The words you are searching are inside this book. To get more targeted content, please make full-text search by clicking here.
Discover the best professional documents and content resources in AnyFlip Document Base.
Search
Published by Stanly Maharjan, 2020-05-20 03:34:51

Prime Mathematics 10

Prime Mathematics 10

Keywords: Prime Mathematics 10

LL 7KH SUREDELOLW\ RI JHWWLQJ WKDW ERWK DUH EOXH

3 % DQG %

3 %% 3 % î 3 %

QQ %6 î QQ %6

î


LLL 7KH SUREDELOLW\ RI JHWWLQJ D UHG DW WKH ILUVW GUDZ DQG D EOXH RU D EODFN DW WKH VHFRQG GUDZ

3 5 DQG % RU %c 3>5 % RU %c @

3 5 î ^3 % 3 %c `

QQ 56 î ®­¯QQ %6 QQ %6c ½¾¿
î ®­¯ ¿¾½

î



LY 7KH SUREDELOLW\ RI JHWWLQJ WKDW WKH ERWK PDUEOHV RI VDPH FRORXU PHDQV UHG DQG UHG RU EOXH DQG
EOXH RU EODFN DQG EODFN

3 5 DQG 5 RU % DQG % RU %c DQG %c

3 55 3 %% 3 %c %c

^3 5 î 3 5 ` ^3 % î 3 % ` ^3 %c î 3 % `

QQ 56 î QQ 56 QQ %6 î QQ %6 QQ %6c î QQ %6c

î î î





([DPSOH ,I D FDUG LV GUDZQ DW UDQGRP IURP D SDFN RI FDUGV DQG D EDOO LV GUDZQ
DW UDQGRP IURP D ER[ FRQWDLQLQJ ZKLWH EODFN DQG UHG EDOOV RI WKH
VDPH VKDSH DQG VL]H DW WKH VDPH WLPH ILQG WKH SUREDELOLW\ RI WKH
IROORZLQJ RXWFRPHV

L RQH NLQJ DQG D ZKLWH EDOO
LL D EODFN DFH DQG D UHG RU EODFN EDOO
LLL QHLWKHU EODFN QRU IDFH FDUG DQG D ZKLWH RU D EODFN EDOO

ͮDĂƚŚĞŵĂƚŝĐƐ Ͳ ϭϬ 3UREDELOLW\

6ROXWLRQ +HUH

7KH QXPEHU RI SRVVLEOH RXWFRPHV LQ FDVH RI GUDZLQJ D FDUG 7RWDO QR RI FDUGV

?Q &

7KH QXPEHU RI SRVVLEOH RXWFRPHV LQ FDVH RI GUDZLQJ D EDOO 7RWDO QR RI EDOOV



?Q 6

7KH WZR H[SHULPHQWV L H GUDZLQJ D FDUG DQG D EDOO DUH LQGHSHQGHQW HYHQWV

6R E\ XVLQJ WKH PXOWLSOLFDWLYH ODZ RI WKH SUREDELOLW\ IRU LQGHSHQGHQW HYHQWV

L 7KH SUREDELOLW\ RI JHWWLQJ D NLQJ DQG D ZKLWH EDOO 3 . DQG : ZKHUH . GHQRWHV NLQJ DQG :

GHQRWHV ZKLWH EDOO

3 .:

3 . î 3 :

QQ .& î QQ :6

î


LL 7KH SUREDELOLW\ RI JHWWLQJ D EODFN DFH DQG D UHG RU D EODFN EDOO 3 $ DQG 5 RU % ZKHUH $

GHQRWHV EODFN DFH FDUG 5 GHQRWHV UHG EDOO DQG % GHQRWHV EODFN EDOO

3 $ 5 RU %

3 $ î ^3 5 3 % `

QQ $& î ®¯­QQ 56 QQ %6 ¿¾½

î ©§ ·¹

î


LLL 7KH SUREDELOLW\ RI JHWWLQJ D FDUG QHLWKHU EODFN QRU IDFH DQG D EDOO LV ZKLWH RU EODFN 3 ; DQG

: RU % ZKHUH ; GHQRWHV WKH UHG FRORXU FDUGV ZLWKRXW IDFH : GHQRWHV ZKLWH EDOOV DQG %

GHQRWHV EODFN EDOOV

3 ; : RU %

3 ; î ^3 : 3 % `

QQ ;& î ­®¯QQ :6 QQ %6 ¾¿½

î §© ¹·

î


([DPSOH 7KH SUREDELOLW\ RI VROYLQJ D PDWKHPDWLFDO SUREOHP E\ WZR VWXGHQWV $
DQG % DUH DQG UHVSHFWLYHO\ ,I WKH SUREOHP LV JLYHQ WR WKH ERWK
VWXGHQWV ILQG WKH SUREDELOLW\ RI VROYLQJ WKH SUREOHP

6ROXWLRQ +HUH WKH SUREOHP LV JLYHQ WR WKH ERWK VWXGHQWV $ DQG % 6R WKH SUREOHP PD\ EH
VROYHG E\ ERWK VWXGHQWV 7KHUHIRUH LW LV WKH FDVH RI QRQ PXWXDOO\ H[FOXVLYH HYHQW

?3 $ RU % 3 $ 3 % ± 3 $ˆ%

3UREDELOLW\ DĂƚŚĞŵĂƚŝĐƐ Ͳ ϭϬͮ

$OVR WKH SUREOHP VROYLQJ HYHQW LV LQGHSHQGHQW HYHQW

? 3 $ DQG % 3 $ˆ%
3 $ î 3 %

î

1RZ

3 $ RU % 3 $ 3 % ± 3 $ˆ%




+HQFH WKH SUREDELOLW\ RI VROYLQJ WKH SUREOHP LV



([HUFLVH



D /HW $ DQG % EH WZR LQGHSHQGHQW HYHQWV ,I 3 $ DQG 3 % ILQG 3 $ DQG %

E /HW $ DQG % EH WZR LQGHSHQGHQW HYHQV ,I 3 $ DQG 3 $ DQG % ILQG 3 %

F /HW ; < DQG = EH WKUHH LQGHSHQGHQW HYHQWV ,I 3 ; 3 < DQG 3 = ILQG

3 ;ˆ<ˆ=

D 7ZR FDUGV DUH GUDZQ RQH DIWHU DQRWKHU ZLWK D UHSODFHPHQW IURP D ZHOO VKXIIOHG SDFN RI
FDUGV )LQG WKH SUREDELOLW\ WKDW
L ERWK FDUGV DUH NLQJ
LL ERWK FDUGV DUH DFH
LLL ERWK FDUGV DUH QRW UHG TXHHQ

