding

Bond type1' BV M G

Highest allowable 140 200 180 280
peripheral speed in m/s

1 )  Bond types, see page 309

http://slidepdf.com/reader/full/mechanical-and-metal-trades-handbook-56d51be067c7a 315/431

7/18/2019 Mechanical and Metal Trades Handbook

312 P ro du ctio n e ng in ee rin g 6.3 M a ch in in g processes, a n a s

Honing

vc  cutting speed A  contact area of Cutting
va  axial speed honing stone speed
v p  peripheral speed
a  angle of intersection Fr   radial infeed force ^c =  V^ a 2 w
n  numbe r of honing stones
betw. abrading tracks Angle of
w width of honing stones intersection
p contact pressure
/ length of honing stones a

Example: tan —2  = a

Hardened steel, finish honing ,  vp  = ?; v a = ?; v c  = ? ; a = ? Contact pressure
read from table: v p = 2 5 m/min ;  va   = 12 m/min

v M  miny v miny 28 m
min

a v a  12 m/m in _ „„

tan  — = —   = = 0.48; a = 51 .3°

2 v n  25 m/m in

Cutting speed and machining allowances

Material Peripheral speed Axial speed Machining allowances in mm
v p  in m/min va  in m/min for hole diameter in mm

Rough honing Finish honing Rough honing Finish honing 2-15 15-100 100-500

Steel, unhardened 18-40 20-40 9-20 10-20 0.02-0.05 0.03-0.15 0.06-0.3

Steel, hardened 14-40 15-40 5-20 6-20 0.01-0.03 0.02-0.05 0.03-0.1

Alloy steels 23-40 25-40 10-20 11-20

Cast iron 23-40 25-40 10-20 11-20 0.02-0.05 0.03-0.15 0.06-0.3

Al u m in u m a llo ys 22-40 24-40 9-20 10-20

c

Honing with diamond grit  vp  up to 40 m/min and va up to 60 m/min; a = 60°- 90
Contact pressure of honing tools

Contact pressure p  in N/cm2

Honing process Ceramic Plastic bonded Diamond Boron nitride
honing stone honing stone honing stick honing stick

Rough hon ing 50-250 200-400 300-700 200-400

Finish honing 20-100 40-250 100-300 100-200

Selection of corundum, silicon carbide, CBN and diamond honing stones

Mate- Tensile Process Roughness Honing stone made of CBN or diamond
rial strength depth corundum and silicon carbide2'
Grain size
N/mm2 pRmz aHboransinivge Gsriazein Hnaersds- Bond Stturruec-
B D126
Steel < 500 rough honing 8-12 A 700 R B 1 D54
(unhardened) intermed. honing 2-5 400 R V 5 D15
Cast 0.5-1.5 1200 M V 2
iron 500-700 finish honing B76
Non- (hardened) 5-10 A 80 R 3 B54
ferrous rough honing 2-3 400 O 5 B30
intermed. honing 0.5-2 700 N 3
D91
finish honing 5-8 C 80 M 3 D46
2-3 120 K 7 D25
rough honing 3-6 900 H 8
finish honing D64
plateau honing1' 6-10 A 80 0 3 D35
2-3 A 400 O 1
rough honing
intermed. honing

m1 ) e tal s a t a u honing the finish honing 0.5-1 C 1000 N 5 2 )  D15 309
In p l e peaks of the material surface are removed . see page

Selection of honing stone m ade of diamon d and cubic boron nitride (CBN)

Abrasive Natural diamon d Syn th e tic d i a m o n d CBN
Material Steel, carbide Cast iron, nitrided steel, non-ferrous metals, glass, ceramic Hardened steel

http://slidepdf.com/reader/full/mechanical-and-metal-trades-handbook-56d51be067c7a 316/431

7/18/2019 Mechanical and Metal Trades Handbook

Production engineering: 6. ei o

Productive time and standard values for m aterial removal

Electric discharge machining (wire EDM)

wire electrode productive time in min Productive time
feed rate in mm/min
travel, cutting length in mm L

cguetotimnegtrhiceitgohlteriannmcemin p m p

  Vf

Example:

Material: Steel,  H=   3 0 m m ;  L =   320 mm;
T=  30 (xm; v f = ?; f p   = ?

Vf   = 1.8 m m / m i n   (from table)

_ L _  320 mm = 178 m i n
p  vf   1.8 mm /min

Feed rate   Vf ( s tandar d v alues )1*

Feed rate vf  in mm/min

Cutting Steel eroding Copper eroding Carbide eroding
height  H 80 20
60 Desired geometric tolerance  T  in pm 10
in mm 40 30 20 10 40 20 10

10 9.0 8.5 4.0 3.9 2.1 7.5 3.5 2.0 4.5 0.7 0.6

20 5.1 5.5 2.5 2.5 1.5 4.7 2.4 1.5 3.1 0.3 0.3

30 3.7 4.0 1.8 1.8 1.1 4.0 1.9 1.1 2.3 0.2 0.2

50 2.5 2.5 1.2 1.2 0.8 2.6 1.4 0.7 1.4 0.2 0.2

1 >  These standard values are average values from the main cut and all subsequent cuts required to reach geo m etr ic tolerance.
With unfavorable flushing conditions the achievable feed rate drops considerably.

Charac teris tic s and applic ation of c om mo n w ire elec trodes

Wire El. conductivity Tensile strength Typical wire Application
material in m/(Q • m m 2 ) in N/mm2 diameter in mm Universa l
Cuts with very tight geometric tolerance
CuZn alloy 13.5 400-900 0.2-0.33 Narrow slots, small corner radii
0.025-0.125
Molybdenum 18.5 1900
0 . 0 2 5 -0 . 1 2 5
Tungsten 18.2 2 5 00

Electric discharge m achinin g   (sink EDM)

electrode productive time in min Productive time
v_
removal area w
of electrode in m m 2
V removal volume in mm 3
Vw removal rate in mm 3 / m i n

Example:
Roughing of steel; graphite electrode,
S = 150 m m 2 ;  V=  3060 m m 3 ; V w = ?; f p   = ?
V w  = 31 m m3/min  (from table)

3060 m m 3
31 mm 3 / m i n = 99 m i n

R emov al r ate V w   ( s tandar d v alues )11

Removal rate l/w  in mm 3/min

Work- Electrode Rough ing Finishing
piece rem()val area S in mnn 2 des ired rouejhness d epth  Rz  iin pm
material 10 50 100 200 300 400 2 3 468

to to to to to to to to to to to
50 100 200 300 400 600 3 4 6 8 10

Steel Graphite 7.0 18 31 62 81 105 25

Copper 13.3 22 28 51 85 105 0.1 0.5 1.9 3.8 5

Carbide Copper 6.0 15 18 28 30 33 0.1 0.5 2.2 5.2

1 )  Actual values will vary wide ly due to the effects of different processing method s. Refer to page 314.

http://slidepdf.com/reader/full/mechanical-and-metal-trades-handbook-56d51be067c7a 317/431

7/18/2019 Mechanical and Metal Trades Handbook

314 Production engineering: 6. ei o

Process parameters in EDM erosion Removal rate
Relativ e tool wear
Vw removal rate in mm 3 / m i n
1/ r e m o va l vo l u m e i n m m 3

t removal time in min

absolute tool wear in
Ve m m 3

relative tool wear in %

Wei

Parameter Ex planations , c harac teris tic s and applic ations

Electrolytic Universal application; low wear behavior; high removal rate;
copper for finish and rough ma chining; difficult to m anufacture electrode by mac hining;
high thermal expansion; no cracked edges;
tendency to warp

Graphite Universal application; very low wear; greater current density than Cu;
low electrode weight; easy to manufacture electrode by machining;
in various grain non-warping; low thermal expansion; more detailed electrodes are made by
Electrode  s i z e s selecting a finer graphite grain; unsuitable for carbide ma chining
Material

Tungsten-copper Detailed electrodes; very low wear; very high material removal rate with relatively
low discharge currents even with large current densities;
only manufactured in limited sizes, high electrode weight

Copper-graphite Special applications involving sm all electrode dimens ions with simultaneous high
electrode strength; wear and material removal rate play a subordinate role in these
special applications

Synthetic oils, Requirements for dielectric fluids:
• low and constant condu ctivity for stable sparking
filtered and • low viscosity for filtrability and penetrating ability in narrow gaps

Dielectric   cooled ; according •• lhoiwghefvlaasphorpaotiionnt ttoo arevodiudcefirehahzaazradrodus vapors
• high heat conductance value for good co oling
  to m ac h in e • extrem ely low health hazard for operators

fluid manufacturer

F l u sh i n g Replacement of Depending on requirements and available options, different flushing methods can
dielectric fluid be used to maintain stable erosion performance:
at the erosion site • flooding (m ost com mon ly used method, simultaneous heat rejection)
• pressure flushing thro ugh hollow electrodes or next to electrode
Remove eroded • vacuum flushing through hollow electrode or next to electrode
particles  from • interval flushing caused by retracting electrode
gap • move ment flushing by relative movem ent between workpiece and electrode,

witho ut interrupting erosion cycle

Polarity positive Electrode is positively polarized; for low electrode burn rate during roughing with
negative
long pulse duration and low frequency
Electrode is negatively polarized; for erosion with short pulse duration and high
frequency

face Kept constant during feed (controlled by discharge voltage).
Control sensitivity set too high: Electrode continually pulses on and off, controlled
Gap discharge impossible.
Control sensitivity set too low: Abnormal discharges increase or gap remains too
large for discharge.

side Determined primarily by duration and size of discharge pulse, depends on material
matching and no-load voltage

low Low removal performance, low tool wear on copper electrodes, high wear on

Discharge graphite electrodes
current High removal performance, high tool wear on copper electrodes, low wear on
graphite electrodes
high

Pulse  sh or t Electrode wear with positive polarity is larger, lower removal rate
duration   lo n g Electrode wear with positive polarity Is smaller, higher removal rate

http://slidepdf.com/reader/full/mechanical-and-metal-trades-handbook-56d51be067c7a 318/431

7/18/2019 Mechanical and Metal Trades Handbook

Production engineering: 6. pa at ion ctin 315

Cutting force, Operating conditions for presses

Cutting force, cutting wo rk

cutting force Cutting force
m  calculated cutting force
F  - S  • Tsb max
shear area

force-stroke curve fgmg m a x    mmmaa avxiixmmimnuummmtcehsnohsaeirlaercstsrttorrenenngtghtthh

max Max . s hear s treng th
r s B max 0.8 • /?,m max
\ IV cutting work

/y s sheet metal thickness

/at \k Example:

C— ^Cb O — f- S = 236 m m 2 ; s = 2.5 mm; R m m a x  = 5 10 N / m m 2 C u t t i n g w o r k
o ^I)I
Mcc—n \ cvjI|Irn Wanted:  r s B m a x ; F ;  W
I' E
I S o l u t i o n : r s B m a x = 0.8 • R m m a x
I = 0.8 • 510 N/ m m 2  = 4 08 N / m m 2

working stroke  h 22

sheet metal F  = S-t SB   m a x  = 2 36 m m   •  4 0 8 N / m m
thickness s = 96 288 N =96.288 kN

W = - y  • F  •  s  = - J -  96.288 kN • 2.5 m m

* 160 kN  •  m m = 160 N  m

Operating conditions for eccentric and crank presses

crank Press drives are usually designed such that the Work capacity in
connecting nominal pressing force is applied at crank angle continuous mode
a = 30°.
0
Machines operate with out interruption in continu-
  15
soiunsglme-osdtreokoer mcaondeb.e Fsotor pppreedssaefsterwiethachadcjuysctlaebilne
strokes, the allowable pressing force is less than Work capacity in
the nominal pressing force. single-stroke mode

ram F   cutting force, shaping force w s   = 2 • W c

metal F n  nom inal pressing force Operating conditions
strip Fixed stroke
Fallow allow, pressing force for adjustab le stroke F *  Fn
S stroke, ma ximu m stroke for adjustable W < W c   or
W<
stroke Adjustable stroke

Sa adjusted stroke F   £ FgiiowFnS
h working distance (= sheet metal thickness s )
^allow ~
a crank angle
W cutting work, shaping work W   < W c  or
Wc work capacity in continuous mode W < Ws
W < work capacity in single-stroke m ode

Example:

Eccentric press with fixed stroke F n = 250 kN; S = 30 m m;
F= 207 kN; s = 4 m m

Find: W;   W c.  Can the press be put into contin uous mode?

