The words you are searching are inside this book. To get more targeted content, please make full-text search by clicking here.
Discover the best professional documents and content resources in AnyFlip Document Base.
Search

BUKU E PROSIDING EFAMB

BUKU E PROSIDING E-FAMB

e-Prosiding Festival Agro Makanan Dan Bioteknologi 2020 (E-FAMB2020)
3.2. Penetasan telur dalam kadar kemasinan 0ppt, 5ppt, 10ppt dan 15ppt

1. Telur yang telah disenyawakan 2. 1g telur yang telah disenyawakan
ditimbang sebanyak 1g dan dikira diletakkan dalam jaring
bilangan telur. Proses ini dilakukan penetasan.
sebanyak 3 kali bagi mendapatkan
jumlah purata bilangan telur dalam 1g

3. Setiap kemasinan dilakukan sebanyak 3 4. Setelah 24 jam, bilangan larva dikira bagi
replikasi. Telur yang menentukan kadar penetasan
telah disenyawakan dimasukkan
ke dalam tangki yang
mengandungi air kemasinan
0ppt, 5ppt, 10ppt dan 15ppt.

4. ANALISIS DAN KEPUTUSAN

Jadual 2 : Kualiti air pada setiap tangki.

Tangki Saliniti Oksigen pH Suhu
(ppt) terlarut (ppm) (oC)
A 7.1 29
B 0 5.85 6.8
C 5 6.32 6.8 29
D 6.6
10 6.30 30
15 6.42 30

397

e-Prosiding Festival Agro Makanan Dan Bioteknologi 2020 (E-FAMB2020)

Tangki A adalah sebagai kawalan dalam kajian ini. Manakala tangki B, C dan D adalah tangki
yang di selaraskan dengan kemasinan yang berbeza. Kesemua kualiti air dalam setiap tangki
adalah berada dalam keadaan optimum dan terkawal.

Jadual 3 : Kadar penetasan telur ikan keli

Tangki Replikasi Jumlah telur Bilangan Kadar
(biji) menetas penetasan

A T1 R1 780 582 Purata =562
B T2 R2 HR =72%
C T3 R3
D T4 R1 780 546
R2
R3 780 558
R1
R2 780 698 Purata =678
R3 HR =87%
R1
R2 780 650
R3
780 688

780 163 Purata =144
HR =18.4%

780 138

780 131

780 0 Purata =0
HR =0%

780 0

780 0

Berdasarkan jadual 3 setiap kajian dijalankan sebanyak 3 replikasi bagi mendapatkan
jumlah purata. Tangki A sebagai kawalan menunjukkan kadar penetasan 72% merupakan kadar
penetasan yang normal bagi ikan keli. Tangki B dengan kemasinan 5ppt mencatatkan kadar
penetasan yang paling tinggi iaitu 87%. Dengan kemasinan yang optimum, telur ikan keli boleh
kekal dalam keadaan normal dan meningkatkan kadar penetasan telur. Ini membuktikan saliniti
boleh mempengaruhi proses perkembangan telur melalui proses osmoregulasi (Lopez, Martinez
dan Garcia 2004). Tangki C dengan kemasinan 10ppt menunjukkan kadar penetasan yang
rendah 18.4%. Manakala pada tangki D 15ppt tiada penetasan berlaku. Ini menunjukkan
dengan kehadiran kemasinan dalam air boleh meningkatkan kadar penetasan telur ikan keli.
Walaubagaimanapun sekiranya kadar kemasinan terlalu tinggi, telur ikan keli akan rosak dan
tidak akan menetas.

5. KESIMPULAN

Kesimpulannya, pada kemasinan 0ppt, kadar penetasan telur keli sebanyak 72%, manakala
pada kemasinan 5ppt telur keli mampu menetas dengan kadar yang lebih tinggi sebanyak 87%.
Hal ini menunjukkan bahawa tahap kemasinan merupakan salah satu faktor yang dapat
meningkatkan kadar penetasan telur ikan. Telur ikan keli mampu untuk menetas dalam
kemasinan sehingga 10ppt dengan kadar penetasan yang rendah 18.4%. bagi kemasinan 15ppt
pula, tiada penetasan berlaku, hal ini kerana telur telah rosak dan tidak mampu untuk bertahan
dalam kemasinan yang terlalu tinggi.

398

e-Prosiding Festival Agro Makanan Dan Bioteknologi 2020 (E-FAMB2020)

RUJUKAN

Burchell, (1822). Combined effect of water temperature and salinity on egg incubation period,
hatching period and egg hatchability in african catfish clarias gariepinus.

Jesse M. (2017). Aquatic mag, freshwater catfish information.
Sukendi. (2001). Biologi repruksi dan pengendaliannya dalam upaya pembenihan ikan

keli(Clarias sp.) dari perairan sungai Kampar, Riau. Tesis S2. Institut Pertanian Bogor.
Sukendi. (2003). Vitelogenesis dan Manipulasi Fertiisasi pada ikan. Bagian bahan mata kuliah

reproduksi ikan jurusan Budidaya Perairan Fakultas Perikanan dan ilmu Kelautan Universitas
Riau. Pekanbaru.
Yanal Hadid, Mohamad Syaifudin, Mohamad amin (2014) Pengaruh salinitas terhadap daya
tetas telur ikan baung. Akuakultur Fakultas Pertaian UNSRI.

399

e-Proceedings Festival Agro Makanan Dan Bioteknologi 2020 (E-FAMB2020)

BETTA CATAPPA TEA

Nur Aznadia Abdul Aziz* & Nurul Johanna Jemain

Kolej Komuniti Tampin, Jalan
Impian Nuri 3, Taman
Impian Jaya, 73200
Gemencheh, Negeri
Sembilan

*[email protected]

Abstrak. Rawatan air amat penting dalam industri penternakan ikan hiasan bagi memastikan
kelangsungan hidup ternakan. Di Malaysia terdapat bahan-bahan semulajadi yang
digunakan untuk merawat air dan juga ikan hiasan. Penggunaan daun ketapang amat
meluas dalam industri ternakan ikan hiasan. Daun ketapang digunakan untuk merawat
parasit ikan, bakteria dan kulat oleh peternak. Namun begitu, penternak lazimnya perlu
membuat pertukaran air secara kerap dan mengambil masa yang lama dalam melakukan
aktiviti pembersihan tangki. Hal ini kerana, daun ketapang digunakan secara terus dalam
tangki menyebabkan daun tersebut mudah terurai dan mengotorkan air ternakan. Skop
kajian ini adalah kepada penghasilan produk yang dinamakan Betta Catappa Tea. Betta
Catappa Tea merupakan produk inovasi daun ketapang berbentuk uncang. Produk yang
dihasilkan telah diedarkan kepada pensyarah Program Sijil Asas Ikan Hiasan, Kolej Komuniti
Tampin dan penternak ikan hiasan khususnya ikan laga. Hasil temubual dan dapatan
pengguna terhadap produk ini menunjukkan maklumbalas positif dan produk dapat
berfungsi dengan baik. Diharap dengan penghasilan Betta Catappa Tea ini dapat
memudahkan mengawal kualiti air ternakan ikan disamping memudahkan pengguna dalam
melakukan aktiviti pembersihan tangki ternakan.

Kata Kunci: Daun ketapang dan rawatan air dan penyakit ikan hiasan.

1. PENGENALAN

Terminalia catappa Linn. yang juga di kenali sebagai Indian Almond Tree (Ketapang) adalah
tanaman yang berpotensi sebagai antibakteria dan digunakan secara meluas dalam
industri akuakultur terutamanya penternakan ikan hiasan. Spesis ini telah digunakan secara
meluas di kawasan tropika termasuk Asia (Hyettel et al., 2009). Chitmanat et al., (2003)
membuktikan bahawa, daun ketapang boleh digunakan dalam ternakan ikan tilapia untuk
melindungi ikan tersebut daripada patogen. Menurut Ahilan et al. (2010), penggunaan daun
herba dalam industri akuakultur semakin meluas dan merupakn salah satu daripada rawatan
alternatif untuk meningkatkan antibodi ikan hiasan.

Betta sp. tergolong dalam keluarga ikan Belonitiidae dan di kenali sebagai spesis
yang berwarna-warni terutamanya ikan Betta jantan (Ekman et al., 2013). Di Malaysia, Betta
atau nama panggilannya ikan laga merupakan ikan hiasan ternakan yang semakin popular.
Hal ini kerana, kepelbagaian warna dan coraknya yang menjadi tarikan kepada
penggemar ikan hiasan, selain ianya mudah untuk dipelihara tanpa perlu penjagaan yang
rumit. Habitat semulajadi ikan laga lazimnya ditemui di kawasan paya dan tali air dimana
kawasan tersebut mempunyai banyak pepohon sebagai tempat perlindungan dirinya untuk
membiak. Lazimnya, perairan tersebut mempunyai pH 6 hingga 7.5 dan suhu 24ºC hingga
30ºC.

Daun ketapang merupakan sumber tradisional dan organik yang digunakan oleh
penternak dalam mengawal kualiti air ternakan ikan laga dan penyakit ikan. Menurut
Ladyescha et al. (2015), ekstrak daun ketapang mampu meningkatkan kadar hidup ikan
laga yang dijangkiti bakteria. Ikan laga memerlukan persekitaran akuatik yang sesuai dan
selesa untuk pembiakan dan tumbesarannya. Penternakan ikan laga lazimnya dijalankan

400

e-Proceedings Festival Agro Makanan Dan Bioteknologi 2020 (E-FAMB2020)

dalam sistem tertutup (Rajah 1) iaitu air ternakan perlu dikeluarkan secara manual dan
ditambah untuk diperbaharui. Daun ketapang pula telah digunakan secara meluas oleh
penternak ikan laga di Asia Tenggara untuk menjadikan air ternakan seakan sama seperti
habitat semulajadi ikan laga (Nugroho et al., 2016). Menurut Nugroho et al. (2016) juga, daun
ketapang mempunyai kandungan kimia seperti tannin, flavonoid dan saponin yang
membantu ikan laga dalam meningkatkan daya tahan dan profil darah ikan tersebut. Selain
itu, ia juga membantu dalam mengurangkan pH air ternakan ikan laga.

Rajah 1. Balang/akuarium ternakan ikan laga

Penggunaan daun ketapang secara meluas dalam industri penternakan ikan laga
memberi inspirasi kepada Pensyarah Sijil Asas Ikan Hiasan, Kolej Komuniti Tampin untuk
menghasilkan produk inovasi yang diberi nama Betta Catappa Tea (BCT). BCT adalah
produk yang dihasilkan menggunakan daun ketapang. Daun ketapang mengandungi asid
tunnin yang membantu dalam mengurangkan nilai pH dan asid di dalam air ternakan ikan.
Ia membantu mempercantikan dan menjelaskan warna sisik ikan serta dapat menyihatkan
ikan yang dipelihara. Penternak lazimnya menggunakan daun ketapang sebagai medium
untuk mengawal kualiti air. BCT disediakan dalam bentuk uncang yang memudahkan
penternak untuk membersihkan akuarium dan melakukan penukaran air. Kegunaan daun
ketapang ialah cara tradisional dari alam semulajadi kerana tiada bahan kimia dan
menjimatkan kos serta berkesan.

