COMBINATORIC and PROBABILITY PART 11 ʵ¤±~rÝÎÌÔŶ ÊÔÁzur~µÝ ÎÁxÔËrÂÔ¢Ü~±cr 236 Bre ๏ лнр COMBINATORIC AND PROBABILITY>>>>>>>>>>>KRU BIRD
ª·¸Á¦ ¸ ¥´Á¨¸É ¥ ¨³ª·¸´®¤¼n 1. ÁrÁ ºÊ °oÁ ¸É ¥ª´µ¦´ ĵ¦ÎµµÄ Ç ¹ÉÂnÁ} k ´Ê° Ã¥ ´Ê ¸É 1 Á¨º°ÎµµÅo n1ª·¸ÄÂn¨³ª·¸ ° µ¦ÎµµÄ ´Ê ° ¸É 1 Á¨º°ÎµµÄ ´Ê ° ¸É °Åo n2 ª·¸Á}Án ¸ÊÅÁ¦ºÉ °¥ Ç ¹ ´Ê ° ¸É k ¹É¤¸ª·¸Á¨º°ÎµµÅo nkª·¸ ´ ´Ê ¦»Åoªnµ 媪·¸Îµµ ´Ê k ´Ê° = n1 x n2 x n3 x … x nk ª·¸ ³ª°¥nµ 1 ĵ¦Á¨º°Å¡n 1 ĵε¦´ Ä®oÅoÂo¤ 4 ®¦º°Âo¤ 5 ¤¸ª·¸Á¨º°¸Éª·¸ ³ª°¥nµ 2 ĵ¦Á¨º°Å¡n 2 ĵε¦´ Ä®oÅoÂo¤ 4 ¨³Âo¤ 5 ¤¸ª·¸Á¨º°¸Éª·¸ µ¦®µÎµª¸É®µ¦ÎµªÁȤª¨´ª Ä® N o Á} µªÁ Î ¤ªÄ È Ç Á¦µµ¤µ¦Á ¥¸ N Ä®°¥o Ħ ¼n ¨ ¼ ° ¼ µªÁ¡µ³Å Î o´ ¸Ê N = ... 3 3 2 2 1 1 CCC PPP … k k C .P Á¤ºÉ° P1 < P2 < P3 < … < Pk Á}εªÁ¡µ³ ¨³ C1 , C2 , C3, … , Ck Á}εªÁȤª µ¤µ¦¦»Åo´ ¸Ê 1. ¤¸Îµª´ ¸É ®µ¦ N ¨´ª Ánµ´ (C1 + 1) (C2 + 1) (C3 + 1) … (Ck + 1) εª 2. ¤¸ÎµªÁȤ ¸É ®µ¦ N ¨´ª Ánµ´ 2 (C1 + 1) (C2 + 1) (C3 + 1) … (Ck + 1) εª 3. ¤¸Îµª´ ¸ÉŤnÄnεªÁ¡µ³ ¸É ®µ¦ N ¨´ª Ánµ´ (C1 + 1) (C2 + 1) (C3 + 1) … (Ck + 1) εª ³ª°¥nµ 3 ¤¸Îµª´¸Éεª ¸É ®µ¦ 100 ¨´ª ³ª°¥nµ 4 ¤¸Îµª´¸Éεª ¸É ®µ¦ 210 ¨´ª ³ª°¥nµ 5 ε® N = 23 x 34 x 45 x 56 x 62 ¤¸Îµª´¸Éεª ¸É ®µ¦ N ¨´ª ´ª°¥nµ 6 ε® M = 30,000,000 ®µªnµ 1. ¤¸Îµª´¸Éεª ¸É ®µ¦ M ¨´ª 2. ¤¸ÎµªÁȤ¸Éεª ¸É ®µ¦ M ¨´ª 1. ¤¸Îµª´¸Éεª ¸ÉŤnÄnεªÁ¡µ³ ¸É ®µ¦ M ¨´ª ←237 лн8 COMBINATORIC AND PROBABILITY>>>>>>>>>>>KRU BIRD
2 µ¦®µÎµªÁȤª k ¸É¤µ¸É» ¸ÉεĮo ak ®µ¦ n! ¨´ª Á¤ºÉ° a Á}εªÁȤª ¡·µ¦µÁ} 2 ¦¸ ´ ¸Ê 1. a Á}εªÁ¡µ³ª 2. a Á}εªÁȤª ¹É °¥¼nĦ¼¨¼ °ÎµªÁ¡µ³ ³ª°¥nµ 1 ®µÎµªÁȤª k ¸É¤µ¸É»¸ÉεĮo 2k ®µ¦ 20! ¨´ª ³ª°¥nµ 2 ®µÎµªÁȤª k ¸É¤µ¸É»¸ÉεĮo 8k ®µ¦ 100! ¨´ª ³ª°¥nµ 3 ®µÎµªÁȤª k ¸É¤µ¸É»¸ÉεĮo 13k ®µ¦ 2542! ¨´ª ³ª°¥nµ 4 ®µÎµªÁȤª k ¸É¤µ¸É»¸ÉεĮo 6k ®µ¦ 40! ¨´ª ³ª°¥nµ 5 ®µÎµªÁȤª