E 7ZR FDUGV DUH GUDZQ RQH DIWHU DQRWKHU ZLWK D UHSODFHPHQW IURP D ZHOO VKXIIOHG SDFN RI

FDUGV )LQG WKH SUREDELOLW\ WKDW
L WKH ERWK FDUGV DUH EODFN
LL RQH LV NLQJ DQG RWKHU LV DFH
LLL RQH LV KHDUW DQG RWKHU LV EODFN

F :KDW LV WKH SUREDELOLW\ RI JHWWLQJ WKH IROORZLQJ FDUGV ZKHQ D FDUG LV GUDZQ IURP D SDFN
RI FDUGV DQG UHSODFHG LW DQG D VHFRQG FDUG LV GUDZQ"

L &OXE LQ HDFK GUDZ

LL $ LQ WKH ILUVW GUDZ DQG FOXE LQ WKH VHFRQG GUDZ

LLL $ MDFN LQ WKH ERWK GUDZ RU GLDPRQG LQ ERWK GUDZ
LY 2QH LV QRW D NLQJ DQG RWKHU LV


ͮDĂƚŚĞŵĂƚŝĐƐ Ͳ ϭϬ 3UREDELOLW\

D $ EDJ FRQWDLQV UHG EDOOV DQG EOXH EDOOV $ EDOO LV GUDZQ DW UDQGRP DQG LW LV UHSODFHG
WR GUDZ DQRWKHU EDOO )LQG WKH SUREDELOLW\ WKDW

L ERWK EDOOV DUH EOXH

LL ERWK EDOOV DUH UHG

LLL WKH ILUVW LV UHG DQG WKH VHFRQG LV EOXH
LY ERWK EDOOV DUH RI GLIIHUHQW FRORXUV

E $ ER[ FRQWDLQV UHG EODFN DQG ZKLWH PDUEOHV $ PDUEOH LV GUDZQ DW UDQGRP DQG LW
LV UHSODFHG WKHQ D VHFRQG PDUEOH LV GUDZQ :KDW LV WKH SUREDELOLW\ RI JHWWLQJ

L D UHG PDUEOH LQ WKH ILUVW GUDZ DQG D ZKLWH PDUEOH LQ WKH VHFRQG GUDZ"

LL ERWK RI WKHP KDYH VDPH FRORXU"

LLL D ZKLWH PDUEOH LQ WKH ILUVW GUDZ DQG D UHG RU D EODFN PDUEOH LQ WKH VHFRQG GUDZ"
LY D ZKLWH PDUEOH LQ ERWK GUDZ RU D UHG PDUEOH LQ WKH VHFRQG GUDZ"

F $ ER[ FRQWDLQV \HOORZ UHG DQG EODFN EDOOV $ EDOO LV GUDZQ DW UDQGRP DQG
UHSODFHG 7KHQ D VHFRQG EDOO LV GUDZQ :KDW LV WKH SUREDELOLW\ WKDW

L D EODFN EDOO LQ WKH ILUVW GUDZ DQG D \HOORZ EDOO LQ WKH VHFRQG GUDZ"

LL D UHG EDOO LQ WKH ILUVW GUDZ DQG D \HOORZ RU D EODFN EDOO LQ WKH VHFRQG GUDZ"

LLL ERWK RI WKHP KDYH VDPH FRORXU"
LY ERWK RI WKHP DUH QRW UHG"

G $ EDJ FRQWDLQV EOXH DQG \HOORZ EDOOV $QRWKHU EDJ FRQWDLQV EODFN DQG UHG EDOOV ,I
RQH EDOO LV GUDZQ IURP HDFK EDJ ILQG WKH SUREDELOLW\ WKDW RQH LV EOXH DQG WKH RWKHU LV UHG"

H $ ER[ FRQWDLQV UHG DQG EOXH EDOOV $QRWKHU EDJ FRQWDLQV UHG DQG EODFN EDOOV ,I
RQH EDOO LV GUDZQ IURP HDFK ER[ ILQG WKH SUREDELOLW\ RI JHWWLQJ WKDW

L ERWK EDOOV DUH RI WKH VDPH FRORXU

LL ERWK EDOOV DUH RI WKH GLIIHUHQW FRORXUV
LLL RQH LV EOXH DQG WKH RWKHU LV UHG

D $ FXELFDO GLFH QXPEHUHG IURP WR LV WKURZQ WZLFH )LQG WKH SUREDELOLW\ WKDW

L WKH WXUQLQJ XS D LQ WKH ILUVW WKURZ DQG D LQ WKH VHFRQG WKURZ

LL WKH WXUQLQJ XS D LQ WKH ILUVW WKURZ DQG DQ RGG QXPEHU LQ WKH VHFRQG WKURZ

LLL WKH WXUQLQJ XS RU LQ WKH ILUVW WKURZ DQG D RU LQ WKH VHFRQG WKURZ

LY WKH WXUQLQJ XS RGG QXPEHU LQ WKH ILUVW WKURZ DQG D QXPEHU GLYLVLEOH E\ LQ WKH
VHFRQG WKURZ

E $ FRLQ LV WRVVHG WZR WLPHV )LQG WKH SUREDELOLW\ RI JHWWLQJ WKDW

L ERWK DUH KHDG

LL ERWK DUH WDLOV

LLL WKH ILUVW LV WDLO DQG WKH VHFRQG LV KHDG
LY DW OHDVW RQH KHDG

F $ SDLU RI GLFH LV WKURZQ )LQG WKH SUREDELOLW\ RI JHWWLQJ WKDW

L D WRWDO RI

LL D VXP RI RU
LLL WKH VXP RI QXPEHUV GLYLVLEOH E\ RU

3UREDELOLW\ DĂƚŚĞŵĂƚŝĐƐ Ͳ ϭϬͮ

G ,I WZR FRLQV DUH WRVVHG VLPXOWDQHRXVO\ DW WKH VDPH WLPH ILQG WKH SUREDELOLW\ RI JHWWLQJ WKDW

L WZR WDLOV

LL DW OHDVW RQH WDLO

LLL DW PRVW RQH KHDG

D )LQG WKH SUREDELOLW\ RI JHWWLQJ RQ WKH GLH DQG KHDG RQ WKH FRLQ ZKHQ D GLH LV UROOHG DQG
D FRLQ LV WRVVHG VLPXOWDQHRXVO\

E )LQG WKH SUREDELOLW\ RI JHWWLQJ D WDLO RQ WKH FRLQ DQG RQ WKH GLH ZKHQ D FRLQ LV WRVVHG
DQG D GLH LV UROOHG VLPXOWDQHRXVO\

F $ FDUG LV GUDZQ IURP D SDFN RI FDUGV DW UDQGRP DQG D FRLQ LV WRVVHG RQFH &DOFXODWH
WKH SUREDELOLW\ RI JHWWLQJ D FDUG RI FOXE DV ZHOO DV WDLO RQ WKH FRLQ