22

So l u ti o n :  W   = -   •  F  •  s = -  • 207 kN  • 4 m m = 552 kN •  m m = 552 N • m

,at   F1n5  S   250 kN15 • 30 mm
I\fNFn<  =F n , but =W >  W c,   the pres=s 5c0a0n knNo t • bmemu s=e 5d0i0nNc o• nmtinuous mode for
this workpiece.

http://slidepdf.com/reader/full/mechanical-and-metal-trades-handbook-56d51be067c7a 319/431

7/18/2019 Mechanical and Metal Trades Handbook

316 Production engineering: 6. eioning

Tool and w orkp iece dimensions

Punch and cutting die dim ensions cf. VDI 3368 (1982-05)

punch Process Piercing Blanking
dimension
Shape of dimension of dimension of
cutting die workpiece punch d cutting die D
dimension cutting die punch
Governing D = d  + 2  •   u d=D-2•u
die clearance specified size is:
sheet metal Dimension of
thickness opposite tool

clearance angle

cutting die

Die clearance   u as a f u n c t i o n o f m a t e ri a l a n d s h e e t m e t a l t h i c k n e s s

sheet metal Cutting die opening Cutting die opening
thickness s with clearance angle a without clearance angle a
shear strength r s B  in N/mm 2 shear strength rse in N/mm 2
mm
up to 250 | 251-400 | 401-600 | over 600 up to 250 | 251-400 | 401-600 | over 600
0.4-0.6
0.7-0.8 die clearance  u  in mm die clearance  u   in mm
0.9-1
1.5-2 0.01 0.015 0.02 0.025 0.015 0.02 0.025 0.03
2.5-3 0.015 0.02 0.03 0.04 0.025 0.03 0.04 0.05
3.5-4
0.02 0.03 0.04 0.05 0.03 0.04 0.05 0.05
0.03 0.05 0.06 0.08 0.05 0.07 0.09 0.11

0.04 0.07 0.10 0.12 0.08 0.11 0.14 0.17
0.06 0.09 0.12 0.16 0.11 0.15 0.19 0.23

Web w idth , edge wid th, trim stop waste for metallic materials

a  edge width Polygonal workpieces:
e  web width The web or edge length, whichever is larger,
l a  edge length is used to determine web and edge widths .
l e  web length
B  strip width Round wo rkpieces:
/' trim stop was te For all diameters values given for / e  = l a  =
10 mm of polygonal workpieces apply to
(french stop waste) web and edge widths.

Polygonal workpieces

Strip Web length  le Web Sheeit metal thickn(5ss s in m m 2.0 2.5 3.0
width B Edge length /a width e 0.1 0.3 0.5 0.75 1.0 1.25 1.5 1.75 1.6 1.9 2.1
1.7 2.0 2.3
mm mm Edge 1.9 2.2 2.5
width a 2.1 2.4 2.7
3.0 3.5 4.5
up to 10 e 0.8 0.8 0.8 0.9 1.0 1.2 1.3 1.5 1.7 2.0 2.3
a 1.0 0.9 0.9 1.9 2.2 2.5
2.1 2.4 2.7
11-50 e 1.6 1.2 0.9 1.0 1.1 1.4 1.4 1.6 2.3 2.6 2.9
51-100 a 1.9 1.5 1.0 3.5 4.0 5.0
up to
100 mm e 1.8 1.4 1.0 1.2 1.3 1.6 1.6 1.8
a 2.2 1.7 1.2

over 100 e 2.0 1.6 1.2 1.4 1.5 1.8 1.8 2.0
trim stop waste /' a 2.4 1.9 1.5 1.8 2.2 2.5

1.5

up to 10 e 0.9 1.0 1.0 1.0 1.1 1.3 1.4 1.6
a 1.2 1.1 1.1

over 11-50 e 1.8 1.4 1.0 1.2 1.3 1.6 1.6 1.8
100 mm 51-100 a 2.2 1.7 1.2
101-200
to e 2.0 1.6 1.2 1.4 1.5 1.8 1.8 2.0
200 mm a 2.4 1.9 1.5

e 2.2 1.8 1.4 1.6 1.7 2.0 2.0 2.2
a 2.7 2.2 1.7

trim stop waste i 1.5 1.8 2.0 2.5 3.0

http://slidepdf.com/reader/full/mechanical-and-metal-trades-handbook-56d51be067c7a 320/431

7/18/2019 Mechanical and Metal Trades Handbook

Production engineering: 6. pa at ion ctin 317

Location of punch holder shank, Utilization  of strip stock

L o c at io n o f p u n c h h o l d er s h a n k fo r p u n c h g e o m e t r y w i t h k n o w n c e n t er o f g r a v it y

Punch layout Workpiece Dis tanc e of the c enter of forc es
prepunching blanking out
C]  m  d i  + C 2   3 2 C £    + ...
x = C i +  Co  + Co + . . .

Example:

-<P Based on the figure at left, calculate the distance x of
center of forces S.
10
2 Solution:

selected reference edge The outer perimeter of the cutting punch is chosen as
reference e dge.
Blanking punch: C| = 4 •  20 mm = 80 mm;  a- i= 10 mm

Piercing punch: C 2 = n • 10 mm = 31.4 mm ; a 2 =  31 m m

Ci, C2, C3 ... circumferences of individua l punches C-] • 3-\  + C2 5 2
a-|, a2, a 3  ... distances from pun ch centers of gravity x = Ci + C2

x   tdoisstaenlecceteodf rceefnetreernocef feodrcgees S x  = 80 m m  • 10 m m + 31.4 mm   • 31 m m 16 mm
from chosen reference edge 80 mm + 31.4 mm

L o c at io n o f p u n c h h o l d e r s h an k f or p u n c h g e o m e t r y w i t h u n k n o w n c e n te r o f g r a v it y

Center of forces corresponds to centroid of the line 1 )  of Dis tanc e of th e c enter of forc es
all cutting edges.
I,   •  a^+l 2   •  a 2+l3   •  a 3  +..
Punch layout Workpiece
X  =

Example: x = —Q

Z'n

Calculate the location of the punch holder shank on
the progressive die for the workpiece shown in the
figure at the left.

selected Solution: an  in mm / n  •  a n  i n m m 2
refer, n /n  in mm 5 75
edge 1 15

/v h> h t 0  cutting edge lengths 2 23.6 9.8 231.28
3 20 21 420
a-i, a 2 , a 3  to a n  distance from line centroids 4 2 •  20 31 1240
to selected reference edges
5 20 41 820
x  distance from center of forces
2 118.6 2786.28

to selected reference edge x = I—/ n-  •  a-n , 2786.28 m m 2  _ ^
n  numb er of individual cutting edge 23.5 mm
I ' n 118.6 mm
1 )  For line centroids , see page 32

Utilization of strip stock for single row stamping

strip work- I workpiece length Stri p w i d th
area piece w workpiece width W=w+2•a
V•W area
A -l-w W strip width Strip feed
a edge width
I V=l+e
e web width
V strip feed Utilization factor
A area of workpiece

(including holes)
R number of rows
V degree of utilization

http://slidepdf.com/reader/full/mechanical-and-metal-trades-handbook-56d51be067c7a 321/431

7/18/2019 Mechanical and Metal Trades Handbook

318 P r od u c ti on e n g in e e ri ng : 6. o i n g

Bending radius, Bend allow anc es, Calculation of blank size

Smallest allow able bending radius for b ent parts of non-ferrous metals  cf. DIN 5520 (2002-07)

Thickness s in mm

Material Material ccoonnddition 0.8 | 1 1.5 | 2 | 3 | 4 5 6
Smallest allowable bending radius r 1 )  in mm

AIMg3-01 sphe roidized 0.6 1 2 3 4 6 8 10

> AIMg3-H14 cold wo rk harden ed 1.6 2.5 4 6 10 14 18

AIMg3-H111 cold work hardened 1 1.5 3 4.5 6 8 10
and annealed

AIMg4.5Mn-H112 spheroidized 1 1.5 2.5 4 6 8 10 14
s straightened

AIMg4.5Mn-H111 cold work hardened 1.6 2.5 4 6 10 16 20 25
and annealed

AIMg Si1-T6 solution annealed 4 5 8 12 16 23 28 36
and artificially aged

CuZn37-R600 hard 2.5 4 5 8 10 12 18 24

1 )  For bend ing angle a = 90°, regardless of rolling direction

Smallest allow able bending radius for cold bending steel  cf. DIN 6935 (1975-10)

Minimum tensile Minl i m u m bendi ng rad i u s 1 ) r for s heet mletal th icknes:s s in in m
strength   Rm
1 1.5 2.5 3 4 5 6 7 8 10 12 14 16 18 20
in N/MM2  over-to 1 1.6 2.5 3 5 6 8 10 12 16 20 25 28 36 40
up to 390 1.2 2 3 4 5 8 10 12 16 20 25 28 32 40 45
1.6 2.5 4 5 6 8 10 12 16 20 25 32 36 45 50
390-490

490-6 40

1 )  Values apply to bend ing angle a  < 120° and bending transverse to rolling direction. Value of the next larger sheet
metal thickness should be selected for bending longitudinal to rolling direction and bending angle  a  > 120°.

B e n d a l l o w a n c e s   v f o r b e n d i n g a n g l e a = 9 0c cf. Supp leme nt 2 to DIN 6935 (withdra wn)

Bending Bend allowance  v  per bend in mm for sheet metal thickness s in mm

in mm 0.4 0.6 0.8 1 1.5 2 2.5 3 3.5 4 4.5 5 6 8 10

1 1.0 1.3 1.7 1.9 _ _ _ _ _ _ _ _ _ _ _
1.6
2.5 1.3 1.6 1.8 2.1 2.9 - -- - -- - - - -
4
1.6 2.0 2.2 2.4 3.2 4.0 4.8 - - - -   - - -
6
10 - 2.5 2.8 3.0 3.7 4.5 5.2 6.0 6.9 - - -   -
16
20 _ _ 3.4 3.8 4.5 5.2 5.9 6.7 7.5 8.3 9.0 9.9 _ _ _

25 -   - 5.5 6.1 6.7 7.4 8.1 8.9 9.6 10.4 11.2 12.7 - -
32 - - - 8.1 8.7 9.3 9.9 10.5 11.2 11.9 12.6 13.3 14.8 17.8 21.0
-   - 9.8 10.4 11.0 11.6 12.2 12.8 13.4 14.1 14.9 16.3 19.3 22.3
4500
_ _ _ 11.9 12.6 13.2 13.8 14.4 15.0 15.6 16.2 16.8 18.2 21.1 24.1

- - - 15.0 15.6 16.2 16.8 17.4 18.0 18.6 19.2 19.8 21.0 23.8 26.7

--  

-   - 2128..74 2139..30 2139..96 2204..25 2205..81 2251..74 2226..03 2262..96 2237..25 2284..85 3216..29 3239..67

Calculation of blank size for 90° bent p arts cf. DIN 6935 (1975-10)

L  developed leng th1' Developed length2'
a, b, c  length of leg
s thickness L = a+ b+ c+...-n-v
r   bending radius
n  numb er of bends 2 )  Calculated deve loped length
v   bend allowance should be rounded off to a
\ e  -Q whole mm value.
Exam ple (see illus.):
/ "H

a a= 2 5 mm m;  ba te= r2ia0l mm; c= ;1v5=m?m;  ;L  n  = 2;  f =  2 mm;
r= 4 mm; S23 5JR =?

v= 4.5 mm (from table above)

L = a + b+ c- n •  v =   (25 + 20 + 15 -   2 •  4.5) mm = 51  m m

1 1  If the ratio  r/s  >   5, the formula for developed length (page 24) can be
used.

http://slidepdf.com/reader/full/mechanical-and-metal-trades-handbook-56d51be067c7a 322/431

7/18/2019 Mechanical and Metal Trades Handbook

Production engineering: 6. orm in 319

Calculation of blank size, Springback in bending

C a lc u l a t io n o f b l a n k s i ze fo r p a r t s w i t h a n y s e le c t ed b e n d i n g a n g l e cf. DIN 6935(1975-10)

L  develope d length s sheet met. thickness Developed length1'
a, b  length of leg  r   bending radius L = a + b-v
v   bend allowance  (3   aperture angle
k   correction factor

Bend allowance for  p -   0° to 90°

Bend allowance for p ov er 90° to 165c

v = o •  ,(r + s)v   •  ta n 1 8 0 ° - j 3— -  n (180°-/^ • f   + s   •uk)
 2 r -
I 180° y K 2  J

Bending allowance for  p over 165° to 180°

v~ 0   (negligible) Correction factor

Correction factor Example:

Springback in bending Bent part with  p  = 60°, a = 16 mm ,  b  = 21 mm ,  r= 6   m m ,
s = 5 m m ; k = ?; v =  ? ;  L  = ?;

6 m m = 1.2 ; k  = 0.7 (from diagra m);
s 5 mm
k  - 0.689 (calculated by formula)

v   =2   • (r +  s)-n
180°  J V 2

1 «n° — io ° ( R

i 8 q o  - ^ 6 + -  •  0.7  |mm = 5.77 mm
L =a  +  b-v =  16 m m + 21 m m - 5 . 7 7 m m « 32 m m
1 )  Fo r r/s  >   5 the dev eloped length (page 24) is sufficiently accurate
for calculations.

angle of bend before Radius on tool
springback (on tool)
r, = fcR-(r2   + 0 . 5 - s ) - 0 . 5 - s
a 2  angle of bend after
springback (on workpiece)

r-\ radius on to ol

r2   bending radius on workpiece Angle of bend before springback
/tr springback factor
s sheet metal thickness

Material of Springback factor for the ratio  r 2/s
bent part
1 1.6 2.5 4 6.3 10 16 25 40 63 100
DC04
DC01 0.99 0.99 0.99 0.98 0.97 0.97 0.96 0.94 0.91 0.87 0.83
X12CrNi18-8
0.99 0.99 0.99 0.97 0.96 0.96 0.93 0.90 0.85 0.77 0.66