k ¸É¤µ¸É»¸ÉεĮo 35k ®µ¦ 100! ¨´ª ³ª°¥nµ 6 媫¼¥r¸É¨oµ¥ 1000! ¤µªnµµª« Î ¼¥r¸É¨oµ¥ 100! ¸É´ª ³ª°¥nµ 7 εª´ ´Ê ®¤ ¸É ®µ¦ 12! ¨´ª ¤¸¸Éεª ³ª°¥nµ 8 ®µÎµªÁȤª k ¸É¤¸nµ¤µ¸É»¸ÉεĮo 288k ®µ¦ 100! ¨´ª¤¸nµÁnµÄ 2. ª·¸Á¦¸¥´Á¨¸É ¥ 2.1 ¢°Á¦¸¥¨ ´ Á¤ºÉ° n Á}εªÄ Ç Â¨oª n! = 1 2 3 … n 2.2 ª·¸Á¦¸¥´ÁÁ¨¸É¥Á·Áo¦ ´ ¤¸ ° n ·É¸Énµ´Îµ¤µÁ¦¸¥´Á¨¸É ¥´Ê n ·É ª·¸Á¦¸¥´Á¨¸É ¥ = n! ª·¸ ´ ¤¸ ° n ·É¸Énµ´Îµ¤µÁ¦¸¥´Á¨¸É ¥¦µª¨³ r ·É (r d n) ª·¸Á¦¸¥´Á¨¸É ¥ = Pn, r = )!( ! rn n ª·¸ ´ ¤¸ ° n ·ÉÃ¥¤¸µ ·É ÎÊ µ´Á}¨»n¤ Ç k ¨»n¤ ¹É¨»n¤ ¸É 1 Îʵ´ n1 ·É ¨»n¤ ¸É 2 Îʵ´ n1 ·É … ¨»n¤ k Îʵ´ nk ·É ¨³ n1 + n2 + n3 + … + nk = n εªÁ¦¸¥´Á¨¸É ¥ °´Ê n ·É = !!...! ! 21 k nnn n ª·¸ ☆ 238 • лн9 COMBINATORIC AND PROBABILITY>>>>>>>>>>>KRU BIRD
3 2.3 ª·¸Á¦¸¥´Á¨¸É ¥Á·ª¨¤ ´ ¤¸ ° n ·É nµ´Îµ¤µÁ¦¸¥´Á¨¸É ¥Á·ª¨¤ = (n - 1) ! ª·¸ ´ oµ ·É °¸É夵Á¦¸¥´Á¨¸É¥Á} ·É ° ¸É ¡¨·Åo媪·¸Á¦¸¥´Á¨¸É ¥ 2 )!1( n ´ ¤¸·É ° n ·Éµ¤µÁ¦¸ Î ¥´Á¨¸É ¥Âª¨¤¦µª¨³ r ·É 媪·¸Á¦¸¥´Á¨¸É ¥ r ,rPn rrn n )!( ! 2.4 ª·¸Á¦¸¥´Á¨¸É¥ °®¨µ¥¦³Á£¨´´ Á·Áo (¨´¦³Á£¨³ r ·É) ´ 2 ¦³Á£Ánµ Ç ´ 媪·¸ = 2 ! m ! m! ´ k ¦³Á£Ánµ Ç ´ 媪·¸ = k ! (m!)k Á·ª¨¤ (¨´¦³Á£¨³ 1 ·É) ´ 2 ¦³Á£Ánµ Ç ´ 媪·¸ = m ! (m - 1) ! ´ k ¦³Á£Ánµ Ç ´ 媪·¸ = km mk k)!(! 3. ª·¸´®¤¼n ¤¸ ° n ·Énµ´ 夵´®¤¼n¦µª¨³ r ·É ª·¸´®¤¼n´Ê®¤ = Cn, r !)!( ! rrn n o°´Á 1. Cn, r = Cn, n - r !)!( ! rrn n 2. Cn, n = Cn, 0 = 1 3. Cn, 1 = Cn, n - 1 = n 4. µ¦Ân ·É ° ¸É Á®¤ º °´Â¨oªÂ @ oµ¤¸ ° ¸É Á®¤º°´ n ·É o°µ¦ÂÄ®o r ¤¸ª·¸Â´ ¸Ê 4.1 ÂÃ¥¸É»Åo¦´ ¤¸ª·¸Â = Cn - 1, r - 1 )!1()!( )!1( rrn n 4.2 ÂÃ¥¸ÉµÅ¤nÅo¦´ ¤¸ª·¸Â = Cn + r - 1, r - 1 )!1(! )!1( rn rn ๕ 239 • лой COMBINATORIC AND PROBABILITY>>>>>>>>>>>KRU BIRD