G $ FDUG LV GUDZQ DW UDQGRP IURP D SDFN RI FDUGV DQG DW WKH VDPH WLPH D PDUEOH LV
GUDZQ DW UDQGRP IURP D EDJ FRQWDLQLQJ UHG PDUEOHV DQG EOXH PDUEOHV )LQG WKH
SUREDELOLW\ RI JHWWLQJ D EOXH PDUEOH DQG D NLQJ

H $ QXPEHU FDUG LV GUDZQ IURP D SDFN RI FDUGV QXPEHUHG IURP WR DQG DW WKH VDPH
WLPH D FDUG LV GUDZQ IURP WKH ZHOO VKXIIOHG SDFN RI FDUGV 'HWHUPLQH WKH SUREDELOLW\
RI JHWWLQJ D FDUG ZLWK QXPEHU GLYLVLEOH E\ RU DQG WKH IDFH FDUG

I $ FDUG LV GUDZQ UDQGRPO\ IURP D SDFN RI FDUGV DQG D GLFH LV WKURZQ RQFH 'HWHUPLQH
WKH SUREDELOLW\ RI QRW JHWWLQJ D FDUG RI NLQJ DV ZHOO DV RQ GLFH

D ,I D FDUG LV GUDZQ DW UDQGRP IURP D SDFN DQG DW WKH VDPH WLPH D EDOO LV GUDZQ DW UDQGRP
IURP D ER[ FRQWDLQLQJ UHG EOXH DQG ZKLWH EDOOV FDOFXODWH WKH SUREDELOLW\ RI WKH
IROORZLQJ RXWFRPHV
L $ UHG EDOO DQG D MDFN"
LL $ EOXH EDOO DQG D ILYH RI VSDGH
LLL $ UHG RU ZKLWH EDOO DQG D QRQ IDFHG FDUG
LY 1HLWKHU D EODFN QRU DQ DFH DQG D UHG RU EOXH EDOO

E ,I D GLFH LV WKURZQ WKUHH WLPHV ZKDW LV WKH SUREDELOLW\ RI WXUQLQJ XS
L LQ HDFK WKURZ
LL DW OHDVW RQH

F ,I D IDLU FRLQ LV WRVVHG WKUHH WLPHV ZKDW LV WKH SUREDELOLW\ RI WXUQLQJ XS
L WDLOV
LL WDLO DQG KHDGV
LLL DW OHDVW WZR KHDGV
LY DW PRVW RQH WDLO

D 7ZR FKLOGUHQ ZHUH JLYHQ ELUWK E\ D FRXSOH DW WKH LQWHUYDO RI IRXU \HDUV )LQG WKH
SUREDELOLW\ WKDW ERWK DUH JLUOV

E ,I WZR FKLOGUHQ ZHUH JLYHQ ELUWK E\ D FRXSOH DW WKH LQWHUYDO RI ILYH \HDUV ILQG WKH
SUREDELOLW\ WKDW ERWK DUH VRQV

F 7ZR FKLOGUHQ ZHUH ERUQ IURP D PDUULHG FRXSOH )LQG WKH SUREDELOLW\ RI KDYLQJ DW OHDVW
RQH GDXJKWHU

G 7KUHH FKLOGUHQ ZHUH ERUQ LQ D IDPLO\ )LQG WKH SUREDELOLW\ RI L DW OHDVW WZR VRQV LL
KDYLQJ WZR GDXJKWHUV DQG D VRQ



ͮDĂƚŚĞŵĂƚŝĐƐ Ͳ ϭϬ 3UREDELOLW\

D $ EDJ FRQWDLQV JRRG DQG URWWHQ DSSOHV 7KUHH DSSOHV ZHUH GUDZQ DW UDQGRP LQ

VXFFHVVLRQ ZLWK UHSODFHPHQW )LQG WKH SUREDELOLW\ RI JHWWLQJ WKDW
L DOO WKUHH URWWHQ DSSOHV
LL DW OHDVW RQH JRRG DSSOH
LLL ILUVW WZR DUH JRRG DQG WKH WKLUG RQH LV URWWHQ

E 7KH SUREDELOLW\ RI VROYLQJ D PDWKHPDWLFDO SUREOHP E\ WZR VWXGHQWV $ DQG % DUH DQG
UHVSHFWLYHO\ ,I WKH SUREOHP LV JLYHQ WR ERWK VWXGHQWV ILQG WKH SUREDELOLW\ RI VROYLQJ

F 0RKDQ DSSHDUV IRU DQ LQWHUYLHZ IRU WZR SRVWV $ DQG % 7KH SUREDELOLW\ RI KLV VHOHFWLRQ
IRU SRVW $ LV DQG IRU SRVW % LV )LQG WKH SUREDELOLW\ WKDW 0RKDQ LV VHOHFWHG IRU DW

OHDVW RQH RI WKH SRVWV

G 2XW RI SUREOHPV $ PDNHV PLVWDNHV DQG % PDNHV PLVWDNHV )LQG WKH SUREDELOLW\
WKDW D SUREOHP UDQGRPO\ VHOHFWHG FDQ EH VROYHG

H $ SUREOHP LV JLYHQ WR WKUHH VWXGHQWV $ % DQG & ZKRVH FKDQFHV RI VROYLQJ LW DUH
DQG UHVSHFWLYHO\ )LQG WKH SUREDELOLW\ WKDW WKH L SUREOHP LV VROYHG

LL SUREOHP LV XQVROYHG



3UREDELOLW\ 7UHH 'LDJUDP

7KH SUREDELOLW\ RI DOO SRVVLEOH RXWFRPHV RI D VHULHV RI WULDOV RI UDQGRP H[SHULPHQW FDQ EH FDOFXODWHG
HDVLO\ E\ XVLQJ D GLDJUDP 6XFK GLDJUDP LV NQRZQ DV WKH SUREDELOLW\ WUHH GLDJUDP ,W LV YHU\ XVHIXO DQG
EHVW ZD\ WR FDOFXODWH WKH SUREDELOLW\ RI DOO SRVVLEOH RXWFRPHV RI DQ\ W\SHV RI WKH H[SHULPHQW 7R
FRQVWUXFW WKH WUHH GLDJUDP HYHU\ EUDQFK RI D WUHH GLDJUDP VKRZV WKH SUREDELOLW\ RI UHVSHFWLYH HYHQW LQ
D SDUWLFXODU WULDO RI WKH UDQGRP H[SHULPHQW

7KH SUREDELOLW\ RI DQ HYHQW RI D UDQGRP H[SHULPHQW FDQ EH GHVFULEHG E\ D WUHH ZKLFK LV WKH SURGXFW RI
WKH SUREDELOLWLHV RI WKH HYHQW LQ GLIIHUHQW WULDOV DWWDFKHG WR WKH EUDQFKHV DORQJ WKH SDWK RI WKH HYHQW