0.99 0.98 0.97 0.95 0.93 0.89 0.84 0.76 0.63 - -

E-Cu-R20 0.98 0.97 0.97 0.96 0.95 0.93 0.90 0.85 0.79 0.72 0.6
CuZn33-R29 0.97 0.97 0.96 0.95 0.94 0.93 0.89 0.86 0.83 0.77 0.73
CuNi18Zn20
- - - 0.97 0.96 0.95 0.92 0.87 0.82 0.72 -
EN AW-A199.0
EN AW -AICuM g1 0.99 0.99 0.99 0.99 0.98 0.98 0.97 0.97 0.96 0.95 0.93
EN AW-AISiMgMn
0.92 0.90 0.87 0.84 0.77 0.67 0.54 - - - -

0.98 0.98 0.97 0.96 0.95 0.93 0.90 0.86 0.82 0.76 0.72

http://slidepdf.com/reader/full/mechanical-and-metal-trades-handbook-56d51be067c7a 323/431

7/18/2019 Mechanical and Metal Trades Handbook

320 P r od u c ti on e n g in e e ri ng : 6. o i n g

Deep d rawing

Calculation of blank d iameter

Drawn part Blank diameter D Drawn part Blank diameter D

without flange  d2 without flange  d2
D = J d?   + 4  •  d-i •  h 0 = ^2-d?+4-d^   • h

w it h flange   d 2 £ d, wit h flange   d 2
D = yjd22+4   •  d-i   • h D = yl2   • d, 2+4   • d^ •  h + (d 22-d?)

without flange d3 A without flange d2

i .  d *  CM D = yjd22   +4   •   (d :   •  y +d2   • h 2 D = yjdi2+4 •  • d-i   • h 2
J i
. i -c:
•A \r

w it h flange   d 3 w ith flange   d 2
D = yjd,2  +4 • h, 2  + 4  • dy •  h 2  +(d 22-df)
D = yjd32+   4 • (d,   • h<i+d 2   • h 2

without flange d 4 without flange d2
D = y]2  • d?   =1.414  •  d
0  = ^ + 4 d 2   •/

II J U f
•—1 — • s
w it h flange   d A w it h flange   d 2

X D =  y]d-\2  + 4 • d 2  •  l + (dA2-d 32) D = yjd-f  + d 2
2

Example:
Cylindrical drawn part with flange   d 2   (see figure, upper left) w ith  d-\   = 50 m m ,  h  = 30 m m ; D = ?
D   = >j d f   4 • d:   • h = V50 2  m m 2  + 4  •  50 mm   •  30 mm = 92 .2 m m

D r aw i n g g a p a n d r ad i i o n d r a w r in g a n d d r a w p u n c h

blank holder w   drawing gap D r aw i n g g a p in m m
blank s  sheet metal thickness w = s + k • V10 • s
k   material factor
rr  radius on draw ring R ad i u s of d r a w r in g i n m m
r s t  r adius of dr aw punch
D  blank diameter For each redraw the radius of the draw
d  punch diameter ring should be reduced by 20 to 40%.
d r  draw ring diameter R ad i u s of d r a w p u n c h i n m m

Drawing gap rst   = (4 to   5 ) • s
d r-d

Example:

Steel sheet; D = 51 mm ;  d  = 25 m m ; s = 2 m m ;  w  = ?; r r  = ?; r s t  = ?

Material factor  k 0.07 k   = 0.07  (from table)
Steel 0.02
Aluminum 0.04 w   = s  + k •   / 1 0 - s  = 2 + 0.07 • V10 • 2 = 2.3 mm
Other non-ferrous metals r r  = 0.035 • [50 + (D  -   d)] • / s = 0.035 • [50 + (51 - 25)] •  /2 = 3.8  m m
r s t  = 4.5 •  s = 4.5 • 2 m m = 9 m m

http://slidepdf.com/reader/full/mechanical-and-metal-trades-handbook-56d51be067c7a 324/431

7/18/2019 Mechanical and Metal Trades Handbook

Production engineering: 6. orm in 321

Deep drawing

D r aw i n g s t ep s a n d d r a w i n g r at io s

draw punch D  blank diameter Drawing ratio
blank holder d  inside diameter of finished drawn part 1st draw
d- \   punch diameter for 1st draw
d2  punch diameter for 2nd draw 2nd draw

1st draw \ dn  punch diameter for nth draw
drawing ratio for 1st draw

02 draw ing ratio for 2nd draw
/ ? to t  total draw ing ratio
s sheet metal thickness

Example:

draw ring Cup without flange made of DC04 (St 14) with   d = d2
50 mm ; /7 = 60 m m ; D  = ?; a=  ?; /?2  = ?;   di  = ?;   d 2 = ?

D   =  y/d2   +4   •  d  •  h

blank holder = V(50 m m )2  + 4 • 50 mm   • 60 mm «1 2 0 m m
/S, =2. 0 ;   2 = 1.3 (according to table below )
Total
drawing ratio

Redraw d,* = —D  =  120 m m = 6_0  m m

0^ 2.0

60 mm 46 mm
02 1-3
Two draws sufficient since  d2<d

Material Max. drawing R  2> Material Max. drawing R  2> Material Max. drawing R  2>
rati'os1> nm rati os1> nm rati OS 1' nm
02 N/mm2 N/mm2 N/mm2
h 02 P, 02
95
DC 01 (St12) 1.8 1.2 410 CuZn30-R270 2.1 1.3 270 AI99.5 H111 2.1 1.6

DC0 3 (St13) 1.9 1.3 370 CuZn37-R300 2.1 1.4 300 AIMgl H111 1.9 1.3 145

DC04 (St14) 2.0 1.3 350 CuZn37-R4 10 1.9 1.2 410 AICu4Mg1 T4 2.0 1.5 425

X10CrNi18-8 1.8 1.2 750 CuSn6-R350 1.5 1.2 350 AISilM gM n T6 2.1 1.4 310

1 )  Values apply up to d-i : s = 300; they w ere de termin ed for   d-\   =   100 mm and s = 1 mm . Values change n egligibly
for other sheet metal thicknesses and punch diameters.  2 )  ma xim um tensile strength

Tearing force, deep d rawin g force, blank h olding force

Ft tearing force Tearing force

Fdd deep drawing force

di punch diameter

s sheet metal thickness

Am tensile strength Deep draw ing force
0 drawing ratio
max max. possible F d d  = J i - ( d 1  + s ) . s - / 7 m - 1 . 2 . P-1

drawing ratio A n a x  —
 

Fu blank holding force Blank holding force
D blank diameter

B l an k h o l d i n g p r es s u re p i n N / m m 2 dh support diameter
of blank holding force

Steel 2.5 P blank holding pressure Support diameter of blank ho lding forc e
Cu alloys 2.0-2.4
Al alloys 1.2-1.5 rr radius on draw ring

w drawing gap d h  = d i + 2 •  ( r r  +  w)

Example:

D = 210 mm; d-, = 140 mm; s=  1 m m ;  R m  = 3 80 N /m m 2 ; ^ = 1.5; fmt ax = 1 -9' '^dd = ?

Fdd = K  • (d- ]+ s)  •  s •  /? m  • 1.2S•-1 = i i  •  (140 mm  + 1  m m ) • 1  m m   • 380N • 1.2 1.5-1
^max-1 mm^ 1.9-1 = 112218 N

http://slidepdf.com/reader/full/mechanical-and-metal-trades-handbook-56d51be067c7a 325/431

7/18/2019 Mechanical and Metal Trades Handbook

322 P r o d u c t i o n e n g i n e e r i n g : 6 .7 J o i n i n g , e d i n g

Weldin g processes, Positions, General tolerances

Welding , cutting , soldering and related processes cf. DIN EN ISO 4063 (2000-04)
N1> Meth od, process
n D Method, process N1> Me thod , process
7 Other welding methods
1 Arc welding 24 flash butt welding
25 upset welding

111011 smheietaldl eadrcmweetaldl ianrgc w elding 3 Gas w elding 7734 einledcutcrtoiognaswweeldldiningg
75 light beam welding
11 metal arc welding 311 oxyacetylene weld ing 753 infrared welding
without shielding gas 78 stud welding
788 friction stud welding
12 submerged arc welding 312 gas welding with oxygen/
13 gas shielded m etal arc w elding propane flame 8 Cutting

131 gas metal arc w elding 4 Pres sure weld ing 81 oxygen cutting
135 metal active gas welding (MAG) 82 arc cutting
83 plasma cutting
136 flux cored arc welding 41 ultrasonic welding 84 laser beam cutting
with active gas shield 42 friction welding

137 flux cored arc welding 45 diffusion welding
with inert gas shield 47 pressure gas we lding

11441 tguansgstutenngsgteans ashrciewlde, ladricngweldin g 5 Beam welding 9 Brazing, soldering

15 plasma arc welding 51 electron beam welding 91 brazing
151 plasma TIG welding 52 laser beam weld ing 912 torch brazing

2 Resistance welding 512 electron beam 914 metal bath brazing
welding, nonvacuum 924 vacuum brazing

21 resistance spot welding 521 solid-state laser beam 94 soldering
22 se am w e ld in g in atmosphere 944 metal bath soldering

225 foil butt seam welding 522 gas laser beam welding 946 induction soldering
23 projection welding 952 iron soldering

Process ISO 4063-111: Specified welding process -*• manual arc welding (111)

1 )  N Reference num ber for designating methods and processes in drawings, operating procedures and data pro-
cessing

Welding positions cf. DIN EN ISO 6947 (1997-05)

PEx Code Name Main position, description

PD  ^ PA flat welding position weld axis vertical, horizontal w ork, final pass
PB at top
horizontal position
f i t ^ PF PC horizontal work , final pass at top
transverse position
-PG PD horizontal weld axis horizontal, horizontal work
overhead position direction
E rP E K PE horizontal work direction, overhead,
PF overhead position final pass at bottom
PA-"" PG vertical up position
vertic. down position horizontal work direction, weld axis vertical,
final pass at bottom

upward work direction

downward work direction

G en e r al t o l e r an c e s f o r w e l d m e n t s cf. DIN EN ISO 13920 (1996-11)

Allowable deviations

for length dimensions for angle dimensions
A/ in mm A a   in ° and '

nominal size range /1> nominal size range /1)

Degree to over over over over over to over over
of accuracy 30 30 120 400 1000 400 400 1000
to to to 2000 to
±1 120 400 1000 to ±20 1000 ±10'
to ±15'
±1 ± ±1 ±2 2000 4000 ±45' ±30' ±20
±4 ±45'
±1 ±2 ±2 ±3 ±3 ±1° ±30'
±4 ±6
±3 ±4 ±6
1 )  / shorter leg ±11

http://slidepdf.com/reader/full/mechanical-and-metal-trades-handbook-56d51be067c7a 326/431

7/18/2019 Mechanical and Metal Trades Handbook

P r o du c ti on e n g in e e ri ng : 6. o i n ein 323

Weld preparation cf. DIN EN ISO 9692-1 (2004-05),
replaces DIN EN 29692

Name, Work- Weld preparation

weld symbol piece Dimension Preferred
thickness D 1 ' welding
weld method2' Remarks

t Edge form ga p  b web c angle a
mm mm in °
pages 93-95 m m

Flare-V 0-2 3, 111, 141, Thin sheet
groove 512 welding,
weld usually without
filler material

butt weld 0-4 3, 111, 141 Little filler
111, 141 material,
0-8 K t/2 13 no weld
preparation
< t/2

V groove 3-10 < 4 < 2 40°-60c
weld 3-40
60 c 111, 141
V
<3 < 2 With backing run

40°-60c 13

Y-butt weld 5-40 1-4 2-4 60 c 111,
> 10
Y 13, 141

60 c 111, 141 With root and
backing run
1-3 2-4

40°-60c 13

double 60 c 111, 141
V-weld
> 10 1-3 < 2 eSdygmemfeotrrmi c,a l
X h=t/2
40°-60c 13

bevel 3-10 2-4 1-2 35°-60c 111,
groove 3-30 13, 141

weld 1-4 <2 35°-60c 111, With backing run

I/ 13, 141

double c 111, Symmetrical
bevel weld

> 10 1-4 < 2 35°-60 13, 141 ehd=g te/2fo romr  ,t/3

>2 fi 3, 111, T-joint
70°-100c 13, 141
| v <2

Fillet weld

1 - i t :Q- 3, 111, Double fillet weld,
it ia 70°-110° 13, 141 corner joint
>3 -2
327/431
Jj

1 )  D Design: s single-V weld ; d dou ble-V we ld
2 ' For we ldin g meth ods, see page 322

http://slidepdf.com/reader/full/mechanical-and-metal-trades-handbook-56d51be067c7a

7/18/2019 Mechanical and Metal Trades Handbook

324 P r o d u c t i o n e n g i n e e r i n g : 6 .7 J o i n i n g , e d i n g

Compressed gas cylinders. Gas w elding rods

Com pressed gas cylinders^ cf. DIN EN 1089-3 (2004-06)

Color coding1' Volume Filling Filling
1/
Type of gas as per DIN EN 1089-3 previ- Connection / pressure p F quantity
Oxygen body shoulder ous threads bar
40
blue white blue R3/4 150 6 m 3
50
40 3
50
shoulder Acetylene chestnut- chestnut- yellow Quick connect 200 10 m
N brown brown 10 19 8 kg
50
body 19 10 kg
10
Hydrogen red red red W21.80x1/14 50 200 2 m3
200 10 m 3
10
Argon gray dark- gray W21.80x1/14 50 200 2 m3
green 200 10 m 3
20
Helium gray brown gray W21.80x1/14 50 200 2 m3
W21.80x1/14 10 m 3
200

Argon-carbon fluorescent gray 200 4 m3
dioxide mixture gray 200 10 m 3
green

Carbon dioxide gray gray gray W21.80x1/14 10 58 7.5 kg
50 58 20 kg

3

Nitrogen gray black dgarerke-n W24.32x1/14 4500 210500 160 mm 3

1 )  Changeover to the new color coding should be completed by July 1, 2006. During the transition

period the hazardous substance label (page 331) is the on ly legally valid designation.