4 µª·¸µ¦Ä o° ¸Ê Á¦µµ¤µ¦ÎµÅ¦³¥»rÄo´Á¦ºÉ°ª·µ¤ ĵ¦¸É ³®µÎµª¡r µµ¦¦³µ¥ÈÅo®¦º°´¤¦³· ·Í °¡rnµ Ç ¸É¤¸Îµ¨´nµ Ç ´ ¸Ê Án µµ¦¦³µ¥ (a + b + c)n rµµ¦¦³µ¥ = Cn + 3 - 1, 3 - 1 !2! )!2( n n µ¦®µ ... ° 1 1 r x . 2 2 r x . 3 3 r x … kr x k µµ¦¦³µ¥ (a1x1 + a2x2 + … akxk )n ´¤¦³· ·Í °¡r¸Éo°µ¦ !!...! ! 21 k rrr n 1 1 r a . 2 2 r a … kr a k 5. µ¦Ân¨»n¤ @ ¤¸ ° n ·É¸Énµ´ ¨³o°µ¦Ân °´Ê n ·É°°Á}¨»n¤¥n°¥ Ç Îµª k ¨»n¤´ ¸Ê ¨»n¤ ¸É 1 ¤¸·É °Îµª n1 ·É ¨»n¤ ¸É 2 ¤¸·É °Îµª n2 ·É { ¨»n¤ ¸É k ¤¸·É °Îµª nk ·É Ã¥¸É n1 + n2 + n3 + … nk = n µ¦®µÎµªª·¸µ¦ÂnÂ¥Á}´ ¸Ê 5.1 oµ n1 , n2 , n3 , …, nk Ťn¤¸ÎµªÄÁnµ´ 媪·¸µ¦Ân !!...! ! 21 k nnn n ª·¸ 5.2 oµ n1 , n2 , n3 , …, nk ¤¸µÎµª¸É¤¸nµÁnµ´ ¨³¨»n¤¸É¤¸Îµª ·É °Ánµ´ ¤¸µ ·ÉÂÄ®oÁ®È¹ªµ¤Ânµ¦³®ªnµ¨n¤ 媪·¸µ¦Ân !!...! ! 21 k nnn n ª·¸ 5.3 oµ n1 , n2 , n3 , …, nk ¤¸µÎµª¸É¤¸nµÁnµ´ ¨³¨»n¤¸É¤¸Îµª ·É °Ánµ´ Ťn¤¸µ ·ÉÂÄ®oÁ®È¹ªµ¤Ânµ¦³®ªnµ¨n¤ 媪·¸µ¦Ân !!...!! ! 321 k nnnn n x яјзѬцеѠкѰђдшѠѯіѨѕјеѠклѼѥьњьдјҕєъѨѷєѨѝҕ ькеѠкѯъҕѥдѤ 1 ←240 • ло1 COMBINATORIC AND PROBABILITY>>>>>>>>>>>KRU BIRD
5 6. µ¦Á¨ º ° ° oµ¤¸ ° n ·É ¸É Ânµ´ ª·¸µ¦Á¨º° °°¥nµo°¥ 1 ·É (Cn, 1 + Cn, 2 + Cn, 3 + … + Cn, n) = 2n - 1 oµ¤¸ ° p + q + r + … ·É Ã¥¤¸ p ·ÉÁ®¤º°´ Á}· ¸É 1 q ·ÉÁ®¤º°´ Á}· ¸É 2 r ·ÉÁ®¤º°´ Á}· ¸É 3 oµo°µ¦Á¨º° °°¥nµo°¥ ·¨³ 1 ·É = p x q x r … ª·¸ oµo°µ¦Á¨º° °°¥nµo°¥ 1 ·É = (p + 1) (q + 1) (r + 1) … - 1 ª·¸ oµ¤¸ ° p + q + r + … ·É Ã¥¤¸ p ·ÉÁ®¤º°´ Á}· ¸É 1 q ·ÉÁ®¤º°´ Á}· ¸É 2 r ·ÉÁ®¤º°´ Á}· ¸É 3 oµo°µ¦Á¨º° °°¥nµo°¥ ·¨³ 1 ·É = (2p - 1) (2q - 1) (2r - 1) ª·¸ oµo°µ¦Á¨º° °°¥nµo°¥ 1 ·É = (2p . 2q . 2r . 1) = (2p+q+r - 1 ª·¸ 7. §¬¸ª·µ¤ oµ n Á}εªÁȤª n n n n n n ba n n ba n ba n ba n ba n ba 0 11 22 33 0 ... 0 1 2 3 ¸ ¹ · ¨ © § ¸ ¹ · ¨ © § ¸ ¹ · ¨ © § ¸ ¹ · ¨ © § ¸ ¹ · ¨ © § ¦ ¸ ¹ · ¨ © § ¸ ¹ · ¨ © § ¸ ¹ · ¨ © § ¸ ¹ · ¨ © § n k kkn n n n n n ba k n ba b n ba n ba n a 0 1 22 33 ... 