/HW¶V VHH DQ H[DPSOH RI WRVVLQJ RI D FRLQ WZR WLPHV DQG )LUVW WRVV 6HFRQG WRVV 2XWFRPHV
FDOFXODWH WKH SUREDELOLWLHV RI WKH HYHQWV :H NQRZ WKDW + ++
7 +7
WKHUH LV D KHDG + DQG D WDLO 7 RQ D FRLQ :KHQ ZH WRVV D
+ 7+
FRLQ WZR WLPHV FRQWLQXRXVO\ HLWKHU KHDG + RU WDLO 7 7 77

PD\ RFFXU ERWK WLPHV 7KLV H[SHULPHQW LV VKRZQ LQ WKH

DGMRLQLQJ ILJXUH +
7
)URP WKH DERYH WUHH GLDJUDP

L 7KH SUREDELOLW\ RI JHWWLQJ WZR KHDGV

3 ++ 3 + î 3 +

î




3UREDELOLW\ DĂƚŚĞŵĂƚŝĐƐ Ͳ ϭϬͮ

LL 7KH SUREDELOLW\ RI JHWWLQJ DW OHDVW WDLO 3 +7 RU 3 7+ RU 3 77

3 +7 3 7+ 3 77

3 + î 3 7 3 7 î 3 + 3 7 î 3 7

î î î



LLL 7KH SUREDELOLW\ RI JHWWLQJ H[DFWO\ KHDG 3 +7 RU 7+
3 + î 3 7 3 7 î 3 +
î î




0XOWLSOLFDWLYH ODZ RI SUREDELOLW\ IRU GHSHQGHQW HYHQWV

/HW¶V WDNH DQ H[DPSOH RI GUDZLQJ WZR PDUEOHV RQH DIWHU DQRWKHU DW UDQGRP IURP D ER[ FRQWDLQLQJ
UHG PDUEOHV DQG \HOORZ PDUEOHV ZLWKRXW UHSODFHPHQW ,W PHDQV ZH GUDZ WKH ILUVW PDUEOH DW UDQGRP
DQG GR QRW UHSODFH 7KHQ DJDLQ ZH GUDZ WKH DQRWKHU PDUEOH DW UDQGRP IURP WKH ER[

7KH ILUVW GUDZLQJ RI D PDUEOH PD\ RFFXU UHG RU \HOORZ

?3UREDELOLW\ RI D UHG 3 5

3UREDELOLW\ RI D \HOORZ 3 <

$IWHU GUDZLQJ WKH ILUVW PDUEOH LW LV QRW UHSODFHG DQG ZH ZLOO GUDZ WKH VHFRQG PDUEOH

,I D UHG PDUEOH LV GUDZQ LQ WKH ILUVW GUDZ WKHUH ZLOO EH UHG PDUEOHV DQG \HOORZ PDUEOHV OHIW LQ WKH
ER[

7KHQ WKH SUREDELOLW\ WKDW WKH PDUEOH GUDZQ LQ WKH VHFRQG GUDZ LV UHG 3 5 DQG WKH SUREDELOLW\
WKDW WKH PDUEOH GUDZQ LQ WKH VHFRQG GUDZ LV \HOORZ 3 <

%XW LI WKH PDUEOH GUDZQ LQ WKH ILUVW GUDZ LV \HOORZ WKHUH ZLOO EH UHG PDUEOHV DQG \HOORZ PDUEOHV
OHIW LQ WKH ER[

7KHQ WKH SUREDELOLW\ WKDW WKH PDUEOH GUDZQ LQ WKH VHFRQG GUDZ LV UHG 3 5 DQG WKH
SUREDELOLW\ WKDW WKH PDUEOH GUDZQ LQ WKH VHFRQG GUDZ LV \HOORZ 3 <


ͮDĂƚŚĞŵĂƚŝĐƐ Ͳ ϭϬ 3UREDELOLW\

,Q WKH DERYH H[DPSOH WKH GUDZLQJ RI PDUEOHV GR QRW WDNH SODFH LQ HTXDO FRQGLWLRQV 7KH RFFXUUHQFH LQ
VHFRQG WULDO GHSHQGV XSRQ WKH ILUVW WULDO 7KXV WKH HYHQWV RFFXUULQJ LQ WKH ILUVW DQG VHFRQG GUDZV DUH
GHSHQGHQW HYHQWV 7KH RFFXUULQJ RI WKH PDUEOHV LQ WKH ILUVW DQG VHFRQG GUDZ RI WKH DERYH H[DPSOH LV
VKRZQ LQ WKH IROORZLQJ SUREDELOLW\ WUHH GLDJUDP

)LUVW GUDZ 6HFRQG GUDZ 2XWFRPHV

5 55
<
7 5<

5
<
7
5 <5
<
7 <<

1RZ IURP WKH DERYH WUHH GLDJUDP ZH JHW WKH SUREDELOLW\ RI JHWWLQJ ERWK DUH UHG

3 55

3 5 î 3 5

î


7KH SUREDELOLW\ WKDW WKH ILUVW PDUEOH LV UHG DQG WKH VHFRQG PDUEOH LV \HOORZ 3 5< 3 5 î 3 <

î

7KH SUREDELOLW\ WKDW WKH ILUVW PDUEOH LV \HOORZ DQG WKH VHFRQG PDUEOH LV UHG 3 <5 3 < î 3 5

î

7KH SUREDELOLW\ WKDW WKH ILUVW PDUEOH LV \HOORZ DQG WKH VHFRQG PDUEOH LV DOVR

<HOORZ 3 <<

3 < î 3 < î

,Q WKH DERYH H[DPSOH WKH SUREDELOLW\ RI GUDZLQJ PDUEOHV 5HG RU <HOORZ LQ WKH VHFRQG GUDZ L H WKH
SUREDELOLW\ RI VHFRQG HYHQW GHSHQGV XSRQ WKDW RI ILUVW HYHQW 7KXV WKH HYHQWV ZKRVH SUREDELOLW\ RI
RFFXUUHQFH RU QRQ RFFXUUHQFH GHSHQGV XSRQ WKH RWKHU HYHQW DUH FDOOHG WKH GHSHQGHQW HYHQWV

,Q WKH RWKHU ZRUGV WZR RU PRUH WKDQ WZR HYHQWV DUH VDLG WR EH GHSHQGHQW HYHQWV LI WKH SUREDELOLW\ RI
RFFXUUHQFH RU QRQ RFFXUUHQFH RI RQH HYHQW HIIHFWV WKH SUREDELOLW\ RI RFFXUUHQFH RU QRQ RFFXUUHQFH RI
VHFRQG HYHQW

:RUNHG 2XW ([DPSOHV

([DPSOH $ EDJ FRQWDLQV UHG EDOOV DQG EODFN EDOOV 7ZR EDOOV DUH GUDZQ DW
UDQGRP RQH E\ RQH ZLWK UHSODFHPHQW 6KRZ WKH DOO SRVVLEOH RXWFRPHV LQ
D WUHH GLDJUDP DQG FDOFXODWH WKH SUREDELOLW\ WKDW ERWK EDOOV DUH UHG