*) According to European Standards

G as w e l d i n g r o ds f or s t e el j o i n t w e l d i n g cf. DIN EN 12536(2000-08),
replaces DIN 8554-1

Clas s ific ation, w eld metal analy s is , wel d behav ior

Designation Weld metal analysis in % (standard values) Weld behavior
new prev. C Si Mn Mo Ni Cr
Flow behavior Spatter Tendency
for pores

Ol G I <0.1 <0.20 <0.65 <0 80 highly fluid high yes
O G II <0.2 <0.25 less highly fluid low yes
O <0.25 <1 20 <0.65 <1 20 none no
O I V G IV <0.15 <0.25 <0.65 semifluid none no
OV G V <0.15 <0.25 <1.25 <1.20 semifluid none no
<0.10 semifluid
<1 20

<1.20

Areas of applic ation, m ec hanic al prop erties

Welding Yield Tensile Elongation N I2'
rod, strength at fracture J
Areas of Steel type code T1> strength
application S235, S275 Re Am A
Sheet, tube 0I N/mm2
N/mm2 %
360-410
> 260 > 20 >30

Vessels, S235, S275, 0 II >3 00 390 -440 >20 >47
pipes P235GH, P265GH O U >310

S235, S275 400-460 >22 >47
P235GH, P265GH

Boilers, pipes, S235, S355, S275, P235,

temperature resis- P235GH, P265GH, 0 IV >260 440-490 >22 >47

tant up to 530 °C P295GH, 16Mo3

Boilers, pipes, OV >315 490-590 > 18 >47
temperature resis- 13CrMo4-5, 16CrMo3
tant up to 570 °C

Rod EN 12536 - O IV: Gas we lding rod of Class IV

1 )  T Treatment condition of the weld: U untreated (weld condition); T tempe red 328/431
2 )  NI notch impa ct energy at +20 °C, determine d using an ISO-V test specim en

http://slidepdf.com/reader/full/mechanical-and-metal-trades-handbook-56d51be067c7a

7/18/2019 Mechanical and Metal Trades Handbook

P r od u c ti on e n g in e e ri ng : 6. o i n ein 325

Shielding gases, Wire electrodes*

Shielding gases for arc weldin g of steel  Gas type, Welding cf. DIN EN 439 (1995-05)
effect methods
Codes Composition1' Materials;
reduction Applications
R1 H 2  < 15%, balance Ar or He gases
TIG, plasma- high-alloy steels,
R2 (15-35)% H 2 , balance Ar or He inert gases welding Ni, Ni alloys
11 100% Ar (neutral
12 100% He behavior) MIG, TIG, Al, Al alloys,
13 He < 95%, balance Ar plasma- Cu, Cu alloys
M11 C 0 2  < 5%, H 2 < 5%, balance Ar or He welding
M12 (3-10)% C 0 2 , balance Ar o r He
M13 0 2  < 3%, balance Ar gas mixtures, alloyed Cr-Ni steels;
M21 (5-25)% C 0 2 , balance Ar or He mainly stainless and
M22 (3-10)% C 0 2 , balance Ar o r He weak MAG welding acid-resistant steels
M23 C 0 2  < 5%, (3-10)% 0 2 , balance Ar or He
oxidizing

mixed gases, low-alloyed and
more strongly MAG welding medium -alloyed steels
oxidizing

M31 (25-50)% C02, balance Ar or He mixed gases, unalloyed and low
M32 (10-15)% 0 2 , balance Ar or He medium MAG welding alloyed steels; heavy
M33 (5-50)% C 0 2 , (8-15)% 0 2 , balance Ar or He plate
oxidizing

C1 100% C0 2 strongly oxi- MAG welding unalloyed steels
C2 0 2  < 30%, balance C 0 2 dizing gases

Shielding gas EN 439-13: Inert gas with up to 95% Helium, balance Argon

1>  Ar argon He helium 0 2  oxygen C 0 2  carbon dioxide H 2 hydrogen

Wire electrodes and depos its for g as-shielded m etal arc   cf. DIN EN 440 (1994-11)
w e l d i n g o f n o n - a ll o y a n d f in e g r a i n s t r u c t u r a l s t e el s

Designation example (weld metal): EN 440 - G 46 3 M G3Si1
Standard number
Designation
for shielding gases

Designation for Code digit for 2 Code Shielding g as es
gas shielded metal the mechanical letter DIN 439
arc w elding properties of the Code digit for
weld metal notch impact M M21, M22,
(page 327) energy of the M23, M24
weld metal
(page 327) C C1

C h e m i c a l c o m p o s i t i o n o f t h e w i r e e l e c t ro d e s ( ex a m p l e s )

Dnaetsioign- Main alloying elements Dnaetsioign- Main alloying elements

GO All com pos itions agreed upon G2T1 0.5-0.8% Si, 0.9-1.4% Mn, 0.05-0.25% Ti
G3Si1
0.7-1.0% Si, 1.3-1.6% Mn G2Ni2 0.4-0.8% Si, 0.8-1.4% Mn, 2.1-2.7% Ni

EN 440 - G 46 4 M G3Si1:  Properties of weld metal: Minimum yield strength R e = 4 60 N /m m 2 ,
notch impact energy at- 40 °C = 47 J; mixed gas M21-M 24, electrode with 0.7-1.0% Si, 1.3-1.6% Mn

Wire electrodes  (selection)

Designation as per Welding Shielding Usable on steels, Applications, properties,
examples examples
DIN EN 440 methods gases

G 46 4 M G3Si1 MAG M21-M24, C1 S185-S355, E295, E335, joint and build-up welding

G 50 4 M G4Si1 MAG P235-P355, GP240R, like G3Si1, but higher mechanical
M21-M24, C1 L210-L360 strength properties

G 46 M G2Ni2 MAG M21 12Ni 14,  13MnNi6-3, fine grain structural steels and
S(P)275-S(P)420 steels with low-temp, toughness

*) According to European Standards

http://slidepdf.com/reader/full/mechanical-and-metal-trades-handbook-56d51be067c7a 329/431

7/18/2019 Mechanical and Metal Trades Handbook

326 P r o d u c t i o n e n g i n e e r i n g : 6 .7 J o i n i n g , e d i n g

Standard values for gas shielded metal arc welding. Filler metals for aluminum

v\feld d esign Sett ings Efficient :y values

Weld seam type Weld Wire Number Voltage Current Wire feed Shield- Filler Pro-
thickness diameter of passes V A rate1* ing gas metal ductive
m/min
a mm l/min time
mm
g/m min/m

MA G weld ing , s tandard v alues for un alloy ed s truc tural s teel Shielding gas DIN EN 439 - M21
Welding position: PB Wire electrode DIN EN 440 - G 46 4 M G3Si1

2 0.8 20 105 7 45 1.5

3 1.0 1 22 215 11 10 90 1.4

4 1.0 23 220 11 140 2.1

K 5 1.0 1 215 2.6
10 15 300 3.5
6 1.0 1 30 300
390 4.6
7 1.2 3

/ 8 1.2 3 30 300 10 15 545 6.4
y 10 4 805 9.5

M I G w e l d i n g , s t a n d a r d v a lu e s fo r a l u m i n u m a ll o y s

We lding position: PA Filler metal DIN 1732 - SG - AIM g5 Shielding gas DIN EN 43 9-11
ro I
4 1.2 23 180 3 12 30 2.9
IS W / / / J 200 4 18 77 3.3
5 1.6 1 25 230 7 18 147 3.9

6 1.6 26 6 126 4.2
6 18 147 4.6
5 1.6 1 22 160 7 183 5.0
2 22 170
F6 2 26 220
8

1 )  For MIG we lding : we lding travel speed

TIG welding, standard values for aluminum alloys

We lding position: PA Filler metal DIN 1732 - SG - AIM g5 Shielding gas DIN EN 43 9-11

1 3.0 1 - 75 0.3 5 19 3.8
1.5 90 0.2 22 4.3

•0 2 3.0 1 - 110 0.2 6 28 1.8
1 3 125 5.9

E SS H/ ///J
J4
160 0.2 8 38 6.7

5 3.0 1 185 0.1 10 47 7.1

6 210 0.1 10 47 12

7 0°   m 5 4.0 1st layer - 165 0.1 12 105 13
3 6 2nd layer 0.2

4.0 1st layer 165 0.1 12 190 16
2nd layer 0.2

W e l d i n g f i l le r s f or a l u m i n u m   cf. DIN 1732 (1988-06)

Designations 11 Material Application for base metals
number (Designation without adding EN AW)

SG-AI99.8 (EL-AI99.8) 3.0286 AI99.7, AI99.5

SG-AI99.5T1 (EL-AI99.5T1) 3.0805 AI99.0, AI99.5

SG-AIMn1 (EL-AIMn1) 3.0516 AIMnl, AIMnlCu

SG-AIM g3 3 . 35 3 6 AIMg1(C), AIM g3

SG-AIMg5 3 .3 5 56 AIMg3, AIMg4, AIMg5, AISilMgM n, AIM glSiCu, AIZn4.5Mg1,
G-AIMg5, G-AIMgSi, G-AIMg3, G-AIMg3Si

SG-AIMg4.5Mn 3.3548 AGI-MAgIM4g, SAiIM g 5 , AISi l M g M n , A IM g l S i C u , AIZ n 4.5 M g 1 , G -AIM g 5 ,

SG-AISi5 ( E L -A I S i5 ) 3 . 2 24 5 AIMgS ilCu , AIZn4.5M g1

SG-AISi12 (EL-AISi12) 3.2585 G-AISi1, G-AISi9Mg, G-AISi7Mg, G-AISi5Mg

1 )  SG metal fillers with bare surfaces; EL coated rod electrodes

http://slidepdf.com/reader/full/mechanical-and-metal-trades-handbook-56d51be067c7a 330/431

7/18/2019 Mechanical and Metal Trades Handbook

P r od u c ti on e n g in e e ri ng : 6. o i n ein 327

Rod electrodes for arc w elding cf. DIN EN ISO 2560 (2006-03)
replaces DIN EN 499
Coated rod electrodes for unalloyed steels and fine grain steels

Yield strength Classification of rod electrodes Tensile stren gth
Notch impact energy 47 J according to Notch impact energy 27 J

Designation example ISO 2560-A - E 46 3 IN iB 54 H5

Standard number H hydrogen content
5 -> 5 ml/100 g weld metal
A classification according to
yield strength and notch
impact energy 47 J

E coated rod electrode

Code numbers for the m echanical properties Code numbers for the welding position
of weld m etal Code Welding position

n uCmo dbee r M iyniiemldu m sTtreennsgilteh eMloi nngi matuiomn number
strength at fracture 1 all positions
N/mm2 N/mm2 EL5  in %
44 0-5 70 2 all positions, except vertical down welds
35 355 47 0-6 00 22
500-640 3 butt we ld in flat position, fillet we ld
38 380 530 -680 20 in flat and horizontal position
560 -720
42 420 20 4 butt and fillet weld in flat position

46 460 20 5 for vertical down weld and as in number 3

50 500 18

Code number for the efficiency and the type of current

Code letter for the notch impact energy Code Efficiency Type of current
of weld metal
number %
Code letter/ Minimum notch impact energy 1 > 105 AC and DC
code number 47 J at °C
2 > 105 DC

Z no requirements 3 >105<125 AC and DC

A + 20 4 >10 5 <12 5 DC

00 5 >1 25 <1 60 AC and DC

2 -20 6 > 1 2 5 < 1 6 0 DC

3 -30 7 > 160 AC and DC
4 -40
8 > 160 DC

Code letters for the chemical Code letters for the type of coating
composition Code Type of coating
letters
Code Maxiimum conteiit in %
letters A acid coating
Mn Mo Ni B basic coating
None C cellulose coating
Mo 2.0 - - R rutile coating
MnMo RA rutile acid coating
1 N i 1.4 0.3-0.6 - RB rutile basic coating
2Ni
1.4-2.0 0.3-0.6 - RC rutile cellulose coating
RR thick rutile coating
1.4 - 0.6-1.2

1.4 - 1.8-2.6

MnINi 1.4-2.0 - 0.6-1.2
1NiMo 1 .4 0.6-1.2
0.3-0.6

ISO 2560-A - E 42 2 RB 12: A rod electrode with g uaranteed yie ld strength and n otch imp act energy, 42 yield
strength R e = 420 N/m m 2 , 2 notch impact energy 47 J at-20°C, RB rutile basic coating,  1  efficiency > 105%, 2 all
welding positions except for  vertical   down welds.

http://slidepdf.com/reader/full/mechanical-and-metal-trades-handbook-56d51be067c7a 331/431

7/18/2019 Mechanical and Metal Trades Handbook

328 P r o d u c t i o n n g i n e e r i n g : 6 .7 J o i n i n g , e d i n g

Coating  of rod electrodes, W eld design

Coating of rod electrodes used for arc w elding

The coating of rod electrodes has a decisive influence on the  welding properties and the m echanical properties  of
the weld metal.

