The words you are searching are inside this book. To get more targeted content, please make full-text search by clicking here.

The Mechanical and Metal Trades Handbook is well-suited
for shop reference, tooling, machine building, maintenance
and as a general book of knowledge. It is also useful for educational
purposes, especially in practical work or curricula and continuing education programs.

Discover the best professional documents and content resources in AnyFlip Document Base.
Search
Published by Ts. Mohamad Faezal Omar Baki, 2021-09-01 11:28:23

Mechanical handbook

The Mechanical and Metal Trades Handbook is well-suited
for shop reference, tooling, machine building, maintenance
and as a general book of knowledge. It is also useful for educational
purposes, especially in practical work or curricula and continuing education programs.

Keywords: Mechanical handbook,handbook,mechanical

7/18/2019 Mechanical and Metal Trades Handbook

Ma chine eleme nts: 5.8 Springs, co m po ne nts of jigs and tools

Drill bushings

http://slidepdf.com/reader/full/mechanical-and-metal-trades-handbook-56d51be067c7a 251/431

7/18/2019 Mechanical and Metal Trades Handbook

24 8  Ma chine eleme nts: 5.8 Springs, co m po ne nts of jigs and tools

Grub screw s. Thrust pads, Ball knobs

http://slidepdf.com/reader/full/mechanical-and-metal-trades-handbook-56d51be067c7a 252/431

7/18/2019 Mechanical and Metal Trades Handbook

M a c h i n e e l e m e n t s : 5 .8 S p r i n g s , c o m p o n e n t s o f j i g s a n d t o o l s

Knobs, Locating and seating pins

Star knobs Form B dz <h cf. DIN 6335 (1996-01)
32 12 18
F o rm A 40 14 21 hz fh
M 6 21 20 10 12
Form C M 8 26 25 14 15

Form E 50 18 25 10 M10 34 32 20 18
Form K 63 20 32 12 M12 42 40 25 22

80 25 40 16 M16 52 50 30 28
10 01) 32 48 20 M20 65 60 38 36

Form Description
AtoE Metal knobs

rough part of metal
with through bore d4
with blind bore d 4
D with through threaded bore d 5
with blind threaded bore d5

2)

K of molding mat. (plastic) with threaded bushing d 5  (of metal)
L2> of molding material (plastic) with threaded pin d 5 (of metal)

Star k nob DIN 6335 - A 50 AL:  Form A,  d, = 50  m m ,
of aluminum

1 )  This size is not available in mold ing material.
2 )  Som etimes with insignificant other dimen sions; material like

fluted knobs DIN 6336

F l u t ed k n o b s cf. DIN 6336(1996-01)

Form A Form E <*2 h 2 hs

Form L 32 12 M 6 21 20 10 12 20 30
40 14 M 8 26 25 13 15 20 30
50 18 M10 34 32 17 18 25 30
63 20 M12 42 40 21 22 30 40
80 25 M16 52 50 25 28 30 40

•' t  Ti P ? Fluted knob DIN 6336 - L 40 x 30:  Form L (molding
material)  d-\   = 40 mm , / = 30 m m
1
ft Forms A to E (metal knobs) as well as K and L (knobs of mo lding
material) correspond to star knobs DIN 6335.
d, 1
Materials:   Cast iron, alum inum , m olding com poun ds (PF 31 N

L o c a t in g a n d s e a t in g p i n s II RAL 9005 DIN 7708-2)

cf. DIN 6321 (2002-10)

F o rm A F o rm B Form C 4 /1 n6
Seating Locating Locating g6 Form A Form  B and C
pin pin pin
cylindrical truncated h9 short long

12 1.2
1.6 0.02
16 1.6

10 10
18 2.5

12

16 13 22 3.5 12

20 0.04

15 25 12 18 2.5
25 10

Clevis pins DIN 6321  -  C 20 x 25: Form C, = 20 mm , /, = 25 mm

hardened 53 + 6 HRC 1 )  App ropriate bore tolerance: H7

http://slidepdf.com/reader/full/mechanical-and-metal-trades-handbook-56d51be067c7a 253/431

7/18/2019 Mechanical and Metal Trades Handbook

2 5 0  M a c h i n e e l e m e n t s : 5 .8 S p r i n g s , c o m p o n e n t s o f j i g s a n d t o o l s

T-slots and accessories, Spherical wash ers, Conical seats

T-slots and nuts for T-slots cf. DIN 650 (1989-10) and 508 (2002-06)

W i d t h  a 8 10 12 14 18 22 28 36 42

Deviation from  a - 0 . 3 / - 0 . 5 -0.3/-0.6 -0.4/-0.7

14.5 16 19 23 30 37 46 56 68

Deviation from  b1.5/0 + 2/0 + 3/0 + 4/0
12 16 20 25 32

Deviation from  c + 1/0 + 2/0 + 3/0

• • m lE max. 18 21 25 28 36 45 56 71 85
min. 15 17 20 23 30 38 48 61 74
b
Thread d M6 M8 M10 M12 M16 M20 M24 M30 M36
1 )  Tolerance class H8 for p ilot T-slots and
clamping slots; H12 for clam ping slots 13 15 18 2 2 28 35 44 54 65

10 12 14 16 20 28 36 44 52

10 14 18 22 26

Deviation from  k 0/-0.5 0/-1

N u t D IN 5 0 8 - M 1 0 x 12:  d =  M10, a= 12 mm

Bolts for T-slots cf. DIN 787 (2005-02)

dx M8 M10 M12 M16 M20 M24 M30

fQ a 8 10 12 14 18 22 28 36

T b -a b from 22 30 35 45 55 70 80
kA to 50 60 120 150 190 240 300
-=- t  A /
ei 13 15 18 22 28 35 44 54

e2 12 14 16 20 24 32 41 50

uS k 66 7 8 10 14 18 22

up to M12x 12: „s ' J h Nominal 25, 32, 40, 50, 63, 80, 100, 125, 160, 200, 250, 315, 400,
ih
M12x14 and 6 \ lengths / 500 mm
up : a>d-\
Bolt DIN 787 -  M 10 x  10 x  100  - 8.8: d, = M10,
a = 10 mm , / = 100 mm , property class 8.8

Loose slot tenons vgl. DIN 6323 (2003-08)

Form  C fci h6 b2  h6 Form h2  h3 /
b-1  < b2
12 A 12 3.6 20
by 10

m 12 28.6 5.5 20

hardened, hardness 650 + 100 HV10 12

Spherical washers and conical seats 14 14 5.5 32

18

20 22 50.5 18

28 12 61.5 24 40

36 16 76.5 30
42 19 90.5 50

36

Slot t eno n DIN 6323 - C 20 x 28:
Form C, b-\  = 2 0 m m ,  b2  = 28 m m

cf. DIN 6319 (2001-10)

Spherical washer Conical seat dy d2 d3 d 4 h2 h 3 R
120° Form Sphere
9° Form
I" DG
2 IVA -cm: H13 H13 DG

d 6.4 7.1 12 12 17 11 2.3 2 8
du   '
8.4 9.6 17 17 24 14.5 3.2 3.5 12

10.5 12 21 21 30 18.5 4.2 15

13 14.2 24 24 36 2 0 4.6 17

17 19 30 30 44 26 5.3 6.2 22

Form C F o rm D F o r m G 21 23.2 36 36 50 31 6.3 7.5 27

d 4  = d 3  d 4  > o f3 Spherical washer DIN 6319 -  C 17: Form C, d q  = 17  m m

http://slidepdf.com/reader/full/mechanical-and-metal-trades-handbook-56d51be067c7a 254/431

7/18/2019 Mechanical and Metal Trades Handbook

Ma chine elemen ts: 5.8 Springs, co m po ne nts of jigs and tools

Punch holder shanks, Punches, Machined plates

Punch holder shanks form A 1 ) cf. DIN ISO 10242-1 and -2 (2000-03)

Form A d-, f9 d2 d3 hh WAF
17
20 15 M16 x 1.5 40 12 58

, /0c 25 20 MM1206 xx 11..55 45 2.5 16 68 21

WAF 32 25 M 20   x  1.5 56 16 79 27
M 24   x  1.5

M 24   x 1.5 26 93 12 36
40 32 M27 x 2 70

M30 x 2

50 42 M30 x 2 80 26 108 12 41

thread undercut DIN 76-A Punch holder shank s ISO 10242-1 A - 40 x M30 x 2: Form A ,
d-i = 40 mm,  d3   =  M30 x 2
R o u n d p u n c h Fo r m D 1 )
1)

  Form C with m ounting flange instead of screw threads

cf. DIN 9861-1 (1992-07)

d-, h6 Gradua- / 0/+0.5 Material Hardness

t from-to tion Shank Head

fl 0.5-0.95 0.05 W S 2>
1.0-2.9 71 80
d h6 3.0-6.4 62 ± 2 HRC 45 ± 5 HRC
d2   ~ (1.1-1.8) • d-\   (depending on 0 6.5-20 0.1 64 ± 2 HRC 50 ± 5 HRC
HW S3>

0.1

71 80 100 HSS4)

0.5

Punch D IN 9861 D - 5.6 x 71 HWS: Form D, d, = 5.6 mm,
/ = 71 mm , of high-alloyed cold-work steel

1 )  Form DA with allowable enlargement below the head
2 )  W S alloyed cold-w ork steel
3 )  HWS high-alloyed cold-work steels
4 )  HSS high-speed steels

M a c h i n e d p l a t es f o r p r e s s t o o l s cf. DIN ISO 6753-1 (2006-09)
and for fixtures

/ 80 Plate thickness  tfor plate dime nsion  w 630
100 125 I 160 200 250 315 400 500
160 20, 25, 32
200
250 25, 32, 40
315 25, 32, 40
400 32, 40, 50
500 32, 40, 50
630 32, 40, 50
32, 40, 50, 63

Mac hined plate ISO 6753-1 1 - 315 x 200 x 32: Fabricated by flam e
I cutting (1), / = 315 mm , w = 200 mm , t = 32 m m

Limit deviations for Limit deviations
for thickness  t
Code Fabrication method leng(twh<  6Ia3n0d wmimd t)h  w
±2
Ra 6.B Ra B.2 Flame cutting +4
Beam cutting + 0.5
Note: These surface roughness +1 + 0.3
values only apply to milled Milling
edges. + 0.4

+ 0.2

http://slidepdf.com/reader/full/mechanical-and-metal-trades-handbook-56d51be067c7a 255/431

7/18/2019 Mechanical and Metal Trades Handbook

252 Ma chine elemen ts: 5.8 Springs, co m po ne nts of jigs and tools

Pillar die sets

P il la r d i e s e ts w i t h r e c t an g u l a r w o r k i n g Pillar die sets wi th circular w ork ing surface
s u r fa ce f o r m s C an d C G1*  cf. DIN 9812 (1981-12) f o rm s D an d D G 2> 
cf. DIN 9812 (1981-12)

a y  x b-, c1 02 C3 d2 <h C2 P3 <*2 d3

80x63 50 30 80 19 M x 1 5 125 160 50 40 25 65 16 M16 x 1.5 80 125
100 x 63 145 63 95 140

100   x  80 50 30 80 25 M 2 0 x 1 . 5 155 160 80 19 125 160
160x80 215 80 25 M20 x 1.5 155
100 50 30 180 180
125 x 100 50 40 25 180 170 125 25 180
250 x 100 90 32 M24 x 1.5 315 180 190
200
160 x 125 56 40 90 32 M24 x  1.5 225 180 160 225 220
315 x125 380 180 90 32 M24 x 1.5 245
56 32 200 56 40
200 x 160 63 40 265 200 265
315x160 50 100 M30 x 2 395 220

250 x 200 63 50 100 40 M30 x 2 330 220 250 56 50 100 40 M30 x 2 330
315x250 395 315 63 395

Center p illar die set DIN 9812 - C 100 x 80: Pillar die set DIN 9812 - D 160: Form D,
Form C, a, x ^ = 100 m m x 80 mm d= 160 mm

1 )  Form C with out threads; form CG with threads d 3 2 )  Form D witho ut threads; form DG with threads d 3

P il la r d i e s et s w i t h c e n t r al l y p o s i t i o n e d Pillar die sets w ith diagonal
pillars and thick pillar g uide plate, form DF p i l la r s , f o r m s C an d C G 3 )

cf. DIN 9816(1981-12) cf. DIN 9819 (1981-12)

zaiim AI

L U i 1  d  *do

=37 H

z

di e '1 fz h / a, x ^ 32 bz C1 C2 C3 d2 e i I

80 50 80 19 125 16 10 36 170 80x63 135 180 50 30 80 19 75 103
100 85 155 11 40 180 125 x 80 215 40 90 25 128 160
190 125x 100 25 120 148 170
50 25 18 190 235
125 90 180

60 100 225 11 45 220 215600xx 112050 322355 255 56 40 90 32 214555 158 180
56 32 23 240 31 5 x  125 390 280 310 183

200 110 265

=> Pillar die s et DIN 9816 - DF 100 GG: Form DF, => Pillar die set DIN 9819 -  C 160 x 80 GG:
d-i = 100 mm , cast iron slide guide Form C, a-\  = 160 mm,  b-1  = 80 mm, cast iron

3 )  Form C with out threads; form CG with threads  d3

http://slidepdf.com/reader/full/mechanical-and-metal-trades-handbook-56d51be067c7a 256/431

7/18/2019 Mechanical and Metal Trades Handbook

M a c h i n e e le m e n t s : 5 .9 D r i v e e l e m e n t s 253

V-belts , Positive drive belts

Design types Range of dimensions Speed Power
h 1 )  in m m | L 2 )  in mm
Designation range range Properties,
Standard for th e belts Standard for pulleys
application
Classic V-belts
Vmax in m /s P ' m a x  in kW 3>
DIN 2215, ISO 4184
ISarrow V-bellts 4-25 185-19000 For higher m aximu m tensile
strengths, reliable tractive power;
DIN 7753, ISO 4 184 DIN 2217, ISO 4183 construction equipm ent, vari-
Cogged V-belts 30 65 able drives for the m ining
industry, agricultural machin-
DIN 2215, DIN 7753 ery, conveyors, general
Joined V-belts machine construction
(Power Band)
8-18 630-12500 Good power transmission,
twice the power with the same
40 wid th as classic V -belts;
70 gearbox manufacturing,
machine tools, HVAC

DIN 2211, ISO 4183

4-25 800-3150 Low elongation, small pulley
diameter, high temperature
50 resistance from - 30 °C to +80°C;
70 automotive alternator drives,
DIN 2211, DIN 2217 transmission design, pumps,
HVAC

Insensitive to vibration or

10-26 1250-15000 impact, no twisting of single
DIN 2211, D IN 2217
belts in the pulleys, absolutely

30 65 uniform force distribution, high
tensile strength, for long dis-

tpaanpceers mbeatcwheineens axles;

V-ribbed belts 3-17 600-15000 Large transmission ratios
(ribbed belts) possible, low vibration running
60
DIN 7867 behavior;
DIN 7867
20 autom otive alternator drives,
compressor drives in
HVAC, small machines

Wide V-belts Excellent transverse strength,
very high tensile strength,
6-18 468-2500 flexible;

DIN 7719 30 85 smpaecehdinceontotroolsl ,geteaxrtsil,e
machines, printing machines,
DIN 7719 agricultural machinery

C)ouble V-belt:s 10-25 2000-6900 30 Good power transmission for
(Hiexagonal bel DIN 2217 drives with several pulleys
and alternating direction of rota-
Its) 20 tion, 10% less efficiency than
DIN 7722, ISO 5 classic V-belts; agricultural
machinery, textile machines,
general machine building

Positive drive belts 0.7-5.0 100-3620 40-80 0.5-900 Efficiency t ] m a x  ^ 0.98,
289 DIN ISO 5294 synchronous running, low pre-

DIN 7721, DIN ISO 5296 stress forces, therefore lower
bearing load;
precision machine drives, office
machine drives, automotive
industry, CNC spindle drives

1 >  Belt heig ht (pages 254, 255)  2 1  Belt length  3 )  Transm ittable power per belt

http://slidepdf.com/reader/full/mechanical-and-metal-trades-handbook-56d51be067c7a 257/431

7/18/2019 Mechanical and Metal Trades Handbook

254 M a c h i n e e le m e n t s : 5 .9 D r i v e e l e m e n t s

Narrow V-belts

Narrow V-belts Narrow V-belt Designations Narrow V-belts,
DIN 7753-1 (1988-01) pulley V-belt pulleys
Belt profile (ISO design ation codes)
DIN 2211-1 (1984-03) SPZ SPA SPB SPC
upper belt width
VI Sm.m| rmmfIJ.r31, we effective w idt h 9.7 12.7 16.3 22
8.5 11 14 19
Effec tiv e diameter de   = da   - 2 • c h  belt height
/7W  distance 10 13 18
Narrow V-belt DIN 7753 - XPZ 710: c /m in  minimum allowable effective   2 8 3.5 4.8
Narrow V-belt, cogged profile, w-| upper groove width 63 90 140 224
reference length 710 mm 9.7 12.7 16.3 22
c  distance from effective   to outer  2 2 8 3.5 4.8
t  minim um allowable groove depth 11 13.8 17.5 23.8
12 15 19 25.5
e  groove spacing for multi-groove
pulleys 10 12.5 17

f   groove spacing from outer edge 80 118 190 315
80 118 190 315
34° for effective   up to
38° for effective   over