2. SOROTAN KAJIAN DAN PEMBINAAN HIPOTESIS

Daun ketapang lazimnya digunakan oleh penternak ikan laga dalam aktiviti penternakan
ikan tersebut. Menurut Chansue dan Assawawongkasem (2008) daun ini mengandungi
tannin yang berfungsi sebagai antibakteria kepada ikan hiasan. Penggunaan daun
ketapang amat meluas di kalangan penternak ikan laga dimana ianya bukan sahaja
mampu mengawal kualiti air tetapi juga sebagai kawalan penyakit ikan. Daun ketapang
juga digunakan untuk menigkatkan kelangsungan atau jangka hayat ikan, profil darah ikan
dan juga ketahanan ikan terhadap penyakit (Nugroho et. al., 2017)

Di Kolej Komuniti Tampin, pelajar Sijil Asas Ikan Hiasan yang terdiri daripada pelajar
orang kurang upaya (OKU) kategori masalah pembelajaran mempelajari kursus pembenihan
dan penjagaan ikan hiasan termasuk juga pembenihan dan penjagaan ikan laga. Pelajar
didedahkan dengan penggunaan daun ketapang dalam penjagaan dan pembenihan ikan
laga tersebut. Penggunaan daun ketapang yang telah dikeringkan (Rajah 2) akan
digunakan oleh pelajar untuk menternak ikan laga.

401

e-Proceedings Festival Agro Makanan Dan Bioteknologi 2020 (E-FAMB2020)

Rajah 2. Daun ketapang yang telah dikeringkan
Daun ketapang tersebut dimasukkan secara terus ke dalam tangki ternakan. Hal ini
menyukarkan aktiviti pembersihan tangki dan meningkatkan kotoran dalam tangki ternakan
apabila daun yang digunakan terurai sehingga meninggalkan cebisan-cebisan kecil di
dalam tangki (Rajah 3). Oleh yang demikian, Betta Catappa Tea terhasil bagi memudahkan
penjagaan ikan hiasan dimana daun ketapang diinovasikan ke dalam bentuk uncang bagi
memudahkan aktiviti penjagaan dan pembersihan tangki ternakan ikan laga. Lazimnya,
aktiviti penukaran air ternakan akan dilakukan sekali setiap dua minggu. Akan tetapi
sekiranya air ternakan didapati terlalu kotor, ianya boleh ditukar sekali seminggu.

Rajah 3. Penggunaan daun ketapang secara terus ke dalam tangki/akuarium ternakan

3. METODOLOGI KAJIAN

Kajian dilaksanakan dengan aktiviti penyediaan tangki ternakan. Air tanpa klorin diisi ke
dalam tangki tersebut. BCT pula dihasilkan dengan melalui proses daun ketapang yang
dikeringkan. Kemudian, daun tersebut dikisar halus dan ditimbang sebanyak 1g. Daun yang
telah ditimbang dimasukkan kedalam uncang (Rajah 4).

402

e-Proceedings Festival Agro Makanan Dan Bioteknologi 2020 (E-FAMB2020)

Rajah 4. Betta Catappa Tea
Uncang tersebut kemudiannya dimasukkan ke dalam tangki ternakan yang telah
disediakan. Seterusnya, ikan laga dimasukkan ke dalam tangki ternakan tersebut (Rajah 5).

Rajah 5. Penggunaan daun ketapang secara terus dan BCT di dalam tangki/akuarium
ternakan ikan laga

Pemehatian dijalankan ke atas tangki ternakan. Pembersihan tangki juga dijalankan
secara berkala iaitu selama 3 minggu sekali. Produk BCT yang dihasilkan juga melalui proses
pembungkusan (Rajah 6) untuk diedarkan kepada pelajar Sijil Asas Ikan Hiasan.

Rajah 6. Pembungkusan produk BCT

4. ANALISIS DAN KEPUTUSAN

Hasil kajian menunjukkan, BCT mampu mengawal kualiti air ternakan. pH air adalah dalam
lingkungan pH optimum ternakan ikan hiasan iaitu 5.6 hingga 6. Hal ini bertepatan dengan
kajian yang dijalankan oleh Nugroho et al., (2016) dimana kehadiran tannin di dalam daun
ketapang mampu mengurangkan nilai pH air sehingga pH 5.05.

403

e-Proceedings Festival Agro Makanan Dan Bioteknologi 2020 (E-FAMB2020)

Selain itu, penggunaan BCT juga memudahkan dan mempercepatkan aktiviti
pembersihan dan penukaran air ikan. Tanpa penggunaan BCT, air ternakan perlu ditukar
sebanyak dua minggu sekali, hal ini kerana daun ketapang yang digunakan secara terus ke
dalam tangki mereput dan terurai menyebabkan air ternakan bertambah kotoran. Selepas
menggunakan BCT, air ternakan boleh dibersihkan sebanyak tiga minggu sekali dan kurang
kehadiran kotoran daun yang mereput didalam tangki. BCT juga boleh terus dibuang ketika
waktu pembersihan. Hal ini memudahkan aktiviti ternakan dan juga mengambil masa yang
singkat untuk melaksanakan proses pembersihan tangki dan penukaran air.

Hasil pemerhatian, penggunaan BCT juga mampu untuk mengawal kehadiran
penyakit ikan. Ikan lebih sihat dan aktif apabila menggunakan uncang daun ketapang.
Produk inovasi yang dihasilkan ini merupakan kaedah rawatan air dan penyakit ikan yang
menggunakan bahan semulajadi, menjimatkan kos dan berkesan. Warna air yang
kekuningan selepas menggunakan BCT membuatkan ikan berasa selesa seperti berada di
habitat asal.

5. KESIMPULAN

Kesimpulannya, produk inovasi daripada daun ketapang, Betta Catappa Tea ini membantu
pengguna dan penternak ikan hiasan terutamanya ikan laga. Produk yang menggunakan
bahan semulajadi ini mampu untuk mengawal kualiti air dan mengurangkan masalah
penyakit ikan. Selain itu, ia juga membantu pengguna dan penternak untuk melakukan
aktiviti pembersihan dan penukaran air akuarium dan tangki tenrnakan dengan lebih mudah
dan cepat. Sebagai cadangan, produk ini boleh ditambahbaik dengan membuat
campuran bersama daun herba yang bersesuaian yang boleh membantu merawat ikan
hiasan yang dijangkiti penyakit.

RUJUKAN

Ahilan. B, Nithiyapriyatharshini, A., & Ravaneshwaran, K. (2010). Influence of certain herbal
additives on the growth, survival and disease resistance of goldfish, Carassius auratus
(Linneaus) Tamilnadu. Journal of Veterinary and Animal Sciences, 6(1), 5-11.

Chansue, N., and N. Assawawongkasem. 2008. The in vitro Antibacterial Activity and
Ornamental Fish Toxicity of the Water Extract of Indian Almond Leaves (Terminalia
catappa Linn.). KKU. Vet. J. 18 (1): 36-45.

Chitmanat, C., Tongdonmuan, K., Khanom, P., Pachontis, P., & Nunsong, W. (2003).
Antiparasitic, antibacterial, and antifungal activities derived from a Terminalia
catappa solution against some tilapia (Oreochromis niloticus) pathogens. In: III
WOCMAP Congress on Medicinal and Aromatic Plants-Volume 4: Targeted Screening
of Medicinal and Aromatic Plants, Economics 678. pp. 179-182.

Ekman, A., Wallberg, O., Joelsson, E., & Börjesson, P. (2013). Possibilities for sustainable
biorefineries based on agricultural residues – A case study of potential straw-based
ethanol production in Sweden. Applied Energy, 102, 299-308

Hyttel, P., Sinowatz, F., Vejlsted, M., & Betteridge, K. (2009). Essentials of domestic animal
embryology. UK: Elsevier Health Sciences.

Ladyescha, D., Nugroho, R.A., & Dharma, B. (2015). Uji efektivitas ekstrak cair daun ketapang
(Terminalia catappa Linn.) sebagai antibakteri terhadap ikan cupang (Betta sp.)
yang diinfeksi bakteri Salmonella enterica serovar Typhi. Prosiding Seminar Sains dan
Teknologi FMIPA Unmul, 27-34.

404

e-Proceedings Festival Agro Makanan Dan Bioteknologi 2020 (E-FAMB2020)
Nugroho, R. A., Manurung, H., Saraswati, D., Ladyescha, D. & Nur, F. M. (2016). The Effects of

Terminalia catappa L. Leaves Extract on the Water Quality Proper-ties, Survival and
Blood Profile of Ornamental fish (Betta sp) Cultured. Biosaintifika: Journal of Biology &
Biology Education, 8(2), 240-247.

405

e-Proceedings Festival Agro Makanan Dan Bioteknologi 2020 (E-FAMB2020)

MEDIA PENANAMAN ALTERNATIF BERASASKAN SISA AGRO UNTUK
PENANAMAN BAYAM MERAH (Amaranthus gangeticus)

Noor Anizah binti Maarof, Pellyzirrah Paul, Bryan Steve Bolingi
Politeknik Sandakan Sabah,
Education Hub, Batu 10,
Jalan Sungai Batang,
90000 Sandakan Sabah.
*[email protected]

Abstrak. Sisa agro terhasil daripada pelbagai aktiviti pertanian daripada peringkat
penanaman sehingga ke penuaian dan seterusnya penghantaran ke pasaran domestik
mahupun eksport. Pengurusan sisa agro yang efektif dapat membantu dalam mengekalkan
dan meningkatkan tahap kesihatan manusia serta melestarikan alam sekitar sekaligus dapat
mengurangkan kos mengurus sisa itu sendiri. Lazimnya, sisa agro dibuang begitu sahaja
tanpa amalan pengurusan sisa yang baik sedangkan sisa buangan ini sepatutnya boleh
dikitar semula untuk dijadikan produk berguna. Tujuan kajian ini dijalankan adalah untuk
melihat sejauh mana potensi pengitaran semula sisa agro untuk dijadikan sebagai alternatif
kepada media penanaman. Prosedur yang dijalankan adalah dengan menghasilkan tiga
jenis media penanaman yang berbeza daripada sisa agro dengan memilih pembesaran
bayam merah (Amaranthus gangeticus) sebagai tanaman utama yang dikaji. Rawatan 1
(R1) adalah media yang dihasilkan daripada sisa agro berasaskan pertanian, kertas, daun-
daun kering, dan tanah campur. Media Rawatan 2 (R2) terdiri daripada sisa agro
berasaskan laut iaitu kulit udang, cangkerang kerang, dan tanah campur. Seterusnya
adalah media Rawatan 3 (R3) yang dihasilkan daripada campur R1 dan R2 serta Media
Kawalan (MK) yang terdiri daripada tanah campur. Pemerhatian dijalankan setiap minggu
ke atas ketinggian pokok dan bilangan daun yang terhasil selama lapan minggu. Melalui
kajian yang dijalankan didapati R3 menunjukkan tindak balas pertumbuhan dan
pembesaran yang terbaik iaitu memberi persaingan daripada segi ketinggian pokok dan
bilangan daun yang terhasil berbanding dengan MK, R1 dan R2. Melalui kajian ini, terbukti
sisa agro dapat dikitar semula menjadi alternatif kepada media penanaman sekaligus
membantu dalam pengurusan sisa agro.