1 2 3 ·É ¸É ª¦¦¼oµµ¦¦³µ¥ (a + b)n 1. ¨ °µ¦¦³µ¥¤¸ n + 1 ¡rÁ¤° 2. ¨¦ª¤ °Îµ¨´ ° a ¨³ b ÄÂn¨³¡ro°Ánµ´ n 3. ε¨´ ° a Ä¡r¦³Á¦ ·É ¤µ n ¨oª¨¨Å¸¨³ 1 ÄÂn¨³¡r´Å¦³´É ¹ 0 4. ε¨´ ° b Ä¡r¦³Á¦ ·É ¤µ 0 ¨oªÁ¡ ·É ¤ ¹Ê ¸¨³ 1 ÄÂn¨³¡r´Å¦³´É ¹ 0 5. ´¤¦³· ·Í °¡r¦³Á¦ ·É ¤µ ¸ ¹ · ¨ © § 0 n ¨³¡r´ÅÁ} ¸ ¹ · ¨ © § 1 n , ¸ ¹ · ¨ © § 2 n ÅÁ¦ºÉ °¥ Ç ¦³ ´É ¡r»oµ¥³Á} ¸ ¹ · ¨ © § n n ☆241 oa лол COMBINATORIC AND PROBABILITY>>>>>>>>>>>KRU BIRD
6 6. oµÂ a = 1 ¨³ b = 1 ÅĤµ¦Á¦µ³Åo¨´¬³¸Éε´º° ¸ ¹ · ¨ © § ¸ ¹ · ¨ © § ¸ ¹ · ¨ © § ¸ ¹ · ¨ © § n nn n a n n ... 321 2 7. ¡r¸É r = Tr = )1( 1 1 ¸ ¹ · ¨ © § rn r a b r n ÂnÁ¡ ºÉ °ªµ¤³ªÁ¦µ·¥¤Äo¡r¸É r + 1 = Tr+1 = rrn ba r n ¸ ¹ · ¨ © § 8. oµ n Á}εªÁȤªÂ¨³ c < k < n ¨oª Cn,k = Cn-1,k-1 + Cn-1,k 9. Ck,k = Ck+1,k + Ck+2,k + … + Cn,k = Cn+1,k+1 ªµ¤ nµ³Á} 1.1 µ¦¨°»n¤ ¤Ád¨Á ¨³Á®»µ¦ r µ¦¨°»n¤ (randome expriment) ®¤µ¥¹ µ¦¨°Ä Ç ¸É¥´Å¤nµ¤µ¦Îµµ¥®¦º° ¦¼o¨¨´¡r¸ÉÁ· ¹Ê Ânµ¤µ¦°Åoªnµ¨¨´¡r´Ê®¤ ¸É ³Á· ¹Ê ¤¸°³Å¦oµ ¤Ád¨Á (sample space) ®¤µ¥¹ Á °¨¨´¡r´Ê®¤Ánµ ¸É ³Á· ¹ÊÅoµµ¦ ¨°»n Á®»µ¦r (event) ®¤µ¥¹ ´ÁÄ Ç °Â¤Ád¨Á Á®»µ¦r¸É¦³°oª¥¨ ¨´¡rÁ¡¸¥¨¨´¡rÁ¸¥ª Á¦µÁ¦¸¥ªnµ Á®»µ¦r°¥nµnµ¥ (simple event) 1.2 ªµ¤nµ³Á} °Á®»µ¦ r (probability of an event) ¤Ád¨Á¸É ³¨nµªn°Å¸ÊoµÅ¤nÅo¦³»Á}°¥nµ°ºÉ o°¨ªnµÂ¤Ád¨Á ³Á} Áε´Ánµ´Ê ε®Ä®o S = ¤Ád¨Á¹É Ân¨³¨¨´¡rÄ S ¤¸Ã°µÁ· ¹Ê Ánµ Ç ´ E = Á®»µ¦rÄ S n(S) = 媨¨´¡rÄ S n(E) = 媨¨´¡rÄ E 242 ไร ☆ лом COMBINATORIC AND PROBABILITY>>>>>>>>>>>KRU BIRD