Angle factor c-| 1.02 1.05 1.08 1 12 1.16 1.22 1.28 1.37 1.47
Wra p angle /? 180c 17 0c 16 0c 15 0c 140° 13 0c 120c 11 0c 10 0c 90 c

Serv ic e fac tor c 2 Driven machines (examples)

Daily operating time in ho urs Centrifugal pumps, fans, conveyor belts for light material
Machine tools, presses, sheet metal shearers, printing machines
up to 10 from 10 to 16 over 16 Grinding gears, piston pumps, textile and paper machines
Stone crushers, mixers, winches, cranes, excavators
1.0 1.1 1.2
1.1 1.2 1.3 cf. DIN 7753-2 (1976-04)

1.2 1.3 1.4
1.3 1.4 1.5

Efficiency values for narrow V-belts

Profile s elec tion for narrow V-belts

2500 PP r a t e ( j ppoowweer rtorabteintgrapnesrmbiettlet d

| 2000 N   number of belts

1600 c-| ang le facto r N u m b e r o f b e l ts
c2  service factor
| 1250
^ 1000 Example:

800 Transmission parameters P= 12 kW w ith c-\ = 1.12;
c2  = 1.4; d m i n  = 160 mm, ns  = 950 1/min; & = ?, /V = ?
"S  6 3 0 1. P-  2c  = 12 kW  •  1.4= 16.8 kW

| 500 2. From the diagram n s = 950 1/min and
™ 400 P - c 2  = 16.8 kW profile  SPA

Iro 3 1 5 3. P ra ted = 4.27 kW from the table
| 250
U   6 . 3 10 16 2 5   U0 63 A (  P - C i - C o 12 kW - 1 . 1 2 - 1 . 4
200 4  N = 
calculated power P-c 2  in kW =  = 4 . 4
2.5

Prated 4.27 kW •

5. Selected: N = 5 belts

http://slidepdf.com/reader/full/mechanical-and-metal-trades-handbook-56d51be067c7a 258/431

7/18/2019 Mechanical and Metal Trades Handbook

M a c h i n e e l e m e n t s : 5 .9 D r i v e e l e m e n t s 255

Positive drive b elts

Positive drive belts (timing belts) cf. DIN 7721-1 (1989-06)

Tooth spacing Tooth size Nominal Positive drive belt width
Code thickness w
Single-sided
hs
/V t -IVc ji c
T2.5 2.5 1.5 0.7 0.2 1.3 10
r  p
T5 2.7 1.2 0.4 22 10 16 25

T10 10 5.3 2.5 0.6 4.5 16 25 32 50

Effective No. of teeth for Effective No. of teeth for Effective No. of teeth for
length1) T2.5 T5 length1* T5 T10 length1*
T10

120 48 - 530 - 53 1010 101
108
150 - 30 560 112 56 1080 115
121
Double-sided 160 64 - 610 122 61 1150 125

200 80 40 630 126 63 1210

245 98 49 660 66 1250

270 _ 54 700 _ 70 1320 132
139
p y v j <—f S \ 285 114 - 720 144 72 1390 146
305 -
-cT• \ | / X V i 330 132 61 780 156 78 1460 156
390 161
l1 - 1 66 840 168 84 1560

78 880 88 1610

420 168 84 900 180 _ 1780 178
188
455 - 91 920 184 92 1880 196
225
480 192 96 960 96 1960

500 200 100 990 198 2250

Non-standardized tooth forms Belt DIN 7721 - 6 T2.5 x 480:  w=6  mm , spacing  p = 2.5  m m ,
effective length = 480 mm , single-sided

HT profile LAHN profile The code letter D is added for doub le-sided positive drive belts.
1 )  Effective lengths from 100-3620 m m, in custom-m ade products up to

25000 mm

T i m i n g b e l t p u l l ey s cf. DIN 7721-2 (1989-06)

P u l le y g r o o v e d i m e n s i o n s Pulley Pulley outer 0 Pulley Pulley outer 0 Pulley Pulley outer 0
T) groove d0   for groove d0  for groove d 0 for

Effec tiv e diameter T2.5 T5 T10 T2.5 T5 T10 T2.5 T5 T10

d = d0   +  2 • a 10 7.4 15.0 17 13.0 26.2 52.2 32 24.9 50.1 100.0

1 )  Form SE for < 20 groove s 11 8 2 16.6 18 13.8 27.8 55.4 36 28.1 56.4 112.7
2 )  Form N for > 20 grooves
Pully dimensions 12 9.0 18.2 36.3 19 14.6 29.4 58.6 40 31.3 62 8 125.4

with pulley flange 13 9.8 19.8 39.5 20 15.4 31.0 61.8 48 37.7 75.5 150.9

14 10.6 21.4 42.7 22 17.0 34.1 6 8 . 2 60 47.2 94.6 189.1
15 11.4 23.0 45.9 25 19.3 38.9 77.7 72 56.8 113.7 227.3
16 12.2 24.6 49.1 28 21.7 43.7 87.2 84 66.3 132.9 265.5

Pulley groove dimensions

Code Groove wid th w r Groove height  hg 2a

F o rm S E 1)  For m N 2 > Form SE1> For m N 2>

T2.5 1.75 1.83 0.75 1 06
T5
T10 2.96 3.32 1.25 1.95 1

6.02 6.57 2.6 3.4 2

Letter sym bols Belt width w Pulley width
T2.5
4 with flange w f  witho ut flange w'f
6
10 5.5
7.5 10
11.5 14

6 7.5 10

T5 1106 1171..55 2104
25 26.5 29

T10 16 18 21
25 27 30
without pulley flange 32 34 37
50 52 55

http://slidepdf.com/reader/full/mechanical-and-metal-trades-handbook-56d51be067c7a 259/431

7/18/2019 Mechanical and Metal Trades Handbook

256 M a c h i n e e le m e n t s : 5 .9 D r i v e e l e m e n t s

Straight-toothed spur gears

U n m o d i f i ed s p u r g ea rs w i t h s t r ai g h t t e e t h

External teeth

_d0-2 • m

Number of teeth N=   —m m
Outside diameter
Root diameter d 0  = d+  2 •  m= m  • (N + 2 )

dr   = d- 2 • {m + c)

Center distance _  d-,   +d2   _ m • (N]+- N 2\

d —  —

22

External and internal teeth

Module

Pitch p=n•m
d= m   •  N
m module N, Nh   N2   no. of teeth Pitc h d iameter
p  pitch d, d2   c=   0.1 • m  to 0.3 •  m
c  clearance pitch Clearance often   c=  0.167 • m
h  who le depth diameter Addendum
ha  = m
ha  addendum dQ,   d 0 1 ,  do2   outside
hd  dedendum diameter hri   = m + c
a  center distance
dr,   d r 1 , d r 2  root h = 2 • m + c
diameter

Example: Dedendum
Whole depth
External spur gear, Internal teeth
m  = 2 m m ;  N=  32; c= 0.167 •  m; d=  ?;  d0   = ?;/?  = ?
d  —  m  N  —  2 m m 3 2 - 6 4 m m
d0   = d  + 2  •  m  = 6 4 m m + 2 - 2 m m = 6 8  m m
h = 2-m + c=2-2  m m + 0.167 •  2 m m =  4.33 m m

Number of teeth N = — dQ   + 2  m
Outside diameter
Root diameter mm
|  d0   = d+2• m = m   • (N + 2 )

dr=d -2 • (m+ c)

Center distance _ d 2 - d - 1 _ m • (A /2  - N^)

2

Example:

Internal spur gear, m = 1.5 mm ;  N = 80;
c=   0.167 •  m; d=  ?;   dQ   = ?;/?  = ?
d= m   •  N=  1.5 mm   •  80 =  120 mm
dQ   = d-2  •  m =  120 m m - 2   •  1.5 mm =  117 mm
h = 2 •   m + c= 2 • 1.5 mm + 0.167 • 1.5 m m = 3.25  m m

http://slidepdf.com/reader/full/mechanical-and-metal-trades-handbook-56d51be067c7a 260/431

7/18/2019 Mechanical and Metal Trades Handbook

Machine elements: 5.9 Drive elements 257

Helical gears, Module series for spur gears

Unmodified helical gears

V I ex. m t  transverse mod ule
m r  real pitch mo dule
Pt transverse pitch

p r  real pitch
£ helix angle (normally 0 = 8° to 25c
N, N2   no. of teeth
d,  d-|, d2   pitch diame ter
dQ  outside diame ter
a  center distance

Transverse module

Transverse pitch
Pitc h d iameter

In helical gears the teeth run in a screw-like pattern on Number of teeth
the cylindrical wheel body. The tools for manufactur- Real pitc h m odule
ing spur gears and he lical gears conform to the real Real pitch
pitch module.

In the case of parallel shafts the two gears have the
same helix angle, but opposite direction of rotation,
i.e., one gear has a right-hand helix and the other a
left- h an d h e lix = - & ) .

Example: Outside diameter
Center distance
Helical gear,  N = 32;  mr=   1.5 m m; =?
0 = 19.5°; c = 0.167 • m; mt  = ?;d0   = ?; d=?;h

m t  = —m —r   = 1.5 m m = 1.591 m m
co s (5  cos 19.5°

d0   = d +  2 •  m r = 50 .9 m m + 2 - 1 . 5 m m = 53.9 m m Calculations of who le depth, addendu m, de dendum , clear-
d = m t  • N=  1.591 mm   • 32 = 50.9  m m ance and root diameter are the same as those for spur
gears with straight teeth (page 256). In the formulae the
h  = 2 •  m r  + c = 2 • 1.5 mm + 0.167 • 1.5 m m m o d u l e  m is replaced by the real pitch m odu le  mr.
= 3.25 m m

Mo du le series for spur gears (Series I) cf. DIN 780-1 (1977-05)

Module 0.2 0.25 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.25

Pitch 0.628 0.785 0.943 1.257 1.571 1.885 2.199 2.513 2.827 3.142 3.927

Module 1.5 2.0 2.5 3.0 4.0 5.0 6.0 8.0 10.0 12.0 16.0

Pitch 4.712 6.283 7.854 9.425 12.566 15.708 18.850 25.132 31.416 37.699 50.265

C las s ific ation of a too l s et of 8 mo dule s ide milling c utter s ( up to  m = 9 m m )1 '

Cutter no. 1 2 3 4 5 6 7 8

No. of teeth 12-13 14-16 17-20 21-25 26-34 35-5 4 5 5 - 13 4 135 to toothed rack

1 )  The manufacture of gears wit h side millin g cutters is not an involute process. Only an approxim ate inv olute form
of the tooth flank is produced. Therefore th is ma nufacturing process is only suitable for secondary gears. For gears
wit h m > 9 mm a tool set with 15 mo dule side m illing cutters is used.

http://slidepdf.com/reader/full/mechanical-and-metal-trades-handbook-56d51be067c7a 261/431

7/18/2019 Mechanical and Metal Trades Handbook

258 M a c h i n e e le m e n t s : 5 .9 D r i v e e l e m e n t s

Bevel gears, Worm drive

Unmodified bevel gears with straight teeth

m  module  N ,N^,   N2   no. of teeth

d,  d 1 f  d2   pitch diameter  d,  <51f d2   pitch angle

d0, d01, dQ2   outside diameter  1yr   2y  tip angle

I shaft angle (norm ally 90°)

Pitch and whole depth narrow to the cone point, so that at
every point of the tooth width a bevel gear has another
module, outside diameter, etc. The outermost module cor-
responds to the standard modu le.

Pitc h d iameter t d =m •N
Outside diameter
Tip angle gear 1 d0   = d+  2 • m • cosd
Tip angle gear 2
In addition to the dimensions given on the outside Pitch angle g ear 1 N^  +2  • cosd-,
edges, the dim ension s in the centers and inner edges
t a n Yy  -
of gear teeth are also important for manufacturing.
Example: N 2-2   -sinS,

Bevel gear drive,  m  = 2 mm; A/-, = 30;  N2   = 120; A/o + 2 •  cos<59
I = 90°. Calculate the dimens ions for turning the
tan y , = —

2  A/-| - 2 • sin<5 2

driving bevel gear. t+a  n ^ = d 1   = /Vt 1
d-1,   — —' = -
d2   i
/Vi 30 N2  

t a n ^ = —1 = — - 0.2500; 8* = 14.04°

1  N2   12 0  1 +ta n dXo = —d2  = —N2  = / .

d | = m - / V )  = 2 m m - 3 0 = 60  m m Pitch angle g ear 2 2  di N,

c, o ^ + 2 • m  •   cos^

= 60 mm  + 2 •  2 m m   • cos 14.04° 63.88   m m Shaft angle 2 = d i + <5-
3 0 / 1  Ni+N22   •- 2co•s <s5in, (St 30 1+2 20 -•2  c o•s si1n41.044.0° 4=°0.267

=14.95° Whole depth, addendum, clearance, etc. are calculated like
spur gears wi th s traight teeth (page 256).

Worm drive

m module /V q, A/2  no. of teeth
d,  d-1,   d2   pitch diam eter p n  lead
d0,  d 0 i , d o 2  outside diame ter
rt  throat radius Px, p (axial) pitch
dt  tip 
Worm

Pitc h diam eter

Axial pitch - wo rm
Outside diameter

Lead

Ny (no. of teeth) W o r m g e ar

Example: Pitc h d iameter
Pitch
Worm drive m = 2.5 mm; A/-, = 2; d q  = 40 mm;
N2   = 40; d 0 i = ?; d 2 = ?; d t = ?; r t = ?; a =  ?

d o 1 = d 1 + 2 m = 4 0 m m + 2 - 2 . 5 m m =  4 5 m m Outside diameter

d 2  = m  •  N2=   2.5 m m   •  40 =  100 mm

do2 =d2+ 2- m = 100 m m + 2 • 2.5 mm =  105 mm Tip diameter
dt ~do2+ m = 105 mm  + 2.5 m m = 107.5 mm
Throat radius
rt  = c—/-|  — m  =4 0 m m -2.5 mm = 17.5 mm
2" Clearance, whole depth, addendum , dedend um and center
distance like spur gears (page 256).
c/i+do 40 mm + 100 m m = 70 mm
a =— =
22

http://slidepdf.com/reader/full/mechanical-and-metal-trades-handbook-56d51be067c7a 262/431

7/18/2019 Mechanical and Metal Trades Handbook

M a c h i n e e l e m e n t s : 5 .9 D r i ve e l e m e n t s 259

Transmission ratios

Gear drives

Single gear ratio NVN3,N 5... no. of teeth drivin g Drive formula
driving n<| • A/<| =  n2  • N2
driven n 3, n 5 ... speeds  J  gears
Gear ratio
N2,N 4,N 6... no. of teeth ^ driven i =  N 2 = n 1 = n L
/V,  n2  nf
n2,  n4, n6... speeds ea rs
n\ initial speed Total gear ratio
j9 / =  /v 2  • A / 4 - / V 6
A/q  • A /3 • A /5
final speed i= h- I -  13,

i total gear ratio 2

/'1, h , individual gear ratios Velocity
y=   v/-|   = V2
Multiple gear ratio Example:
Driv e form ula
^  /,   ^ i. nu=nf /"= 0.4; N-I   = 180/min;  N2   = 24; n 2 = ?; A/n  = ? /7<l • C/l = /?2 •

"2 = -r- = 180 /m i n  = J4C5 0A //m  i . Gear ratio
— n . =  c[2   =  n I  _ Hj
0.4 c /- | n2  A7f

N ^ _ n 2 - N 2 ^ c450/min •  24 ^ Total gear ratio
d2   • dA   • di
180/min
I=
Torque for gears, page 37 d i • c/o • c/c

Belt drives I = h • /2 • '3

Single gear ratio d-|, d 3 , d 5 ... diameters1* driving Driv e form ula
pulleys n- |  •A/- = n2  • A /2
n3, n 5... speeds
^2, d 4 , d 6  ... diameters1* driven Gear ratio
pulleys
n6  ••• speeds

Hj initial speed

nf  final speed

driving driven /' tota l gear ratio
/'1, /2 , /3  ... individu al gear ratios

v, v 2  circumferential velocity

Multiple gear ratio Example:

Worm drives n-, = 600 /min;  n2  = 400/min;
d, = 240 mm ; /'= ?; d 2 = ?

/ = i-i _ _6_0_0/_min 1,5 .
= —— =
n 2  400/min~ 1

d , = • d-| 600 /min  • 240 mm = 360 m m
n 2 400/min

1 )  For V-belts (page 254) calculate wi th the
effective diameter d e ;  for   positive drive
belts (page 255) calculate with the number
of teeth on the pulley.

driven A/-| no. of teeth (no. of threads) of the w or m
n-, speed of the wo rm
N2   no. of teeth of the worm gear
n2  speed of the wo rm gear
/' gea r ratio

Example:

/'= 25; = 150 0/m in; A/-, = 3; n2  = ?

ni 1500/min .

driving n2 = — = = 60/min

/ 25

http://slidepdf.com/reader/full/mechanical-and-metal-trades-handbook-56d51be067c7a 263/431

7/18/2019 Mechanical and Metal Trades Handbook

260 M a c h i n e e le m e n t s : 5 .9 D r i v e e l e m e n t s

Speed graph

The speed n of a machine tool from the workpiece or tool diameter   d  and the select- Speed
ed cutting speed  cv  can be determined
• on a computer/calculator using the formula, or
• graphically using the speed graph.
Speed graphs have the speeds under load which can be set on the machine.
These are stepped geometrically. For infinitely variable drives the calculated speed
can be set precisely.