6ROXWLRQ

/HW 5 EH WKH HYHQW RI UHG EDOOV DQG % EH WKH HYHQW RI EODFN EDOOV

3UREDELOLW\ DĂƚŚĞŵĂƚŝĐƐ Ͳ ϭϬͮ

7RWDO QXPEHU RI EDOOV EDOOV

6LQFH WKH EDOO ZKLFK LV GUDZQ DW ILUVW LV UHSODFHG WR GUDZ DQRWKHU EDOO 6R LW LV DQ LQGHSHQGHQW HYHQW

7KH WUHH GLDJUDP RI DOO SRVVLEOH RXWFRPHV RI WKH H[SHULPHQW LV JLYHQ EHORZ

)LUVW GUDZ 6HFRQG GUDZ 2XWFRPHV

5 5 5
%
5 7
5 %

%
7
5 % 5
%
7 % %


)URP WKH DERYH WUHH GLDJUDP WKH SUREDELOLW\ RI ERWK EDOOV DUH UHG 3 5 5

3 5 î 3 5

î




([DPSOH ,I WKH WZR FKLOGUHQ ZHUH JLYHQ ELUWK E\ D PDUULHG FRXSOH DW WKH LQWHUYDO RI
WKUHH \HDUV ,OOXVWUDWH WKH SUREDELOLWLHV RI VRQ RU GDXJKWHU E\ GUDZLQJ D
WUHH GLDJUDP DQG FDOFXODWH WKH SUREDELOLW\ RI ERWK DUH VRQ

6ROXWLRQ

/HW 6 EH WKH HYHQW RI VRQ DQG ' EH WKH HYHQW RI GDXJKWHU

7KH WUHH GLDJUDP RI WKH H[SHULPHQW LV JLYHQ EHORZ

)LUVW ELUWK 6HFRQG ELUWK 2XWFRPHV
66
6 6'
'
'6
6 ''
'



6

'

)URP WKH WUHH GLDJUDP

7KH SUREDELOLW\ RI ERWK DUH VRQ 3 66

3 6 î 3 6

î


ͮDĂƚŚĞŵĂƚŝĐƐ Ͳ ϭϬ 3UREDELOLW\

([DPSOH 7KHUH ZHUH ZKLWH DQG JUHHQ EDOOV LQ D EDJ 7ZR EDOOV ZHUH GUDZQ DW
UDQGRP RQH E\ RQH ZLWKRXW UHSODFHPHQW )LQG WKH SUREDELOLW\ WKDW ERWK
EDOOV ZHUH RI WKH VDPH FRORXU

6ROXWLRQ

/HW : DQG * GHQRWH WKH HYHQW RI ZKLWH DQG JUHHQ EDOOV UHVSHFWLYHO\

7KH QXPEHU RI SRVVLEOH RXWFRPHV 7RWDO QXPEHU RI EDOOV



EDOOV

6LQFH WKH EDOO ZKLFK LV GUDZQ DW ILUVW LV QRW UHSODFHG WR GUDZ DQRWKHU EDOO 6R LW LV D GHSHQGHQW HYHQW
$QG LQ WKH GUDZLQJ RI WZR EDOOV 7KHUH LV WKH SUREDELOLW\ RI WKH VDPH FRORXU EDOOV 6R WKH RFFXUUHQFH
PD\ EH ERWK EDOOV ZKLWH RU JUHHQ

1RZ E\ XVLQJ WKH PXOWLSOLFDWLYH ODZ RI SUREDELOLW\ IRU GHSHQGHQW HYHQW WKH SUREDELOLW\ RI ERWK EDOOV
DUH ZKLWH 3 : :
3 : î 3 :
î

$OVR WKH SUREDELOLW\ RI ERWK EDOOV DUH JUHHQ 3 * *
3 * î 3 *
î

$JDLQ WKH SUREDELOLW\ RI ERWK EDOOV DUH RI VDPH FRORXU 3 : : RU * *
3 : : 3 * *




6R WKH SUREDELOLW\ WKDW ERWK EDOOV DUH RI WKH VDPH FRORXU LV

([DPSOH $ EDJ FRQWDLQV UHG EDOOV DQG EOXH EDOOV $ EDOO LV GUDZQ DW UDQGRP
DQG QRW UHSODFHG $IWHU WKDW DQRWKHU EDOO LV GUDZQ ILQG WKH SUREDELOLW\
WKDW ERWK EDOOV DUH EOXH $OVR VKRZ WKH RXWFRPHV LQ D WUHH GLDJUDP

6ROXWLRQ

/HW¶V 5 DQG % GHQRWH WKH RFFXUUHQFH RI UHG DQG EOXH EDOO LQ WKH ILUVW WULDO DQG 5 DQG % GHQRWH WKH
RFFXUUHQFH RI UHG DQG EOXH EDOO LQ WKH VHFRQG WULDO UHVSHFWLYHO\

+HUH WKH QXPEHU RI SRVVLEOH RXWFRPHV 7RWDO QXPEHU RI EDOOV



EDOOV

3UREDELOLW\ DĂƚŚĞŵĂƚŝĐƐ Ͳ ϭϬͮ

6LQFH WKH EDOOV ZKLFK LV GUDZQ DW ILUVW LV QRW UHSODFHG WR GUDZ DQRWKHU EDOO 6R LW LV D GHSHQGHQW HYHQW
7KH DOO SRVVLEOH RXWFRPHV RI WKH SUREDELOLW\ DUH VKRZQ LQ WKH IROORZLQJ WUHH GLDJUDP

)LUVW GUDZ 6HFRQG GUDZ 2XWFRPHV

5 5 5
%
5 7 5 %

%
7
5 % 5
%
7
% %

)URP WKH DERYH WUHH GLDJUDP

7KH SUREDELOLW\ RI WKH ERWK EDOOV DUH EOXH 3 % %
3 % î 3 %
î


([DPSOH 7KHUH DUH 1HSDOL ERRNV DQG (QJOLVK ERRNV RI FODVV ; LQ D EDJ ,I
ERRNV DUH GUDZQ RQH DIWHU DQRWKHU ZLWKRXW UHSODFHPHQW UDQGRPO\ ILQG
WKH SUREDELOLW\ WKDW DOO WKH ERRNV DUH 1HSDOL $OVR VKRZ WKH H[SHULPHQW
E\ WUHH GLDJUDP

6ROXWLRQ

/HW 1 DQG ( GHQRWH WKH HYHQWV RI 1HSDOL ERRNV DQG (QJOLVK ERRNV UHVSHFWLYHO\ LQ WKH FRQGLWLRQ WKDW
WKH ILUVW ERRN GUDZQ LV QRW UHSODFHG 6R WKH HYHQWV DUH GHSHQGHQW 7KH WUHH GLDJUDP RI WKLV H[SHULPHQW
LV JLYHQ EHORZ