Kata Kunci: SIsa Agro, Media Penanaman Alternatif

1. PENGENALAN

Pengurusan sisa agro yang efektif merupakan antara komponen utama dalam aktiviti
pertanian secara lestari. Menurut Kim H. Tan (2009), sisa merupakan bahan atau benda yang
tidak memiliki nilai dan tidak diperlukan dalam industri manakala menurut Organisation for
Economic Co-operation and Development 2001, sisa agro boleh didefinisikan sebagai sisa
yang terhasil daripada pelbagai aktiviti agrikultur. Konsep pengurusan sisa menitikberatkan
faktor pertimbangan ke atas alam sekitar serta memberi fokus kepada keperluan ekonomi
seperti kos pengurusan sisa itu sendiri. Selain itu, pengurusan sisa agro yang efektif dapat
membantu mengekalkan kesihatan serta kebersihan alam sekitar.

Sekiranya sisa agro tidak diuruskan dengan baik, ia boleh menjadi punca utama
kepada pencemaran tanah. Tanah yang tercemar adalah tidak sesuai untuk dijadikan
sebagai kawasan pertanian kerana bahan toksik atau kimia boleh membunuh tumbuhan
yang ditanam dan habitat yang hidup di kawasan tersebut.

406

e-Proceedings Festival Agro Makanan Dan Bioteknologi 2020 (E-FAMB2020)

Oleh yang demikian, proses kitar semula sisa agro dapat membantu dalam
mengurangkan kadar pembuangan sisa dalam sehari. Ia boleh dilaksanakan dengan
menjadikan sisa agro sebagai alternatif kepada media penanaman. Sisa agro yang dipilih
seperti sisa jagung, sisa tomato, daun-daun kering, kulit udang dan cengkerang kerang
diyakini mampu membekalkan nutrien kepada tumbuhan untuk tumbesaran manakala
kertas yang telah diracik mampu menjadi penakung air yang baik untuk tumbuhan. Maka
dengan itu, media penanaman berasaskan sisa agro dicipta untuk mengkaji
keberkesanannya terhadap pertumbuhan sayur bayam merah (Amaranthus gangeticus).
Sayur bayam merah dipilih kerana pertumbuhan yang cepat dan ia banyak memberi
manfaat kepada manusia dari segi kesihatan iaitu ia boleh membantu dalam proses
pencernaan dan merawat penyakit anemia.

2. SOROTAN KAJIAN DAN PEMBINAAN HIPOTESIS

2.1 Sisa
Menurut Kim H. Tan (2009), sisa merupakan bahan atau benda yang tidak memiliki nilai dan
tidak diperlukan dalam industri manakala menurut M. Zurina et. al. (2013) sisa agro boleh
didifinisikan sebagai hasil sampingan yang terhasil daripada aktiviti agrikultur. Ia boleh
dikategorikan kepada dua iaitu sisa berbahaya dan sisa pepejal. Dalam konteks kajian ini,
sisa pepejal agro dijadikan sebagai media penanaman alternatif dan diuji ke atas
tumbesaran bayam merah.

2.2 Sisa Jagung
Tongkol jagung mampu menghasilkan silika dan kalium (K) yang mampu membekalkan
nutrien kepada tanah apabila ia terurai.

2.3 Sisa Tomato
Menurut kajian Tatiana D. Panaite et. al. (2017), kandungan sampel tomato yang telah
dikeringkan mengandungi 176.2 g/kg protein, 21.9 g/kg lemak, 524.4 g/kg serat mentah dan
42.1g/kg kandungan debu. Manakala kandungan amino asid penting mewakili 32.4%
daripada jumlah keseluruhan protein, di mana leucine merupakan kandungan tertinggi
diikuti dengan lyscine dan juga isoleucine. Asid lemak tidak tepu merangkumi 77.04%
daripada jumlah asid lemak, yang mana asid linoleik merupakan komponen utama. Selain
daripada itu, kajian tersebut juga mendapati bahawa jumlah lycopene yang terkandung di
dalam sisa tomato yang telah dikeringkan adalah 510.6 mg/kg manakala jumlah β-karotena
adalah 95.6 mg/kg. Dengan memperbaiki nilai sisa tomato, pengunaan sisa tomato dapat
menjana pembangunan teknologi mesra alam dan seterusnya dapat dijadikan sebagai
bahan altenatif terutamanya di dalam sektor pertanian.

2.4 Kertas
Secara umumnya, kertas ialah satu helaian atau jaringan berterusan bahan yang terbentuk
daripada pemendapan gentian tumbuhan, mineral, atau sintetik di mana gentian-gentian
ini adalah berjaringan dan terikat di antara satu dengan yang lain. Ianya kadang-kadang
ditambah dengan beberapa jenis bahan tambahan untuk memberi sifat-sifat khusus
kepadanya. Daripada beberapa kajian yang telah dilaksanakan didapati pengitaran
semula kertas di lihat dapat memberi kebaikkan kepada persekitaran (Laurijssen et al., 2010;
Villanueva and Wenzel, 2007).

2.5 Kulit Udang
Menurut Tarafdar dan Biswas (2013), semasa pemprosesan udang sisa bio banyak terhasil
termasuklah kulit dan kepala udang. Sisa-sisa ini selalunya masih mengandungi bahan yang
berguna. Walaubagaimanapun akibat daripada pengurusan pemprosesan udang yang
kurang cekap sisa ini tadi terbiar begitu sahaja (Yadev et al., 2019).

407

e-Proceedings Festival Agro Makanan Dan Bioteknologi 2020 (E-FAMB2020)

Berdasarkan Lee (2004), kulit udang mengandungi kitin dan kitosan yang mempunyai
banyak manfaat untuk pelbagai keperluan. Sifat kitosan adalah tidak bertoksik, mudah
reput atau terurai dan boleh diubahsuai secara kimia dan fizikal. Disokong oleh Fohcher
(1992), kulit udang terdiri dari tiga komponen utama iaitu protein (25% sehingga 44%),
kalsium karbonat (45% sehingga 50%), dan kitin (15% sehingga 20%). Kandungan kitin pada
kulit udang adalah sebanyak 20% sehingga 50%. Polimer kitin tersusun dari monomer 2-
asetamida-2-deoksi-D-Glukosa (N-asetil glukosamin). Ikatan antara monomer kitin adalah
ikatan glikosida pada posisi β- (1-4). Struktur molekul kitin berupa rantai lurus panjang. Kitin
merupakan polimer terbanyak di dunia selepas selulosa. Disokong oleh Pengarah Pusat
Aplikasi Isotop dan Radiasi BATAN, Hendig Winarno, kulit udang merupakan bahan semula
jadi yang boleh diproses menjadi baja atau perangsang kepada pertumbuhan tumbuhan.
Selain meningkatkan daya pertumbuhan tumbuhan, kulit udang juga mampu mencegah
dan mengurangkan penyakit pada tanaman. Menurut Suhaime Sulaiman (2017),
kandungan kitosan dalam kulit udang hanya mampu meningkatkan hasil 20 hingga 50
peratus dan hanya diperlukan dalam kuantiti yang sedikit untuk tumbuhan. Berdasarkan
daripada pemerhatian M Anem (2015), kitosan dalam kulit udang memberikan kesan
kepada aktiviti mikrob dalam tanah. Ia membantu mikrob menguraikan nutrient bukan
organik kepada bentuk organik agar boleh diambil oleh tanaman. Ia membantu membaiki
sistem akar untuk lebih cekap menyerap nutrient dalam tanah untuk dihantar ke bahagian
lain tanaman.

2.6 Cengkerang kerang
Periostracium organik merupakan lapisan plecypoda yang berupa lapisan kapur yang
banyak mengandungi kalsium karbonat. Ia terhasil dipermukaan lapisan luar cengkerang
kerang. Kalsium karbonat berfungsi untuk membentuk dinding sel yang sangat diperlukan
dalam proses pembentukan sel baru seterusnya dapat merangsang pertumbuhan akar.

2.7 Tanah campur
Tanah campur merupakan tanah hasil daripada campuran tanah atas, bahan organik, dan
pasir.

2 .8 Bayam merah
Sayur bayam merah kaya dengan nutrien mikro yang amat diperlukan tubuh badan iaitu
asid folik, besi, β-karotena, kalsium, metionin, nitrat, oksalat protein, serabut, vitamin A dan
juga vitamin C. Selain itu juga, sayur bayam merah mempunyai banyak khasiat perubatan.
Antaranya adalah mampu memperbaiki penglihatan dan memperkuatkan hati. Akar
bayam boleh direbus dan disapu pada luka untuk menghentikan pengaliran darah (Ong
Hean Chooi, 2008).

3. METODOLOGI KAJIAN

3.1 Reka Bentuk Projek
3.1.1 Penyediaan Media Penanaman
3.1.1.1 Media Kawalan (MK)
Tanah campur digunakan sebagai media kawalan (MK). Tanah campur terdiri daripada
tanah atas, bahan organik, dan pasir dengan nisbah 3: 2: 1. Bagi Media Kawalan (MK),
tanah campur digunakan sepenuhnya sebanyak 2.4 kg. Seterusnya, tanah dibahagikan
secara sama rata kepada 3 polibeg di mana setiap polibeg mengandungi jumlah berat
tanah sebanyak 800g.

3.1.1.2 Rawatan 1 (R1)
Media penanaman adalah terdiri daripada sisa agro berasaskan pertanian seperti sisa
jagung, sisa tomato, daun-daun kering, kertas dan tanah campur. Bagi media Rawatan 1
(R1), 1.2 kg tanah campur serta 1.2 kg sisa agro berasaskan tanaman, daun-daun kering
serta kertas disediakan terlebih dahulu sebelum kesemua bahan dicampur. Sebelum
penyediaan media, sisa agro berasaskan pertanian dikeringkan terlebih dahulu di bawah
cahaya selama tiga hari. Seterusnya, sisa agro berasaskan pertanian dipotong kepada

408

e-Proceedings Festival Agro Makanan Dan Bioteknologi 2020 (E-FAMB2020)

bahagian-bahagian kecil untuk memudahkan proses pereputan dan penguraian berlaku.
Kertas yang telah diracik direndam ke dalam air sebelum dicampurkan dengan sisa agro
berasaskan pertanian tadi. Kedua-dua bahan yang disediakan termasuk daun-daun kering
mempunyai berat sebanyak 1.2kg digaul sebati dengan 1.2 kg tanah campur. Seterusnya,
media yang telah digaul sebati dibahagikan secara sama rata kepada 3 polibeg di mana
setiap polibeg mengandungi jumlah berat tanah sebanyak 800g.