Speed graph w ith logarithmically scaled coordinates

800 / c^
m/min

600
500

5 6 7 8 9 10 15 20 30 40 50 60 80  100 150 200  mm   300 400

diameter  d

Example:  d = 100 mm ; v c  = 220 — ; n = ?
c  min
m
Calculation:  n = yc 220 n  = 7003  ;  read from the speed graph above:  n « 700
m'
_
n  •  d  Ji • 0.1 m  min min

http://slidepdf.com/reader/full/mechanical-and-metal-trades-handbook-56d51be067c7a 264/431

7/18/2019 Mechanical and Metal Trades Handbook

Machine elements: 5. rins 261

Plain bearings, Overview

Plain bearings 1*  (Selection by type of lubrication)

Hydrodynamic Hydrostatic Dry-running
plain bearings plain bearings plain bearings

Suitable for Suitable for Suitable for

- low-wear continuous operation - wear-free continuous operation - maintenance free or low
- high speeds - low friction losses maintenance operation
- high impact loads - low speeds possible
- w i t h o r w i th o u t l u b ri ca ti o n

Areas of application Areas of application Areas of application
-construction equipment
- main and big end bearings - precision bearings - armatures and devices
- gearboxes - space telescopes and - packaging machines
- electric motors -jet engines
-turbines, compressors antennae - household appliances
- lifting equipm., agricul. machinery - machine tools
- axial bearings for h igh forces

1 >  Other plain bearings: air or gas and wate r lubricated plain bearings, magnetic bearings

Properties of plain bearing materials

Designation, Elonga- Specific Shaft Sliding Sliding Emer-
Material tion limit bearing min. proper- speed gency- Properties, application

number Nft/pm0m.22 load hnaersds- ties br eu hn an vi ni ogr

P l "
N/mm2

Lead and t in c as ting alloy s cf. DIN ISO 43 (2001-02)

G-PbSb15Sn102) 43 160 HB € Medium loading;
2.3391 all purpose plain bearing

G-SnSb12Cu6Pb 61 10 160 HB Good impact loading; turbines, com-
2.3790 pressors, electric machines

Cas t c opper alloy s and c opper wrou ght alloy s cf. DIN ISO 4382-1 and -2 (1992-11)

CuSn8Pb2-C 130 21 280 HB Low to moderate loading,
2.1810 250 58 55 HRC sufficient lubrication
80 18 250 HB
CuZn31Si1 60 11 150 HB € High loading, high vertical and
2.1831
horizontal impact loading
C uPb10Sn10-C2)
€ High surface pressures; vehicle bear-
2.1816 ings, bearings in hot-rolling mills

CuPb20Sn5-C Suitable for water lubrication,
2.1818 resistant to sulfuric acid

Thermoplastics cf. DIN ISO 6691 (2001-05)

PA 6 12 50 HRC Impact and wear resistant;
(Polyamide) bearings in farm machinery

(PPOoMl y o x y - 18 50 HRC O sHivaerdleoradasndthcaanpaPbAle; boefahriingghserincopmrepcriessio-n
methylene mechanics, suitable for dry-running
• very good
1 )  Bearing force based on the projected bearing surface © limited  q good € normal
O  poor
2 )  Com posite m aterial according to DIN ISO 4383 for thin-
walled plain bearings

http://slidepdf.com/reader/full/mechanical-and-metal-trades-handbook-56d51be067c7a 265/431

7/18/2019 Mechanical and Metal Trades Handbook

262 M ach ine elem ents: 5.10 Bearings

Plain bearin g b us hing s

Bushings made of copper alloys cf. DIN ISO 4379(1995-10)

Form C Form F Form C Form F Lengths
y // // // >o NO vO
Series 1 Series 2 by
10
d, d2 dz <h t>2 d2 b>2

10 12 14 16 12 14 16 20

1 "L6U" u) L"6U" 1125 1174 1169 2118 1147 1169 2118 2272 1100 1155 2200

18 20 22 24 20 22 1 24 30 12 20 30
15 20 30
///////) all 20 23 24 26 23 26 1.5 26 32 15 20 30
. chamfers 45 22 25 26 28 25 28 1.5 28 34
by] S13 20 30 40
25 28 30 32 28 31 1.5 32 38 20 30 40
Force fitting produces by js13 30 34 36 38 34 38 2 38 44 30 40 50
tolerance class H8 35 39 41 45 39 43 2 45 50 30 40 60

Recommended tolerance classes for mounting dimensions 40 44 48 50 44 48 2 50 58

Location hole H7 Diameter range  dy.   6 - 2 0 0

Shaft e7 or g7 (depending on Bu shin g ISO 4379 - F22 x 25 x 30 - CuSn8P: Fo rm F,
application) di = 2 2 m m ,  d2  = 25 mm, by = 30 mm, of CuSn8P

Bushings made of sintered m etal cf. DIN 1850-3 (1998-07)

Form J Form V -P Form J Form V Lengths
Y//////S 7 7 7 7 7m; dy d2 <h. <h bi  f? max by

) IrD*- 10 16 14 16 22 0.6 10 16
I t5~ 12 18 16 18 24 0.6 8 12 20
15 21 19 21 27 0.6 10 15 25

18 24 22 24 30 0.6 12 18 30
20 26 25 26 32 0.6 15 20 25
22 28 27 28 34 0.6 15 20 25

b // // A V// //// > 25 32 30 32 39 3.5 0.8 20 25 30
by ]  S13 £2js13 A
30 38 35 38 46 4 0.8 20 25 30
35 45 41 45 55 5 0.8 25 35 40

Z7 1JS13 40 50 46 50 60 5 0.8 30 40 50

all chamfers 45° Diameter range   dy.   1 - 6 0

RLoeccaotmiomnenhdoeled toleranceHc7lasses for mounting dimensions Bdyus  =h i1ng8 DmImN, 18d25 =0 -2 4V1m8mx, 2b4y x 1= 818- mSimnt,-B50:
Shaft sintered bronze Sint-B50

B u s h in g s m a d e o f t h e rm o s e t s a n d t h e r m o p l a s ti c s cf. DIN 1850-5 an d -6 (1998-07)

Thermoset plastics dy di <h bz ^max Lengths
Form R by

Form P - "6" 10 16 20 3 0.3 6 10
S//S// 12 18 22 3 0.5 10 15 20
15 21 27 3 0.5 10 15 20
J
18 24 30 3 0.5 12 20 30
20 26 32 3 0.5 15 20 30
22 28 34 3 0.5 15 20 30

25 32 38 4 0.5 20 30 40

£ijs13 V6 / j/s 1/ 3/ J 3305 3458 4540 45 00..58 3200 4300 4500

2

all chamfers 45° by ]  S13 Diameter range   d-\   for thermosets: 3-250,
for thermoplastics: 6-200

Thermoplastics Lim it dev iations d2 and dy of tolerance classes A and B for
bushings made of thermoplastics
Form S Form T
30° 30 ( dz Tolerance class
Fabrication resulting after
>30< m forc e fitting d.
-  O f r o m 10 15 20 28 35 42 m e t h o d
t o 14 18 25 32 40 55 D12
V; s sB / b2  h13
A +0.21 +0.2 +0.4 +0.6 +0.69 +0.90 i n j e c t i o n C11

+0.07 0 +0.1 +0.2 +0.23 +0.30 m o l d e d

B Tolerance class zb11 m a c h i n e d

by h13 y  h13 Additional codes for bushings mad e of l t hermo s et ( plas ti c s 5 :
Ass e mb y bevel 1 5° i n s t. o f 4
Circular grooves on
Recommended tolerance classes for moun ting dimensions W outer diameter  d2 Undercut instead of

Thermosets Thermoplastics radius R

Location hole H7 H7 Bush ing DIN 1850 - S20 A20 - PA 6:  Form S; dy

Shaft h7 h9 20 mm, tolerance cl. A, by   = 20 mm , polyam ide 6

Other stand, designs: Wrapped bushings DIN 1494, internal tension bushings DIN 1498, external tension bushings DIN 1499

http://slidepdf.com/reader/full/mechanical-and-metal-trades-handbook-56d51be067c7a 266/431

7/18/2019 Mechanical and Metal Trades Handbook

Machine elements: 5. rins 263

An tifriction bearings, Overview Linear bearings
Axial
Roller bearings   (selection) load

For rotation Antifriction bearings For linear
movement

Radial Axial and radial
load load

Ball bearing Roller bearing Ballb earing Roller bearing Ball bearing Roller bearing

Deep groove ball Cylindrical roller Angular ball Tapered roller Axial-deep groove Axial-cyl. roller
bearings DIN 625 bearings DIN 5412 bearings DIN 628 bearings DIN 720 ball bear. DIN 711 bear. DIN 722

O in O

Sbeelaf-rainliggnDinINg 6b3a0ll NeedDlIeNb6e1a7rings Angular contact ball Fboeuarr-ipnogisntDcIoNn6ta2c8t bSepahrienrgicsaDl IrNoll7e2r8
bearings DIN 628 bCeaylriinndgrsicDaIlNro5l4le1r2

1r H  O —

Properties of roller bearings

Bearing design1' dInside  0 Radial Axial High High Quiet Application
loading loading speed loads running

Ball bearings

Deep groove ball 1.5-600 c €• •€ Universal bearings in machine and
bearings automotive manufacturing

Self-aligning ball 5-120 c e e e Compensation with misalignment
bearings

Angular contact ball 10-170 c c •2> c Only used in pairs, large forces,
bearings single-row automotive manufacturing

Angular contact ball 10-110 c i € e Large forces, a utomo tive manufacturing,
bearings double-row
1 with limited space requirements

Axial deep groove V€ e€ Acceptance of very high axial forces,
drill spindles, tail stock centers
oball bearings
8-360

Four-point contact 20-240 c € Very tight spaces, spindle bearing layouts,
bearings
Roller bearings e 0 e gear and roller bearing assemblies

Cylindrical roller 17-240 • o• £ € Acceptance of very large radial forces,
bearings (form N) roller bearing assemblies, transmissions

•Cylindrical roller €C e Like Form N, with flanged wheel
additiona l acceptance of axial forces
bearings (form NUP)
15-240

Needle bearings 90-360 • O© •€ High carrying capacity with tight
15-360 mounting space
Tapered roller 15-600 • • C2)
bearings 60-1060 e03) Usually mounted in pairs, wheel bearings
o • in automobiles, spindle bearings
Axial cylindrical e •
roller bearings oC Stiff bearing requiring minimal axial
space, high friction
Spherical
roller bearings oc Angular displacement thrust bearings,
thrust bearings in cranes

1 1  For all radial bearings the prefix "rad ial" is om itted. Suitability levels:
2 )  Reduced suitability with paired mo unting
3 )  Mo unte d in pairs • very good £ good © normal

^ limited  O  not suitable

http://slidepdf.com/reader/full/mechanical-and-metal-trades-handbook-56d51be067c7a 267/431

7/18/2019 Mechanical and Metal Trades Handbook

264 Machine elements: 5. rins

An tifriction bearings. Designation

Designation of antifriction bearings cf. DIN 623-1 (1993-05)

Example: Tapered roller bearings DIN 720 - S 30208 P2

Name I Prefix symbol Basic numbers Suffix symbol
Standard

Prefix symbols Suffix symbols (selection)
K cage wit h roller elements
L free ring K bearing wit h tapered bore
R ring with roller set Z bearing with shield on one side
S stainless steel 2Z bearing with shield on both sides
E reinforced design
Ex ample of bas ic nu mbers : RS bearing wit h seal on one side
2RS bearing wit h seal on both sides
P2 highest precision: dime nsiona l, form and

running

3 0 2 08

Bearing series 302

Width series 0 Diameter series 2

Bearing type 3 Dimension series 02 Bore code 08

Bearing type Design Bore- Bore  Bore Bore 
0 Angu lar contact ball bear., double row code d code d
10 60
1 Self-aligning ball bearing 00 12 12 65
2 Barrel and spherical roller bea rings 01 15 13 70
3 Tapered roller bearings 02 17 14 75
4 Deep groove ball bear., double row 03 20 15 80
04 25 16 85
5 Axial deep groove ball bearings 05 30 17 90
6 Deep groo ve ball bear., sing le row 06 35 18 95
7 Ang ular contact ball bear., single row 07 19
8 Axial cylindrical roller bearings 40 100
08 45 20 105
NA Needle bearings 09 50 21 110
QJ Four-point contact bearing 10 55 22 115
11 23
N, NJ, NJP, NN, Cylindrical roller bearings
NNU, NU, NUP

Dimension series (selection) cf. DIN 616(1994-06)

Explanation Structure of the d imension series Ex ample: Tapered r oller bear in gs 11

The dimen sion plans in DIN 616 width series dimen- Dimension series 02
contain diameter series in sion
which each nominal diameter series Bore Bore
of a bearing bore   d  (= shaft
D B
diameter) is assigned a num ber
of: a0 3 •3 code d
• outside diameters and
• width series (for radial m- 02 10 07 35 72 17
"ool
bearings) or diameter 08 40 80 18
• height series (for axial series
09 45 « 85 19
bearings).
10 50 90 20

1 )  other dimensions, see page 267

http://slidepdf.com/reader/full/mechanical-and-metal-trades-handbook-56d51be067c7a 268/431

7/18/2019 Mechanical and Metal Trades Handbook

http://slidepdf.com/reader/full/mechanical-and-metal-trades-handbook-56d51be067c7a 269/431

7/18/2019 Mechanical and Metal Trades Handbook

266 Machine elements: 5. rins

B all bearings. Roller bearings

Axial deep groo ve ball bearings   (selection) cf. DIN 711 (1988-02)

Bearing series 512 Bearing series 513
r h Basic r h Basic

max min number max min number

\/jCr/ 25 27 47 15 0 6 51205 52 18 51305
\\'T 30 32 52 16 0 . 6 51206 60 21 51306

i ///J 35 37 62 18 1 51207 68 24 51307

i 40 42 68 19 51208 78 26 10 51308
45 47 73 20 51209 85 28 10 51309
Dy 50 52 78 22 51210 95 31 12 51310

D

dfr om 8 to 360 m m 55 57 90 25 51211 105 35 13 51311
M o u n t i n g d i m e n s i o n s a c c o r d i ng t o D I N 54 18 : 60 62 95 26 51212 110 35 13 51312
65 67 100 27 51213 115 36 13 51313

k. 70 72 105 27 51214 125 40 1 14 51314
8750 8727 111105 2287 5511221156 113450 4444 11..55 1155 5511331165
A
Cylindrical roller bearings   (selection) Axial deep groove ball bearing DIN 711 - 51210:  Axial-deep
groove ball bearing of the bearing series 512 with bearing
type 5, wid th series 1, diame ter series 2 and bore code 10

cf. DIN 5412-1 (2005-08)

Bearing series Bearing series

Form N Form NU N2, NU2, NJ2, NUP2 N3, NU3, NJ3, NUP3 Bore

d D W r y h y '2 h 2 D W r y h y '2 h 2 code

max min max min max min max min

•zzzzi 17 40 12 0.6 2.1 0.3 1.2 47 14 1 2.8 1 2.8 03
20 47 14 1 2.8 0.6 2.1 52 15 1.1 3.5 1 2.8 04
25 52 15 1 2.8 0.6 2.1 62 17 1.1 3.5 1 2.8 05

30 62 16 1 2.8 0.6 2.1 72 19 1.1 3.5 1 2.8 06
- - 35 72 17 1 3.5 0.6 2.1 80 21 1.5 4.5 1 2.8 07

40 80 18 1 3.5 1 3.5 90 23 1.5 4.5 2 5.5 08

45 85 19 1 3.5 1 3.5 100 25 1.5 4.5 2 5.5 09
50 90 20 1 3.5 1 3.5 110 27 2 5.5 2 5.5 10
55 100 21 1.5 4.5 1 3.5 120 29 2 5.5 2 5.5 11

60 110 22 1.5 4.5 1.5 4.5 130 31 2.1 6 2 5.5 12
65 120 23 1.5 4.5 1.5 4.5 140 33 2.1 6 2 5.5 13

W 70 125 24 1.5 4.5 1.5 4.5 150 35 2.1 6 2 5.5 14
d fr o m 15 to 5 00 m m
75 130 25 1.5 4.5 1.5 4.5 160 37 2.1 6 2 5.5 15
80 140 26 2 5.5 2 5.5 170 39 2.1 6 2 5.5 16
85 150 28 2 5.5 2 5.5 180 41 3 7 3 7 17

M o u n t i n g d i m e n s i o n s a c c o r d in g t o D I N 54 18 : 90 160 30 2 5.5 2 5.5 190 43 3 7 3 7 18
19
Form N F o rm N U 95 170 32 2.1 6 2.1 6 200 45 3 7 3 7 20
100 180 34 2.1 6 2.1 6 215 47 3 7 3 7
21
unflanged with fixed flange 105 225 49 3 7 3 7 22
110 200 38 2.1 6 2.1 6 240 50 3 7 3 7 24
120 215 40 2.1 6 2.1 6 260 55 3 7 3 7

Mm Croyllleinrdbriecaarlinroglloefr bbeeaarriningg sDerINies54N1U2P-3 NwUitPh 3b1e2ariEn:g  CtyypliendNriUcPal,
wid th series 0, diame ter series 3 and bore code   12,  reinforced
design

The norm al design of the dim ension series 02, 22, 03 and 23 were
deleted from the standard with no replacement and then
replaced with the reinforced design (suffix symbol E).

http://slidepdf.com/reader/full/mechanical-and-metal-trades-handbook-56d51be067c7a 270/431

7/18/2019 Mechanical and Metal Trades Handbook

Ma chin e elem ents: 5.10 Bearings

Roller b earings

Tapered roller bearings   (selection) cf. DIN 720 (1979-02) and DIN 5418 (1993-02)
Bearing series 302

Dimensions Mounting dimension

Cd D W T da db Da Db c b ras t s Basic
di

max min min max min min min max max no.