7 ªµ¤nµ³Á} °Á®»µ¦r E n°Å³Á ¸¥Âoª¥´¨´¬r P(E) ¹É¤¸ªµ¤®¤µ¥´ ¸Ê Sn En EP 1.3 »¤´· °ªµ¤nµ³Á} Ä®o S ¤Ád¨Á ¨³ A ÂÁ®»µ¦r³Åoªnµ (1) 0 d P(A) d 1 (3) P(A) = 1 Èn°Á¤ºÉ° A = S (2) P(A) = 0 Èn°Á¤ºÉ° A = I (4) oµ A B ¨oª P(A) d P(B) 1.4 ªµ¤nµ³Á} °¥¼Á¸¥ °Á®»µ¦ r Ä®o S ¤Ád¨Á ¨³ A, B ÂÁ®»µ¦r ? A B ¨³ B S ? (A B) S ´ ´Ê Á¦µº°ªnµ A B Á}Á®»µ¦r®¹Éµªµ¤¦¼oÁ ¸É ¥ª´Á¦ ºÉ °Á ³Åoªnµ n(A B) = n(A) + n(B) - n(A B) )( )( )( )( )( )( )( )( Sn BAn Sn Bn Sn An Sn BAn ´Éº° P(A B) = P(A) + P(B) - P(A B) Ħ¸ A ¨³ B Á}Á®»µ¦r¸ÉŤn¤¸¨¨´¡r¦nª¤´ ³Åoªnµ A B = I P(A B) = 0 ´ ´Ê µ¼¦ (1.4.1) ³Åoªnµ P(A B) = P(A) + P(B) ←243 • лон COMBINATORIC AND PROBABILITY>>>>>>>>>>>KRU BIRD
8 1.5 ªµ¤nµ³Á} °°¤¡¨¸Á¤ r ¨³¨nµ °Á u Ä®o S = ¤Ád¨Á A Ä®o A Á}Á®»µ¦rÄ S Ac ³Åoªnµ c SAA ¨³ AA c I ´´Ê c APAPAAPSP c)()()()(1 ´Éº° c APAP )(1)( ressrn 244 • лоо COMBINATORIC AND PROBABILITY>>>>>>>>>>>KRU BIRD
COMBINATORIC and PROBABILITY PART 12 }rx·ÎÊΩ~µÝ ÎÁxÔËrÂÔ¢Ü~±cr Dtste 245 ๏ лоп COMBINATORIC AND PROBABILITY>>>>>>>>>>>KRU BIRD
o°°Á°¦µ r ¨³Âª o°° 1. ¤¸Îµª´¸Éεª ¸É ®µ¦ 2544 ¨´ª 1. 6 εª 2. 10 εª 3. 20 εª 4. 40 εª 2. ®µ¨ª °Á¨ 4 ®¨´ ¸É Á·µ´ªÁ¨ 2, 3, 5, 7 Ã¥¸É Ân¨³®¨´Å¤nÎʵ´¤¸nµÁnµÄ 1. 113322 2. 166101 3. 221133 4. 332211 3. ®µÎµªª·¸¸É³´Â¤ª 4 ´ª ¨³Áº° 1 ´ªÄn¦ ¹É¤¸¦°¥¼n´Ê®¤ 4 ¦ Ã¥¸É Áº°³o° °¥¼n¦Ä¦®¹É Á¡¸¥´ªÁ¸¥ªÁnµ ´Ê ³¤¸¸Éª·¸ 1. 24 ª·¸ 2. 48 ª·¸ 3. 324 ª·¸ 4. 423 ª·¸ 4. q°Â¨³¸¢  n ´»Á°¦r·¦µª´¨¦ ´Ê ®¹É Ã¥¤¸·µªnµoµÄ¦³ 2 Á¤r·n°´ ¼o´Ê Á}¼o³ ®¦º°Ä¦³ 3 Á¤rn° ¼o´Ê³Á}¼o³®µÎµª¦¼Â´Ê ®¤ °µ¦  n ´¤¸¼o³ 1. 8 ª·¸ 2. 9 ª·¸ 3. 10 ª·¸ 4. 11 ª·¸ 5. Á ¸¥¨¼ ° 1 x 3 x 5 x 7 x 9 x 11 x 13 x 15 Ä®o°¥¼nĦ¼Â¢°Á¦¸¥¨ 1. !6.2 !15 6 2. !8.2 !15 8 3. !6.2 !16 6 4. !8.2 !16 8 6. Á¨ 4 ®¨´ ¸ÉÁ·µ´ªÁ¨ 4 ´ª ¸É¤¸nµ¤µªnµ 5000 Ã¥¦oµµÁ¨ à 1, 2, 3, 4, 5 ¨³ 6 ³¤¸ ´Ê®¤¸Éεª oµ¤¸Á¨ 4 Ánµ´Ê ¸ÉÄoÎʵÅo° ´Ê ´ªÁ¨ ÄÂn¨³®¨´Å¤nÎʵ´ 1. 120 2. 144 3. 146 4. 148 7. ´´Á¦¸¥ 6 ¹É¤¸Á¤µÂ¨³¦µ¸¦ª¤°¥¼noª¥Ä®oÁ¦¸¥ÂªÁ} 2   ¸É ®¹É ´Á¦¸¥ ´Ê®¤¥ºÁ¦¸¥Á}ª¦ Ã¥¸ÉÁ¤µÂ¨³¦µ¸¥º·´  ¸É °´Á¦¸¥ ´Ê ®¤¥ºÁ} ª¨¤ Ã¥¸ÉÁ¤µÂ¨³¦µ¸¥º¦´ oµ¤ ¨oªÎµªª·¸ °µ¦´Ân¨³ÂÂnµ´ Ánµ´ o°Än°Å¸Ê 1. 