The coating consists of a homog eneous mixture of the following comp onents:

•• sdleaogxfidoirzmeersrs •• ainrcerst tgaabsilifzoerrms ers •• ablilnodyecrsontents , if applicable

The addition of iron powder increases the efficiency of the weld metal.

Pr operties , applic ation and w elding pos ition ac c or ding to the ty p e of c oatin g 1'

Type of coating Properties, application Welding position (page 322)
Limited application in
acid coating With thick coated rod electrodes, fine drip constrained positions
transition with flat, smooth welds, risk of
solidification cracking PA, PB, PC, PD, PE, PF

basic coating High notch impact energy, particularly at PG
low temperatures, low crack sensitivity
PA, PB, PC, PD, PE, PF
cellulose coating Intense arc wi th particular suitability for
vertical down welding PA, PB, PC, PD, PE, PF

rutile coating Good drip transition, suitable for the PA, PB, PC, PD, PE, PF
welding of thin sheets

rutile acid coating Typically thick coated rod electrodes,
same properties as electrodes with acid coating

rutile basic coating Good welding and mechanical properties

rutile cellulose coating Good drip transition, suitable for welding PA, PB, PC, PD, PE, PF, PG
of thin sheets, also in vertical dow n position

1 )  The specifications app ly to rod electrodes designated according to the yield strength and the notch impac t
energy (page 327).

Weld des ign for arc welded V joint s

Weld Number Electrode Spec, elec- Weld weight
thickness and dimensions trode consump.
Gap per pass total
a s type of dxl piece/m ms m
mm pass1 mm g/m g/m
mm 4
1R 3.2 x 450 2.9 75 155
1 1 FP 4 x 450 4
4.7 80
1R 3.2 x 450
1.5 1 FP 4 x 450 100 210
110
1R 3.2 x 450
2 FP 4 x 450 100 285
185

filler pass roof pass 11 RF 43.2 xx 445500 34.7 114050 460

1 FP 5 x 450 3.5 215

1 R 3.2 x 450 4 100

10 1 F 4 x 450 4 195 675
Weld design for arc welded fillet weld s
1 FP 5 x 450 6.2 380

3 1 3.2 x 450 3.2 80 80
140 140
4 1 4 x 450 3.6 215
215 310
final pass 5 3 3.2 x 450 8.6 310
8 550
6 _ 3 4 x 450 120 865

1 R 4 x 450 3 430 1245
120
roof pass 8 2 FP 5 x 450 7 745
10 4 x 450 3
1R 5 x 450 12.3 120
4 FP 1125

12 1R 4 x 450 3
4 FP 5 x 450 18.5

1 )  R root pass;  F filler pass; FP final pass

http://slidepdf.com/reader/full/mechanical-and-metal-trades-handbook-56d51be067c7a 332/431

7/18/2019 Mechanical and Metal Trades Handbook

P r od u c ti on e n g in e e ri ng : 6. o i n ein 329

i i i i ii i i i iI
S t a n d a r d v a l u e s f o r o x y a c e t y l en e c u t t i n g

Material: unalloy ed s truc tural s teel; fuel gas: ac ety lene

Sheet met. Cutting Width of Acetylene Total Acetylene Cutting rate
thickn. nozzle cut pressure
s Oxygen pressure oxygen consumption quality standard
mm mm mm bar cut cut
cutting heating consumption
5 3-10 1.5 bar bar m/min m/min
8 m3/hr m3/hr
10
2.0 1.67 0.27 0.69 0.84
0.2 1.92 0.32
2.5 2.0 0.64 0.78
3.0 2.14 0.34
0.60 0.74

10 2.5 2.46 0.36 0.62 0.75
0.52 0.69
15 10-2 5 1.8 3.0 2.5 0.2 2.67 0.37 0.45 0.64

20 3.5 2.98 0.38

25 4.0 3.20 0.40 0.41 0.60

30 25-4 0 2.0 4.3 2.5 0.2 3.42 0.42 0.38 0.57
35 4.5 3.54 0.44 0.36 0.55

S t an d a r d v a l u es fo r p l as m a c u t t i n g 11

Material: high-alloyed structural steels Material: aluminum
Cutting method: argon-hydrogen Cutting method: argon-hydrogen

Electrical Cutting Consumption values Electrical current Cutting Consumption
Sheet met. current rate rate values
quality stand,
thickn. qual. stand, quality stand. argon hydro- nitro- cut cut quality stand. argon hydro-
s cut cut cut cut gen gen AA cut cut m3/hr gen
m3/hr m3/hr m3/hr m3/hr
mm A A m/min m/min 70 120 m/min m/min
0.6 0.24 1.2 1.2 0.5
4 1.4 2.4 0.6 1.2 3.6 6.0
5 70 120 1.1 2.0 1.2 1.9 5.0
10 0.65 0.95 1.1 1.6

15 0.35 0.6 1.2 0.24 0.6 1.3
70 120 0.35 0.75 1.2
20 70 120 0.25 0.45 1.2 0.24 0.5
0.2 0.5
25 0.35 0.35 1.5 0.48

1 )  Values apply to an arc power of approx . 12 kW and 1.2 mm c utting noozle diameter.

http://slidepdf.com/reader/full/mechanical-and-metal-trades-handbook-56d51be067c7a 333/431

7/18/2019 Mechanical and Metal Trades Handbook

330 P r o d u c t i o n e n g i n e e r i n g : 6 .7 J o i n i n g , e d i n g

Standard values , Quality  and dimensional tolerances for beam cutting

S t a n d a r d v a l u e s fo r l as er c u t t i n g 1)

Sheet m et. Cutting Cutting Cutting Cutting Cutting Cutting
speed gas press. speed gas press. speed gas press.
M2> thickness Cutting Cutting Cutting
s V gas P V gas P V gas P
bar bar bar
mm m/min m/min m/min

Laser power  1 kW Laser pow er 1.5 kW Laser pow er 2 kW

1 5.0-8.0 7.0-10 7.0-10
1®3 1.5 4 .0 - 7 .0 5.5-7.5 5.6-7.4

4—COF

D2 4.0-6.0 4.8-6.2 4.8-6.1
C> D 4.2-5.0 0 2 1.5-3.5 4.2-5.0
2.5 3.5-5.0 02 1.5-3.5 O2 1.5-3.5
o 3.5-4.2 3.6-2.8
2.8-3.3 2.8-3.4
~CD 3 3.5-4.0
c 2.5-3.0
4
Z>

5 1.8-2.3 2.3-2.7 2.5-3.0
6 1.3-1.6 1.9-2.2 2.1-2.5

"A3 1 4.0-5.5 8 5.0-7.0 6 4.5-9.0 12
1.5 2.8-3.6 10 3.5-5.2 10 3 .8 - 6 .6 13
<D
14
4-1
15
V 2 2.2-2.8 2.0-4.0 10 3 .4 - 5 .3
V N2 1.9-3.2 N2 14 2 .7 - 3 .8 N2 14
C©O 2.5 1.6-2.0

c 1.3-1.4 1.8-.2.4 14 2 .2 - 2 .7 14
1.0-1.1 15 1.4-1.8 16
CD

cn 3
4

1 )  The table values apply a the focal length of f= 127 mm (5") and a cut ting gap widt h of w = 0.15 mm .
2 )  M material group

Cutting quality and dim ensional tolerances for thermal cuts cf. DIN EN ISO 9013 (2003-07)

The specifications apply to Quality of cut surfaces
• oxy-fuel gas cutting,
Range Perpendicularity Average surface Comments
•• plalassemr abecaumtticnugt,ting. tolerance  u roughness /?z5
in mm in pm

The quality of the cut surfaces 1 u<   0.05 + 0.03 •  s Rz5   < 10 + 0.6 •  s Put in workpiece
is determined by 2 u<   0.15 + 0.07 •  s Rz5   <4 0 + 0.8 •  s thickness
u<   0.4 + 0.01 •  s Rz5   < 70 + 1.2 •  s in mm
• the perpendicularity tolerance   u,
• the average surface roughness flz5.

/ nominal length 4 u<  1.2 + 0.035 • s Rz5   <  110 + 1.8 •  s

s workpiece thickness Limit deviations from the no minal length

u  perpendicularity tolerance Limit deviations  A /from nominal lengths /  in mm

Rz5   average surface roughness

Al   limit deviations from the Workpiece Tolerance class 1 Tolerance class 2
thickness s
nominal length /

in mm >35 > 125 >315 >35 > 125 >315

< 125 <315 <  1000 <  125 <315 <  1000

>  1 <3.15 ±0.3 ±0.3 ±0.4 ±0.5 ±0.7 ±0.8

>3.15 <6.3 ±0.4 ± 0.4 ±0.5 ±0.8 ±0.9 ± 1.1

>6.3< 10 ±0.6 ±0.7 ±0.7 ± 1.3 ± 1.4 ± 1.5

^ > 10 <50 ±0.7 ±0.7 ±0.8 ± 1.8 ± 1.9 ±2.3
> 50<100 ± 1.3 ± 1.4 ±2.5 ±3.0
ISO 9013-342 >100<150 ± 1.9 ± 1.7 ±3.3 ±2.6 ±3.7
±2.0
±2.1 ±3.4

stan dard number '

Qpeurapleitnydiocfulcaurtity tolerance u ^ Example:  oxy-fuel gas cutting according to tolerance class 2, / = 450 m m,
s= 12 mm, cutting quality according to range 4
according to row 3
average surface roughness/? z5   J S o u g h t a f t er : A / ;  u ; Rz5
according to row U Solution: A/= ±2.3 mm

tolerance class 2 u = 1.2 + 0.035 • s = 1.2 mm + 0.035 • 12 m m = 1.62 m m
Rz5   = 110 + 1.8 •  s= 110 pm + 1.8  • 12 pm = 131.6 pm

http://slidepdf.com/reader/full/mechanical-and-metal-trades-handbook-56d51be067c7a 334/431

7/18/2019 Mechanical and Metal Trades Handbook

P r od u c tio n e n g in e e ri ng : 6. o i n ein 331

Gas cylinders - Iden tification *

Hazardous subs tance labels cf. DIN EN ISO 7225 (2008-02)

A hazardous substance label must be applied to individual gas cylinders to identify their contents and any possi-
ble hazards from these contents. Up to three hazard labels warn of the main hazards.
Example:

shuapzaprledms eanntdalsainfefotyrmation on ip.ero. douxcytgenname gas EWG no. for pureorstuhbestwaonrcdess
precautions composition "gas mixture"

manufacturer's name, hazard label with number of information from complete
address, phone num ber hazardous substance class - manufacturer name of the gas,
e.g. oxygen, com pressed
Hazard label

n o n -ncoonm-btouxsitci b l e , combustible toxic flammable corrosive

Color coding cf. DIN EN 1089-3 (2004-06)

Color coding of the cylinder sh oulder is used as additional information about the properties of the gases.
It is readily recognized w hen th e hazardous su bstance label is illegible from a distance.
This color coding does not apply to liquid gases.

General color coding

Decreasing risk potential >

toxic and/or corrosice flammable oxidizing inert2)

Color cod ing for s pecial gases

axygen Acetylene Argon Nitrogen Carbon dioxide Helium
S i1 )  N = new 
2 )  Non-toxic, non-corrosive, non-flammable, n on-oxidizing

W)  According to European Standards

http://slidepdf.com/reader/full/mechanical-and-metal-trades-handbook-56d51be067c7a 335/431

7/18/2019 Mechanical and Metal Trades Handbook

332 P r o d u c t i o n e n g i n e e r i n g : 6 .7 J o i n i n g , W e l d i n g

Gas cylinders - Iden tification *

Pure gases and gas m ixtures for indus trial use cf. Information sheet from Industrial Gases Association
Color coding (examples)
Coding
Coding old new 1 2
old new 1)2)

Oxygen Xenon, Krypton, Neon

blue hite r N gray u flourescent
blue blue green
gray gray
(black)
red
Acetylene Hydrogen red

yellow i chestnut brown M ked A
chestnut brown red
yellow
(black)

Argon F o r m i n g g a s (m i x t u r e o f n i t r o g e n / h y d r o g e n )

gray dark green A red red
gray gray gray
red
: Nitrogen (dark green)

to black Mixture of argon/carbon dioxide
gray
A gray flourescent
green
gray
gray

Carbon dioxide C o m p r e s s e d a ir

gray gray gray flourescent
green

gray gray gray gray

Helium 1 )  For gas cylinders colo r coded as per DIN EN 1089, the
letter "N" (= new) must be put on the shoulder of the
gray A brown cylinder two times (opposite sides). The "N" is not
aaailiSilS gray gray required on cylinders whose color coding has not
changed.