3.1.1.3 Rawatan 2 (R2)
Dalam rawatan ini, sisa agro berasaskan laut digunakan sebagai pengganti media
penanaman. Media Rawatan 2 (R2) mengandungi campuran daripada cengkerang kerang
yang telah dihancurkan kepada serbuk kecil dan juga kulit udang. Kulit udang dicuci
dengan air yang bersih terlebih dahulu sebelum dikeringkan selama 3 hari di bawah
matahari untuk mengurangkan bau dan kehadiran bendasing kecil. Selepas 3 hari, kulit
udang dihancurkan menggunakan lesung batu sehingga menjadi serpihan kecil. Kemudian,
cengkerang kerang yang telah siap dihancurkan dicampur dengan sisa kulit udang untuk
menjadi media R2. 1.2 kg sisa cengkerang kerang dan kulit udang dan 1.2 kg tanah campur
digaul bersama sehingga sebati lalu dibahagikan ke dalam 3 polibeg. Setiap polibeg
memiliki jumlah berat sebanyak 800g.

Rawatan 3 (R3)
Dalam rawatan ini, 1.2 kg R1 dan 1.2 kg R2 telah dicampurkan. Seterusnya, media yang
telah digaul sebati dibahagikan secara sama rata kepada 3 polibeg di mana setiap polibeg
mengandungi jumlah berat tanah sebanyak 800 g.

3.1.2 Kaedah Penanaman Bayam Merah
Prosedur diteruskan dengan menanam sayur bayam merah pada empat (4) jenis media
yang berbeza iaitu media kawalan (MK), media rawatan pertama (R1), media rawatan
kedua (R2) dan media rawatan ketiga (R3).

Bayam merah ditanam pada dua belas (12) polibeg yang berbeza. Terdapat tiga (3)
replikat bagi setiap rawatan. Replikat ini diwujudkan untuk mendapatkan purata bagi
ketinggian pokok dan bilangan daun. Saiz polibeg yang digunakan adalah berukuran 20cm
x 7.5 cm x 0.05 mm.

MK R1 R2 R3

Rajah 1: Replikat Bagi Setiap Rawatan

3.2 Penanaman
Sebelum penanaman biji benih bayam merah dilakukan, media rawatan yang telah
disediakn dibiarkan terlebih dahulu selama 14 hari untuk menggalakkan proses penguraian
dan pereputan berlaku. Setelah 14 hari, penanaman biji benih bayam merah dilakukan
dengan menggaulkan benih bersama dengan tanah. Selepas itu, tanah yang telah
dicampurkan dengan biji benih ditaburkan ke atas setiap polibeg bagi setiap rawatan. Tiga
polibeg untuk setiap rawatan iaitu MK, R1, R2, dan R3 disusun di atas rak.

409

e-Proceedings Festival Agro Makanan Dan Bioteknologi 2020 (E-FAMB2020)

3.3 Pengairan
Penyiraman untuk tanaman bayam merah dilakukan dua kali sehari iaitu pada waktu padi
dan pada lewat petang. Penyiraman dilakukan pada waktu yang sama bagi 12 polibeg.

3.4 Analisis Data
Pengambilan data serta pemerhatian dijalankan seminggu selepas penanaman. Data
diambil melalui pengiraan bilangan daun dan ketinggian pokok. Pengambilan data diambil
sekali dalam seminggu pada setiap hari Isnin sehingga minggu kelapan.

4. ANALISIS DAN KEPUTUSAN

4.1 Analisis

Rajah 2: Graf purata ketinggian bagi pokok bayam merah

Graf di atas adalah perbandingan jumlah purata ketinggian daun di antara keempat-
empat media selepas lapan minggu tempoh pengambilan data. Pada minggu pertama,
ketinggian bagi R1 mendahului MK, R2, dan R3 iaitu dengan purata ketinggian 1 cm. Namun,
pada minggu kedua, purata ketinggian MK meningkat kepada 2.8 cm diikuti dengan purata
ketinggian R1 iaitu 2.5 cm. Pada minggu ketiga, ketinggian bayam merah pada R1
meningkat daripada 2.5 cm ke 3.5 cm manakala purata ketinggian MK pula meningkat dari
2.8 cm ke 5.0 cm menjadikan MK media penanaman terbaik pada minggu tersebut.
Seterusnya, pada minggu keempat, purata ketinggian tertinggi juga tertumpu kepada MK
iaitu sebanyak 8.9 cm. Manakala R2 masih tidak menunjukkan sebarang tindak balas
pertumbuhan. Kemudian pada minggu kelima, purata pertumbuhan R1 dan R3 adalah lebih
kurang sama iaitu R1 sebanyak 7.6 cm dan R3 sebanyak 7.2 cm manakala, MK memiliki
purata ketinggian tertinggi iaitu sebanyak 10.3 cm pada minggu kelima. Pada minggu
keenam, purata ketinggian bagi R3 meningkat secara mendadak kepada 10.5 cm dan MK
meningkat kepada 13.3 cm. Seterusnya, pada minggu ketujuh, purata MK meningkat secara
ke 16.3 cm manakala R2 masih tidak menujukkan sebarang tindak balas. Kemudian pada
minggu kelapan, purata ketinggian R3 meningkat ke 21.2 cm, 1.9 cm kurang daripada
purata ketinggian MK iaitu 23.1 cm.

410

e-Proceedings Festival Agro Makanan Dan Bioteknologi 2020 (E-FAMB2020)

Rajah 3: Graf purata bilangan daun bagi bayam merah

Graf di atas menunjukkan purata bilangan daun bagi penanaman bayam merah di
antara keempat-empat media selepas lapan minggu tempoh pengambilan data. Pada
minggu pertama, R1 mempunyai purata bilangan daun sebanyak 2 iaitu merupakan purata
yang tertinggi pada minggu pertama penanaman pokok bayam merah. Diikuti pula
dengan MK dan R3 yang memiliki purata bilangan daun yang sama iaitu 1. Seterusnya,
pada minggu kedua, MK dan R1 memiliki jumlah purata bilangan daun yang sama iaitu 3
dan R3 adalah 2. Berikutnya, pada minggu ketiga, purata bilangan daun bagi MK adalah 5,
diikuti dengan R1 iaitu 4 dan R3 iaitu 3. Manakala pada minggu keempat, purata bilangan
daun MK meningkat daripada 5 kepada 6. Pada minggu kelima, purata bilangan daun bagi
R3 meningkat kepada 6. Manakala pada minggu keenam, purata bilangan daun bagi R3
meningkat secara mendadak kepada 14 iaitu sama dengan MK. Seterusnya, pada minggu
ketujuh pula, R3 memiliki purata bilangan daun tertinggi iaitu 16 manakala pertumbuhan MK
dan R1 didapati terhenti. Manakala pada minggu kelapan, purata bilangan daun bagi R3
merupakan purata tertinggi iaitu sebanyak 16. R2 didapati tidak berlakunya sebarang
pertumbuhan pokok.

5. KESIMPULAN

Media alternatif daripada sisa buangan agro adalah salah satu kaedah inovatif untuk
membantu dalam mengurangkan kadar pembuangan sisa. Selain itu, proses penyediaan
media adalah mudah dan cepat. Media alternatif ini juga memberikan kesan yang positif
terhadap pertumbuhan sayur bayam merah. Tambahan pula, media alternatif ini bersifat
mesra alam kerana ia dapat mengurangkan jumlah pembuangan sisa. Ia juga boleh
dijadikan sebagai pengganti kepada media komersial yang terdapat di pasaran kerana
kebolehannya untuk menggalakkan pertumbuhan anak pokok adalah sama seperti media
sedia ada. Secara keseluruhannya, media alternatif ini berkemampuan untuk menggantikan
media komersial. Secara keseluruhannya, pertumbuhan pokok bayam merah pada R3
adalah yang terbaik berbanding pertumbuhan pokok bayam merah yang terdapat pada
MK dan media alternatif yang lain. Media alternatif daripada sisa pepejal agro adalah
sesuai dijadikan sebagai inisiatif lain untuk penanaman tumbuhan.

411

e-Proceedings Festival Agro Makanan Dan Bioteknologi 2020 (E-FAMB2020)

RUJUKAN

Fohcher B. (1992) Structural differences between chitin polymorhs and their precipitates from
solution evidences from CP-MAS 13 C-NMR, FTIR and FTRaman Spectroscopy.

Hendig Winarno (2015). Ubah Kulit Udang Jadi Pupuk. Badan Tenaga Nuklir Nasional
(BATAN).

Laurijssen, J., Marsidi, M., Westenbroek, A., Worrell, E., Faaij, A., 2010. Paper and biomass for
energy? Resour. Conserv. Recycl. 54, 1208–1218.

Lee, Sung Won (2004). Chitin and chitosan nanofibers: electrospinning of chitin and
deacetylation of chitin nanofibers. https://doi.org/10.1016/j.polymer.2004.08.048

M. Anem, Senior Agronomist, 11 Julai 2016. Diambil daripada https:// penjagarumah.com/
menanam - bayam/

M. Zurina, H. Ismail and A. A. Bakar, “Rice Husk Filled Powder Polystyrene/Styrene Butadiene
Rubber Blends,” Journal of Applied Polymer Science, Vol. 81, No. 63, 2004, pp. 742-
753.

Noor Azalina binti Khalil, Zarina Syuhaida binti Shaarani2, Mohamad Norizham bin Hamzah3,
(9 Februari 2015). Diambil daripada http://ecrim.ptsb.edu.my/file/20150209073442.pdf

Ong, Hean Chooi (2008). Tanaman Hiasan: Khasiat Ubatan & Kegunaan Lain. Utusan
Publication & Distributors Sdn Bhd. 18-19.

Suhaime Sulaiman (2017). https://www.hmetro.com.my/agro/2017/12/289448/percepat-
pencambahan-pokok. 1 Disember 2017.

Tan, Kim H. (2009). Environmental Soil Science Third Edition. CRC Press. Taylor & Francis
Group. London, New York. Definition and Concept of Waste. 11.2: 426-427.

Tarafdar T, Biswas G (2013) Extraction of chitosan from prawn shell wastes and examination of
its viable commercial applications. Int J Theoret Applied Res Mech Eng 2:2319–3182

Tatiana D. Panaite, Mariana Ropota, Raluca Turcu, Ion Trandafir, Alexandru R.Corbu (2017),
CyTA – Journal of Food, Nutritional and Bioactive Compounds In Dried Tomato
Processing Waste, Volume 16, 222-229.

Villanueva, A., Wenzel, H., 2007. Paper waste – recycling, incineration or landfilling? A review
of existing life cycle assessments. Waste Manag. 27, S29–S46.