20 47 14 12 15.25 33.2 27 26 40 41 43 2 3 1 1 30204
25 52 15 13 16.25 37.4 31 31 44 46 48 2 2 1 1 30205
30 62 16 14 17.25 44.6 37 36 53 56 57 2 3 1 1 30206

35 72 17 15 18.15 51.8 44 42 62 65 67 3 3 1.5 1.5 30207
40 80 18 16 19.75 57.5 49 47 69 73 74 3 3.5 1.5 1.5 30208
45 85 19 16 20.75 63 54 52 74 78 80 3 4.5 1.5 1.5 30209

50 90 20 17 21.75 67.9 58 57 79 83 85 3 4.5 1.5 1.5 30210
55 100 21 18 22.75 74.6 64 64 88 91 94 4 4.5 2 1.5 30211
60 110 22 19 23.75 81.5 70 69 96 101 103 4 4.5 2 1.5 30212

65 120 23 20 24.75 89 77 74 106 111 113 4 4.5 2 1.5 30213
70 125 24 21 26.25 93.9 81 79 110 116 118 4 52 1.5 30214
75 130 25 22 27.25 99.2 86 84 115 121 124 4 52 1.5 30215

80 140 26 22 28.25 105 91 90 124 130 132 4 6 2.5 2 30216
85 150 28 24 30.5 112 97 95 132 140 141 5 6.5 2.5 2 30217
90 160 30 26 32.5 118 103 100 140 150 150 5 6.5 2.5 2 30218

95 170 32 27 34.5 126 110 107 149 158 159 5 7.5 3 2.5 30219
100 180 34 29 37 133 116 112 157 168 168 5 83 2.5 30220
105 190 36 30 39 141 122 117 165 178 177 6 93 2.5 30221

110 200 38 32 41 148 129 122 174 188 187 6 9 3 2.5 30222
120 215 40 34 43.5 161 140 132 187 203 201 6 9.5 3 2.5 30224

Bearing series 303

M o u n t i n g d i m e n s io n s Dimensions Mounting dimension
ac c ording to DIN 5418:
d DWC T dy da db L >a Db c a c b ras rbs Basic
cage
max min min max min min m in max max no.

20 52 15 13 16.25 34.3 28 27 44 45 47 2 3 1.5 1.5 30304
25 62 17 15 18.25 41.5 34 32 54 55 57 2 3 1.5 1.5 30305
30 72 19 16 20.75 44.8 40 37 62 65 66 3 4.5 1.5 1.5 30306

35 80 21 18 22.75 54.5 45 44 70 71 74 3 4.5 2 1.5 30307
40 90 23 20 25.25 62.5 52 49 77 81 82 3 5 2 1.5 30308
45 100 25 22 27.25 70.1 59 54 86 91 92 3 5 2 1.5 30309

50 110 27 23 29.25 77.2 65 60 95 100 102 4 6 2.5 2 30310
55 120 29 25 31.5 84 71 65 104 110 111 4 6.5 2.5 2 30311
60 130 31 26 33.5 91.9 77 72 112 118 120 5 7.5 3 2.5 30312

65 140 33 28 36 98.6 83 77 122 128 130 5 8 3 2.5 30313
70 150 35 30 38 105 89 82 120 138 140 5 8 3 2.5 30314
75 160 37 31 40 112 95 87 139 148 149 5 9 3 2.5 30315

80 170 39 33 42.5 120 102 92 148 158 159 5 9.5 3 2.5 30316
85 180 41 34 44.5 126 107 99 156 166 167 6 10.5 4 3 30317
90 190 43 36 46.5 132 113 104 165 176 176 6 10.5 4 3 30318

95 200 45 38 49.5 139 118 109 172 186 184 6 11.5 4 3 30319
100 215 47 39 51.5 148 127 114 184 201 197 6 12.5 4 3 30320

iInngtshethceasceagoef ptarpoejerectds rboellyeor nbdeathr-e 105 225 49 41 53.5 155 132 119 193 211 206 7 12.5 4 3 30321
lateral face of the outer ring. 110 240 50 42 54.5 165 141 124 206 226 220 8 12.5 4 3 30322
120 260 55 46 59.5 178 152 134 221 246 237 8 13.5 4 3 30324
The mounting dimensions of DIN
5418 must be maintained so that Tapered roller bearing DIN 720 - 30212:  Tapered roller bearing of bearing
the cage does not rub against series 302 wi th bearing type 3, wid th series 0, diameter series 2, bore code 12
other parts.

http://slidepdf.com/reader/full/mechanical-and-metal-trades-handbook-56d51be067c7a 271/431

7/18/2019 Mechanical and Metal Trades Handbook

268 Machine elements: 5. rins

Needle bearings, Lock nuts, Lock w ashers

http://slidepdf.com/reader/full/mechanical-and-metal-trades-handbook-56d51be067c7a 272/431

7/18/2019 Mechanical and Metal Trades Handbook

Ma chin e elem ents: 5.10 Bearings

Internal and external retaining rings, Circlips

R e t ai n i n g r i n g s i n s t a n d a rd d e s i g n 11  (selection)

For shafts (external) cf. DIN 471 (1981-09) For bores (internal) cf. DIN 472 (1981-09)

mounting ^ ^ external mounting » groove'
space \ groove space

mm

Nomi- Ring Slot Nomi- Ring Slot
d 3 <*4
lal size s <h d 4 V <*2 m nal size w dz m n
dy n dy s
mm sss H13 m i n mm * H13 min

10 1 9.3 17 1.8 9.6 1.1 0.6 10 1 10.8 3.3 1.4 10.4 1.1 0.6
12 1 13 4.9 1.7 12.5 1.1 0.8
15 1 11 19 1.8 11.5 1.1 0.8 12 1 16.2 7.2 2 15.7 1.1 1.1

13.8 22.6 2.2 14.3 1.1 1.1 15 1 19 1.1 1.5
21 1.1 1.5
18 1.2 16.5 26.2 2.4 17 1.3 1.5 18 1 19.5 9.4 2.2 23 1.1 1.5
21.5 11.2 2.3
20 1.2 18.5 28.4 2.6 19 1.3 1.5 20 1 23.5 13.2 2.5 26.2 1.3 1.8
29.4 1.3 2.1
22 1.2 20.5 30.8 2.8 21 1.3 1.5 22 1 31.4 1.3 2.1

25 1.2 23.2 34.2 3 23.9 1.3 1.7 25 1.2 26.9 15.5 2.7 33.7 1.3 2.6
37 1.6 3
28 1.5 25.9 37.9 3.2 26.6 1.6 2.1 28 1.2 30.1 17.9 2.9 40 1.6 3

30 1.5 27.9 40.5 3.5 28.6 1.6 2.1 30 1.2 32.1 19.9 3 42.5 1.85 3.8
44.5 1.85 3.8
32 1.5 29.6 43 3.6 30.3 1.6 2.6 32 1.2 34.4 20.6 3.2 47.5 1.85 3.8
35 1.5 37.8 23.6 3.4
35 1.5 32.2 46.8 3.9 33 1.6 3 38 1.5 40.8 26.4 3.7

38 1.75 35.2 50.2 4.2 36 1.85 3

40 1.75 36.5 52.6 4.4 37.5 1.85 3.8 40 1.75 43.5 27.8 3.9
42 1.75 38.5 55.7 4.5 39.5 1.85 3.8
45 1.75 41.5 59.1 4.7 42.5 1.85 3.8 42 1.75 45.5 29.6 4.1

45 1.75 48.5 32 4.3

4580 21..075 4445..58 6624..55 55.1 4457..50 12..1855 43..58 4580 21..075 5541..25 3364..53 44..56 5530..05 21..1855 43..58
60 2.0 55.8 75.6 5.8 57.0 2.15 4.5 60 2.0 64.2 44.7 5.4 63.0 2.15 4.5

65 2.5 60.8 81.4 6.3 62.0 2.65 4.5 65 2.5 69.2 49.0 5.8 68.0 2.65 4.5
70 2.5 72 2.5 76.5 55.6 6.4 75.0 2.65 4.5
75 2.5 65.5 87 6.6 67.0 2.65 4.5 75 2.5 79.5 58.6 78.0 2.65 4.5
6.6
70.5 92.7 7.0 72.0 2.65 4.5

80 2.5 74.5 98.1 7.4 76.5 2.65 5.3 80 2.5 85.5 62.1 7.0 83.5 2.65 5.3
90 3.0 84.5 108.5 8.2 86.5 3.15 5.3 90 3.0 95.5 71.9 7.6 93.5 3.15 5.3
100 3.0 94.5 120.2 9 96.5 3.15 5.3 100 3.0 105.5 80.6 8.4 103.5 3.15 5.3

= > Retaining ring DIN 471 - 40 x  1.75: = > Retaining ring DIN 472 - 80 x  2.5:
dy =  4 0 m m , s = 1.75 m m dy = 80 mm , s =  2.5 mm

Tolerance classes for cfe Tolerance classes for cfe

dy   i n m m 3-10 12-22 24-100 dy   in mm 8-22 24-100 100-300
H12 H13
h 1 0 h i 1 h12 d2 H11

1 )  Standard design: dy   from 3-300 mm; heavy duty design:  dy   fr o m 1 5 - 1 0 0 m m

Circlips  (selection) cf. DIN 6799 (1981-09)

relaxed loaded Circlips Shaft

d2 d 3 dy m n
h i 1 loaded min
from-to
12.3 5.26 0.7 0.74 + 0.05 1.2
14.3 5.84 0.9 7- 9 0.94 0 1.5
16.3 6.52 1 1.05 1.8
8-11

9-12

9 18 8 7.63 1 1 1 0 - 1 4 1.15 2

Mounting 12
dimensions:
1102 2230..44 180..3425 1.3 11 31 -- 11 58 11..3255 + 0.08 22.5
m
d2 from 0.8 to 30 mm 15 29.4 12.61 1.5 1 6 - 2 4 1.55 0 3

19 37.6 15.92 1.75 2 0 - 3 1 1.80 3.5

24 44.6 21.88 2 2 5 - 3 8 2.05 4

Circlip DIN 6799 - 15: d2   = 15 mm

http://slidepdf.com/reader/full/mechanical-and-metal-trades-handbook-56d51be067c7a 273/431

7/18/2019 Mechanical and Metal Trades Handbook

270 Machine elements: 5. rins

Sealing elements

Radial seals (selection) cf. DIN 3760 (1996-09)

F o rm A Form AS dz w ds w w dz
26
40 52 25.5 65 72 46.5
10 8.5 28 50
25
47 68

12 22 30 40 47 70 80 51
25 10 30 27.5 55

14 24 30 42 52 72
26 35 12 45 52
75 85 56
15 32 29 60
30 47
30 35 80
30 35 13
30 40 47 52 32 65 85 90 10 61

Mounting dimensions: b *  0.3, 20 35 70 90 95 10 66
non-rotating 35 14 50 55 35
16 38 55 62
with 22 35 47 75 95 100 10 70.5
Ra0.2 to 40 52 62
Ra0.8 35 47 18 40 37 80 100 110 10 75.5
or
Rz1 bis Rz5 25 55 85 110 120 12 80.5
40 52 38.5
19.5 42 55 62
60 65 90 110 120 12 85.5
41.5 95 120 125 12 90.5
45
62 44.5 100 120 130 12 94.5

22.5 125
48 62

c/1 from 6 to 500 mm a) = edges rounded RWDR DIN 3760 - A25 x 40 x 7 - NB:  Radial seal (RWDR) of
f o r m A w i t h  d-\   = 25  m m ,  d2   = 40  m m a n d  w= l m m ,
Felt rings  (selection) elastome r part of Nitrile-Butadiene rubber (NBR)

cf. DIN 5419 (1959-09)

Mounting dimensions: Dimensions Mounting dim. Dimensions Mounting dim

4 d2 w d3 d 4 di d2 w <h <U

3 2205 3370 2261 3318 6605 8761 66..55 6616..55 7827
30 42 31 43 70 88 7.5 71.5 89
a
d, from 17 to 180 mm 35 47 36 48 75 93 7.5 76.5 94
40 52 41 53 80 99 7.5 81.5 99
45 57 46 58 85 103 7.5 86.5 104

50 66 6.5 51 67 90 110 9.5 92 111
55 71 6.5 56 72 100 124 10 102 125

Felt ring DIN 5419 M5-40: Felt ring of d , = 40 m m, felt ha rdn. M5

O-rings DIN 3771 (withdrawn)

dz d. dz di dz dy dz

externally sealing 5 18 56 85
0° to 5°
6 20 58 90

8 1.8 25 2.65 3.55 60 95

9 28 63 100

Mr 10 30 67 3.55 5.3 103 3.55 5.3

S +0.25 14 40 69 106

di from 1.8 to 670 m m , 15 45 71 109
d2   from 1.8 to 7 m m
16 1.8 2.65 50 3.55 5.3 75 112

17 53 80 115

M o u n t i n g d i m e n s i o n s fo r s t a t ic l o a d in g

axially sealing internally sealing internally & extern, sealing axially sealing

h  +0.1  £ 0° to 5° d2 r-i r2 internal external
1.8 ww
h
0.3
fisa 2.65 h
i
CD 2.4 1.4 1.3 2.6 1.3
0.2 1.95 3.8 2

3.6 2.1

w+0.25 3.55 0.6 0.2 4.8 2.85 2.65 5 2.75

5.3 7.1 4.3 4.15 7.3 4.25

http://slidepdf.com/reader/full/mechanical-and-metal-trades-handbook-56d51be067c7a 274/431

7/18/2019 Mechanical and Metal Trades Handbook

Ma chin e elem ents: 5.10 Bearings

Lubricating oils

Designation of lubricating oils cf. DIN 51502(1990-08)
Designation using symbols
Designation using code letters

PGLP 220 PGLP
CL
100 220

Code letters Additional code ISO viscosity Mineral oil based Silicon based
for lubricating oils letters grade lubricating oil lubricating oil

Lubricating oil DIN 51517 - CL 100: Circulating m ineral oil based lubrica ting o il (C), increased corrosion and
aging resistance (L), ISO viscosity grade VG 100 (100)
Lubricating oil DIN 51517 - PGLP 220: Polyglycol oil (PG), increased co rrosion and ag ing resistance (L),
increased wear protection (P), ISO viscosity grade VG 220 (220)

Types of lubrication oils cf. DIN 51502 (1990-08)

Code letters Type of lubricant and properties Standard Application

Mineral oils

AN Normal lubricating oils without DIN 51501 Once-through and circulating
additives lubrication at oil temperatures up to 50 °C
DIN 51513
B Bitumen con taining lubricating oils Manual, continuous flow and oil bath lubrica-
with high adhesion DIN 51517 tions, mainly for open lubrication points
DIN 8659
C Circulating lubricating oil, without Plain bearings, antifriction bearings, gears
additives T2
In m ixed friction operations for slideways and
CG Sliding track oil with active ingredients guideways, and for wo rm gears
for reducing wear

Synthetic liquids

E cEhsatenrgeoilisn wviitshcoessiptyecially low tBeemaprienrgastuwreitsh wide ly v arying

PG Polyglycol oils with high aging Bearings with frequent mixed friction
resistance conditions

SI Silicon oils with high aging Bearings with very high and low
resistance temperatures, very water repellant

Ad ditional code letters cf. DIN 51502 (1990-08)

Additional Application and explanation
code letters

E For lubricants that are mixe d wit h water, e.g. coo ling lubricant SE

F For lubricants with solid lubricant additive, e.g. graphite, molyb den um sulfide

L For lubricants with active ingredients to improve corrosion protection and/or aging
resistance

P For lubricants with active ingredients for reducing friction and wear in
mixed friction areas and/or to increase the load capacity

ISO viscosity grade for liquid industrial lubricants cf. DIN 51519 (1998-08)

Viscosity Kinetic v is c os ity Viscosity Kinetic v is c os ity Viscosity Kinetic viscosity
grade in m m 2/s at grade in m m 2/s at grade in m m 2/s at

20 °C 40 °C 50 °C 20 °C 0 °C 50 °C 20 °C 40 °C 50 °C

ISO VG 2 3.3 2 2 1.3 ISO VG 22 22 15 ISO VG 220 220 130
ISO VG 3 5 3.2 2.7 ISO VG 32 32 20 ISO VG 320 320 180
ISO VG 5 46 30 ISO VG 460 460 250
4.6 3.7 ISO VG 46
68 40 ISO VG 680 680 360
ISO VG 7 13 6.8 5.2 ISO VG 68 100 60 ISO VG 1000 1000 510
ISO VG 10 21 10 7 ISO VG 100 150 90 ISO VG 1500 1500 740
ISO VG 15 34 15 11 ISO VG 150

http://slidepdf.com/reader/full/mechanical-and-metal-trades-handbook-56d51be067c7a 275/431