2 )  The cylinder bo dy may be another color. However, this
must not lead to confusion regarding the hazardous
nature of the cylinder contents.

*) According to European Standards

http://slidepdf.com/reader/full/mechanical-and-metal-trades-handbook-56d51be067c7a 336/431

7/18/2019 Mechanical and Metal Trades Handbook

P r o d u c t i o n e n g i n e e r i n g :  6. o l e an d r a i n 3 3 3

Brazing

Br azi ng heav y n on- fer rous m et al s  cf. DIN EN 1044 (1999 07)

Silv er c on taining braz ing m aterials

B r a z i n g  lna t e r i a l Alloy Working Brazing Solder Information for use
tempera- joint3' feed4) Materials
Material designation
ture
Group Desig- number as  per °C
nation 1* ISO 36772)

A G  301 2.5143 B-Ag50CdZnCu-620/640 640 G precious metals, steels,
B-Ag45CdZnCu-605/620 620 G copper alloys
C AG  302 2.5146 B-Ag45ZnCdCu-595/630 610 G
C AG  304 2.5141 B-Cu40ZnAgCd-605/765 750 G,  V steels, malleable cast iron, copper,
copper alloys, nickel, nickel alloys
A

AG  309 2.1215

n A G  104 2.5158 B-Ag45CuZnSn-640/680 670 G steels, malleable cast iron, copper,
B-Cu36AgZnSn-630/730 710 G copper alloys, nickel,
S B-Ag44CuZn-675/735 730 G nickel alloys
B-Cu40ZnAg-700/790 780 G
n AG  106 2.5157

u A G 203 2.5147
C
g

A A G 205 2.1216

A G 207 2.1207 B-Cu48ZnAg(Si)-800/830 830 G steels, malleable cast iron, copper,
B-Cu55ZnAg(Si)-820/870 860 G,  V copper alloys, nickel, nickel alloys
e   A G 208 2.1205 B-C u 80 Ag P-645/800 710 G,  V
2 B-Cu89PAg-645/815 710 G,  V copper an dnickel-free copper alloys.
c ow CP   102 2.1210 B-Cu92PAg-645/825 710 G,  V U n s u i t a b l e fo rmaterials containing
Fe or Ni
v b CP  104 2.1466
S

CP   105 2.1467

A G  351 2.5160 B-Ag50CdZnCuNi-635/655 660 G Cu alloys
B-Ag56Cu I n N i-600/710 730 G
a n A G  403 2.5162 chrome, chrom e-nickel steels
B-Ag49ZnCuMnNi-680/705 690 G
a carbide onto steel,
tungsten   an dm o l yb d e n u m m a te ri a ls
S b A G  502 2.5156

|  Copper bas ed braz ing materials

CU  104 2.0091 B-Cu100(P)-1085 1100 G steels

CU  201 2.1021 B-Cu94Sn(P)-910/1040 1040 G iron an dnickel materials

CU   202 2.1055 B-Cu88Sn(P)-825/990 990 G f,  I steels, malleab. iron, Cu, Ni, Cu & N ailloys
f,  I steels, malleable iron, Ni, N ai lloys
CU  301 2.0367 L-CuZn40 900 G, V f cast iron
f,  I Cu, Fe-free  an dNi-free  C ualloys
CU  305 2.0711 B-Cu48ZnNi(Si)-890/920 G,  V
910

V

CP  202 2.1463 B-Cu93P-710/820 720 G

|  Nickel based brazing materials  or  high- temp er atur e br azing

NI  101 2.4140 B-Ni73CrFeSiB(C)-960/1060
NI  103
2.4143 B-Ni92SiB-980/1040 nickel, cobalt,
I 105 2.4148 B-Ni71CrSi-1080/1135 5) 5) 5) nickel an dcobalt alloys,
NI   107 2.4150 B-Ni76CrP-890
unalloyed an dalloyed steels

I  Alu m inum bas ed brazing materials

A L 102 3.2280 B-AI92Si-575/615 610 G f,l a l u m i n u m  and A  al lloy types
A L 103 3.2282 B-AI90Si-575/590
A L 104 3.2285 B-AI88Si-575/585 600 G AIM n , AIM g M n , G - AISi;
f,  I especially for A al lloy types

595 G f,   I A I M g , A I M g S i  up to 2 M gcontent

1 )  The two letters indicate th ealloy group , while  th ethree digit numbers Brazing jo int
are purely numbers increasing sequentially.
Gap brazing:  m •SH
2 }  N u m b e r s at the en dindicate th emelting range. Alloy components, iv < 0.25mm  
see pages  116 and 117.
U SV-joint brazing:   | |
3 )  G suitable for ga pbrazing; V suitable fo rV-joint brazing
4 )   ffilled brazing;  lIapped brazing w   0.3 mm
5 )  Refer  t omanufacturer's data.

http://slidepdf.com/reader/full/mechanical-and-metal-trades-handbook-56d51be067c7a 337/431

7/18/2019 Mechanical and Metal Trades Handbook

33 4  P r o d u c t i o n e n g i n e e r i n g : 6 .7 J o i n i n g , S o l d e r i n g a n d B r a z in g

Solders and flux

Solders cf. DIN EN ISO 9453 (2006-12)

Alloy Alloy Alloy designation Previous Working Application examples
group1* no.2) as per ISO 367 7 3 ) designation temperature
precision mechanics
tin-lead 101 S-Sn63Pb37 DIN 1707 °C electronics, printed circuit boards
102 S-Sn63Pb37E L-Sn63Pb printed circuit boards, high-grade steel
lead-tin 103 S-Sn60Pb40 L-Sn63Pb 183
111 S-Pb50Sn50 L-Sn60Pb 183 electronics industry, tin plating
tin-lead- 114 S-Pb60Sn40 L-Sn50Pb 183-190 thin-sheet packaging, metal goods
antimony 116 S-Pb70Sn30 L-PbSn40 plum bing work, zinc, zinc a lloys
124 S-Pb98Sn2 183-215 radiator manufacturing
tin-lead- L-PbSn2 183-235
bismuth 131 S-Sn63Pb37Sb 183-255 precision mechanics
tciand-lmeai udm- 132 S-Sn60Pb40Sb L-Sn60Pb(Sb) 320-325 precision mechanics, electrical industry
tin-lead- 134 S-Pb58Sn40Sb2 L-PbSn40Sb
copper 136 S-Pb74Sn25Sb1 L-PbSn25Sb 183 radiator manufacturing, wiping solder
tin-lead- 141 S-Sn60Pb38Bi2 183-190 wiping solder, lead solders
silver 142 S-Pb49Sn48Bi3
lead-tin- 185-231 precision solders
silver 151 S-Sn50Pb32C d18 185-263 low-temperature solder, safety fuses

161 S-Sn60Pb39Cu1 180-185
162 S-Sn50Pb49Cu1 138

171 S-Sn60PbAg L-SnPbCd18 145 the rmal fuses, cable joints

182 S-Pb95Ag5 L-SnPbCu3 230-250 electronic devices, precision mechanics
191 S-Pb93Sn5Ag2 L-Sn50PbCu 183-215

L-Sn60PbAg 178-1 80 electrical devices, printed circuit boards

L-PbAg5 304-365 for high operating temperatures
296-301 electric motors, electrical equipment

1 )  Filler metals for alum iniu m are no longer in EN ISO 9453.
2 )  The alloy numb ers replace the material num bers as per DIN 1707.
3 )  W ith traces (<0.5%) of Sb, Bi, Cd, Au , In, Al, Fe, Ni, Zn: see pages 116 and 117.

Flux for so ldering   cf. DIN EN 29454-1  (1994-02)

Designation by main constituents Classification by effect

Flux Flux basis Flux activator Flux Desi gnations Effect of
type form DIN EN DIN 8511 residues
1 rosin 1 colophonium 1 with out activator
2 organic 2 without colophonium 2 activated by halogens A liquid 3.2.2... F-SW11 very
3 activated without halogens B solid 3.1.1... F-SW12 corrosive
3 inorganic 1 water soluble C paste
2 not water soluble 3.2.1... F-SW13
3.1.1... F-SW21
1 salts 1 w i t h am mo ni um c hl oride 2.1.3... F-SW23 somewhat
2 w i t h o u t a m m o n i u m c h l o ri d e 2. 1.2... F-SW25 corrosive

2 acids 1 phosphoric acid 1.2.2... F-SW28 non-
3 alkaline 2 other acids 1.1 .1... F-SW31 corrosive
1.2.3...
1 amine and/or amm onia F-SW33

Flux ISO 9 4 5 4 -  1.2.2.C:  Flux of type rosin   (1),  b a se w i t h o u t c o l o p h o n i u m ( 2) ,
activa ted by ha logen s (2), availab le in paste form (C)

Flux for brazing   cf. DIN EN 1045 (1997-08)

F lu x A c t i v a t i o n t e m p e r . Instructions for use

FH10 550-800 °C Multi-purpose flux; residues rinsed off or chemically stripped.
FH11 550-800 °C Cu-AI alloys; residues rinsed off or che mically stripped.
FH12 550-850 °C Stainless and high-alloy steels, carbide; residues chem ically stripped.

FH20 700-1000°C Multi-purpose flux; residues rinsed off or chemically stripped.
FH21 750-1100 °C Multi-purpose flux; residues removed mechanically or chemically stripped.
FH30 over 1000 °C For copper and nickel solder; residues removed mechanically.
FH40 650-1000°C Boron-free flux; residues rinsed off or chemically stripped.

FL10 400-700 °C Light alloys; residues are rinsed off or chemically stripped.
FL20 400-700 °C Light alloys; residues are non-corrosive, but should be protected from moisture.

http://slidepdf.com/reader/full/mechanical-and-metal-trades-handbook-56d51be067c7a 338/431

7/18/2019 Mechanical and Metal Trades Handbook

Production engineering: 6. o l e and r a i n 3 3 5

Soldered and brazed joints

Classification of soldering and brazing processes

Differentiating cSoldering a nd brazing processes5
characteristics
Soldering Brazing High temperature brazing

Working temperature < 450 °C > 450 °C > 900 °C

Energy source soldering iron, soldering flame, furnace flame, laser beam,
bath, electrical resistance electric induction

Base material Cu, Ag, steel, steel, carbide
Al alloys, carbide inserts
stainless steel,
steel, Cu,
Ni alloys

Soldering or filler Sn, Pb alloys Cu, Ag alloys Ni-Cr alloys,
material Ag-Au-Pd alloys

Aux iliary materials Flux flux, vacuum vacuum , shielding gas

Standard values for soldering gap w idth s

Soldering gap) width in m m

Base material for solders forb razing materials primariily of

copper brass silver

unalloyed steel 0 . 0 5 - 0 .2 0.05-0.15 0.1-0.3 0.05-0.2

Alloy steel 0 . 1 - 0 .2 5 0.1-0.2 0.1-0.35 0.1-0.25

Cu, Cu alloys 0.05-0.2 - - 0.05-0.25

Carbide - 0.3-0.5 - 0.3-0.5

D es i g n r u le s f or s o l d e r ed j o i n t s

ldmax ~ S • 5 Preconditions
• Soldering gap should be large enough so that flux and sol-
Soldered joint under shearing load
der adequately fill the gap by capillary action (table above)
Load on solder joint reduced by folded seam • The two surfaces to be soldered should be parallel.
• Surface roughness due to machining can remain for
stop knurled
position press fit Cu soldering   Rz =  10-16 pm, for Ag soldering at Rz  =
25 pm.
Production process simplification
Load transfer
• The load on the soldered joint sh ould be in shear (trans-

verse forces) if at all possible. In particular, solder seams
should not be loaded with tensile or peeling stress.

• Soldering gap depths / d  > 5 • s do not fill with solder reli-
ably. Therefore load capacity cannot be increased by a
larger gap depth.

• Load capacity can be increased by d esign features such as
folds

Production process simp lification
• In soldering there sho uld be a means for assuring proper

positioning of the parts to be joined, e.g. by part shape
or by knurled press fit.