+HUH WKH QXPEHU RI SRVVLEOH RXWFRPHV 7RWDO QXPEHU RI ERRNV

ERRNV

)LUVW GUDZ 6HFRQG GUDZ 7KLUG GUDZ 2XWFRPHV

1 111
(
1 11(
( 1(1
1
( 1((
1 (11
(
1 (1(
( ((1
1
(((
(
1
(


)URP WKH DERYH WUHH GLDJUDP

7KH SUREDELOLW\ RI DOO WKH ERRNV DUH 1HDSOL 3 111

3 1 î 3 1 î 3 1

ͮDĂƚŚĞŵĂƚŝĐƐ Ͳ ϭϬ 3UREDELOLW\

î î







+HQFH WKH SUREDELOLW\ WKDW DOO WKUHH ERRNV DUH 1HSDOL LV



([DPSOH $ SDFN FRQWDLQV RQH UHG RQH JUHHQ DQG RQH ZKLWH FRORXU EDUIL $ EDUIL LV
WDNHQ RXW UDQGRPO\ ZLWKRXW UHSODFHPHQW DQG WKHQ DQRWKHU LV WDNHQ RXW
UDQGRPO\ %\ GUDZLQJ D WUHH GLDJUDP VKRZ DOO WKH SUREDELOLWLHV RI
SRVVLEOH RXWFRPHV DQG ILQG WKH SUREDELOLW\ RI JHWWLQJ DW OHDVW RQH JUHHQ
FRORXU EDUIL

6ROXWLRQ

/HW 5 * DQG : GHQRWH WKH UHG JUHHQ DQG ZKLWH FRORXU EDUIL UHVSHFWLYHO\

+HUH WKH QXPEHU RI SRVVLEOH RXWFRPHV

:KHQ WKH ILUVW EDUIL LV WDNHQ LW LV QRW UHSODFHG WR WDNH DQRWKHU RQH 6R LW LV D GHSHQGHQW HYHQW 7KH WUHH
GLDJUDP RI WKH H[SHULPHQW LV JLYHQ EHORZ

)LUVW GUDZ 6HFRQG GUDZ 2XWFRPHV 3UREDELOLWLHV
5*
* ଵଷ [ ଶଵ ଵ଺
: 5: ଵଷ [ ଶଵ ଺ଵ
5 *5 ଵଷ [ ଵଶ ଵ଺
: ଵଷ [ ଶଵ ଺ଵ
5 *: ଷଵ [ ଶଵ ଺ଵ
5 * :5 ଵଷ [ ଵଶ ଵ଺
*
: :*







)URP WKH DERYH WUHH GLDJUDP

7KH VDPSOH VSDFH ^ 5* 5: *5 *: :5 :*`

7KH SUREDELOLW\ RI JHWWLQJ DW OHDVW RQH JUHHQ FRORXU EDUIL

3 5* RU *5 RU *: RU :*

3 5* 3 *5 3 *: 3 :*

3, î 3 * 3 * î 3, 3 * î 3 : 3 : î 3 *





3UREDELOLW\ DĂƚŚĞŵĂƚŝĐƐ Ͳ ϭϬͮ

([HUFLVH

D $ FRLQ LV WRVVHG WZR WLPHV LQ VXFFHVVLRQ ZULWH GRZQ WKH VDPSOH VSDFH E\ GUDZLQJ D WUHH
GLDJUDP $OVR ILQG WKH SUREDELOLW\ RI JHWWLQJ WKDW

L ERWK DUH KHDG
LL DW OHDVW RQH LV WDLO
E $ EDJ FRQWDLQV UHG DQG EOXH PDUEOHV $ PDUEOH LV GUDZQ DW UDQGRP DQG UHSODFHG

WKHQ RWKHU PDUEOH LV GUDZQ %\ GUDZLQJ D WUHH GLDJUDP VKRZ DOO WKH SUREDELOLWLHV RI
SRVVLEOH RXWFRPHV $OVR ILQG WKH SUREDELOLW\ RI JHWWLQJ WKDW
L WKH ILUVW PDUEOH UHG DQG VHFRQG RQH EOXH
LL ERWK DUH GLIIHUHQW FRORXU
LLL DW OHDVW RQH LV UHG
F )URP D EDJ FRQWDLQLQJ JUHHQ DQG \HOORZ EDOOV WZR EDOOV DUH GUDZQ DW UDQGRP RQH
E\ RQH ZLWK UHSODFHPHQW :KDW LV WKH SUREDELOLW\ WKDW WKH EDOOV DUH JUHHQ" 6KRZ WKH
UHVXOWV LQ WKH WUHH GLDJUDP
D 7ZR FKLOGUHQ ZHUH JLYHQ ELUWK E\ D PDUULHG FRXSOH DW WKH LQWHUYDO RI \HDUV ,OOXVWUDWH
WKH SUREDELOLW\ RI VRQ RU GDXJKWHU E\ GUDZLQJ D WUHH GLDJUDP DQG FDOFXODWH WKH
SUREDELOLW\ RI ERWK DUH GDXJKWHUV
E 7ZR FKLOGUHQ ZHUH JLYHQ ELUWK E\ D PDUULHG FRXSOH DW WKH LQWHUYDO RI \HDUV )LQG WKH
SUREDELOLW\ RI KDYLQJ DW OHDVW RQH GDXJKWHU E\ GUDZLQJ D WUHH GLDJUDP
F 7ZR FKLOGUHQ ZHUH ERUQ LQ D IDPLO\ %\ GUDZLQJ D WUHH GLDJUDP ILQG WKH SUREDELOLW\ RI
KDYLQJ QR JLUO
G 7KUHH FKLOGUHQ ZHUH ERUQ LQ D IDPLO\ ,OOXVWUDWH WKH SUREDELOLW\ RI VRQ RU GDXJKWHU E\
GUDZLQJ D WUHH GLDJUDP $OVR FDOFXODWH WKH SUREDELOLW\ RI
L DW OHDVW WZR VRQV
LL DW OHDVW WZR GDXJKWHUV
LLL DOO RI WKHP ZHUH GDXJKWHUV
D 7KHUH ZHUH UHG DQG EODFN EDOOV RI WKH VDPH VKDSH DQG VL]H LQ D ER[ 7ZR EDOOV ZHUH
GUDZQ DW UDQGRP RQH E\ RQH ZLWKRXW UHSODFHPHQW )LQG WKH SUREDELOLW\ WKDW
L ERWK RI WKHP ZHUH EODFN
LL ERWK RI WKHP ZHUH RI VDPH FRORXU
LLL ERWK RI WKHP ZHUH GLIIHUHQW LQ FRORXUV
E $ EDJ FRQWDLQV EOXH DQG JUHHQ PDUEOHV
L ,I D PDUEOH LV GUDZQ IURP WKH EDJ ILQG WKH SUREDELOLW\ RI JHWWLQJ EOXH RU JUHHQ