96 2. 120 3. 196 4. 216 8. ĵ¦¦³»¤¦ ´Ê ®¹É ¤¸¼oµ 3 ¦³Á«Á oµ¦nª¤¦³»¤ Ã¥¤¸¼o¦³Á«¨³ 3 媪·¸´Ê®¤ ¸É ³´Ä®o¼oÂÂn¨³¦³Á«o° ´É n°´Äµ¦¦³»¤Ãp³¨¤Ánµ´ÁnµÄ 1. 144 2. 324 3. 432 4. 480 9. Ä®o A = {1, 2, 3} ¨³ B = {a, b, c, d} ¨oªÎµª¤µ· °Á {f : A ¤ B ~ f ŤnÁ}¢{r´ 1-1} Ánµ´ o°Än°Å¸Ê 1. 40 2. 34 3. 30 4. 24 10.oµ A = {1, 2, 3, 4, 5, 6} ¨³ B = {1, 2, 3} ¨oªÎµª¢{r´ f : A ¤ B ´Ê®¤¹É f(1) z 1 ®¦º° f(2) z 2 ®¦º° f(3) z 3 Ánµ´ o°Än°Å¸Ê 1. 530 2. 612 3. 702 4. 814 ←246 лор COMBINATORIC AND PROBABILITY>>>>>>>>>>>KRU BIRD
10 11. ε®Ä®o A = {a1, a2, a3, a4} ¨³ B = {b1, b2, b3} Á {f ~ f : C ¤ B ´Ê®¤¹É C B Ã¥ C z I} ¤¸Îµª¤µ·Ánµ´ o°Ä 1. 12 2. 81 3. 255 4. 405 12. ε®Áo¦Äª° µ´ 5 Áo ª ·É µ´ 7 Áo Ã¥¦³¥³®nµ¦³®ªnµÁo µ °»Âª®nµÁnµ´ º° oµ¨³ 1 ®nª¥ ®µÎµª¦¼¸É Á®¨ ¸É ¥¤ ´Ê ®¤ ¸ÉŤnÄn¸ÉÁ®¨ ¸É ¥¤ »¦´ 1. 210 2. 160 3. 196 4. 178 13. Áo¦»®¹É ¦³°oª¥Áo µÂª° 11 Áo Ã¥Áo ¸É °¥¼nÁ¦¸¥´®nµ´ 1 ·Êª ¨³ Áo¦°¸»® ¹É¦³°oª¥Áo µÂª´Ê 10 Áo Ã¥Áo ¸É °¥¼nÁ¦¸¥´®nµ´ 1 ·Êª 媦¼¸É Á®¨ ¸É ¥¤»¦´¸É¤¸¡ºÊ ¸ÉŤnÁ· 9 µ¦µ·Êª ´Ê®¤ ¸É Á·µµ¦´ °Áo¦ ´Ê 2 » ¸ÊÁnµ´ o°Än°Å¸Ê 1. 110 2. 218 3. 308 4. 450 14. ´¡´µ 6 Á} 3 ¨»n¤ ÂnÅεµ 3 µ ¹ÉÂnµ´ Ã¥´¨»n¤¨³ ¸É ÈÅo 媪·¸³´ÅoÁnµ´ o°Än°Å¸Ê 1. 270 2. 540 3. 810 4. 1080 15. ´ÁÈ 1 ¼o®· 3 ¨³¼oµ¥ 3 ´É¦°Ãp³¨¤ Ã¥¸É¼oµ¥Å¤n´É·´Áȳ´Åo ´Ê®¤¸Éª·¸ 1. 35 ª·¸ 2. 48 ª·¸ 3. 96 ª·¸ 4. 144 ·¸ 16. ε®» 7 »Áo¦°ª¨¤ ³¦oµ¦¼Á®¨¸É¥¤Åo´Ê®¤¸É¦¼Á¤ºÉ°Ä®o»Áo¦°ª Á®¨nµ ¸ÊÁ}»¥° 1. 35 2. 42 3. 56 4. 99 17. µ¥ 3 ¨³®· 3 Á oµ·ªÄªÁ¸¥ª´Á¡ ºÉ ° ºÊ ° ´Ì ª£µ¡¥¦rªµ¤nµ³Á} ¸É ®·´Ê 3 ³¥ºÁ¦¸¥·´ ´Ê®¤Äª ¤¸nµÁnµ´ÁnµÄ 1. 0.1 2. 0.2 3. 0.3 4. 0.4 18. o°°»®¹É ¤¸ 2 ° °¨³ 4 o° ¤¸Îµ ´ÉÄ®o¼oε o°°Îµ o°°° ¸É 1 °¥nµo°¥ 1 o° ¨³Îµ o°°° ¸É ° 2 o° 媪·¸¸É»o°³Îµ o°°»¸Ê¤¸¸Éª·¸ 1. 16 2. 24 3. 36 4. 90 ☆247 • ло8 COMBINATORIC AND PROBABILITY>>>>>>>>>>>KRU BIRD