Yadav M, Goswami P, Paritosh K, Kumar M, Pareek N, Vivekanand V (2019) Seafood waste: a
source for preparation of commercially employable chitin/chitosan materials.
Bioresour Bioprocess 6(1):8

Schneider, R. M., Krajcik, J., Marx, R. W., & Soloway, E. (2002). Performance of students in
project‐based science classrooms on a national measure of science achievement.
Journal of Research in Science Teaching, 39(5), 410-422. [Century Gothic, 10-point, left
alignment].

412

e-Prosiding Festival Agro Makanan Dan Bioteknologi 2020 (E-FAMB2020)

THE EFFECT OF COMPOST COMPONENT IN SOILLESS
MEDIA FOR LEAFY VEGETABLES GROWTH of (Brassica sp.)

Norhafizah binti Suhad1, Nurfadzlina binti Jamaluddin2
1Jabatan Agroteknologi & Bio-Industri, Politeknik Nilai

2Jabatan Pengajian Politeknik & Kolej Komuniti, Aras 4-7,
Galeria PJH, Jalan P4W, Persiaran Perdana, 62100, Putrajaya.

*[email protected]

Abstract. Soilless media is an artificial way of supplying nutrients and water to plants with
protection and a reservoir. Growing media is described as the medium used to grow a
plant in a container. This research aims to study the effects of the compost component on
the growth of leafy vegetables grown under the rain shelter in soilless media. The
literature's findings indicate that for many crops, coconut coir dust is an effective growth
medium. By introducing compost into coconut coir dust can develops the chemical
properties of the substrates by increasing pH, cation exchange capacity (CEC) and
concentrations of plant-available nutrients. Four types of growth media (cocopeat as
control, food waste mix with cocopeat, wood waste mix cocopeat and green waste mix
with cocopeat) were used. Four treatments of media with five repetitions were used. The
food waste mixes were contained of egg shells and crab shell, wood waste from small
pruning while green waste from dry leaves. In order to determine seedling emergence,
mustard seeds were sown on 100 cell seedling trays. The following growth and
development parameters were then measured: number of leaf and height of the plant.
Compared to the three-growing media, the finding shows the highest plant growth was in
media containing egg and crab shells. Therefore, as the most suitable growing medium for
raising mustard seedlings, mixtures of cocopeat with egg and crab shell media are
therefore suggested.

Keywords: effect, compost component, soilless media, leafy vegetable, growth.

1. INTRODUCTION

Brassica is a plant genus in the family of mustards (Brassicaceae). Cruciferous vegetables,
cabbages, or mustard plants are informally recognised as members of the genus. Mustard,
a member of the Brassicaceae family, is an upright winter annual or biennial plant with
bright yellow flowers clustered at tops of each branched stem and have fleshy, enlarged
taproot.

Growing media are materials which a plant is grow in. Growing media is definitely
designed to support the growth of plant and can be either a solid or a liquid. Compost is
the well decomposed organic matter obtained by aerobic/anaerobic decomposition. To
prepare fertilizer for agricultural fields, some of the organic matter from household waste
can be used. Eggshells, coffee grounds, coir, garden waste leaves, manure, tree bark,
vegetables waste can be effectively used for composting. Compost is commonly
suggested as an improver to growing media as a tilth improver, providing humus and
nutrients. It is rarely used alone, but to achieve better results, it is mainly mixed with soil,
sand, bark chip, cocopeat, and perlite to get better results.

For example, food waste has been loading up on Earth over the years. Then again,
home-planting has been a development that the government has supported. Eggshell
due to its nutrient content has the ability to become fertilizer for plants.

413

e-Prosiding Festival Agro Makanan Dan Bioteknologi 2020 (E-FAMB2020)

2. LITERATURE REVIEW

Growing media are media in which plants are grown, other than soils on site. Growing
media is not only a place where seeds are planted and seedlings are raised, but also a
plant nutrient supply and reservoir. Organic materials such as peat, compost, tree bark,
coconut (Cocos nucifera L.) coir, poultry feathers, or inorganic substances such as clay,
perlite, vermiculite, and mineral wool may be used (Grunert et al., 2008; Vaughn et al.,
2011). The terminology of growing medium is used to define the material used in a
container to grow a plant. The terms ‘substrate’ (Schroeder, Sell, 2009; Vaughn et al., 2011)
and ‘rooting medium’ (Blok, Verhagen, 2009) are also used as substitutes of growing
media. Some people still use the term ‘compost’ in the same situation.

It is not just household practice to utilize eggshell waste. Scientific studies actually
support the utilization. It is possible to use eggshells as fertilizer (Hamester et al., 2012; Faridi
and Arabhosseini, 2018). The capacity for eggshell use is due to the stored materials. There
is also organic and inorganic matter in the eggshell. Calcium carbonate is the key
component that shapes the hard-eggshell structure (Hincke et al., 2012). As for nutrients,
there are macronutrients and micronutrients in the eggshell that are important for the
growth of plants. As macronutrients, there are potassium, nitrogen, calcium, magnesium
and phosphorus (Cusack et al . , 2003; Rovenský et al . , 2003; Brun et al . , 2013; Makkar et
al., 2015). Chloride and zinc as micronutrients are also found in Eggshell (Barker and
Pilbeam, 2007).

3. RESEARCH METHODOLOGY

The study was conducted under the rain shelter at Agroteknologi & Bio-industri
Department in Politeknik Nilai. The study was laid out with four treatments repeated five
times. The four-growth media (cocopeat as control, food waste mix with cocopeat, wood
waste mix cocopeat and green waste mix with cocopeat) were used. The food waste
mixes were contained of egg shells and crab shell, wood waste from small pruning while
green waste for dry leaves. In order to determine seedling emergence, mustard seeds
were sown on 100 cell seedlings tray. Then the following parameters of growth and
development were measured; leaf number, height of the plant, pH media and absorption
of water (water holding capacity).

T1

T2

414

e-Prosiding Festival Agro Makanan Dan Bioteknologi 2020 (E-FAMB2020)

T3

T4

Figure 1: Shows preparation of compost media. Compost component were mixed with
coco peat by using the ratio of 1:1. Four treatments were arranged with five replications.

T1 : Coco peat (control)
T2 : Coco peat + wood waste

T3 : Coco peat + dry leaves
T4 : Coco peat + food waste (egg shells, crab shells)

4. RESULT AND DISCUSSION

T1 T2

T3 T4

Figure 2: Shows result after 24 days after transplanting in different component compost
media.

415

e-Prosiding Festival Agro Makanan Dan Bioteknologi 2020 (E-FAMB2020)
Table 1: Shows result for water absorption in different component compost
media
Table 2: Shows result for pH reading in different component compost media

416

e-Prosiding Festival Agro Makanan Dan Bioteknologi 2020 (E-FAMB2020)

Figure 3: Shows time versus plant height in different compost component.

Figure 4: Shows time versus number of leaves in different compost component.
From data collected, T1 and T2 have showed stagnant growth on plants height from day
12, while its number of leaves also has stagnant growth. The stagnant growth started from
day 12 until day 24 of this experiment. Number of leaves declines from 5 to 4 and continue
to be stagnant at 3 for T3, meanwhile T1 and T2 also gave the decrease reading from 4 to
3 numbers of leaves respectively. The result shows decrease number because the
nutrients available in the media were insufficient for the development of this Brassica sp.
Results shows highest plant growth in media cocopeat mixing with egg and crab shells
compared to the following three growing media for the entire study period. This growing
media have alkaline reading at 7.7 have highest water absorption, highest plant height,
highest number of leaves.

Conclusion

Compost creating from various organic wastes was considered as a valuable and
excellent partial substitution for peat in term of its high plenty and as an improver of soil
characteristics and plant growth in horticulture. Therefore, mixture of cocopeat with egg
and crab shell media is recommended as the most desirable growing media for raising
mustard seedlings.

417

e-Prosiding Festival Agro Makanan Dan Bioteknologi 2020 (E-FAMB2020)

REFERENCES

Barker, A.V. and D.J. Pilbeam (2007). Handbook of plant nutrition. Boca Raton, United
States: CRS Press. pp: 305.

Cusack, M., A.C. Fraser and T. Stachel (2003). Magnesium and phosphorus distribution in
the avian eggshell. Comparative Biochemistry and Physiology Part B: Biochemistry
and Molecular Biology, 134(1): 63-69. Available at: https://doi.org/10.1016/S1096-
4959(02)00185-9.

Faridi, H. and A. Arabhosseini (2018). Application of eggshell wastes as valuable and
utilizable products: A review. Research in Agricultural Engineering, 64(2): 104-114.

Grunert O., Perneel M., Vandaele S. (2008). Peat-based organic growbags as a solution to
the mineral wool waste problem// Mires and Peat. vol. 3, p. 1–5

Hamester, M.R.R., P.S. Balzer and D. Becker (2012). Characterization of calcium carbonate
obtained from oyster and mussel shells and incorporation in polypropylene. Materials
Research, 15(2): 204-208.Available at: https://doi.org/10.1590/s1516-
14392012005000014.

Hincke, M.T., Y. Nys, J. Gautron, K. Mann, A.B. Rodriguez-Navarro and M.D.
Mckee (2012). The eggshell: Structure, composition, and mineralization.
Frontiers in Bioscience, 17: 1266-1280.Available at:
http://dx.doi.org/10.2741/3985.

Nair A., Ngouajio M., Biernbaum J. (2011). Alfalfa-based organic amendment in peat-
compost growing medium for organic tomato transplant production // HortScience.
vol. 46, p. 253–259

Vaughn S. F., Deppe N. A., Palmquist D. E., Berhow M. A. (2011). Extracted sweet corn
tassels as a renewable alternative to peat in greenhouse substrates // Industrial Crops
and Products. vol. 33, p. 514–517

418

e-Prosiding Festival Agro Makanan Dan Bioteknologi 2020 (E-FAMB2020)

DETERMINING THE SUITABLE REVOLUTIONS PER MINUTE (RPM) FOR
MAXIMUM MEDIA MOISTURE CONTENT USING ROTAPONIC SYSTEM

Nik Salwani Binti Nik Yusoff, Hasmidah Binti Md Isa, Tony Ontok
Politeknik Sandakan Sabah

Education Hub, Batu 10, Jalan Sungai Batang,
90000 Sandakan, Sabah
*[email protected]

Abstract. The rotaponic system is derived from an automatic rotating pot. This system does not
require piping installation compared to aquaponics and hydroponic system. The system is built
with features such as 12 potted plants installed and able to accommodate up to 40 liters of
water. The rotaponic system is using the concept of rotation technique, which will provide
moisture to the planting media at each rotation that has been set earlier. The objective of this
study was to determine the appropriate rotational speed for the maximum moisture content
of planting media. This system is equipped with 12 plant pots measured 9cm diameter and filled
with 100g dry clay aggregate as planting media. The results showed that the average moisture
content readings were 24%, 25.78%, and 27.24% for 11rpm, 15rpm and 20rpm respectively with
three replications. Based on the analysis that has been made, the maximum moisture content
of the media is 27.24% with 20 rotations per minute (rpm). From this finding, it can be explained
by the fact that the rotaponic system is expected to be applied in soilless crop cultivation as a
new approach method that may lead to more ergonomic structures and designs.