7/18/2019 Mechanical and Metal Trades Handbook

272 Machine elements: 5. rins

Lubricating grease. Solid lubricants   cf. di n 51 50 2 <1990-08

Designation of lubricating greases Designation by symb ols

Des ignation by c ode letters

'3N - 2 0 N

Lub ricating g rease DIN 51517 - K 3N -20 :  Lubricating grease for antifriction and plain bearings (K) based on
mineral oil (NLGI grade 3) (3), upper working temperature +140°C (N), lower working temperature -20°C (-20)
Lub ricating grease DIN 51517 - K SI3R -10:  Silicon based lubricating grease for antifriction and plain bearings
(K) (SI), NLGI-grade 3 (3), upper work ing tempe rature +180°C (R), lower wo rking temp erature -10° C (-10)

Lubricating greases

Code letters Application/additives Code letters Application

General: antifriction bearings, plain bearing, Closed gears
sliding surfaces
Open gears
KP Like K, but with additives for OG (adhesive lubricant without bitumen)
reducing friction For plain bearings and seals
(low requirements)
KF Like K, but with solid lubricant M
additives

C o n s i s t e n c y 1) classification for lubricating greases

NLGI- Worked penetration2' NLGI- Worked penetration2' NLGI Worked penetration2'
g r a d e3' g r a d e3' grade 3)

00000 444050--447350 (very soft) 21 321605--324905 45 117350--120605
0 355-385 3 220-250 6 85-115 (very firm)

1 )  Code for the viscoelasticity

2 )  Measure of the penetration de pth of a standardized test ball in the kneaded (worked) grease
3 )  National Lubrication Grease Institute (NLGI)

A d d i t i o n a l l e t te r s f o r l u b r i c a t i n g g r ea s es

Addit. Upper working Addit. U p p er w o r k i n g Grade   2' Addit. Upper working G r a d e  2'
letter1) temperature Grade  2 ) letter1) temperature letter1) temperature
°C °C °C

C +60 0 or 1 G + 100 0 or 1 N + 140

D +60 2 or 3 H + 100 2 or 3 P + 160 as per
R + 180
S + 200 agree-
E +80 0 or 1 K +120 0 or 1 T + 220 ment

F +80 2 or 3 M +120 2 or 3 U + 220

1>  The number value for the lower working temperature can be appended to the additional code letters;
e.g.-20 for-20°C

2 )  Grades for beh avior whe n subjected to water, cf. DIN 51807-1:
0: no change; 1: small change; 2: mode rate chan ge; 3: large chan ge

Solid lubricants

Lubricant Code Working Application
temperature

Graphite C - 1 8 to+ 450 °C As powder or paste and as an additive to lubricating oils and
lubricating greases, not in oxygen, nitrogen and vacuums
Molybdenum
MOS2 -180 to+400 °C As m ineral oil-free paste, sliding lacquer or additive to lubricating oils sulfide
Polytetra- and lubricating greases, suitable for very high surface pressures
fluorethylene
P TFE -25 0 to+ 26 0 °C As powder in sliding lacquer and synthetic lubricating greases and as
bearing material, very low coefficient of sliding friction fj = 0.04 to 0.09

http://slidepdf.com/reader/full/mechanical-and-metal-trades-handbook-56d51be067c7a 276/431

7/18/2019 Mechanical and Metal Trades Handbook

Table of Contents 273

6 Production Engineering

frequency inflection 6.1 Quality m anagemen t 274
curve point Standards, Terminology 276
Qua lity plan ning , Qua lity testing 277
Statistical a nalysis 
227891
SPtraoctiesstiscaclappraobcielistys c ontrol

Material overhead 6.2 Production plannin g 282
Time acco unting accord ing to REFA 284
in percent of material direct Cost acco unting  285
costs, e.g. purchasing costs, Ma chine hou rly rates

warehousing costs, etc.

6.3 Machin ing processes

Productive time 287

Machining coolants 2 92

Cutting tool materials, Inserts, Tool holders . . . . 294

Forces and pow er 298
Cutting data: Drilling, Reaming, Turning 301
Cutting data: Taper turn ing 304
Cutting data: Milling 305
Indexing 307
Cutting data: Grinding and honing 308

6.4 Material remo val 313
Cutting data 314
Processes

6.5 Separation by cu tting 315
Cutting forces 316
Shearing 317
Location of punch holder shank
318
6.6 Forming 320
Bending
Deep draw ing

6.7 Joining 322
Welding processes
323
Weld preparation 324
Gas we lding 325
Gas shielded me tal arc w eld ing 327
Arc welding 329
Thermal cutting 331
Identification of gas cylinders 333
Soldering and brazing 336
Adhesive bonding

6.8 Workplace safety and environm ental protection

Prohibitive signs 338

WMaa nrndiantgorsyigsnigsns, Esc. routes and rescue signs . 334309

Information signs 341

Danger symbols 342

Wear safety Wear hard Identification of pipe lines 343
glasses hat
Sound and noise 344

http://slidepdf.com/reader/full/mechanical-and-metal-trades-handbook-56d51be067c7a 277/431

7/18/2019 Mechanical and Metal Trades Handbook

274 Production ngineering: 6. u i ang

Standards ISO 9000,9001,9004

Standards of the ISO-9000 fam ily sh ould help organizations of all types and sizes to im plem ent q uality ma nage men t
systems, to work w ith existing quality m anagem ent systems, and to facilitate m utual unde rstanding in national and
international trade.

Quality management standards  cf. DIN EN ISO 9000 (2005-12), 900 1,9 004 (2000-12)

Standard Explanation, contents
Fundamentals of quality managem ent systems
DIN EN ISO
9000

Principle of quality management

• customer focus • system approach to management

• leadership • continuous improvement

• involvement of people • factual approach to decision making

• process approach • mu tually beneficial supp lier relationships

Fundamentals of qu ality management systems (QM systems)

• reasons for QM systems • evaluation of QM systems

• requirements of QM systems and • continuou s improvement

• pprroodgurectsssive implem entation of QM systems •• QroMle soyf sstteamtisstiacsalpamret tohfotdhse total
• process oriented evaluation management system
• quality policies and goals
• role of top manag emen t in the QM system • requirements of QM systems and
• documentation; advantages and types comp arative evaluation of organizations
based on criteria of excellence models

Terminology for quality m anagement systems
For a selection of definitions and explanations of terms, see page 275.

DIN EN ISO Requirements of a quality m anagement system
90011)
This international standard applies to organizations in any industry or business sector regardless of
products offered. It establishes requirements for a QM system, based on fundamentals outlined in
ISO 9000, if an orga nization:
• must demo nstrate capability to offer products which fulfill both custom er and

regulatory requirements,
• strives to improve custom er satisfaction, including the process of continuou s im prove men t of the

system.
Specified requirements can be used for:
• internal applications by organizations
• certification purposes
• contract purposes
The standard is based on  a process oriented evaluation,  i.e. every activity or sequence of activities
which uses resources to convert input into results is regarded as a process.

Requirements
The organization must:
• recognize all necessary processes for the QM system and their use in the o rganization ,
• establish the flows and interdependencies of these processes,
• establish criteria and method s for ensuring imp lem enta tion and control of these processes,
• ensure availability of resources and inform ation for these processes,
• monitor, measure and analyze these processes,
• take necessary actions for continuous improv eme nt of these processes,
• fulfill documentation requirements for the QM system, and
• observe regulations for document control.

1) This standard also replaces previous standards 9002 and 9003.

DIN EN ISO Guideline for assessing th e overall performance, effectiveness and efficiency of

9004 quality management systems

The goal of this standard is to improve the organization and to improve the satisfaction of customers 278/431
and other relevant parties.
It is not intended for certification or contract purposes.

http://slidepdf.com/reader/full/mechanical-and-metal-trades-handbook-56d51be067c7a

7/18/2019 Mechanical and Metal Trades Handbook

Production ngineering: 6. u i ang

Terminology

I  Terms   (selection) Definitions & explanations   cf. DIN EN ISO  9000 (2005 12)

I  Q u a l i ty -r e l ate d te r ms

Quality Extent to which the characteristics of a product fulfill the requirements for that product.
Requirement
Specified or mandatory demands for characteristics of a unit, e.g. nominal values, toler-
Customer satisfaction ances, functional capability or safety.
Capability Customer's perception of degree to which its requirements have been fulfilled.

Suitability of an organization, system or process to provide a product that fulfills that prod-
uct's quality requirements.

Characteristic and conformity related terms

Quality characteristic Identifying attribute of a product or process, which is utilized in assessing quality based on
the specified quality requirements.
Conformity
Defect • Quantitative (variable) characteristics:
Rework discrete characteristics (whole numbers), i.e. number of holes, piece count
continuous characteristics (measured values), e.g. length, position, mass

• Qualitative characteristics:
ordinal characteristics (with ranking), e.g. light blue - blue - dark blue
nominal characteristics (without ranking), e.g. good - bad, blue - yellow

Identifying attribute of a product, a process or system relating to a requirement.

Fulfilling a specified requirement, e.g. a dimensional tolerance.

Not fulfilling a specified requirement, e.g. not conforming to a required dimensional
tolerance or surface quality.

Action taken on a defective product so that it fulfills requirements.

Process and product related terms

Process Mutu ally interactive resources and activities which convert inputs into results. Some exam-
Method ples of resources are personnel, finances, facilities and manufacturing methods.
Product
Defined manner in which an activity or process is performed. In written form also referred
to as process instructions.

Result of a process, e.g. part, assembly, service, processed item, knowledge, concept, doc-
umen t, contract, po llutant.

I  Terms related to org anization

Organization Group of persons and facilities with a matrix of responsibilities, authorities and relation-
Customer ships.

Organization or person which receives a product from a supplier.

Supplier Organization or person which provides a product to a customer.

I  Ter ms r el a tin g to ma n a g e m e n t

Qmuaanlaitgye me n t s y s te m tOorgpaunt izaaqtiuoanliatyndmoarngaagneizmaetinotnainl tsotrpurcatcutriecse,. m ethods an d processes of an operation required
Quality
management All coordinated activities for mana ging and c ontrolling the q uality-related aspects of an

Quality planning organization by:
Quality control
Quality assurance • establishing a quality policy • quality control

Quality • setting quality goals • quality assurance
improvement
Quality manual • quality planning • quality improvement

Activities directed toward establishing quality goals and required imp lemen tation process-
es, as well as associated resources for attaining quality goals.

Work activities and techniques to continually fulfill requirements despite unavoidable vari-
ations in quality. Consists primarily of process mo nitoring and elimination of weak points.

Performing and generating required documentation for all activities relating to the QM sys-
tem, with the goal of creating an atmosphere of trust, both in-house and with the customer,
that quality requirements will be fulfilled.

Actions taken througho ut the organization to increase product quality.

Document describing the quality policy, quality goals and quality manag ement system of an
organization.

http://slidepdf.com/reader/full/mechanical-and-metal-trades-handbook-56d51be067c7a 279/431

7/18/2019 Mechanical and Metal Trades Handbook

276 P r o d u c ti o n n g i n ee r in g : 6. u i ang

Quality planning. Quality con trol. Quality testing

Quality planning

Rule-of-ten (for costs)

Costs required to eliminate defects or costs resulting
from defects increase by about a factor of 10 from

phase to phase in the product life cycle.

product planning process planning testing Example:  A tolerance error on a single part can be
and development and production and customer corrected during the design phase with negligible
increase o f costs. If the defect is first n oticed in pro-
Quality control duc tion, m uch larger costs result. If the defect leads
to problems in assembly or has an adverse impact
Quality control circle on the functionality of the finished product or even
leads to a recall, enormous costs are incurred.

Factors causing variance in quality

human environment Actions taken Factor Examples
machine W testing Human qualification, motivation,
degree of utilization
Actions taken Machine
machine rigidity, positioning
Material accuracy, wear c ondition

Method deviations, material properties,
material variations
Surroundings
(environment) work steps, production process,
test conditions

temperature, vibrations,
light, noise, dust

B BoHn HprRoRceI sHs^ on product Management poor quality goals or policies
Measurability measurement inaccuracy
Quality testing
cf. DIN 55350-17 (1988-08)

Concepts Explanations
Quality testing
Test plan Determine to wh at extent a unit meets specified quality requirements.
Test instructions
Complete testing Define and describe the type and scope of testing, e.g. measuring and monitoring devices,
frequency of testing, test personnel, testing location.
100% testing
Testing of a unit for all specified qua lity characteristics, e. g. comp lete inspec tion of a
single workpiece regarding all requirements.

Testing of all units within a test lot, e.  g. visual inspection of all delivered parts.

S(staamtisptliicnagl tteesstt)ing Qofupaalirttys tbeystainngalwyzitihngthae nauidmboef rstoaftissaticmapl lemde tphaordtss., e. g. eva luation of a large qu antity

Test lot All of the units being tested, e.g. a production of 5000 identical workpieces.
(sampling test)

Sample One or more units which are taken from the population or a subset of the population,
e.  g. 50 parts from a daily production of 400 parts.

Probability (Probability of defect)

Probability of a defective part within a defined total num ber of parts.

P probability in % m total numb er of parts
n  numb er of defective parts

Example: Probability

In a crate there are m = 400 parts, wh ere n = 10 parts have a dim ens iona l defect. P = — • 100%
Wh at is the probab ility P of obtaining a defective part whe n taking one part out
of the crate? m

n  10
Probability  P=  100% 100% = 2.5%
m 400

http://slidepdf.com/reader/full/mechanical-and-metal-trades-handbook-56d51be067c7a 280/431

7/18/2019 Mechanical and Metal Trades Handbook

Production ngineering: 6. u i ang

Statistical analysis

Statistical analysis of co ntinuo us characteristics vgl. DIN 53804-1 (2002-04)

Presentation of test data Example

Raw data list Sample size: 40 parts 8.03 7.99 7.99 8 01
Test characteristic: part diameter  d = 8 ± 0.05 m m 8 . 0 2 8 00 8.01 8.01
Raw data is the documentation of all 7.98 7.99 8.01 8 02
observed values from the test lot or Measured part diameter din mm
sample in the sequence in which they Parts 1-10 7.98 7.96 7.99 8 01 8 . 0 2 7.96 8 01 8 01 8 02 8 00
occur. Parts 11-20 7.96 7.99 8 00 8 02 8 . 0 2 7.99
Parts 21-30 7.99 8.05 8.03 8.00 8.03 7.99
Parts 31-40 8.02 8.01 8.05 7.94 7.98 8.00

Tally sh eet Class Mezasuried v<alue Tally sheet ni in\ % Num ber of classes
no. k^Jn
The tally sheet provides a clear presen-
tation of the observed values and 1 7.94 7.96 1 1 2.5 Class in terval size
assign me nt into classes (ranges) of a
specific class interval size. 2 7.96 7.98 III 3 7.5 .  R

n  number of individual values 3 7.98 8.00 M Wt 1 11 27. 5 i   ~  —k
Relative frequency
/k cnluamssbienrteorfvacllasses 4 8.00 8. 02 M   m   111 13 32. 5
R  range (page 278) • 100%
rij abso lute frequency 5 8.02 8.04 Jttt Wi- 10 2 5
h,  relative frequency in % 1  n
6 8.04 8.06 ll 25

c = f n = l/4 0 = 6 .3 « 6 2 = 40 100

0.11 mm
= 0.018 mm ~ 0.02 mm

Histogram 14-
1 2 - A7 = 40
A histogram is a bar graph for visualiz-
ing the distribution of individual test 10-
data.
8-

J£3  c0) 6-

4-

°co cr 2-

.O CD 0

7.94 7.96 7.98 8.00 8.02 8.04 mm 8.08

part diameter d —

Cumulative frequency curve in 99.5
p r o b a b i l ity s y s tem 99

The cumulative frequency curve in the c
probability system is a simple and uT
clear graphical method used to check
for the existence of a normal distribu- c
tion (page 278).
•CDD
If the cum ulative relative frequency in
cr
tah estrpariogbhat bliinl iet,y thsey snteamnoarpmparlodxiismtraibteus- n£—
tion of the individual values can be
a s s u me d ,  i.e. a further evaluation can <>1
be conducted per DIN 53 804-1  (page TO
278). a>

In this case specific values can a ddition- C> D
ally be determined from the samples.
TO
E x amp l e o f p r o b l e m s o l v in g u s i n g th e =3
oE=3
graph:
7.94 7.96 7.98 8.00 8.02 8.04 m m
Arithmetic mean x (for Fj = 50%) and part diam eter  d

standard deviation s (as difference LLV lower limit value; ULV upper limit value

68.26% -r 2 between 50% and

84.13%): ^= 99.9
99.95
x«= 8.003 mm ; s « 0.02 mm 8.08

The probability model of the exam ple
shows that in the entire lot approxi-
mately 0.6% of parts can be expected
to be too thin and 3% too thick.

http://slidepdf.com/reader/full/mechanical-and-metal-trades-handbook-56d51be067c7a 281/431

7/18/2019 Mechanical and Metal Trades Handbook

278 Production ngineering: 6. u i ang

Normal distribution

Gaussian distribution

QQ 73 % Con tinuous data values often ex hibit a characteristic in their distribu-
tion which is approximated mathematically by the  Gaussian
characteristic value  x normal distribution  model. For an infinite number of individual val-
ues the probability density of a normal distribution yields the typical
Norm al distribution in sampling bell curve.  This symmetrical and continuous distribution curve is
clearly described by the following parameters:

T he  mean  n   lies on the curve maximum and identifies the position of
the distribution.