11 19. ĵ¦¦oµÁ¤¦·r »¼ º «¬ ª d b c a Ã¥¸É a, b, c {-2, -1, 0, 1, 2} ¨³ d = 0 ªµ¤nµ³Á} ¸ÉÅo Á¤¦·r°-·¼¨µ¦rÁ}ÁnµÄ 1. 0.25 2. 0.34 3. 0.52 4. 0.64 20. ĵ¦Á¨nÁ¤rµ¥´ªÁ¨ εªÁȤ 4 ®¨´Å¤n¤¸µ¦ ÎÊ µ Ã¥´ªÁ¨ Ân¨³®¨´Å¤nÁ}Á¨ «¼¥r ªµ¤nµ³Á} ¸É ³µ¥´ªÁ¨ Åo¼o° 4 ´ª Ân®¨´ °´ªÁ¨ ·ÅÁ¡¸¥ 2 ®¨´Ánµ´Ê ¤¸nµ Ánµ´ÁnµÄ 1. 126 1 2. 252 1 3. 504 1 4. 504 3 21. oµ f Á}¢{r´µÁ x Å¥´Á y Ã¥¸É x = {10, 20, 30, 40} ¨³ y = {2, 4, 6, 8, 10, 12} ªµ¤nµ³Á} ¸É f Á}¢{r´® ¹É n°®¸ÉµÁ x Å¥´Á y ¦´ o°Ä 1. 18 5 2. 3 1 3. 18 7 4. 9 4 22. »Ä®¹É ¤¸¨¼Âoª µÁ¸¥ª´°¥¼n 10 ¨¼ Á}¸Â 3 ¨¼ ¸ µª 5 ¨¼ ¸Îµ 2 ¨¼ »n¤®¥· ¨¼Âoªµ» 2 ¦´Ê Ç ¨³¨¼ åŤnÄnº ªµ¤nµ³Á} ¸É ³®¥·Åo¨¼ ¸É 2 Á}¸ÂÁnµ´ o°Ä 1. 3 1 2. 10 3 3. 100 27 4. 100 33 23. ĵ¦°¨¼Áqµ 2 ¨¼ ¡¦o°¤´ 1 ¦´Ê ªµ¤nµ³Áj ¸É ¨ª °Âo¤®oµ °¨¼Áqµ´Ê 2 ¨¼³Á}Á¨ ¸É®µ¦oª¥ 4 Ťn¨´ª ¤¸nµÁnµ´ o°Ä 1. 0.25 2. 0.50 3. 0.75 4. 0.95 24. ¨n°Ä®¹É ¤¸¨¼®·¸ µª 5 ¨¼ ¸Á ¸¥ª 3 ¨¼ ¸ÎʵÁ· 2 ¨¼ oµ®¥·¨¼®·°¥nµ»n¤¦ ´Ê ¨³ 1 ¨¼ åŤnÄnº 3 ¦´Ê ¨oªªµ¤nµ³Á} ¸É ³®¥·Åo¨¼®·¸Á¸¥ª´°¥nµo°¥ 2 ¨¼ ¤¸nµÁnµ´ o°Än°Å¸Ê 1. 24 23 2. 4 3 3. 4 1 4. 24 1 25. ÄεªÁÈ 12 ¤¸ÁÈ´oµ¥ 4 oµÁ¨º°ÁÈ 5 Ã¥µ¦»n¤µÁÈÁ®¨nµ ¸Ê ¨oªªµ¤ nµ³Á} ¸É ³¤¸ÁÈ´oµ¥°¥¼nĨ»n¤ ¸É Á¨º°Ánµ´ o°Ä 1. 99 35 2. 99 47 3. 99 63 4. 99 92 or248 • ло9 COMBINATORIC AND PROBABILITY>>>>>>>>>>>KRU BIRD
12 26. ¨n°Ä®¹É ¤¸¨¼Âoª µÁ¸¥ª´ 3 ¸ Á}¸ µª 4 ¨¼ ¸Â¨³¸Á ¸¥ª¤¸ÎµªÁnµ´Á¤ ºÉ °»n¤ ®¥·¨¼Âoª¤µ 2 ¨¼ªµ¤nµ³Á} ¸É³Åo¸ µª´Ê 2 ¨¼Ánµ´ 15 2 oµ»n¤®¥·¨¼Âoª¤µ 4 ¨¼ ªµ¤nµ³Á} ¸É³Åo¨¼ÂoªÁ}¸Á ¸¥ª 1 ¨¼ ¨³¸Â°¥nµo°¥ 1 ¨¼Ánµ´ o°Än°Å¸Ê 1. 70 30 2. 70 31 3. 35 29 4. 35 33 27. ĵ¦¥ºÁ¦¸¥Á}ª¦ °´Á¦¸¥µ¥ 6 ¨³´Á¦¸¥®· 4 oµÎµ®ªµ¤nµ³ Á} ¸ÉŤn¤¸´Á¦¸¥®·°Ä Ç ¥º·´Á¨¥Ánµ´ a ¨³ªµ¤nµ³Á}¸É´Á¦¸¥®· ´Ê®¤o°¥º·´ Ánµ´ b ¨oª a + b Ánµ´ o°Än°Å¸Ê 1. 