Keywords: planting media, hydroponic, aquaponics

1. INTRODUCTION

Modern agricultural systems which are hydroponics and aquaponics nowadays become
popular especially in the urban area (Bridgewood, 2003). The hydroponic system is the method
to growing the crop in a certain medium or nutrient solution with added nutrients and without
soil, while, aquaponics is the combination of aquaculture (raising fish) and hydroponics (soilless
plant cultivation) that grow fish and plants in one integrated system (AlShrouf, 2017). However,
both system requires a lot of piping which may lead to some problems, especially during the
harvesting period. For instance, the system easily clogged and cause inefficient nutrient
delivery to plants and it is also difficult for the cleaning and maintenance process (Godek, Boris
, Utra , & Kristin , 2015). To overcome this issue, the rotaponic system is built to facilitate in the
long-term maintenance. The rotaponic system is derived from an automated rotating pot. The
system is built with features such as 12 potted plants that are installed and able to
accommodate 40 liters of water. This system does not require piping installations just like
aquaponics and hydroponic which requires nutrient delivery. Instead, this the rotaponic system
is using the concept of rotation technique, which will provide moisture to the planting media
at each rotation that has been set earlier. The objective of this study was to determine the
appropriate rotational speed for the maximum moisture content of planting media. In this
project, clay aggregates were chosen as a planting media since it is one of the common types
of media used in soilless culture.

2. LITERATURE REVIEW AND HYPOTHESIS

Water is important for the plant growth. The plant needs water for normal plant functions and
growth performance. Without received enough water the plant gradually wilts, stops growing,
and dies. Usually, the rate of the plant takes up water is controlled by several factors such as

419

e-Prosiding Festival Agro Makanan Dan Bioteknologi 2020 (E-FAMB2020)
physical characteristics, the atmosphere, and soil environment. The water that enters the roots
of the plant will not stay for too long, this is because the water will be used for other processes
by plants such as photosynthesis, and the rest of the water moves to the leaf surfaces, where it
transpires (evaporates) to the atmosphere (Scherer, Cihacek, & Franzen, 2013).

The selection of media is important for the plant as it affects growth performance and
production (Roosta & Afsharipoor, 2012). Cultivating plants without soil is an alternative growing
media for planting the crop. Rockwool, perlite, coconut peat, and sand are the most common
planting media that are available. Each of them has advantages and disadvantages. The
selection of substrates is depends on variables such as porosity, water-holding, cation
exchange capacity, and some others (AlShrouf, 2017). According to (Aatif, Kaiser, Showket,
Prasanto, & A. K, 2014), the media chosen must be lightweight, friable, good water-holding
capacity, and drained easily. The media also must be free-chemicals, pests, and
microorganism infections.

This initiative is taken to design a soilless culture system with the same concept of
hydroponic and aquaponics system which is an automated rotating pot (rotaponic system). In
the the rotaponic system, the media has been used was clay aggregate. According to (Siamak
& Shervin, 2008), clay aggregates has good water-draining properties, and it is much lighter
than gravel, so it is easier to transport and filtrate the waste. Moreover, it has good resistance
against fungus. So it is suitable to be used in hydro cultural cultivation in flowerbeds. Since the
rotaponic system was the new system, the data of moisture content were test in this system to
determine the efficiency of the rotaponic system in maintaining the moisture content of
planting media (clay aggregate).

Figure 1: Prototype of the project

420

e-Prosiding Festival Agro Makanan Dan Bioteknologi 2020 (E-FAMB2020)

Figure 2: Prototype design using Autodesk Inventor software
Figure 1 shows the prototype of the project. The functionality of the system was tested
and demonstrated in a small scale-area. Meanwhile, figure 2 shows an isometric view of the
overall design of the system. The rotaponic system was designed with 80cm length, 60 cm width
and 45cm height. The characteristics of the rotaponic system are equipped with 12 pots for
planting the crop, the tank can load with 40 liters of water and the system was space-saving
with an automated rotating system.

3. METHODOLOGY

This project was demonstrated in a small scale-area at Nursery Politeknik Sandakan Sabah.
There are three main parts of this system which are tank for water installation, mild steel frame
for plant pot installation, and motor mounted on the frame as a power supply to rotate the
plant pot. The size of the polyethylene tank used is 58cm (length) x 45cm (width) x 35cm
(height) and filled with 40 liters of water to replace liquid fertilizer. The hexagon-shape frame
made of mild steel were used as the main component to hold 12 plant pots measured 9cm
diameter and 12cm height that attached to it. 100g of dry clay aggregates as planting media
were installed in every pot. The sprockets attached to the motor are rotating as the shaft is
rotated. The sprocket is used to control he speed of the rotation of the system when it triggers
by the DC motor. Therefore, the frame will rotate when the power supply is performed at a
desirable revolution per minute (rpm). Complete specifications of the system have been stated
in Table 1.

421

e-Prosiding Festival Agro Makanan Dan Bioteknologi 2020 (E-FAMB2020)

Tank System Specifications
Motor
Frame Type: polyethylene
Plant pot Size: 58cm (P) x 45cm (L) x 35cm (T)
7.5V, 9V, 12V
Sprocket
Bearing Type: hollow mild steel
Size: 72cm (L) x 51cm (W) x 45cm (H)

Type: plastic
Size: 5cm diameter, 9cm height
Quantity: 12 pots
14.5cm diameter
5.5cm diameter

Table 1: System Technical Specifications

As the pot is reached the water surface inside the tank, planting media retained water,
making the bottom layer saturated. In this case, the roots of the plant will be submerged for a
while. Three different revolutions per minute (rpm) values; 11rpm, 15rpm, and 20rpm are used
to assess the system’s efficiency. The rpm rate determination is made based on the facilities
available at Politeknik Sandakan Sabah. The flowchart of the project has been shown in Figure
3. The moisture content measured was taken three times at each rpm. The average moisture
content of clay aggregates has been recorded for every revolution per minute (rpm). The
method of moisture content of planting media is calculated by using formula from (ASTM,
2001).

Where;
w = moisture content
Mw = dry sample weight – wet sample weight
Ms = dry sample weight

422

e-Prosiding Festival Agro Makanan Dan Bioteknologi 2020 (E-FAMB2020)

Figure 3: Flowchart of the project

4. ANALYSIS AND RESULT

The data for three different rpm is recorded in the graph. Based on the graph in Figure 4, this
system shows that the planting media is capable of holding water at all three rpm rates. Based
on the data collection, the best results showed that the average moisture content reading was
27.24% for 20 rotations in 1 minute. This indicate that if the rotational frequency increase, the
percentage of moisture content of the planting media increase. In this study, the highest value
of the average moisture content of planting media is 27.24 % for 20 RPM, which is the highest
RPM used. Compared to 25.78% for 15 RPM, and 24 % for 11 RPM. The 27.24 % of moisture
content is chosen as the most appropriate moisture for the plant. Based on the previous study,
all the essential nutrients supplied to soilless culture plants are in the form of nutrient solution,
which fully dissolved in water. According to (Aatif, Kaiser, Showket, Prasanto, & A. K, 2014), the
soilless culture methods enable to control of the amount of nutrient supply to the plant by
changing or adjusting the nutrient solution to suit the plant growth and provide them in
balanced amounts. Good planting media moisture can increase the metabolism that occurs
in plants so that plant growth and plant weight increase because the process of nutrient
absorption by the planting medium goes well (Charitsabita, Endang, & Didik , 2019). This is
agreed by (Milda, Djukri, & Suryadarma, 2017) which states that the media can readily absorb
the N and P elements used for plant growth at good humidity of the planting medium.

423

e-Prosiding Festival Agro Makanan Dan Bioteknologi 2020 (E-FAMB2020)

RPM versus moisture content (%)

Moisture content (%) 30 25.78 27.24
25 24

20

15

10

50
0

11 15 20

Revolution per minute (rpm)

Figure 4: Percentage of moisture content at 11rpm, 15rpm, and 20rpm

5. CONCLUSION

Based on this study, the rotaponic system showed the highest percentage of moisture content
obtained was 27.24%. This percentage is the highest based on the three RPM values tested in
a small-scale prototype. Further research and development of this system should be taken to
determine the performance of the rotaponic system in a bigger scale area. This system is
expected to be applied in soilless crop cultivation as a new approach method that may lead
to more ergonomic structures and designs.

REFERENCES

Aatif, H., Kaiser, I., Showket, A., Prasanto, M., & A. K, N. (2014). A Review On The Science Of
Growing

Crops Without Soil (Soilless Culture) - A Novel Alternative For Growing Crops.
International Journal of Agriculture and Crop Sciences, 833-842.

ASTM. (2001). Determining the moisture content of soil (Conventional Oven Method).
West Conshohocken United State: Copyright America Society.

AlShrouf, A. (2017). Hydroponics, aeroponic and Aquaponiv as Compared with Conventional
Farming. 247 American Scientific Research Journal for Engineering, Technology, and
Sciences (ASRJETS), 247-255.

Bridgewood, L. (2003). Hydroponics: Soilless gardening explained. Ramsbury, Marlborough,
Wiltshire: The Crowood Press Limited.

Charitsabita, R., Endang, D., & Didik , W. (2019). Respon Pertumbuhan dan Hasil Tanaman
Pakcoy

(Brassica rapaL.) secara Hidroponik dengan Berbegai Jenis Media Tanam danAerasi
Berbeda. Jurnal Pertanian Tropik, 270-278.

Godek, S., Boris , D., Utra , M., & Kristin , V. R. (2015). Challenges of Sustainable and Commercial
Aquaponics. Sustainability, 4199-4224.

Milda, N. A., Djukri, & Suryadarma, I. (2017). Pengaruh lumut (Bryophyta) sebagai komposisi
media

tanam terhadap pertumbuhan dan produksi tanaman sawi hijau (Brassica junceaL.).
Perodi Biologi, 1-13.

424

e-Prosiding Festival Agro Makanan Dan Bioteknologi 2020 (E-FAMB2020)
Roosta, H. R., & Afsharipoor, S. (2012). Effects Of Different Cultivation Media On Vegetative

Growth, Ecophysiological Traits. Advances in Environmental Biology, 543-555.
Scherer, T., Cihacek, L., & Franzen, D. (2013). Soil, water and plant characteristics important to

irrigation. Fargo, North Dakota: research gate.