Application examples
• pipes and fittings

• sheet metal parts
• tools with brazed carbide cutters

Soldered pipe fitting 339/431

http://slidepdf.com/reader/full/mechanical-and-metal-trades-handbook-56d51be067c7a

7/18/2019 Mechanical and Metal Trades Handbook

336 P r o d u c t i o n e n g i n e e r i n g : 6 .7 J o i n i n g , A d h e s i v e b o n d i n g

Adhesives, Preparation  of jo int surfaces

P r o p er t ie s a n d c o n d i t i o n s o f u s e fo r a d h e s i v e s 1)

Adhe sive Trade name Curing conclitions max. Comb, tensile Elasticity Applications,
operating and shear special characteristics
Acrylic Agomet M, Temperature Time tempera- strength low
resins Acronal, °C metals, thermosets,
Stab i I it- 20 24 hr ture 2 low ceramics, glass
Express °C low
120 N/mm low metals, thermosets, glass,
Epoxy resins Araldit, 20-200 1 hr to 6-30 present ceramics, concrete, woo d;
(EP) Metallon, 12 hr 50-200 low long curing tim e
10-35 present metals, thermosets,
Uhu-Plus 140 low glass, elastomers, wood,
20 present ceramics
Phenolic Porodur, 120-200 60s 60 metals, thermosets,
resins (PF) Pertinax, 40 60 cgelarassm, iecslastomers, woo d,
Bakelite 50 metals, elastomers,
170 glass, wo od,
Polyvinyl Hostalit, 60 some thermoplastics
110 metals, thermosets,
c(PhVl oCr )i d e IMs oa dc ruor ,p l a s t 20 > 24 hr 5 ceramics, glass
50 24 hr 85
Polyurethane Desmocoll, 25 1 hr 20-25 contact glue for metals
50 1 hr 50 and plastics
(PUR) Delopur, 20 40 s 2-5
20 > 30 s fast-curing adhesive for
Baydur metals, plastics, elas-
tomers
Polyester Fibron, all types of materials;
resins (UP) Leguval, adhesive action throu gh
Verstopal cooling

Poly- Baypren,
chloroprene Contitec,
(CR) Fastbond

Cyanoacry- Perma-
late bond,
Sicomet 77

Hot glue Jet-M elt,
Ecomelt,
Vesta-Melt

1 )  Due to varying che mical com pos itions of adhesives, the values given are only appro xima te values. For detailed
inform ation please refer to information from the m anufacturer.

Preparation of parts for bon ded joints   cf. VD l 2229 (1979-06)

Material Tireatment sequ e n c e 1 ) Material Ti eatment sequ e n c e 1 )
for load sever it y 2> for load sever•ity2)

Al alloys low medium high Steel, bright low medium high
Mg alloys 1-2-3-4 1-6-5-3-4 1-2-7-8-3-4 Steel, galvanized 1-2-3-4 1-6-2-3-4 1-7-2-3-4
Ti alloys 1-2-3-4 1-6-2-3-4 1-7-2-9-3-4 Steel, phosphatized 1-2-3-4 1-2-3-4
1-6-2-3-4 1-2-10-3-4 1-2-3-4 1-6-2-3-4
Cu alloys Other metals 1 - 2 -3 - 4
1-6-2-3-4 1-7-2-3-4 1-6-2-3-4 1-7-2-3-4

1 1  Code numbers for type of treatment

1  Cleaning of dirt, scale, rust 6  Mechanical roughing by grinding or brushing
2  Removing grease wit h organic solvent 7  Mechanical roughing by shot blasting
8  Etching 30  m i n , at 60°C in 27.5% sulfuric acid solution
or aqueous cleaning agent 9  Etching  1 m i n , at 20°C in 20% nitric acid solution
3  Rinsing wit h clear water 10  Etching 3 m i n ,  at 20°C in 15% hydrofluoric acid solution
4  Drying in hot air up to 65°C

5  Removing grease  with simultaneous etching
2 1  Load s ev er ity for bonded joints

L o w :  Tensile shear strength up to 5 N /m m 2 ; dry environment; for precision mechanics, electrical equipment
M e d i u m : Tensile shear strength up to 10 N/m m 2; hum id air; contact with oil; for m achine and vehicule manufacturing
High:  Tensile shear strength up to 10 N /m m 2 ; direct contact w ith liquids; for aircraft, s hip, and container

manufacturing

http://slidepdf.com/reader/full/mechanical-and-metal-trades-handbook-56d51be067c7a 340/431

7/18/2019 Mechanical and Metal Trades Handbook

Production engineering: 6. o i n e on 337

Design  of adhesive bonded join ts, Test methods

Design examples

Bonded joints should be loaded in compression or shearing if possible.
Tensile, peeling or bending loads should be avoided.

Butt joint/ov erlap joint T -j o i n t Tube joint

good, since the b ondin g surfaces good, since the bon ding surfaces good, since sufficiently large
only have a shear load only have a shear and bonding surfaces can w ithstand
compression load shear load

not as good, not as good, not as good, since small
since peeling forces act due to bonding surfaces cannot
since peeling forces act due to bending load withstand tensile and shear load
off-center application of force

Test methods

Test method Contents
standard Tests resistance of bonde d joints a gainst pee ling forces

Bending peel test
DIN 54461

TDeINnsEilNe s1h4e6a5r test Tests tensile shear strength of high-strength bonded lap joints

Fatigue tes t Tests fatigue properties of structural adh esives under tensile-shear loads
DIN EN ISO 9664

Tensile test Tests tensile strength of bonded butt joints perpendicular to bonded surface
DIN EN 26922

Roller p eel test Tests resistance to peeling forces
DIN EN 1464

Compression shear test Tests shear strength, primarily of anaerobic1' adhesives
DIN EN 15337

1 )  Sets wit h exclusion of air

Adhesive behavior as a function of tem perature and size of bonding surface

epoxy polyamide increasing
mm width w

40 increasing
Imethacrylate epoxy resin overlap /

phenolic resin

epoxy polyaminoamide 150 bon ded surface area •

50 0 50 100 Effec t of adhes iv e joint s urfac e
test temperature 0 area on breaking load

Tens ile s hear s t rength of
ov er lap bond ed joints

http://slidepdf.com/reader/full/mechanical-and-metal-trades-handbook-56d51be067c7a 341/431

7/18/2019 Mechanical and Metal Trades Handbook
3 3 8  P r o d u c t i o n e n g i n e e r i n g : 6 .8 W o r k p l a c e s a f e ty a n d e n v i r o n m e n t a l p r o t e c t i o n

Safety colors, Prohibitive signs *

Safety colors   cf. DIN 4844-1 (2005-05) and BGV A 8 1 )  (2002-04)

Color yellow blue

Meaning sptrooph,i b i t e d cpaoutetinotnial danger fsiarsfet tay,id nmoatnicdeastory signs,
black white white
Contrast color white black white white

Color of graph- black
ic s y m bol

Application Stop signs, Notice of hazards (e.g. Identification of ambu- Requirement to
examples emergency stop fire, explosion, radia- lances and emergency wear personal protec-
(see pages 340 prohibitive signs, tion); exits; tive equipment (PPE);
and 341) fire fighting notice of obstruc- first aid and location of a
equipment tions (e.g. speed emergency aid stations telephone
bumps, holes)

Prohibitive signs cf. DIN 4844-2 (2001-02) and BGV A8 1 )  (2002-04)

Prohibited No smoking No fires, open Pedestrian access Do not extinguish Non-potable
flame or water
smoking prohibited with water

Access prohibited Access by forklifts Do not touch Do not touc h Do not No access for
live voltage connect persons with
for unauthorized prohibited pacemaker

persons

Placement or stor- Transport of pas- Walking in this No spraying with No cell phones No food or drink
allowed
age prohibited sengers prohibited area prohibited water

No magnetic or Climbing Do not use this Do not reach in Operating wit h Hand-held or
electronic data long hair
media allowed prohibited for device in the prohibited manually operat-
unauthorized bathtub, shower ed grinding not

persons or sink allowed

1 )  Germ an Employer's Liability Insurance Ass ociation - Accident Prevention Regulations (Berufsgenossen-
schaftliche U nfallverh iitungsv orsch rift) BGV A8 (replaces VGB 125)

*) According to European Standards

http://slidepdf.com/reader/full/mechanical-and-metal-trades-handbook-56d51be067c7a 342/431

7/18/2019 Mechanical and Metal Trades Handbook
P r o d u c t i o n e n g i n e e r i n g : 6 .8 W o r k p l a c e s a f e ty a n d e n v i r o n m e n t a l p r o t e c t i o n  3 3 9

Warning signs Warning signs*

cf. DIN 4844-2 (2001-02) and BGV A8 1)  (2002-04)

AWarning: AWarning: AWarning: AWarning: AWarning: AWarning:
Combustible Explosive Radioactive
Hazardous area materials substances Toxic substances Corrosive sub- materials or
stances ionizing radiation

Aarning: AWarning: ADanger: AWarning: AWarning: AWarning:
Suspended High voltage Laser beam Oxidizing
load Forklift traffic Optical radiation radiation substances

arning: Warning: AWarning: AWarning: Warning: AWarning:
Non-ionic, Strong magnetic Danger of Biological hazard Extreme cold
electromagnetic tripping Danger of falling
field
aK Aradiation

AA A
mmmm—mrn
SWubasrtnainncge: s AWarning: AHazWaardrsnidnuge: to EWxaprlnoisni gv e: MWi l l ianrgn i ns gh :a f t C r u sWhai nr gn i nhga:z a r d
hazardous to batteries atmosphere
health or irritants Gas cylinders AA
A A
A A
Warning: Warning: Warning: Warning: Warning: Warning:
Danger of tipping Automatic Hot surface Risk of hand Danger of slipping
Moving
when rolling start-up injury conveyor
on track

1 )  Germ an Employer's Liability Insurance Ass ociation - Accident Prevention Regulations (Berufsgenossen- 343/431
schaftliche U nfallverh iitungsv orsch rift) BGV A8 (replaces VGB 125)

*) According to European Standards

http://slidepdf.com/reader/full/mechanical-and-metal-trades-handbook-56d51be067c7a

7/18/2019 Mechanical and Metal Trades Handbook
3 4 0  Produ ction eng ineering : 6.8 Wo rkplace safety and env ironm enta l protec tion

Safety signs^ cf. DIN 4844-2 (2001-02)
and BGV A8 1)  (2002-04)

Mandatory signs

General Wear safety Wear hard hat Wear ear Wear respirator Wear safety shoes
mandatory sign glasses protection

Wear protective Wear p rotective Wear face Use safety belt For pedestrians Use safety
protection harness
gloves clothing

Use crosswa lk Disc, plug from Disconnect Wear life Sound horn Follow
preserver instructions
power bef. opening before working

Escape and rescue signs for escape routes and emergency exits

Direction arrows for First aid stations, First aid Medical stretcher Em ergency Eye rinsing
escape routes and emergency exits 2 ' shower equipment

Emergency Doctor Defibrillator Escape route/Em ergency exit Meeting point
telephone

F ir e p r o t e c t i o n s y m b o l s a n d a d d i t i o n a l s y m b o l s

Directional arrows Wall hydrant and Ladder Fire extinguisher Fire a larm
fire hose telephone

Work area High Voltage
Danger to life
Location: Date:

Sign may only be

removed by:

•Fire fighting anual fire alarm Extra sign which Extra sign w hich
gives more information to gives more information to
equipment supplemen t the safety sign supplement the safety sign

1 )  German Emp loyer's Liability Insurance Asso ciation  2 )  only in com bination with other escape route
- Accide nt Prevention Regulations (Berufsgenossenschaftliche and rescue signs
Unfallverhutungsvorschrift) BGV A8
*) Acc ording to European Standards

http://slidepdf.com/reader/full/mechanical-and-metal-trades-handbook-56d51be067c7a 344/431

7/18/2019 Mechanical and Metal Trades Handbook
P r o d u c t i o n e n g i n e e r i n g : 6 .8 W o r k p l a c e s a f e ty a n d e n v i r o n m e n t a l p r o t e c t i o n  3 4 1

Safety signs cf. DIN 4844-2 (2001-02)
and BGV A8 1)  (2002-04)

Information signs

Discharge time In case of Before touching: 5 Safety rules
longer than failure part can - discharge
Before beginning work
1 minute have live voltage -- sghroourtncdircuit - Employ safety disconnect
- Lock out to prevent restart

-- CGhroecukndfoar nndo svhoolrtat gceircuit
- Cover or enclose adjacent

parts which have live voltage

Combination signs

Work area High Voltage
Hazardous
Location: Date:
Warning of high voltage
Sign may only be
removed by:

®Do not connect

Com bination signs for escape
routes or emergency exits with
corresponding direction indicated
by arrows

I  s 3^

3t 3

Walking on roof A
is prohibited urn  off engi ne.
Risk of poisoning.

First aid Prohibited Walking on Fire blanket for fighting fire Danger of toxic
station roof is prohibited. gases

1 )  Germ an Employe r's Liability Insurance Ass ociation - Accident Prevention Regulations (Berufsgenossen- 345/431
schaftliche Unfa llverhutun gsvo rschrift) BGV A8 (replaces VGB 125)

*) According to European Standards

http://slidepdf.com/reader/full/mechanical-and-metal-trades-handbook-56d51be067c7a

7/18/2019 Mechanical and Metal Trades Handbook

3 4 2  Produ ction eng ineering: 6.8 Wo rkplace safety and env ironm enta l protec tion

Danger symbols and description of hazards RL 67/548/EWG
(2004-04) 1)

Code letter, dan- Danger criteria of Code letter, Danger criteria of Code letter, Danger criteria of
ger symbol, haz-
ard description materials danger symbol, materials danger symbol, materials

Very toxic hazard description hazard description

When consumed Contact with skin Solid material
can be easily
in very sma ll Xi or mucus mem- ignited by a

amounts leads to branes can cause

death or may inflammation. source of ignition
cause acute Liquid material
or chronic dam- X = St. Andrew's with flash point
age to health. cross <2 1 °C.
i = irritating
T = toxic Irritant Flammable
F = flamm able

When consumed Risk of explosion N Substances
in small amounts by shock, friction, change water,
leads to death or fire or other N ground, air, cli-
may cause acute sources of mate, animals,
or chronic dam- ignition. plants, etc. in

age to health. l& i tshueche navwi raoyn mtheant t
is endangered.