The  standard deviation   a is a measure of the variations, i.e. how val-
ues deviate from the mean.
1 )  Carl Friedrich Gaufc (1777-1855), Germ an m ath em aticia n

cf. DIN 53804-1 (2002-04) or DGQ 16-31 (1990)

n  number of individual values Arithmetic
(sample size) mean2

Xj vea.glu. einodfivmideuaasl uvraalbulee properties, n
x m a x  largest measurement value
-*min smallest measurement value Standard deviation2'
X arithmetic mean 'Z(Xi-x)2

median value1', middle value of S=
measured values arranged in n-1
order of magnitude
standard deviation Range
range R *Ynax *min
mode (measurement value
occurring most frequently Mean of sample ranges
in a test series)
gf(X) probability density

When evaluating several samples:

m number of samples R mean of mu ltiple sample ranges - = / ? 1 + / ? 2 + . . . + /? m

x mean of multiple sample means s mean of standard deviations m

Example:  Evaluation of sample values from page 277: Mean of sample means
=  = * 1 + * 2 + -  +  * m
x = 8.00225 m m ft = 0 11 m m   x = 8.005 m m   s = 0.02348 m m   D = 7.99 m m m

1 )  Med ian value for Mean of standard
deviations
odd number of individual values: even number of individual values:
e.g. x-|,# x 2 ; x 3 ; x 4 ; x 5 : m
e.g. x1f- x 2 ; x 3 ; x 4 ; x 5 ; x 6 :

x = x 3  X = (X 3  +  X 4)/2

2 )  Man y pocket calculators have special functio ns for calculating the mean and

standard deviation.
Repeated occurrences of identical measurement values can be represented by a
suitable factor.

N o r m a l d i s t r i b u t i o n i n an i n s p e c t io n l o t

Parameters of the population are estimated using a sam pling method based on characteristic values from the sam-
ple (confirmatory statistics). To differentiate sam pling characteristics clearly from parameters of the population,
other designations are used. These estimated values are distinguished from the calculated process values for a
100% inspection (descriptive statistics) by adding a  A   mark.

Characteristic values and design ations in quality tes ting

Samplin g test (confirmatory statistics) 100% inspection
(descriptive statistics)
ample Population
Number of measured values N
Number of measured values n Number of measured values  m • n
Process m ean //
Arithmetic mean  x Estimated process mean/2

Standard deviation s Estimated process standard Process standard deviation o
deviation o (calculator an_-|) (calculator an)

http://slidepdf.com/reader/full/mechanical-and-metal-trades-handbook-56d51be067c7a 282/431

7/18/2019 Mechanical and Metal Trades Handbook

P r o d u c t i o n n g i n e e r i n g :  6. u i ang

Statistical process control

Quality control charts Acceptance control charts

Process control charts Acceptance control charts are used to  monitor a process
in reference   to set  specification limits (lim it values).
Process control charts  are  used  for  m o n i t o r i n g  a
process  for  changes compared   to a  target value or a Cloocnattrioonl  loimf itthse  a  prero ccaelscsulmateeadn  aasn tdolae rtaonlecreanlicmeitrsa nfoger  tfhoer
process variance.
plimreivtsio aurse pdreotceersmsinveadlu  bey. tThhee  p irnotceervsesnetisotinm  aatnedd wvaalrunei nogf
a population  or a preliminary  run.

Process control charts  for qu antitative characteristics   (Shewhart-control charts) 1)

Raw data chart Control limits Example: 5 individual values for  each sam ple

Th e raw data chart  is a docu- x characteristic mean 5.06 USL
m e n ta tio n  of all  measure- (mean of  the characteris- 5.04 UCL
ment values by entering directly UWL tic, target value, ideal 5.02 b  UWL
on  the chart. It assumes an ap- LWL value)
proximate normal distribu- UCL 45..9008 -  • x
LCL upper warning limit 4.96
tcioomn pplreoxcesbse acnadusies   reolaf tivtehley USL 4.94 LWL
n u mb e r of entries. LSL lower warning limit Sample
number • LCL
upper control limit
• LSL
lowe r control limit
5...
upper specification limit

lower specification limit

Median value range chart (x-R-chart) Mean standard d eviation ch art (x-s-chart)

These charts  are  used  to  clearly represent production These charts   are  used  to  s h o w   the trend   of the  mean
dispersion w ithou t requiring m uch calculation. They are and exhibit greater sensitivity than x-R-charts. They
suitable for   manual control chart management. require computer-aided control chart management.

Example: Example:

Inspect, characteristic: Control dimension:  k Inspect, characteristic: Control dimension:

diameter 5±0.05 diameter 5±0.05

Sample size Control interval  / Sample size: Control intervall:
60  mi n f n = 5 60 min
n  5
4.96 5.03 4.97
J*1 4.98 E *1 4.98 4.96 5.03 4.97
4.99 5.01 4.96
cC0DI©IDfl)     D>—CwD5 E   — 4.97 5.03 5.02 5.01 a?  w *2 4.97 4.99 5.01 4.96
E 4.99 4.99 4.99 4.99
  — 5.01 5.00 4.98 5.02 u.  <Du m *3 4.99 5.03 5.02 5.01
x4 5.01 4.99 4.99 4.99
x4 le v

*5 5.01 *5 5.01 5.00 4.98 5.02

E x 244..9969 2 44 .. 99 79 2 55 .. 00 13 2 44 .. 99 95 sX 40..909128 04..092954 05..002016 04..092950
0.04 0.07 0.05 0.06 \•  UCL
c   5.02 I
<v}v 5.04 UCL 1 I • UWL
5.02 UWL 1 1CD 5.01 .V
x 5.00 A
5.00
LSL § I * 4.99 I I •  LWL
4.98 LCL
§.E 4.96 UCL s 4.98 •  LCL
UWL
" 8* x 0.026 • UCL
0 08 LWL
LCL CO 0.024 • UWL
© E 0 06 TL3 C 0.022
°>E 0.04 "CCOCDD  V  C'D-OC 0.020 II —
CD   0.02 0.018
iz   • x
0
>
S a m p l e no.
• LWL
Time
0.016 I I I • LCL 

S a m p l e  no. 1 2 3 4
6 00 7 00 8 00 9 00
Time

1 )  Walter Andrew S hewhart (1891-1967), American scientist 283/431

http://slidepdf.com/reader/full/mechanical-and-metal-trades-handbook-56d51be067c7a

7/18/2019 Mechanical and Metal Trades Handbook

280 Production ngineering: 6. u i ang

Process trend, Acc eptance sampling and plan

Process tren ds Designation /observations Possible causes Actions

Process trend
(e.g. from an x  trace)

Natural run The process is under control and can con-
tinue without interruption.
2/3 of all values lie in the range
± standard deviation s and all val-
ues lie within the control limits.

UCL Exceeding the control limits Over-adjusted machine, different material,

The values are outside of the con- damaged or worn equipment

trol limits. Stop process and 100% inspect parts

since the last sampling

RUN (sequential) Tool wear, other material charge, new tool,
new personnel
7 or more sequential values lie on
one side of the mean line. ->• Tightene d ob serva tion o f the process

LCL

UCL Trend Wviceeasr, oonpetoraotlo, refqautiigpumeent or measuring de-
x 7 or more sequential values show
—  LCL an increasing or decreasing trend. Stop process to determine reasons for
adjustment
UCL
Middle Third Improved production, better supervision,
VVVVWv^ corrected test results
At least 15 consecutive values lie
LCL with in ± standard de viation s. Determine how the process was
improved or check the test results

UCL Cyclical Different measuring devices, systematic
x
The values cross the mean line spread of the data

periodically. Examine manufacturing process for

LCL influences

Acceptance sampling (attribute sampling) cf. DIN ISO 2859-1 (2004-01)

An attribute inspection is an acceptance sampling inspection in which the acceptability of the inspection lot is deter-
mined based on defective units or defects in individual sampling.

The  p e r c en ta g e o f n o n c o n fo r mi n g u n i ts o r th e n u mb e r o f d e fec ts p e r h u n d r e d u n i ts o f th e l o t   identifies the  quali-
ty level.  The acceptable quality level is the quality level defined for continuously presented lots; it is a quality level
that is specified by the customer in most cases. The associated sampling instructions are summarized in control
tables.

Acceptance samp ling plan for single sampling inspection as the n ormal inspection
(excerpt from a control table)

Acceptable quality level AQL (preferred values)

Lot size 0.04 0.065 0.10 0.15 0.25 0.40 0.65 1.0 1.5 2.5

2-  8 i 1 I I I 1 1 II

9- 15 I I 1i 4 4 8 05 0

16-   25 I I I I I 1 13 0 8 0 5 0

26- 50 1 * I I 1 I 20 0 13 0 8 0 5 0

51- 90 I I I I 50 0 32 0 20 0 13 0 8 0 20 1

91- 150 I I I 80 0 50 0 32 0 20 0 13 0 32 1 20 1

151- 280 I I 125 0 80 0 50 0 32 0 20 0 50 1 32 1 32 2

281- 500 I 200 0 125 0 80 0 50 0 32 0 80 1 50 1 50 2 50 3

501-1200 315 0 200 0 125 0 80 0 50 0 125 1 80 1 80 2 80 3 80 5

Explanation: Use first sam pling instruction of this colu mn . If the sam ple size is greater than or equal to
50 2 the batch size: Carry out a 100% inspection.

1 — S ec on d nu mber: Acceptance num ber = numb er of the accepted delivered defective units

E First number: Sample size = number of units to be tested

http://slidepdf.com/reader/full/mechanical-and-metal-trades-handbook-56d51be067c7a 284/431

7/18/2019 Mechanical and Metal Trades Handbook

Production ngineering: 6. u i ang

Process and m achine capability. Quality control charts

Capability, Quality control charts

During an evaluation of the quality-related capability of a process through capabili- Machine capability index
ty characteristics   (capability indices), differentiation mus t be made betw een  short-
term capability (machine capability)  and  lo ng-term capability (process capability).

t ol er ance  T 10 s Mmaacchhiinnee, i.cea. wp ahbetihlietyr  thisereanis seuvffaicluieanttiopnroboaf b tilhitey
that it can produce within specified limits given its
normal fluctuations.

If C m  > 1.67 and C m k  > 1.67, this means that Requirement1' e.g.
99.99994% (range ± 5  s)   of the quality charac- C m  > 1.67 and  C m k  > 1.67.
teristics lie within the limits and the mean x lies
LLV * ULV at least an amount of 5 s away from the tolerance
limits.

charcteristic value

LLV lowe r limit value Process capability ind ex
ULV upper limit value
Acrit smallest interval between
x mean and a tolerance limit
s   astraitnhdmaertdicdemveiatnion
Cnv C m k  machine capability index

Process capability  is an assessment of the manufacturing process, i.e. whether
there is sufficient probability that it can fulfill specified requirements given its
normal fluctuations.

o estimated standard deviation C p, C pk  process cap ability index Requirement1' e.g.
C p  > 1.33 and  C p k  > 1.33
Example:
1 )  Customer or contract
Exam ination of machine ca pability for p roduction dimension 80 ± 0.05; specific requirements;
in large scale produ ction,
Values from preliminary run: s = 0.009 mm ; x = 79.997 mm e.g. automotive industry,
tendency to higher require-
T  0,1mm -1 8o5,-2o;  C- mmk*=- _A 3c r i t = 03. .-004. 7 mm = 1 . 7 4 ments, e.g. C m:» 2.0.
6 •  s 0.009 m m=  s 0 09 m
6 m

The machine capability is below requirements.

Quality control charts for qualitative characteristics cf. DGQ 16-33 (1990); DGQ 11-19 (1994)

Defect chart Example:

Defect charts record the defective Part: Cover Sample size n =  5 0 Test interval: 60 min
units, the defect types and their fre-
quency in a sampling. Defect type Frequency of defect /j % Perc. of total

E x amp l e o f r e ad i n g fr o m th e g r ap h Paint damage F1 1 1 2 0.44 i i
for F3: Dents F2 1 2 2 12222 14 3.11 i
n = 9 •  50 = 450 Corrosion F3 1
Bun- F4 1 11 3 0.66
defects in % = n— 100% Crackings 1 0.22
3 F5 1 1 0.22
100% = 0.66%
ABnegnlte error FF67 2 3 1 1 3 1 2 121 02..2662 I
~ 450 1 0.22
Threads missing F8 1
35
Defects per sample 4 6 3 3 3 5 4 3 4

Sample no. 12 3456 789

P a r e t o 11  d i a g r a m Example:

The Pareto diagram classifies crite-
ria (e.g. defects) according to type
and frequency and is therefore an
important aid in analyzing criteria
and establishing priorities.

Example for F2: F4 F7 F8
Percentage of total defects defect types
= 35 • 100% = 40%

1 )  Pareto - Italian sociolog ist Example of graphic representation:   Dents (F2) and angle error
(F6) together make up approx. 74% of the total errors.

http://slidepdf.com/reader/full/mechanical-and-metal-trades-handbook-56d51be067c7a 285/431

7/2188/22019 Mechanical and Metal Trades Handbook

Production engineering: 6.2 Production planning

Job tim e1'

Structure of types of tim e for workers

Symbol Designation Explanation wi th examples
T
ts Job time Time allowed for manufacturing a lot size

fp Setup tim e Setup for an entire job
fre Production time
fu • basic setup time fbs  -»• turn on ma chine
tac
• setup recovery tim e f s r   -*• recovery tim e after strenuous changeo ver
fw
Q • setup unproductive time fus  repair of brief machine malfunction

Time allow ed for produ ction of a lot size (witho ut setup)

Recovery time Personnel break time to reduce work-related fatigue

Unproductive time • job-related interruption time f m   unforeseen tool sharpening
• personnel interruption time   t p   -*   checking work times , taking care of needs

Activity time Times in which the actual job is processed

• variable time s ftv  assembly or deburring work

• fixed times cycle of a CNC program

Waiting time Waiting for the next workpiece in the continuous flow production

Job volume Number of units to be produced for a job (lot size)

Example: Turning th ree shafts on a lathe

Setup times: m in   Production times: min
Setup job = 4.50 Activ ity time 
Setup of machine = 10.00 Wa iting time t ac = 14.70
Setup of tool Floor-to-floor tim e
= 12.50 f w = 3.75
Basic setup tim e Recovery time
Setup recovery tim e = 27.00 Unproductive tim e =  +   t... = 18.45
= 1.08
fbs  fre compens. for in fw
fsr = 4 % o ff bs 
fu = 8%o ffff = 1.48

SUentpurpodtiumc.e setup time tt u  s==  f1b 4s   %+  otsfr f +b s t    = = 33.17.886 T .Pmr *o dpuecr t iuonni t t wi mo er k  f u w    == qf f f• +f  tn  + tu == 1599..9739
s p
u s t uw

Jo b ti m e  7"= f s   + f p   32 min + 60 min = 92 min  (= 1.53 hr)

1 )  Acc ording to REFA (Verband fur Arbeitsge staltung, Be triebsorganisation u nd Unterneh me nsen twick lung e.V.) 286/431
International Association for Work Design, Industrial Organization and Corporate Development

http://slidepdf.com/reader/full/mechanical-and-metal-trades-handbook-56d51be067c7a

7/18/2019 Mechanical and Metal Trades Handbook 283

Production engineering: 6.2 Production planning

Utilization tim e1'

Structure of the typ es of tim es for production resources (PR)

Symbol Designation Explanation with examples
Utilization time
'UtP Time allowed for utilization of a production resource for manufacturing
a lot size

UP sPerotudpuctitmioen resource S• ePtRupboafsipcrosedtuucptiotimn eresf bosuPr ce for comclpalmetpiningganeqeuniptimreejnotb on a machine
• unproductive setup time fu sp -»• o ptimiz ation of CNC program

fPP Production resource Time allowed for the production time of  a  lot size (without setup)
production time

fuP Production resource Time in which the production resource is not utilized or additionally utilized;

interruption time power outage, un-planned repair work, etc.

lm p Main Times in which the work object is processed according to plan
productive time
• variable times ftv  manual drilling

• fixed times f tf   -»• cycle of CNC prog ram

aP Auxiliary Production resources are prep., loaded or emptied for the main productive time
productive time
• variable times f av  -» manual clamping

• fixed times faf  automatic workpiece change

fid Idle time Process or recovery related down time, e.g. filling of a magazine

Job volu me Num ber of units to be produced for a job (lot size)

Example: Milling a contact surface on 20 base plates using a vertical milling machine

S etup times: min Production times: min
Read the job order and drawing 4.54 Milling = main productive time f m p 3.52
Set up and store the surface cutter 3.65 Clamp workpiece = aux. productive time f a p 4.00
Clamp and unclamp the cutter 3.10 Transport workpiece = idle time f id
Set up the machine 1 20

Production resources basic setup time f b s P  2.84 Prod. res. floor-to-floor time f f f P   = f m p   + f a p   + f i d   = 8.72
= 14.13 Prod. res. unproductive time f u P   = 10% of ff f P   = 0.87

Prod. res. unproductive s. time f u s P   = 10% of f b s P   = 1.41Prod, resource time per unit f u w P   = f f f P   + f u P   = 9.59
Production resources setup time f s P   = fbsP + *usP = 15.54 Production resource prod, tim e f p P   = q  • f u w P   = 191.80

U ti l i za ti o n ti me 7 U t P  = f s P   + f p P   « 16 min + 192 min = 208 m in  (= 3.47 hr)

1 )  Acc ording to REFA (Verband fur Arbeitsge staltung, Be triebsorganisation un d Unterneh me nse ntwic klung e.V.) 287/431
International Association for Work Design, Industrial Organization and Corporate Development

http://slidepdf.com/reader/full/mechanical-and-metal-trades-handbook-56d51be067c7a

7/18/2019 Mechanical and Metal Trades Handbook

284 P r o d u c t i o n e n g i n e e r i n g : 6 .2 P r o d u c t i o n p l a n n i n g

Cost accounting

Simple calculation  (numerical example)

Direct costs1' Overhead 1 '
directly   attributable
to a specific p roduct No t  directly Surcharge in percent of w age

attributable t o a specific product costs

Types Material costs $ 80 000.00 Depreciation $ 50 000.00 $2 20 000.00- 100%  = 1 8 3 3 3 o / o
of Labor costs $ 120 000.00 $ 80 000.00
costs1' Salaries (incl. $ 120 000.00
management salaries) $ 40 000.00
Interest $ 50 000.00 A  surcharge rounded off to
Other costs 185% is applied to each wage
$ 220 000.00 hour to cover overhead costs.