425

e-Prosiding Festival Agro Makanan Dan Bioteknologi 2020 (E-FAMB2020)

STUDY OF NATURAL FIBER BEHAVIOR FOR OIL SORPTION

Hafsah Binti Kastu, Aina Fathiah Binti Zuhaidi

Department of Chemical and Food Technology
Politeknik Tun Syed Nasir Syed Ismail

Pagoh Edu Hub, Km 1, Jalan Panchor, 84600 Muar, Johor
*[email protected]

_

Abstract. The objective of this study is to review research works done on oil sorption behavior
of natural fiber sorbents for oils and oil spills. When oil comes into contact with water, it forms
oil-in-water emulsion or floating film that need to be removed before it is discharged into the
environment. Among existing techniques, the use of sorbents is generally considered to be the
most efficient materials for combating of oil. This review is to compare kapok, coconut and
sago sorbent behavior emphasis on the characteristics of oil sorbent materials, oil sorption
capacity and morphology analyses. The study shows, the ability of coconut fiber was effective
for the removal of oil. It is suggested that, the oil sorption characteristics of sorbents can be
further enhanced by simple hydrophobic modification.

Keywords: sago fiber, coconut fiber, kapok fiber, oil sorbents,

1.0 INTRODUCTION

Oil is a very complex mixture of many different chemicals and a mixture of components consist
of different hydrocarbons that range from light gas (methane) to heavy solids with different
properties. When oil is spilled on water or on land, the physical and chemical properties of oil
change progressively. This process is referred to as ‘weathering’. These physico-chemical
changes enhance oil dissolution in sea water. The weathering process includes evaporation,
dissolution, dispersion, photochemical oxidation, microbial degradation, adsorption onto
suspended materials and agglomeration.

In practice, cleaning up an oil spill is an economical problem. It is uneconomical to
store large quantities of sorbents material that are used to clean up the oil spill and their
disposal. The use of sorbents made from organic materials does not cause additional problems
in the disposal of the spilled oil. Sorbent is an insoluble material or mixture of materials used to
recover liquids through the mechanisms of absorption or adsorption, or both.

The objective of this study is to review research work done on oil sorption behavior of
fiber based sorbents and test methods for oil sorbents. Many researchers have demonstrated
that unscoured and unbleached natural fibers such as milkweed, kapok and cotton have
great potential as sorbents in oil spill cleanup over commercially available synthetic materials.

The use of these natural fibers resulted in 1.5-3.0 times greater oil sorption, depending
on the nature of the studies, than commercial polypropylene fibers or mats which is mostly used
for oil sorption application. Partial or complete replacement of synthetic sorbents by natural
sorbents could offer other benefits such as biodegradability.

Kapok is a kind of natural plant fiber that has low density, good buoyancy, huge
hollowness and excellent hydrophobicity. These unique characteristics endow kapok fiber with
higher oil sorption capability compared with common natural fiber and commercial oil
absorbent. However, the smooth surface fiber surface due to the coverage of a small amount
of waxy coating makes it difficult to effectively retain oil to fiber assembly.

426

e-Prosiding Festival Agro Makanan Dan Bioteknologi 2020 (E-FAMB2020)

Coconut fibers contain cellulose, hemi-cellulose and lignin as major composition. These
compositions affect the different properties of coconut fibers. The sago bark contains high in
hemicelluloses and lignin which is can be used for oil removal or to bond the oil with sago bark
because oil is hydrophobic. Based on this physical characteristic, sago bark can be used for
adsorbent in column sorption to reduce or to interact with oil.

2.0 METHODOLOGY

2.1 Sorbent and Oil

Sorbents are the materials that soak up liquid. They can be used recovered oil through the
mechanism of absorption, adsorption or both. The characteristics of an ideal sorbent material
used for oil spill cleanup include hydrophobicity or oleophilicity, high uptake capacity and high
rate of uptake of oil, buoyancy and retention over time. Oil materials sorbent used in this
experiment are kapok, coconut and sago fiber. The heavy oil have used as to evaluate the
ability of sorption process.

2.2 Characterization of Sorbent

The properties of the reaction product were characterized by FTIR, using Nicolet Magna-IR 750
series II, spectrometer. Prior to recording the spectra, the modified fiber samples were washed
by extraction with hexanes for 12 hours and a further 12 hours with water as for the unmodified
fiber (blank), it was dried in an oven for 12 hours at 110˚C. The analyses were run using potassium
bromate (KBr) pellet technique, KBr was also employed as the reference material to acquire
background.

2.3 Morphology Analyses

Scanning Electron Microscopy (SEM) analysis was conducted to compare the surface
morphology of kapok, sago and coconut fiber. Samples were sputter coated with gold prior to
scanning using scanning electron microscope (Model: JEOL JSM-6390LA). Samples were
examined by SEM to evaluate a possible degradation effect induced by treatment and to
determine the effect of the treatment on the interfacial interaction of the fibers.

2.4 Sorption Capacity Test

In simple test, 40g of oil is placed in 400ml of demineralized water (pH 6) inside 800ml glass
beaker. One gram of dry material is then placed in the beaker and shaken in laboratory shaker
at frequency of 110 cycles/min for 15 min. water content is determined by distillation using a
mixture toluene and xylene as a solvent. This test can also be done for sea water and without
water medium. The oil sorption capacity (q) is determined by the following relationship:

교 1. 교 = −( + )

where mf is the weight of the wet material after draining (g); mo, the initial weight of the material
(g); and mw the water content in the material (g).

427

e-Prosiding Festival Agro Makanan Dan Bioteknologi 2020 (E-FAMB2020)

3.0 FINDINGS

3.1 Characterization of sorbent
Fourier transform infrared spectroscopy (FTIR) was used to determine the vibration
wavenumber changes in the functional groups of carbons. The fundamental wavenumber
observed for the adsorbents namely kapok, coconut and sago fiber, before and after sorption
process.

Figure 1(a): FTIR for Coconut Fiber

Figure 1(b): FTIR for Sago Fiber

428

e-Prosiding Festival Agro Makanan Dan Bioteknologi 2020 (E-FAMB2020)

Figure 1(c): FTIR for kapok fiber

The FTIR analysis given in Figure 1(a) shows peaks at 2929.92 cm-1 (C-H stretch), 1743.82
cm-1 (C=O stretch) and 1639.25 cm-1 (NH2 deformation). It is clear that the adsorbent displays
a number of absorption peaks. These change observed in the spectrum indicated the possible
involvement of those functional groups on the surface of the coconut fiber in sorption process.
FTIR spectra for sago fiber is presented in Figure 1(b) exhibits the characteristics signals of
lignocellulosics, which include a broad peak from the cellulose hydroxyl groups (OH) at 1726.65
cm-1, corresponding to the carbonyl groups (C=O) of both the acetyl ester and the carbonyl
aldehyde groups of hemicelluloses and lignin, respectively. The peaks at 2926 cm-1due to
vibrations of the C-H (methyl groups) and 1645.95 cm-1 (NH2 deformation). The FTIR spectra of
kapok fiber are show in Figure 1(c), the band at 2914cm (asymmetric and symmetric stretching
vibration of CH2 and CH3) in raw fiber.

Table 1: FTIR Spectra of The Studied Fibers

Sample Peaks (cm-1) Functional Group
Coconut fiber 2929.92 C-H stretch
1734.82 C=O stretch
Sago fiber 1639.25
2926.23 NH2 deformation
Kapok fiber 1726.65 C-H stretch
1645.95 C=O stretch

2930.00 NH2 deformation
1742.00
1373.00 C-H stretch
C=O stretch
NH2 deformation

FTIR spectra of the three fiber is presented in table above. The fibers exhibits the
characteristics signals of lignocellulosics, carbonyl groups (C=O) of both the acetyl ester and
the carbonyl aldehyde groups of hemicelluloses and lignin respectively. Based on this physical
characteristic, the studied fibers can be used for adsorbent to adsorb oils or oil spills.

429

e-Prosiding Festival Agro Makanan Dan Bioteknologi 2020 (E-FAMB2020)
3.2 Morphology analyses
Scanning Electron Microscopy (SEM) analysis (magnification ×25000) was conducted to
compare the surface morphology of natural fiber before and after the sorption process. The
surface roughness with suitable microstructure can affect oil sorption capacity of natural fiber.

Figure (1a) SEM images for raw CF (1b) SEM images for oil loaded CF
Figure 2 (a): SEM Images For Raw CF; 2(b) SEM Images For Oil Loaded CF
Figure 2(a) and 2(b) shows the SEM micrographs of coconut fiber (CF) sample before
and after adsoption process. The coconut fiber exhibits a caves-like, uneven and rough surface
morphology. The surface of oil loaded adsorbent, however shows that the coconut fiber is
covered with oil molecules.

Figure (2a) SEM images for raw SB (2b) SEM images for oil loaded SB
Figure 3 (a): SEM images for raw SF; 3(b) SEM images for oil loaded SF
Figure 3(a) showed a smooth surface, uneven surface and slightly rough structure
existed on fiber surface for raw sago fiber (SF). After the adhesion process involved in the
experiment, oil adhered were detected on the sago surface. Figure 3(b) was covered by a
layer of oil substance, indicating successful attachment of oil on sago surface. The rough
surface areas contribute to ability of sago fiber to adsorbed oil.

430

e-Prosiding Festival Agro Makanan Dan Bioteknologi 2020 (E-FAMB2020)

Figure 4(a): SEM images for raw KF; 4(b) SEM images for oil loaded KF

Figure 4(a) which is raw kapok fiber (KF) showed a very smooth surface and no any
coarse structure existed on fiber surface. Figure 4(b) obviously demonstrates that kapok fiber
shows uneven surface and clearer unevenness can be observed from SEM images with high
magnification. The modification roughens remarkably the fiber surface and then is conductive
to the adhesion of oil to the fiber surface.

SEM results showed smooth surface, uneven surface and slightly rough surface structure
existed on natural fiber surface. Fig. 2(b),3(b) and 4(b) was covered by a layer of oily
substance, indicating successful attachment of oil on natural fibers. Rough surface morphology
and entangled pore structure of sorbent surfaces are also desirable and linked to high sorption
capacity. Such morphology and structure provide more actives sites oil adsorption rather than
smooth surfaces.

3.3 Sorption Capacity

Table 2 shows the test of sorption capacity and the important of controlling granulometry when
comparing the results for different on the availability of surface area per gram sorbent. The
method of testing sorption capacity is useful to determine the maximum amount of oil
adsorbed by a particular sorbent.

Table 2: Oil Sorption Capacity of The The Studied Fibers

Absorbing fiber Sorption Capacity
(g/g)
Coconut fiber 70.92
Sago fiber
Kapok fiber 10.5

38.1

The difference in mass of the sorbent, expressed as g of oil per g of sorbent, give the
amount of oil picked up by the sorbent on its initial exposure. Coconut fiber gives the higher
sorption capacity compared to sago and kapok fiber. This is due to functional group
composition and rougher surface area.

431

e-Prosiding Festival Agro Makanan Dan Bioteknologi 2020 (E-FAMB2020)

4.0 CONCLUSIONS

It has been found that there is a great potential for sorbents made from natural fibers to replace
synthetic oil sorbents. There is indeed a great scope in realizing a clean environment free from
pollution with the use of natural fiber based oil sorbents. But still the commercialization of natural
fiber based material from kapok, sago and coconut fiber is a great challenge due to difficulty
in forming these fibers to a predetermined structure like polypropylene melt brown oil sorbents.
Concerted efforts are needed to structure suitable for their use as environment-friendly oil
sorbents. The study shows that the fibers had an oil sorption capability in oil/water mixture based
on the physicochemical characterization. The fibers contain high in hemicelluloses and lignin
which is can be used for oil removal. The rough surface area of the fibers contributes to ability
to adsorbed oil. The study shows, the ability of coconut fiber was effective for the removal of
oil.