Toxic T = toxic Danger of E = explosive Environmentally N = noxious
Xn explosion dangerous (harmful)
When ingested Substances that
may result in substantially T with R 45 Substance may
death or cause increase the risk cause cancer from
acute or chronic and severity of a inhaling, swallow-
harm to health. fire, because they ing or from con-
produce oxygen. tact with the skin.

R 45: May cause

Harmful to X = St. Andrew's Oxidizing Carcinogenic cancer
health cross T = toxic
n = noxious O = oxidizing

Living tissue can Liquid substances T wit h R 46 Substances
be damaged by with flash point which can have a
contact. < 0°C and boiling Mutagenic mutagenic effect
point <35 °C; substances on humans.
gaseous sub-
stances, wh ich Xn with R 46: May cause
are flammable in R 62, R  63 heritable genetic
contact with air. damage.
Limited
Corrosive C = corrosive Highly F = flamm able evidence of T = toxic
flammable influence on Substances
Xn w ith R 40 Substance which T w ith R 60, R 61 Substances which which cause con-
can cause concern are known to fertility cern due to possi-
Limited due to possible Danger to impair fertility or ble impairmen t of
evidence of mutagenic effect fertility reproduction. fertility of
mutagenic on humans. How- humans.
ever, there is not
effect yet sufficient X = St. Andrew's
information avail- cross
able to give con- n = noxious
clusive proof. R 62 = possible
risk of impaired
cXro=sSs t. Andrew's TR =60to=ximc ay impair fertility
n = noxious fertility R 63 = possible
R 40 = irreversible R 61 = may cause risk of harm to
damage possible harm to the unborn child
(page 199) unborn child

EU-Directive, Appe ndix According to European Standards

http://slidepdf.com/reader/full/mechanical-and-metal-trades-handbook-56d51be067c7a 346/431

7/18/2019 Mechanical and Metal Trades Handbook

Production engine ering: 6.8 Workplace safety and env ironm enta l protection  343

Identification  of pipe lines*  c f (D2'0N0724005'

Area of application and requirements

Area of application:  A precise identification marking o f pipe lines, indicating the substance be ing conveye d, is neces-
sary for reasons of safety, fire fighting and proper maintenance and repairs. The identification marking is intended to
indicate possible hazards and help to prevent accidents and damage to health.

Requirements concerning identification marking • lMenagrkthin.g mu st be repeated at least every 10 m of pipe
• Identification marking m ust be clearly visible and long-
• Indication of the group and supplemental color (see
lasting. table below).

• Identification can be established by painting, lettering • Indication of the flow d irection by mean s of an arrow.
(e.g. via self-adhesive fo il strips) or signs.
• Indication of the conveyed substance by specifying the
• Particularly operation-critical and hazardous places name (e.g. water) or the chemical formula (e. g. H 20).
should be marked (e.g. beginning and end of branch
pipes, wall penetrations, fittings). • With hazardous m aterials, additional indication of
hazard signs (page 342) or warning signs (page 339) if
general hazards are implied.

Color assignm ent according to conveyed substances

Conveyed substance Group Group RAL Supplem. RAL Color of RAL
color color lettering
Water 1 green 6032 - white 9003
Steam 2 red 3001 - wh ite 9003
Air 3 gray 7004 black 9004
Flammable gases 4 yello w 1 00 3 - - black 9004
Non-flammable gases 5 ye llow 1003 black 9004
Acids 6 orange - 3001 white 9003
Lyes 7 purple 9004 white 9003
Flammable liquids 8 red wh ite 9003
and solid materials brown black -
Non-flammable liquids -
and solid materials 9 brown white 9003
Oxygen 3001

9004

0 blue -- white 9003

Identification of special pipe lines

Fire extinguishing lines  must be fitted w ith a red/white/red co lor marking . The wh ite field contains the graphical sym -
bol of the safety sign "Fire fighting equipment and materials" (cf. page 340) in the color of the extinguishing agent.

Potable water lines  must be fitted with a green/white/green color marking.  Non-potable water lines  have a
green/blue/green marking. The code letters and their colors are listed in the table below.

Description Code Color Description Code Color
green PWH-C purple
Potable water line PW Potable water line,
Potable water line, cold PWC hot, circulating

Potable water line, hot PWH red Non-potable water line NPW white
Potable water
Examples of identification marking

Heating oil Fire extinguishing unit Compressed air
(water)

Heating a
Oil Water

Oxygen (fire-promoting, O) Acetylene (highly flamm able, F+)

Oxygen A Acetylene a>

) According to European Standards

http://slidepdf.com/reader/full/mechanical-and-metal-trades-handbook-56d51be067c7a 347/431

7/18/2019 Mechanical and Metal Trades Handbook

3 4 4  Produ ction engine ering: 6.8 Wo rkplace safety and en viron m enta l protection

Sound and no ise*

S o n ic t e r m s

Term Explanation
Sound Sound comes from mechanical vibrations. It propagates in gaseous, liquid and solid bodies.

Frequency Number of oscillations per second. Unit: 1 Hertz =  1  Hz = 1/s. Pitch increases with frequency.
Sound level Frequency range of human hearing: 16 Hz-20.000 Hz.
Noise
Decibel (dB) Measure of the sound strength (sound energy).

dB (A) Undesirable, annoying or painful sound waves; damage depends on strength, duration,
frequency and regularity of exposure. For a noise level of 85 dB (A) and higher there is danger
S o u n d l e v el of permanent hearing loss.

Standardized unit for sound level.

Since the hu ma n ear perceives tones of different heights (frequencies) to have different
strengths when they are actually at the same sound levels, noise must be appropriately
damp ened w ith filters for certain frequencies. Frequency we ighting curve with Filter A
compensates for this and indicates the subjective au ditory impression. A difference of 3 dB (A)
corresponds a pproxima tely to a doubling (or halving) of the sound intensity.

Type of sound dB (A) Type of sound dB (A) Type of sound dB (A)
4 70 heavy stamp ing 95-110
Threshold of normal speech
auditory sensitivity 10 at distance of  1 m

Breathing at distance machine tools 75-90 angle grinder 95-115
of  30 c m

Soft rustling of leaves 20 loud talking 80 car horn at 100
at distance of  1 m distance of 5 m
Whispe ring 30 we lding torch, lathe 85 100-115
90 disco music 110
Tearing paper 40 hammer drill, motorcycle 90-110 120-130
hammer and anvil
Quiet conversation 50-60 engine test stand, walkm an
jet engine

Noise protection regulations   cf. Accide nt Prevention Regulations on "No ise " BGV B3 (1997-01)

Accident prevention regulations § 15 Work plac e regu lation max. dB (A)
for noise producing operations 55
Noise limit value for: 70
• Requirem. to post signage for noise ranges 90 dB (A) and above. predominantly mental activities
• Ab ove 85 dB (A) soun d protection dev ices must be avail- simple, predominantly mechanized 85
activities
able, and they must be used above 90 dB (A). all other activities (value may 55
be exceeded by 5 dB )
• If the risk of accidents increases due to noise, appropriate break rooms, ready rooms and
measures must be taken. first-aid rooms

• Regular preven tative medical checkups are com pulsory .

• N e w o p e r a ti o n a l e q u i p m e n t m u st co n fo r m to th e m o st
advanced level of noise reduction.

Noise harmful to health

I II IPsycflological read ions LJU 1 1 |  1 1 1 L—J

annoya nce, irritability

Vege ative r eactior s nervous effects, stress, decreasing
job performance and concentration
gDam age to hearini
noise induced hearing loss,
incurable inner ear damage

Phys cal daimage

deafness

0 10 20 30 40 50 60 65 70 80  85  90 100 110  120  130 140 150 160   dB (A)

danger limif pain  S Q U n d l e y e l  ^

for hearing threshold

According to European Standards 348/431
http://slidepdf.com/reader/full/mechanical-and-metal-trades-handbook-56d51be067c7a

7/18/2019 Mechanical and Metal Trades Handbook

Table of Contents 345

7 Automation and Information Technology

w A // / 7 .1 B as ic t e r m i n o l o g y f o r c o n t r o l en g i n e e r in g 346
348
Control y Final Contr. Basic term inolog y, Code letters, Sym bols 349
unit control system Analog controllers
elem. Discontinuous and digital controllers  350
/ /
Binary logic 351
/ 353
7.2 Electrical circuits 354
OFF 355
ON h - J K1 Circuit sym bo ls 356
L - K1 Designations in circuit diagrams
Circuit diagra ms 358
a Sensors
Protective precau tions 361

7 .3 F u n c t io n c h a r ts a n d f u n c t i o n d i a g r am s 363
365
Function charts 366
368
/\ Function diagrams 369
370
7.4 Pneumatics and hydraulics 372

Circuit sy mb ols
Layout of circuit diagrams
Controllers
Hydraulic fluids
Pneumatic cylinders
Forces, Speeds, Power
Precision steel tube

7.5 Program m able logic con trol

110 PLC programming languages 373
11 01 Ladder diagram (LD) 374
Function block language (FBL) 374
Structured text (ST) 374
Instruction list 375
Simple functions 376

7 .6 H an d l i n g a n d r o b o t s y s t e m s 378
379
Coordinate systems and axes 380
Robot designs
Grippers, job safety

7.7 Num erical Contro l (NC) techn olog y

Coordinate systems 381

Program structure according to DIN 382

Tool offset and Cutter com pens ation 383

Mac hining mo tions as per DIN 384

Mac hining mo tions as per PAL 386

PAL prog ram ming system for lathes 388

PAL prog ram ming system for milling machines . 392

7 .8 In f o r m a t i o n t e c h n o l o g y 401
402
Num bering systems 403
ASCII code 404
Sym bols for program flow charts 4 05
Program flow chart, Structograms 406
WORD commands
EXCEL com ma nds 349/431

http://slidepdf.com/reader/full/mechanical-and-metal-trades-handbook-56d51be067c7a

7/18/2019 Mechanical and Metal Trades Handbook

346 A u t o m a t i o n : 7 .1 B a sic t e r m i n o l o g y

Basic terminology of open loop and closed loop c ontrol systems

B as ic t e r m i n o l o g y cf. DIN 19226-1 to -5 (1994-02)

Open loop control Clos ed loop c ontrol

For open loop c ontrol the output variable, such as the tem- For closed loop control the controlled variable, such as the
perature in a hardening furnace, is influenced by the input actual temp, in an annealing furnace, is continuously mon-
variable, such as the current in the heating coil. The ou tput itored and comp ared to the target tem p, (reference vari-
variable does not have an effect on the input variable. able) and, if there are deviations , adjusted to the reference
Open loop control has an open action flow. input variable. Closed loop control has a closed action flow.

Example: An nealing furnace

Schematic disturbance Schematic  disturbance controlled variable
presentation heat losses presentation heat losses feedback value

manipulated final control   manipulated axial extensometer
variable
final   control current element variable
element
relay relay current

spring
contact

controller rv controlled   \
b ut to n system   \

_ a n n e a l in g fu rn . \ ]7 ,   target value
777777777 7 777; of controlled
controlled system variable
^annealing furnace
/V ////////Z?/

F u n c t i o n a l d i a g r am o f Simplified functional diagram of closed loop
open loop control system control system

/  f open loop If
con- control ^v ,. -. s\
w y '
— • con-
X contr. drive final con-
troller cont.
elem.
button
tsryosletedm / coemlepmaernint g x elem. stryosltledm
relay
anne aling furnace axial
relay L.adjustment extonsometer annealing furnace
contact
screw contact
w reference y mamp. z dis- x control, w  reference e Error ymanip. z disturb- x contr.
input variable variable turbance variable input variable e =  w-x variable ance variable
current
temperature heat loss actual temperature current heat loss actual
setpoint temperature setpoint temperat.

App lication-based code letters cf. DIN 19227-1 (1993-10)

Designation example: PDIC

First letters JTT. Succeeding letters

D density Supplementary letters A error indication
E electrical parameters C autom atic closed loop control
F flow, throughput D difference H upper limit value
G distance, position, length F ratio I display
H manual input/intervention J control point query L lower limit value
K time Q sum, integral R registration
L status (e.g. level)
M humidity Example: Differential pressure closed loop control
P pressure
Pit Explanation: P pressure
Q quality parameters PDIC
R radiation parameters 312 DI ddiifsfpelraeynce
S speed, rotational speed C automatic closed loop control
T temperature
W weight, mass P2 In plain language: Pressure differential closed

-{ih loop control with display of pressure difference

http://slidepdf.com/reader/full/mechanical-and-metal-trades-handbook-56d51be067c7a 350/431


Click to View FlipBook Version