I Overhead

Cost cal- Wage hours = 10000 hrs Labor costs/hr = $/hr 12.00 Material costs $ 124.75
culation of order
Rate per hour = $/hr 12.00 + 185% = $/hr 34.20 Working time 5 hr $ 171.00
(for independent contractor invoices; management salaries = profit) x$/hr 34.20 $ 295.75

1 )  Costs mus t be determ ined periodically for every operation. Price wi tho ut VAT

Expanded calculation  (schematic)

Material costs Material direct costs Design costs
Procurement costs Salaries etc.

Direct production costs Material overhead Equipment costs
Production wages attributable to Percent of ma terial direct costs, Drilling equipm ent m olds etc.
e.g. purchasing costs, storage
one product Special tools
costs, etc. Special drills etc.
Production overhead1'
Material costs Out-of-house processing
Machine costs Heat treatment etc.
Depreciation, interest, occupan- 1
1
cy, energy acnodstsmaintenance '   cIaf l cnuol amteadc,h intheesheo uarrlye   irnactelusdeadre
Remaining overhead in the production ov erhead Special direct costs of
an d  increase   th e  surcharge production
Percent of production wages, rate.   The overhead surcharge
e.g. fringe benefits, occupancy, rates are   taken  from   the opera-
tional accounting sheet.
operating materials, etc.

1

Production costs

Special direct costs of Example: $  1 225.00
production Material direct costs $61.25
Material overhead 5%
1 Production wages 10 hr x $/hr 15.- $ 150.00
M a ch in e co sts 8 h r x $ / h r 3 0 - $ 240.00
Ma n u fac tu r i n g c o s ts Residual overhead 200% of production wages $ 300.00
Special tools $ 125.00
Management and
sales overhead Manufacturing costs $2101.25
Managem ent and sales overhead
Percent of manufacturing costs 12% of manufacturing costs $ 252.15

Prime cost Prime cost $2353.40

Profit Profit addition 10% of the prime cost $ 235.34
Percent of prime cost Raw price $2588.74
Commissions 5% of sales price
Raw price $ 136.25
Sales p rice before VAT
Comm issions, discounts, rebates $2724.99
Percent of sales price

Sales price with ou t VAT

http://slidepdf.com/reader/full/mechanical-and-metal-trades-handbook-56d51be067c7a 288/431

7/18/2019 Mechanical and Metal Trades Handbook

P r o d u c t i o n e n g i n e e r i n g : 6 .2 P r o d u c t i o n p l a n n i n g 285

Machine hourly rate c alculation

Machine hourly rate calculation

Average pro duction overhead does not take into consideration various machine costs attributable to a specific
product. This type of cost accounting would be misleading.
If machine costs are taken out of prod uction overhead and conve rted to hours the machine wa s utilized, this yields
the machine hourly rate.

Compilation of machine costs • Energy costs
Costs incurred by electricity, natural gas, steam or
Machine costs are: gasoline cons umption

• Calculated depreciation • Mainten ance costs
Linear loss of value over the service life of the Costs for repairs and regular service
mach ine relative to replacement cost
.  0 t h e r t y p e s o f c o s t s
• Calculated interest
Average interest for capital invested for Costs for tool wear, insurance prem iums, disposal of
the machine coolants and lubricants etc.

• Occupancy costs
Costs incurred by floor and traffic
space of the m achine

Machine running tim e, Machine h ourly rates  according to VDl Directive 3258
1Vlachine running time
7rt machine running time in hours/period I  7RT  = T j -  7"ST - 7"SM
Tj   total theoretical machine time in hours/period 1Vlachine hourly rates
7"st do wn times, e.g. work free days, work interruptions
etc., usually in % of  T j CMhr = F - + C v/hr
TSm   times for service and maintenance, usually in % of  Tj   'in-

C M  sum of machine costs per period (usually per year)
CMhr ma chine costs per hou r; ma chine hou rly rate
Cf ma chine fixed costs per year; e.g. depre ciation
Qj/hr   mach ine variable costs per hour; e.g. electrical con sum ption

Calculation of m achine hourly rate  ( e x a m p l e )

Tool machine:

Procurem ent value $ 160 000.00 Service life 10 years Ass um ed interest rate 8%
Power cons umption 8 kW Cost per kWh $ 0.15 Base charge $/mo nth 20.00
Occupancy costs $/m 2  10.00 x mo nth Space req. 15 m 2  Maintenance $/year 8 000.00
Add itional maintenance $/hr 5.00 Norm al utilization Actual utilization 80%
7 r t = 1200 hr/year (100%)

What would be the machine hourly rate for normal utilization and 80% utilization?

Type of cost Calculation Fixed costs Variable
$/year costs
S/hr

dCeapl cruelcai taetdi o n sperorvciuceremlifeenitn vyaelaures $ 11060ye0a0r0s.00 $ 16 000.00
$ 6 400.00
Calculated V2 proc urem ent value in $ x interest $ 80 000 - x 8% $ 8 000.00
interest 100% 100% $ 240.00
$  1 800.00
Maintenance maintenance factor x depreciation - e.g. 0.5 x $ 16 000.00 $5.00
costs maintenance is depen dent upo n utilization. $ 32 440.00 $ 1.20

Energy base charge for pow er supply $/mon th 20.00 x 12 mon. $ 6.20
costs powe r con sum ption x energy costs 8 kW x $/kWh 0.15

Proportional space cost rate x space requirement
occupancy costs = $/m 2  10.00 x month x 15 m 2  x 12 months

Total machine costs (CM)

Machine hourly rate (C M hr ) at  100%  utilization = £  + <V h r   = $  ^ i f ? ' 0 0   + $/hr 6.20 = S/hr   33.23
7 R J  1200  nr

Machine hourly rate (CM hr ) at  8 0 %  utilization = + Q,/\hr   = + $/hr 6.20 = $/h r  40.00

0.8 •  /RT   0.8 • 1  zOO nr

The machine hourly rate does not include costs for operator.

http://slidepdf.com/reader/full/mechanical-and-metal-trades-handbook-56d51be067c7a 289/431

7/18/2019 Mechanical and Metal Trades Handbook

286 P r o d u c t i o n e n g i n e e r i n g : 6 .2 P r o d u c t i o n p l a n n i n g

Direct c os ting 1'

Marginal costing (with numerical example)

Marginal costing takes the market price of a product into consideration. The market Contribution margin
price m ust at least cover variable costs (lower price limit). The remainde r is the con-
tribution margin. Contribution margins of all products carry the costs of operational CM R Cv
readiness.
piece piece piece

R/piece   market price; revenue per piece Cf fixed costs CM -   C M   •v o l u m e
R   revenue (sales) of product CXj va riab le cos ts piece
CM   contribution margin of product P profit or gain
CM/piece   con tribution margin per piece Bp  breakeven point Profit

P=  CM- Cf

Variable costs (C^ )21 Fixed cos ts (Cf) Contribution margin (CM)
depends on production independent of production CM  = ft/piece - C v/piece

volume volume

Material costs $/piece 30.00 Depreciation $ 50 000.00 Revenue of $/piece 110.00
C ELanbeorgr ycocsotssts must cover all variable costs
$$//ppiieeccee 1200..0000 WInategreesst $ 48 00 00 00 00..00 00 first. The remainder is used to
CC>DL $/piece 60.00 Others Cf $ 30 000.00 cover total fixed costs and
2 Fixed costs includes profit.
2 Variable costs 200 000.00

No. of pieces Contribution margin
produced
5 000 pieces $ 110.00-$60.00 = $/piece 50.00 Breakeven point

Total contribution margin 5 000 pieces •  $/piece 50.00 = $ 250 000.00

2 Fixed costs $ 200 000.00

Profit $ 50 000.00

OCoO Breakeven p o in t  B p = C M Cl e 200 000.00
/p i ec
$/piece 50.00 = 4 000 pieces

| 800000  - - costs or con tri-
bution margin
400000 breakeven
S> 60000 0 point (Bp)
c
c 400000
>CD O  CD
D 200000

fixed
costs
S 200000 Ow 333

O -Q ^  i

1

2000 4000 piec. 6000 2000 4000 piec. 6000
volume — •
volu m e — •
Cost comparison method

In the cost comparison method, the machine or facility that Cost comparison
incurs the lowest costs for a given production volume
should be selected. - piece count limit M\]rr
machine 1  costs
600000 $475000.- machine 1

Example for 5 000 pieces 400000 machine 2

Machine 1: C f1  = $/year 100 000.-; C v 1  = $/piece 75.00
$/year 100 000 - + $/piece 75 x 5 000 pieces = $ 475 000
Machine 2: C f2 = $/year 200 000.00; C v 2  = $/piece 50.00
$/year 200 000.- + $/piece 50.00 x 5000 pieces = $ 450 000
Machine   1 costs > m achine 2 costs

Cf2 - C fl 200000
Cv1/piece - Cv2/piece
Piece count limit  M \im   =

M iiimm  = $$2/p0i0ec0e0705.0.000--$ $1/p0i0ec0e005.000.00 = 4000 pieces 2000 4000 6000 pieces

Machine 2 is m ore econom ical at vo lumes above 4000 pieces. volume —

1 )  Direct costing separates costs into fixed costs (costs of operating readiness) and variable costs (direct costs). 290/431
2 )  Variable costs are calculated for each job and comp ared to revenue.

http://slidepdf.com/reader/full/mechanical-and-metal-trades-handbook-56d51be067c7a

7/18/2019 Mechanical and Metal Trades Handbook

Prod uction eng ineering 6.3 M ach ining processes, ci t

Turning, Thread cutting

Straight cylindrical turning and facing at constant rotational sp eed

fp  productive time / 0 i overrun idle travel Productive time
d  outside diameter L  travel
f   feed per revolu tion
di inside diameter
n/   nroutmatbioenr aol fscpuetesd
11 vc   cutting speed

/d m  wmoerkapniedciea mleentegrth

/ s i  starting idle

Calculating travel   L , me a n d i a me te r  d m   and rotational speed  n

Straight cylindrical turning Facing

Solid cylinder Hollow cylinder
without shoulder with shoulder without shoulder with shoulder
L
L L 7/c
/ I /si   r~i

k Ti a

f- k-i A

dm

L  = / + /Sj +10\ L = / + / si 2  81 L= L^+lsi+lo

n = k  •  d dm   = ~;   n = ,  = d—+—dL-i\   n = vr
rc   • d r dm   Jt • d r

1 )  Use of mean diameter  dm   leads to higher cutting speeds. This ensures acceptable cutting cond itions for sm all
diameters (inside area).

Example:

Straight cylindrical turning without shoulder, / = 1240 mm;  L =  I + /s i  + / o i  = 1240 mm + 2 mm + 2 mm = 1244 mm

/s i  = /0 j = 2 mm; f= 0.6 mm; vc = 120 m/min; n= c  _ 120 m 1
/'= 2; d=   160 mm;  min  a  239
i   = ?; n   = ? (for infinitely variable speed adjustment)
n  •  d   Ji • 0.16 m   min
fP  = ?
f p   = L •  i   =  1244 m m -2 ~ 17.4 mi.n
n ' T  239
min 0.6 m m

fp  productive time P  thread pitch Productive time
L  total travel of thread cutting tool n  rotational speed L-i-s
/ thread length s  no. of starts P •n
/Si starting idle h  thread depth
/ o i  overru n idle travel a p  cutting depth Number of cuts
/ number of cuts vc  cutting speed

Example: .h

Threads M 24; I = 76 mm; / s i  = / o i  = 2 m m ;   L =  I + /Sj + / o i  = 76 mm + 2 mm + 2 mm =  80 mm

f=  0.6 mm ; v c = 6 m/m in; /'= 2; a p  = 0.15 mm ; -  m

h=   1.84 mm ; P= 3 mm ; s= 1;  n= min ^  QQ  1
nd it  • 0.024 m   min
_ =  ?;  n = ?; /' = ?;  fp  = ?
L-is 80 mm -13-1 = 4 3 mi n
/ = 3-hP  = 10.8.145mmmm =„1„2„.2 ^ „1„3 P  •  n 3 m m   •  80 1

min

http://slidepdf.com/reader/full/mechanical-and-metal-trades-handbook-56d51be067c7a 291/431

7/18/2019 Mechanical and Metal Trades Handbook

288 P r o d u c t i o n e n g i n e e r i n g 6 .3 M a c h i n i n g p r o c e s s e s, ci t

Turning Transition d iameter

Straight cylindrical turning and facing at constant cutting speed d t  =

If the rotational speed mus t be limit ed for safety reasons by inputtin g a rotation- Jt • H;
al speed limit n|,m, a turning diameter of  d < transition diameter  dx  is turned at
constant rotational speed (page 287). Productive time

<k transition diameter / number of cuts f P  =Jt •  d e  •  •  /
Vc cutting speed Vc  -f
n\\m rotational speed limit d outside diameter
fP productive time Number of cuts for
de effective diam eter dy inside diameter straight cylindrical tu rning
L travel aP cutting depth
/si starting idle d-d
f feed lo\ overrun idle travel
I = 2 •  a r

Calculating travel   L  and effective d iameter   d e Facing
Straight cylindrical turning

Jcu tC3 H r/
ft1
without shoulder % d1 /
ra d\ Xj
TD //

/

d\
"D

dn

n im I kSolid cylinder with rotational speed n "lim

rotational speed  n shoulder Hollow cylinder

Iwith shoulder

1 -T-—

/ /si /si

L

L  = 1  l s \  l 0  L=l+L L = d-d^ . .
L = — — -  + L+ L

de   = d - a D • (/' + 1) de  = de  = +

' • c i *ru

Example: Facing; / s i  = 1.5 mm; v c  = 220 m/min; f= 0.2 mm;
/'= 2; n M m  = 3000/min;  d<  = ?; L  = ?; d e = ?; f p   = ?

V ^ _  yc 2222U0U0U0U0 mm _
nmf Uin0.  = 
Jt  •  nm  JI •  3 0 0 0 23.3mm (d1>cft

min

d - d , , 120 m m - 6 5 m m +1.5 mm  = 2 9m m
L =  1  + L: =

LTL d„ =d +2   dU L si   120 mm +2 65 mm +1.5 m m  = 9 4 m m
2 2
tSl S l =

M t„ = Jt  •  de   •  L •  i   Jt  • 94 mm   • 29 mm  =• 02.39 min
vc -f ___ mm   _  _

220000  • 0.2 mm

min

http://slidepdf.com/reader/full/mechanical-and-metal-trades-handbook-56d51be067c7a 292/431

7/18/2019 Mechanical and Metal Trades Handbook

Production engine ering 6.3 Ma chinin g processes, ci t

Drillin g, Reaming, Counterboring, Planing, Shaping

Drilling, reaming, countersinking

Cut /c productive time L  travel Productive time
a lc tool diameter f   feed per revolution
80° 0.6 •  d bore depth n rotational speed L •i
118° 0.3 • d M  n• f
130° 0.23 •  d /si starting idle vc   cutting speed
140° 0.18 •  d overrun idle travel / number of cuts Speed
lead o  drill point angle
n= —
71  •d

Calculating travel L for counterboring
for drilling and reaming
Blind hole
Throu gh hole

L = /  + /c  + /si  +  /c L=I+L+L

Example: L = / + l c  + / s i  = 90 mm + 0.23 •  30 mm + 1 m m = 98 m m

Blind hole of d= 30 mm; L i  98 mm - 1 5 = 21.78 min
/ = 9 0 m m ;  f=   0.15 mm;
n = 450/m in; /'= 15; /Sj = 1 mm; 450   1  0.15 m m
( 7 = 1 3 0 ° ;  L = ?; tp   = ? min

Planing and sh aping

fp  productive time w Q  o ve r ru n wid th Productive time
workpiece length n  no. of doub le strokes per min ute
vc   cuttin g speed, approach speed W- i
/si starting idle
W- i
/oi os tvreorkreu nl eindgl et ht r a v e l vr    prelatunrinngs,pseheadping wid th U c  v v f
W
L

w width of workpiece f   feed per doub le stroke

w a approach width /' num ber of cuts

Calculating stroke length   L  a n d p l an i n g w i d th   W

http://slidepdf.com/reader/full/mechanical-and-metal-trades-handbook-56d51be067c7a 293/431

7/18/2019 Mechanical and Metal Trades Handbook

290 Production engine ering 6.3 Ma chinin g processes, ci t

Milling

productive time Productive time
workpiece length
cutting depth
ae engagement (milling width)

la aopveprrrouanchidle travel Feed per revolution of milling cutter
L; f= ft-N

/ s t  starting travel Feed rate
L  total travel vf   = n • f

d  cutter diameter

n  rotational speed V F = N - F T-N

f   feed per revolution

ft  feed per too th Rotational speed
N  number of teeth

vc  cutting speed

vf  feed rate
/ number of cuts

Total travel   L  and starting travel / s t  in relation to the milling process

Face milling

centric eccentric Peripheral
3p  >0 .5  •  d face milling

a P  < 0 . 5  •  d

L = / + 0.5 • d + la   + lol- /st L =  + 0.5  • d +  + lr L = I+ la   + l0  j  + /st
L* = 0.5 •  id 2   - ae2 lst   = l/ae-d-ae2