5.0 RECOMMENDATIONS AND IMPLICATION

The efficiency of kapok, coconut and sago as an adsorbent can achieve the optimum level
of sorption if modification on fiber surface. The ability of fiber to attract or oleophilic
characteristic can be increase by undergo esterification reaction with fatty acid. The ester
group in fiber will bind with water and more hydrophobic. The particles size of fiber also will
influence the sorption process. The smaller size of adsorbent will give high surface area. Thus it
will increase the oil removal efficiency. Functional group alteration also can be done to
increase the sorption capability. The oil sorption capacity of natural fiber can be further
enhanced by simple hydrophobic modification. Various existing methods for its treatment and
removal were discussed. In the oily wastewater chemistry, cost effectiveness, space availability
and discharge plans. Natural fibers are among the alternatives for oily wastewater treatment
for their simplicity, excellent oil removal properties, environmentally friendly characteristics and
easy availability and feasibility.

REFERENCES

A.A.Ansari,A.J.C.EastD.J..Johnson, J.Text Inst.94 (part1/2)(2003)1.

A.H.R.K.Pasila, Molecular Crystal Liquid Crystal,353(2000)1.

Borm-Goo Lee, S.H.James,M.R.Roger, Kenaf propertie,Processing and product, Mississipi State
University,(1999)423.

F.K. Paul, Spill Sci Technol Bull, 7(1)(2002)53.

G.Gardea-Hernandez,R.Ibarra-Gomez,S.G.Flores-Gallardo,C.A.Hernandez-Excorbar,P.Perez-
Romo, E.AZaragoza-Contreras. Fast wood fiber esterification. I. reaction with oxalic
acid and CetylAlcohol.Carbohydrate Polymers71.(2007).1-8.

M. Husseien, A.A.Amer, A.El-maghraby,N.A.Taha, Int J.Environ Sci Technol, 6(1)(2009)123.

M.A. Abdullah, A.U. Rahmah, Z. Man, Physicochemical and sorption characteristics of
malaysian Ceiba penrandra (L) Gaertn. As a natural oil sirbent, J.Hazard.Master.177
(2010) 683-691.

Q.F.Wei,R.R.Mather, A.F.Fotheringham,R.D.Yang,Marine PollutionBull,46(2003)780.

X.F.Huang, T.T.Lim, Performance and mechanism of hydrophobic-oleophilic kapok filter for
oil/water separation,Desalination 190 (2006) 295-307.

432

e-FESTIVAL AGRO MAKANAN DAN BIOTEKNOLOGI 2020

JAWATANKUASA PELAKSANA PROGRAM E-FAMB 2020

PENGERUSI PROGRAM Ts Noor Aidi Bt Nadzri (BK, JPPKK)
Dr. Ishak Bin Mohamad (PPI, JPPKK)
Tn. Hj. Abdul Razak bin Senan (PTSN)

TIMBALAN PENGERUSI Pn. Rohaniah Bt. Mohd Nor (JPPKK)
PROGRAM Dr. Mohd Affandi bin Mohd Ali

PENGARAH PROGRAM Dr. Hj. Nor Hairul bin Palal
SETIAUSAHA Pn Nurul Hayati Binti Jamil
BENDAHARI Puan Amalina Kamilah Binti Ibrahim (JPPKK)
Pn Syahirah Binti Yahya(K)
PENYELARAS E-FAMB 2020 Cik Azila Binti Maskam
POLITEKNIK DAN KOLEJ Encik Zulhairie Adni Bin Abdul Halim (JPPKK)
KOMUNITI Pn Azwin Binti Ahmad (K)
En Mohd Fahmi Bin Mohd Zin
Cik Nurfadzlina Binti Jamaluddin (JPPKK)
Hafsah binti Kastu
Muhammad Hafizzudin Bin Razli (Politeknik Tun Syed Nasir)
Ahmad Yazid Bin Rahman (Politeknik Nilai)
Nik Hairiah Binti Nik Mohamad Ravi (Politeknik Sultan Haji Ahmad Shah)
Masitah Binti Mohamad (Politeknik Jeli )
Imran Affandi Bin Baki (Politeknik Sandakan)
Anis Mastura Binti Ahmad Fuad (Kolej Komuniti Lahad Datu)
Nor Shakira Binti Isa (Kolej Komuniti Rembau)
Maziidah Binti Ab Rahman (Kolej Komuniti Bera)
Rahiza Shima Binti Ramli (Kolej Komuniti Bagan Serai)
10. Jalani Bin Jasa (Kolej Komuniti Pasir Salak)
11. Saiful Azley Bin Samsudin (Kolej Komuniti Arau)
12. Nurul Fithrah Binti Husain (Kolej Komuniti Tambunan)
13. Nurul Nadiah Binti Shahrom (Kolej Komuniti Sik)
14. Nor Azila Binti Mohd Anuar (Kolej Komuniti Sabak Bernam)
15. Nor'akma Binti Osman (Kolej Komuniti Masjid Tanah)
16. Sharifah Norakhil binti Syed Loed (Kolej Komuniti Jelebu)

433

e-FESTIVAL AGRO MAKANAN DAN BIOTEKNOLOGI 2020

JAWATANKUASA Pn. Sazaliana Binti Sapian (K)
PERTANDINGAN Pn. Aina Fathiah Binti Zuhaidi
PRODUK/PROJEK INOVASI Pn. Siti Nor Shidah Binti Kostor
Pn. Rahimawati Binti Abdul Rahim
JAWATANKUASA Pn. Nor Hashina Binti Bahrudin
SEMINAR E-FAMB Cik Dewi Nilam Rupa'a Binti Razali
Pn. Rusyidah Binti Mat Zin Boestami
JAWATANKUASA Cik Dina Izzaty Binti Moohyiddin
KEUSAHAWANAN En. Nor Azian Bin Nordin @ Radin
JAWATANKUASA MAJLIS En. Muhamad Hisammuddin Shah Bin Zainal Abidin
PENUTUP En. Muhamad Hafizuddin Bin Razli
JAWATANKUASA PENGADILAN En. Mohammad 'Azim Bin Jamaluddin
DAN PENJURIAN Cik Hasyireen Binti Abdul Halim (K)
JAWATANKUASA JEMPUTAN Mr. Leong Kok Seng
DAN PENDAFTARAN Cik Sunatrah binti Abdullahyi
JAWATANKUASA MULTIMEDIA Pn. Nurhazwani Binti Saleh
& TEKNOLOGI MAKLUMAT Pn. Fazlina binti Yunus
JAWATANKUASA HADIAH DAN Pn. Nor Azrin binti Ahmad Kurnin
CENDERAMATA
Dr. Abdullah Atiq Bin Arifin
JAWATANKUASA WEBINAR
JAWATANKUASA Pn Nur Hawa Binti Thaharuddin
BUKU PROGRAM Mrs. See Hui Yong
JAWATANKUASA Dr Dulina Binti Tholibon (K)
En Hairman Bin Omar (Keusahawanan )
Pn Junainah Binti Mustapha (Inovasi)
Cik Hafsah Binti Kastu (keusahawanan)
Pn. Zuraini Binti Mohd Safuan (Seminar)
En Mohd Adil Hakam Bin Osman
Pn Siti Nor Silmi Binti Nordin
Cik Nor Aziyan Binti Mohd Nasir (K)
Pn. Nurul Amirah Binti Khalid
Cik Nor Farihah Binti Adnan (Keusahawanan)
Pn. Shariffah Nur Jannah binti Syed Zainol Abidin (Seminar)
Pn. Nor Dina Binti Sakaria
Mr. Harvintha Reddy A/L Athinarayanan (Inovasi)
Pn. Zain binti Retas (Seminar)
Pn Siti Norhazirah Binti Rahim (K)
En Mohamad Afifi Bin Ismail
Pn Khairedza Rahmi Binti A. Hamid (K)

434

e-FESTIVAL AGRO MAKANAN DAN BIOTEKNOLOGI 2020

SIJIL En. Shamsul Baharin Bin Mohamad @ Ariff (Seminar)
Cik Nor Farihah Binti Adnan (Keusahawanan)
JAWATANKUASA Pn. Azierah Zawiyyah Binti Azmi (Inovasi) (K)
E-PROSIDING Pn Siti Nazurah Binti Md Zaid (Seminar)
Anis Sakinah binti Zainal Abidin
JAWATANKUASA Zaihasrah binti Masron
TEKNIKAL & SIARAYA Halimatul Sa’diah Binti Talid
Rahizana Bt Mohd Ibrahim
JAWATANKUASA MAKANAN Faiznur Izzaty Binti Sulaiman Shah
Dr. Syaripah Za’imah Binti Haji Syed Jaafar
Dr. Khairunnisa Binti A. Rahman (K)
En Khairil Fazly Bin Bachok
En. Nor Rasid Bin Tumiran
En Muhammad Habibullah Bin Yahaya
En Wan Ahmad Fikri Bin Wan Aziz
En Shahanaz Razeme Bin Kamaruddin
En Hanif Bin Ahmad

Pn. Nabilla Huda Binti Baharuddin

435

e-FESTIVAL AGRO MAKANAN DAN BIOTEKNOLOGI 2020

PENGHARGAAN

Jawatankuasa Festival Agro Makanan dan Bioteknologi (E-FAMB 2020) mengucapkan setinggi-tinggi
penghargaan kepada:

Unit Teknologi Pertanian, Bahagian Kurikulum, JPPKK
Pusat Penyelidikan dan Inovasi (PPI), JPPKK

Politeknik Sultan Haji Ahmad Shah
Politeknik Sandakan
Politeknik Nilai
Politeknik Jeli
Kolej Komuniti Arau

Kolej Komuniti Bagan Serai
Kolej Komuniti Bera
Kolej Komuniti Jelebu

Kolej Komuniti Lahad Datu
Kolej Komuniti Masjid Tanah

Kolej Komuniti Pasir Salak
Kolej Komuniti Rembau

Kolej Komuniti Sabak Bernam
Kolej Komuniti Sik

Kolej Komuniti Tambunan

Dr. Nicole Leong Hong Yeng (Keynote Speaker 1)
Dr. Martha Aznury (Keynote Speaker 2)
Panel Penilai Seminar
Jawatankuasa e-FAMB 2020

Para pembentang seminar dan peserta festival
Semua yang terlibat secara langsung dan tidak langsung bagi menjayakan program e-FAMB 2020 pada

tahun ini

436

e-FESTIVAL AGRO MAKANAN DAN BIOTEKNOLOGI 2020


Click to View FlipBook Version