PDUEOH
LL ,I WKH ILUVW PDUEOH LV EOXH DQG LW LV QRW UHSODFHG LQ WKH EDJ ZKDW LV WKH SUREDELOLW\

RI GUDZLQJ QH[W EOXH PDUEOH"
F 7KHUH ZHUH EOXH DQG UHG PDUEOHV LQ D EDJ 7ZR PDUEOHV ZHUH GUDZQ DW UDQGRP RQH

E\ RQH DQG LW LV QRW UHSODFHG LQ WKH EDJ )LQG WKH SUREDELOLW\ WKDW
L ERWK PDUEOHV ZHUH RI WKH VDPH FRORXU
LL ERWK PDUEOHV ZHUH RI UHG FRORXU
LLL DW OHDVW RQH ZDV EOXH PDUEOH
G 7KHUH ZHUH WKUHH EODFN DQG ILYH ZKLWH EDOOV LQ D ER[ 7ZR EDOOV ZHUH GUDZQ DW UDQGRP RQH

E\ RQH )LQG WKH SUREDELOLW\ WKDW ERWK EDOOV ZHUH RI WKH VDPH FRORXU QR UHSODFHPHQW
H 7KUHH EDOOV DUH GUDZQ VXFFHVVLYHO\ IURP D EDJ FRQWDLQLQJ UHG EOXH DQG ZKLWH

EDOOV 'HWHUPLQH WKH SUREDELOLW\ WKDW WKH\ DOO DUH UHG LI HDFK EDOO GUDZQ LV QRW UHSODFHG
D )URP D ZHOO VKXIIOHG SDFN RI FDUGV WZR FDUGV DUH GUDZQ DW UDQGRP ZLWKRXW

UHSODFHPHQW )LQG WKH SUREDELOLW\ WKDW
L ERWK RI WKHP DUH TXHHQ

ͮDĂƚŚĞŵĂƚŝĐƐ Ͳ ϭϬ 3UREDELOLW\

LL ERWK RI WKHP DUH VSDGH
LLL ERWK RI WKHP DUH RI VDPH FRORXU
LY WKH ILUVW LV D NLQJ DQG WKH VHFRQG LV -DFN RI EODFN
E )LQG WKH SUREDELOLW\ RI SLFNLQJ D SDLU RI VRFNV RI WKH IROORZLQJ FRORXU ZKHQ WKH\ DUH

WDNHQ RXW DW UDQGRP IURP D ER[ FRQWDLQLQJ ZKLWH VRFNV \HOORZ VRFNV DQG EOXH
VRFNV ZLWKRXW UHSODFHPHQW
L WKH VDPH FRORXU
LL WKH GLIIHUHQW FRORXU
LLL RQH EOXH FRORXU DQG WKH QH[W ZKLWH RU \HOORZ FRORXU
F )URP D SDFNHW RI FDUGV WKUHH FDUGV DUH GUDZQ LQ VXFFHVVLRQ DW UDQGRP ZLWKRXW
UHSODFHPHQW )LQG WKH SUREDELOLW\ WKDW WKH FDUGV VR GUDZQ DUH QR IDFH FDUGV
D $ EDJ FRQWDLQV EODFN DQG ZKLWH EDOOV 7ZR EDOOV DUH GUDZQ DW UDQGRP RQH DIWHU DQRWKHU
ZLWKRXW D UHSODFHPHQW )LQG WKH SUREDELOLW\ RI SRVVLEOH RXWFRPHV LQ D WUHH GLDJUDP
E $ EDJ FRQWDLQV UHG EDOOV DQG EODFN EDOOV 7ZR EDOOV DUH GUDZQ UDQGRPO\ RQH DIWHU WKH
RWKHU ZLWKRXW UHSODFHPHQW 6KRZ WKH SUREDELOLWLHV RQ WKH WUHH GLDJUDP $OVR ILQG WKH
SUREDELOLW\ RI JHWWLQJ WKDW WKH ERWK EDOOV RI VDPH FRORXU
F 7KHUH DUH ZKLWH EDOOV DQG EODFN EDOOV LQ D ER[ 7ZR EDOOV DUH GUDZQ DW UDQGRP RQH
DIWHU WKH RWKHU ZLWKRXW D UHSODFHPHQW 6KRZ WKH SUREDELOLW\ LQ WUHH GLDJUDP DQG DOVR
ILQG WKH SUREDELOLW\ RI JHWWLQJ ERWK EDOOV DUH ZKLWH
G $ EDJ FRQWDLQV WKUHH LGHQWLFDO EDOOV RQH UHG RQH EODFN DQG RQH ZKLWH 7ZR EDOOV DUH
GUDZQ DW UDQGRP RQH DIWHU DQRWKHU ZLWKRXW UHSODFHPHQW 'UDZ D WUHH GLDJUDP WR
UHSUHVHQW SUREDELOLWLHV DQG DOVR ZULWH WKH VDPSOH VSDFH
H $ EDOO LV GUDZQ IURP D EDJ FRQWDLQLQJ WKUHH UHG DQG ILYH ZKLWH EDOOV UDQGRPO\ DQG QRW
UHSODFHG 7KHQ DQRWKHU EDOO LV GUDZQ :ULWH WKH VDPSOH VSDFH RI WKH H[SHULPHQW XVLQJ
WKH WUHH GLDJUDP DQG ILQG WKH SUREDELOLW\ RI JHWWLQJ WZR UHG EDOOV
D 7KHUH LV RQH UHG RQH ZKLWH DQG RQH \HOORZ VZHHW LQ D SRW $ VZHHW LV WDNHQ RXW UDQGRPO\
DQG QRW UHSODFHG 7KHQ DQRWKHU VZHHW LV GUDZQ :ULWH WKH VDPSOH VSDFH RI WKH H[SHULPHQW
XVLQJ D WUHH GLDJUDP $OVR ILQG WKH SUREDELOLW\ RI JHWWLQJ DW OHDVW RQH UHG FRORXU VZHHW
E $Q H[SHULPHQW RI WRVVLQJ D FRLQ WKUHH WLPHV DQG VHTXHQFH RI JHWWLQJ KHDG DQG WDLO LV
UHFRUGHG
L 6KRZ WKH SUREDELOLWLHV RI RXWFRPHV LQ WKH WUHH GLDJUDP
LL :ULWH WKH VDPSOH VSDFH RI WKH H[SHULPHQW
LLL )LQG WKH SUREDELOLW\ RI JHWWLQJ WDLO LQ WKUHH WRVVHV
LY )LQG WKH SUREDELOLW\ RI JHWWLQJ DW OHDVW RQH WDLO
F $ EDJ FRQWDLQV JRRG DQG URWWHQ DSSOHV 7KUHH DSSOHV ZHUH GUDZQ DW UDQGRP LQ
VXFFHVVLRQ ZLWKRXW UHSODFHPHQW %\ GUDZLQJ D WUHH GLDJUDP VKRZ DOO WKH SUREDELOLWLHV
RI SRVVLEOH RXWFRPHV $OVR ILQG WKH SUREDELOLW\ RI JHWWLQJ WKDW
L DOO WKUHH JRRG DSSOHV
LL WKH ILUVW WZR DUH JRRG DQG WKH WKLUG LV URWWHQ
LLL DW OHDVW RQH LV URWWHQ
D $ EDJ FRQWDLQV EOXH EDOOV DQG JUHHQ EDOOV 7ZR EDOOV DUH GUDZQ LQ VXFFHVVLRQ
ZLWKRXW UHSODFHPHQW %\ GUDZLQJ D WUHH GLDJUDP ILQG WKH SUREDELOLW\ RI JHWWLQJ
L ERWK EDOOV EOXH
LL ERWK RI WKHP DUH RI VDPH FRORXU
LLL DW OHDVW RQH LV JUHHQ EDOO
LY DW PRVW RQH EOXH EDOO
E $Q XUQ FRQWDLQV JUHHQ DQG EODFN EDOOV RI WKH VDPH VKDSH DQG VL]H 7ZR EDOOV DUH
GUDZQ DW UDQGRP RQH DIWHU WKH RWKHU ZLWKRXW UHSODFHPHQW 'UDZ D WUHH GLDJUDP VKRZLQJ
DOO WKH SUREDELOLWLHV DQG DOVR ILQG WKH SUREDELOLW\ RI JHWWLQJ ERWK EODFN EDOOV
F 7ZR FDUGV DUH GUDZQ IURP D ZHOO VKXIIOHG SDFN RI FDUGV )LQG WKH SUREDELOLW\ WKDW
ERWK FDUGV DUH NLQJ WKH ILUVW FDUGV LV QRW UHSODFHG E\ GUDZLQJ D WUHH GLDJUDP