0.20 2. 0.25 3. 0.30 4. 0.35 28. °¨¼Áqµ 6 ¨¼¡¦o°¤´ ªµ¤nµ³Á} ¸É Âo¤¸É ¹Ê °Ân¨³¨¼³Å¤nÎʵ´Á¨¥¤¸nµÁnµ´ o°Ä 1. 324 1 2. 324 5 3. 162 1 4. 162 5 29. ¨n°Ä®¹É ¤¸¨µ®¤µ¥Á¨ 1 ¹ 10 »n¤®¥·¨µ¤µ 4 Ä¡¦o°¤´ ªµ¤nµ³Á} ¸É ³®¥· Åo¨µÂo¤o°¥ªnµ 4 °Ä ¨³¤µªnµ 6 ® ¹ÉÄ ¤¸nµÁnµ´ o°Än°Å¸Ê 1. 35 4 2. 35 6 3. 21 1 4. 21 2 30. ĵ¦´ 6 ¹É¤¸µ¥Â¨³µ¥ ¦ª¤°¥¼noª¥Á oµ¡´Ä®o° 3 ®o° Ã¥¸É®o° ¸É ® ¹É ¡´ Åo 3 ®o° ¸É °¡´Åo 2 ¨³®o° ¸É µ¤¡´Åo 1 ªµ¤nµ³Á} ¸É µ¥Â¨³µ¥ ³ Åo¡´®o°Á¸¥ª´ Ánµ´ o°Än°Å¸Ê 1. 15 1 2. 15 3 3. 15 4 4. 15 5 ε°´ª°¥nµ o°° Entrance Á¦ ºÉ ° ª·¸Á¦¸¥´Á¨¸É ¥´®¤¼n¨³ªµ¤nµ³Á} 1. 3. 2. 1. 3. 3. 4. 3. 5. 4. 6. 3. 7. 4. 8. 3. 9. 1. 10. 3. 11. 3. 12. 2. 13. 3. 14. 2. 15. 4. 16. 4. 17. 2. 18. 4. 19. 4. 20. 3. 21. 1. 22. 2. 23. 3. 24. 1. 25. 4. 26. 2. 27. 1. 28. 2. 29. 2. 30. 3. atn249 ← лпй COMBINATORIC AND PROBABILITY>>>>>>>>>>>KRU BIRD
natasrssssst 250 лп1 COMBINATORIC AND PROBABILITY>>>>>>>>>>>KRU BIRD
251 лпл COMBINATORIC AND PROBABILITY>>>>>>>>>>>KRU BIRD
252 лпм COMBINATORIC AND PROBABILITY>>>>>>>>>>>KRU BIRD
253 лпн COMBINATORIC AND PROBABILITY>>>>>>>>>>>KRU BIRD
254 лпо COMBINATORIC AND PROBABILITY>>>>>>>>>>>KRU BIRD
255 лпп COMBINATORIC AND PROBABILITY>>>>>>>>>>>KRU BIRD
256 лпр COMBINATORIC AND PROBABILITY>>>>>>>>>>>KRU BIRD
257 лп8 COMBINATORIC AND PROBABILITY>>>>>>>>>>>KRU BIRD
258 лп9 COMBINATORIC AND PROBABILITY>>>>>>>>>>>KRU BIRD
259 лрй COMBINATORIC AND PROBABILITY>>>>>>>>>>>KRU BIRD
260 лр1 COMBINATORIC AND PROBABILITY>>>>>>>>>>>KRU BIRD
261 лрл COMBINATORIC AND PROBABILITY>>>>>>>>>>>KRU BIRD
262 лрм COMBINATORIC AND PROBABILITY>>>>>>>>>>>KRU BIRD
274