080 Example:

[-xZ /y /A r ^t  - Face millin g (see left illustration):  N =  10, ft   = 0.08 mm,
in v c  = 30 m/m in, la   = / o i  = 1.5 mm,  i  = 1 cut

I o^ Sough t after: n;  v f ; L; tp
260
Solution:  n m min
v 30 min
= —JT—  •  d=   JT • 0 08 m

Vt =n • I - N =119 -0.08 m m  • 10 = 9 5 . 2 - ^
m in   m i n

30 mm = 0.375, it follows that  a  < 0 . 5  • d
80 mm
L  = '+ la+loi + 'st
lst   =y]ae   • d-a2   = V 3 0 m m   • 80 mm - (30 mm )2  = 38.7 mm

L   =26 0 mm + 1.5 m m + 1.5 mm +38.7 mm = 301.7mm
L- i   301.7 m m -1 = 3.2 m in
'P 95.2 m m
-

min

http://slidepdf.com/reader/full/mechanical-and-metal-trades-handbook-56d51be067c7a 294/431

7/18/2019 Mechanical and Metal Trades Handbook

Production engine ering 6.3 Ma chinin g processes, ci t

Straight c ylindrical grinding Grinding Workpiece rotational
speed
fp  productive time Productive time
L  travel
/ number of cuts Number of cuts

nf    wwoorrkkppiieeccee freoetadtipoenralresvpoeleudtion for external straight for internal straight
vf  feed rate
d-| initial diam eter of work piece grinding grinding
d   final diameter of workpiece
a p  cutting depth ;= d 2 • 3n
/ workpiece length
w g  grinding wheel width 2 • a n
/ o i  overrun idle travel
t   grinding allowance 1 )  2 cuts to spark out, for low er tolerance grades addi-

Calculating travel L tional cuts are necessary

Workpieces without shoulder Workpieces 2-wq
with shoulder
^3

jk t
•s S E E
3

/. = / - -  • Wg

Feed for roughing   f  = 2 / 3  • w g  to  3 / 4  • w g ; feed for finishing f= V4 • w g  to V2 • w g

Surface grinding

fp  productive time  f   transverse feed per stroke Num ber of cuts No. of strokes

/ workpiece length  n  no. of strokes per minu te r = -  + 21> n = Vf

/j start, idle, overrun idle travel Vf feed rate 2 cuts to
spark out
L  travel /' num ber of cuts

w width of workpiece  t   grinding allowance Productive time

w 0  overrun width w g  grinding wheel width yy+1

W  grinding width ap  cutting depth M  n f.

Calculating travel  L  a n d g r i n d in g w i d th   W

Workpieces without shoulder W o r k p i ec e s w i th s h o u l d e r

W
1

f

1i
"tn

m// /
~ 3\ 2-^9 2-  > w 0~- =J3
'3 3 \

w

L = / + 2  /i /; - 0.04   •  / W = W  — — •  Wg L = I+ 2-1; l\ » 0.04  •  / 1/1/=  W Wg

3

Transverse feed for rough ing f = 2 / 3  • w g  to %   • w g ; feed for finishing   f  = V2 • w g  to  2/3 • 295/431

http://slidepdf.com/reader/full/mechanical-and-metal-trades-handbook-56d51be067c7a

7/18/2019 Mechanical and Metal Trades Handbook

292  Produc tion engine ering 6.3 Ma chining processes, Ma chin ing coolants

Machining coolants for cutting m etals

Terminology and applications for m achining coolants  cf. DIN 51385 (1991-06)  |
Applications
Type of machining Effect Group Explarlation
coolant Composition

SESW / iInnowrgaatenric materials Grinding
machining
coolants Solutions/ Organic or synthetic Machining at high
dispersions materials in water cutting speed

t
c
e

tf Good cooling effect, but
low lubrication,
c e e.g. machining (turning, m illing,
  drilling) of easy-to-machine
materials, at high cutting speed;
e for high working temperatures;
g susceptible to bacterial or fungal

SEMW fn attack
machining e
coolants  t
(oil in water)
g  2%-20% emulsive
SN nc (soluble) machining
machining coolant in water
coolants lr Emulsions
insoluble in
ob
water
ou

c  
 

gg

n n
i i

ss

  
e
e r
r
cc

n n
i i

Cutting oil Mineral oils with polar For lower cutting speed,
7 additives (greases or higher surface quality, for dif-
synthetic esters) or EP ficult-to-machine materials;
additives2' to increase very good lubrication and
lubricating performance corrosion protection

1 )  Ma chinin g coolants m ay be hazardous to health (page 198) and are therefore on ly used in sm all quantities.
2 )  EP = Extreme Pressure; additives to increase acceptance of high surface pressure betw een chip and t ool

Guidelines for selecting coolants

Manufacturing process Steel Cast iron, Cu, Al, Mg alloys
malleable cast iron Cu alloys Al alloys
Turning Roughing emulsion, emulsion, dry,
Finishing solution dry dry cutting oil cutting oil

Milling emulsion, emulsion, dry, dry, dry,
cutting oil cutting oil emulsion cutting oil cutting oil

emulsion, dry, dry, cutting oil, dry,
solution, emulsion emulsion, emulsion cutting oil
cutting oil cutting oil
e mdurlys,i o n ceumt t iunl gs i ooni l , cuttdinryg, oil
Drilling ceumt tui nl sgi ooni,l dry,
dry, cutting oil, cutting oil cutting oil
Reaming cutting oil, cutting oil emulsion dry,
emulsion cutting oil,
Sawing emulsion dry, dry, emulsion cutting oil
emulsion, cutting oil cutting oil
Broaching cutting oil, cutting oil
Hobbing, emulsion emu lsion dry, -
gear shaping cutting oil -
cutting oil cutting oil, cuttidnrgy oil,
emulsion cutting oil
-
-

Thread cutting cutting oil ceumt t iunlgs i ooni l , cutting oil cutting oil
emulsion
Grinding emulsion, solution, emulsion,
solution, emulsion solution -
cutting oil

Honing, lapping cutting oil cutting oil -

http://slidepdf.com/reader/full/mechanical-and-metal-trades-handbook-56d51be067c7a 296/431

7/18/2019 Mechanical and Metal Trades Handbook

Produ ction eng ineering 6.3 Ma chinin g processes, Ma chin ing coolan ts

Hard and dry m achining, High-speed m illing , MQCL

Hard turn ing   with cubic boron nitride (CBN)

Turning process Material Cutting Feed  f Cuttinga pdepth
hardened steel speed mm/revolution mm
vc   m/min
HRC 0.05-0.3 0.05-0.5
0.05-0.2 0.05-0.2
W^t, 0.05-0.25 0.05-0.4
0.05-0.2 0.05-0.2
w External turning 45-58 60-220
Internal turning > 58-65 60-180
External turning 50-190
Internal turning 50-150

Hard milling  with coated solid carbide (VHM) tools

— Material Cutting working Fee;d per too th ft i n m m
hardened steel speed engagement for lathe diameter d  in mm
2-8 >8-12 > 12-20
/- HRC m/min ^e max
to 35 80 -90 0.04 0.05 0.06
mm 0.03 0.04 0.05
< 36-45 60-70
46 -54 50-60 0.05 •  d

High-speed cutting (HSC) with PCD Cutting 0 .0 5 •  d
speed 0 .0 5 •  d
m/min
Material group Cutter diarrleter d  in mn
280-360 1<3 d>0
i 210-270 a e ft ae fx
mm mm mm mm
y
Steel  Rm 0.25 0.09-0.13 0.40 0.13-0.18
850-1100
> 1100-1400

yy— H a 4r d8e- n5e5dHsRt eCe l 90-240 0.25 0.09-0.13 0.40 0.13-0.18

>55-67 HRC 75-120 0.20 0.35

EN-GJS > 180HB 300 -360 0.25 0.09 -0.13 0.40 0.13-0.18

Titanium alloy 90-2 70 0.20-0.25 0.09-0.13 0.35-0.40 0.13-0.18

Cu alloy 90- 140 0.20 0.09 -0.13 0.35 0.13-0.18

1 Dry m achining

Cutting tool material and machining coolan t for:

Process Quenched and Iron materials Al materials
tempered steels
High-alloy steels Cast iron Cast alloy Wrought alloy

Drilling TIN, dry 1 TIN, dry TIAIN, MQCL TIAIN, MQCL
Ream ing PCD, MQCL PCD, MQCL "TIAIN, MQCL
TiAIN ', MQCL TiAIN, PCD,
MQCL
_2)

Milling TIN, dry TiAIN, MQCL TIN, dry TiAIN, dry TIAIN, MQCL

Sawing MQCL MQCL _2) TIAIN, MQCL TiAIN, MQCL

| Minim um quantity of machining coolant (MQCL or MQ L) 3

D e p en d e n c y o f MQ C L v o l u m e o n Suitability of min imu m quantity lubrication
machining m ethod for the m aterial to be machined

nriilling drilling grinding lapping Cu Malgloaylsloys Al Aalllowyrocuagsthint gaslloys FerPrieticarslittiecesl teel
turning reaming honing
Cast iron materials Stainless steels

Increasing lubrication requirement Increasing material suitability
1 )  Titanium alu min um nitride (super hard coating) 
2 )  Not normally done  3 )  Gen erally 0.01-3 l/hr

http://slidepdf.com/reader/full/mechanical-and-metal-trades-handbook-56d51be067c7a 297/431

7/18/2019 Mechanical and Metal Trades Handbook

294 Production engine ering 6.3 Ma chin ing processes, ools

Cutting tool m aterials

Designation of hard cutting to ol materials cf. DIN ISO 513 (2005-11)
Application group
Example: Code letter (see the table b elow) HC - K 20

Cutting main group

P  (blue) M (yellow) K (red) N  (green)  S (br H (gray)

Cutting tool K1> Com ponents P r o p e rt ie s Applications
material group
Indexable inserts for
Uncoated hard metal, main component High hot hardness up to drilling, turning and
is tungsten carbide (WC) 1 000 °C, high w ear resist- milling tools, also for
ance, high compression solid hard metal tools
HW Grain size > 1 p m strength, vibration
HF Grain size < 1 n m damping Indexable inserts for
lathe and milling tools
HT Uncoated hard metal of titanium Like HW, but with high for finishing at high
cutting speeds
carbide (TiC), titan ium nitride cutting edge stability,

(UN) or of both, also called chemical resistance

cermet.

Hard metals HC HW and HT, but coated with Increase of wear resistance Increasingly replacing
titanium carbonitride (TiCN) without reducing tough- the uncoated hard
ness metals

CA Cutting ceramics, primarily of High hardness and hot Cutting of cast iron,
aluminum oxide (Al203) hardness up to  1 200 °C usually without cooling
sensitive to severe tempe- lubricant
rature changes

CM Mixed ceramics with aluminu m Tougher than pure ceramics, Precision hard turning

oxide (Al20 3) base, as well as better resistance to of hardened steel,

other oxides temperature variations cutting at high cutting

speed

CN Slyiloicfosnilinciotrnidneitcreidream(Sicis3N, p4)rimari- cHuigtthingtouegdhgneesstsa,bhiligtyh Chiugthtincgutotifncgaspt eireodn at

CR Cutting ceramics with alumi- Tougher than pure ceramics Hard turning of har-
due to reinforcement, im- dened steel, cutting
num oxide (Al203), as a main proved resistance against at high cutting speed
comp onent, reinforced temperature variations

Cutting ceramics CC Cutting ceramics such as CA, Increase of wear resistance Increasingly replacing
CM and CN, but coated with without reducing tough- the uncoated cutting
titanium carbonitride (TiCN) ness ceramics

Cubic crystalline boron nitride (BN), Very high hardness and Dressing of hard mate-
rials (HRC > 48) with
also designated CBN or PCB or "super- hot hardness up to high surface quality

hard cutting tool material" 2000°C, high wear

resistance, chemical
BL With low boron nitride content resistance

Boron nitride BH With high boron nitride content
BC BL and BH, but coated

Cutting too l m aterial of carbon (C), High wear resistance, Cutting of non-ferrous
also designated CBN, PCB or "super- very brittle, temperature metals and Al alloys with
hard cutting tool material" resistance up to 600 °C, high silicon content
reacts with alloying ele-
DP Polycrystalline diamond (PCD) ments

Diamond DM Monocrystalline diamond

HS High-performance high-speed High toughness, high For severe alternating
cutting forces, machining
steel with alloying elements bending strength, low of plastics, for the
cutting of Al and Cu
tungsten (W), molybdenum (Mo), hardness, temperature alloys

vana dium (V) and cobalt (Co), resistant up to 600 °C

usually coated with titanium

Tool steel2' nitride (TIN)

1 )  Code letters acc ording to DIN ISO 513
2 )  Tool steels are not inc lude d in DIN ISO 513 but in ISO 4957

http://slidepdf.com/reader/full/mechanical-and-metal-trades-handbook-56d51be067c7a 298/431

7/18/2019 Mechanical and Metal Trades Handbook

Prod uction eng ineering 6.3 M ach ining processes, ools

Cutting tool m aterials

Classification and application of hard cutting too l materials cf. DIN ISO 513 (2005-11)

Code letter Application Cutting tool material Possible cutting
color code group properties1* parameters1'

Workpiece - material

Wear Toughness Cutting Feed
resistance speed

Steel

P01 P05 A
P10
P15 All types of steels and cast
P P20 steels, with the exception
P25 of stainless steel w ith
blue P30
P40 P35 austenitic structure
P50
P45
Stainless steel

M M01 M05
M10 M15 Austenitic and austenitic
yellow
M20 M25 ferritic stainless steels and
M30 cast steels

M40 M35

Cast iron

K01 K05

K K10 K15 Cast iron w ith flake I
K20 and spheroidal graphite
red K25 malleable cast iron

KK3400 K35 y

u

Non-ferrous metals and other non-ferrous materials

N01 Aluminum and other ft
N05 non-ferrous metals U
N N10 N15 (e.g. Cu, Mg),
N20 N25 non-ferrous materials
green N30
(e.g. GPR, CFRP)

Special alloys and titanium

S01 High-temperature special I A
S10 S05 alloy on the basis of iron,
S15 nickel and cobalt, y
S20 S25 titanium and titanium
S30 alloys

u

Hard materials

H01 H05 Hardened steel,

H H10 H15 hardened cast iron
H20 materials, cast iron
gray H30 H25 for ingot casting

I

1 )  Increasing in direction of the arrow

http://slidepdf.com/reader/full/mechanical-and-metal-trades-handbook-56d51be067c7a 299/431

7/18/2019 Mechanical and Metal Trades Handbook

296 Production engine ering 6.3 Ma chin ing processes, ools

Designations for  indexable inserts for cutting tools f. DIN ISO 1832
(2005-11)

Designation examples:
Indexable carbide insert with rounded corners (DIN 4968) without mo untin g hole

Insert DIN 4968 - T N G N 16 03 08 T - P20

I I I I I I I II

Indexable carbide insert with w iper edges (DIN 6590) with out mo unting hole

Insert DIN 6590 N 15 04 ED R - P10

Standard number D © ® © © © © ® (9

© Basic shape H O T

Equilateral, equiangular
and round

80 

En oq nu -i leaqt euria ln gaun lda r 5  2 W

Non-equilateral and 0A 0B y55c
L equiangular
A, B, K non-equiangular K\

(2 )  Norm al clearance angle Many company specific shapes are used in addition to standardizied shapes.
an  to the insert
B D NO
(3 )  Tolerance class Allow, dev. for
15c 20 c 25 c 30c 11' special data
@ Faces and
clamping AH
features
Control dim.  d ±0.025 ±0.013 ± 0.025 ±0.0 13 ± 0.025

Control dim. m ± 0.005 ± 0.013 ± 0.025

Insert thickness s ± 0.025 ± 0.025 ± 0.025 ±0.09

Allow, dev. for K MNU

Control dim.  d ±0.05...±0.15 ±0.05...±0.15 ±0 16

Control dim.  m ±0.005 ±0.013 ±0.025 ±0.08...±0.20 ±0.25

Insert thickness s ± 0.025 ± 0.09 ± 0.025 ±0.13

NK • DEI

R W \ ZE 7 [ H •DDJ

T a s 7C

cro Q

M anno U Special data

Insert size The cutting length is the longer cutting edge for non-equilateral inserts, for round
(6) Insert thickness
inserts it is the diameter.

Insert thickness is given in mm without decimal places.

(7)  Cutting point Code number  m ultiplied by factor  0.1  = corner radius r c
configuration
1. Letter symb ol for cutting edge angle xr D
(8) Cutting point of main cutting edge 45c 60c 75 c 85 c 90 c

2. Letter symbol  for clearance angle

a'n   on wip er edge (corner chamfer) c cc 11'

15c 20 25 30

F sharp E rounded T chamfered chamfered double doub. chamfered
rounded
chamfered and rounded

(9)  Cutting dir ec tion R right hand cutting L left hand cutting N right and left hand cutting (neutral)

® Cutting tool material Carbide with machining application group or cutting ceramic

http://slidepdf.com/reader/full/mechanical-and-metal-trades-handbook-56d51be067c7a 300/431


Click to View FlipBook Version