3UREDELOLW\ DĂƚŚĞŵĂƚŝĐƐ Ͳ ϭϬͮ

Unit Test

F.M.- 10

Group – A (5×2=10)

1. )URP WKH QXPEHU FDUGV QXPEHUHG IURP WR $ FDUG LV GUDZQ UDQGRPO\, ILQG WKH SUREDELOLW\

RI JHWWLQJ WKH card EHLQJ PXOWLSOH RI or

2. $ PDWKHPDWLFDO SUREOHP LV JLYHQ WR WZR VWXGHQWV $ and % 7KH SUREDELOLW\ of VROYLQJ the

SUREOHP E\ A and % DUH ଵଷ ܽ݊݀ ଵ UHVSHFWLYHO\, find


a. tKH SUREDELOLW\ RI EHLQJ WKH SUREOHP VROYHG

b. tKH SUREDELOLW\ RI EHLQJ WKH SUREOHP XQVROYHG

3. $ FRLQ LV WRVVHG WZLFH 6KRZ DOO WKH RXWFRPHV LQ D SUREDELOLW\ WUHH GLDJUDP

4. 7ZR FDUGV DUH GUDZQ IURP D ZHOO VKXIIOHG GHFN RI FDUGV )ind the SUREDELOLW\ WKDW ERWK FDUGV

EHLQJ NLQJ FDUGV E\ GUDZLQJ WUHH GLDJUDP

5. A EDJ FRQWDLQV ZKLWH EODFN and UHG EDOOV RI VDPH VKDSH DQG VL]H 7ZR EDOOV DUH GUDZQ

UDQGRPO\ RQH DIWHU DQRWKHU ZLWKRXW UHSODFHPHQW IURP the EDJ 6KRZ DOO WKH RXWFRPHV LQ D

probaELOLW\ WUHH GLDJUDP

306|Mathematics - 10 Probability

ŶƐǁ ĞƌƐ





([HUFLVH

D E ૞ૠ F I G H

D E ૚ૢ૜ F G
H
D E F G

D E F G
LL
D E F G

D E F G L
LLL
LLL S S ͷሻ LY LPSRVVLEOH HYHQWV

D E F G
F L LL
D E G L

LL LLL



D E F

([HUFLVH

D E F D L LL LLL ૟૟ૠૠ૞૟
LLL
E L ૝૚ LL LLL F L LL E L

LY ૛૚૛૟૚ D L LL LLL LY ૜૚ૠ૛ LLL LL
D L LL
LL ૚ૠ૟ LLL LY ૚૜૟ૢ F L LL ૚૜૟ F L G
F
LY G H L LL LLL

LY E L LL LLL LY

G L LL LLL D E LL F L
I ૠૠૠૡ LLL LY E L F G L
D L
LL

LL LLL LY D E

LL

D L LL LLL ૟ૢ૝ E F G H L LL

3UREDELOLW\ DĂƚŚĞŵĂƚŝĐƐ Ͳ ϭϬͮ

([HUFLVH

D ++ E 55 F **

+ 5 * *<
7 +7 % 5% < <*

+ 5 * <<
7 % <
7+ %5

+ 5 *
7 77 % %% <





6DPSOH VSDFH ^++ +7 7+ 77`

L LL 66 L LL LLL 3 **
D E 66 F %
6 6 * %%
' 6' ' 6
6 6' ' %*
' '6 6 6 '6 % *%
6' '
' * **
''
''

3 '' 3 DW OHDVW RQH GDXJKWHU 3 KDYLQJ QR GDXJKWHU



G 666
6
' 66'
6 6'6
' 6
' 6''
'66
6
' '6'
6 ''6
' 6
' '''

6
'





L LL LLL

D L LL LLL E L LL F L LL LLL

G H D L LL LLL LY E L LL

LLL F



D %% E 55 F ::

% 5 :
: % %
%: 5 5 5% 5
% :% % % %5 : % :%
: %:
% %
%%
: %%
::



3 ::

3 55 RU %%

ͮDĂƚŚĞŵĂƚŝĐƐ Ͳ ϭϬ 3UREDELOLW\

G H D

::

% 5 :%
: : %:
5 5 :
: : 5 <
5 : 5
: %% < <


5
%
:




5 5
% :




6DPSOH VSDFH ^5% 5: 6DPSOH VSDFH ^55 5: :5 6DPSOH VSDFH ^5: 5< :5
%5 %: :< <5 <:`
:5 :%` ::`
3UREDELOLW\ RI JHWWLQJ DW OHDVW RQH UHG
3 55
FRORXU VZHHW

***


E L + F *
7 5 **5

+ *
7 5 *5*

+ *
7 5
*55
5**
+ + *
7 7 5
+
7 * *
5 5
+ * 5*5
7 5 55*








555

LL 6DPSOH VSDFH ^+++ ++7 +7+ +77 7++ 7+7 77+ L7 7 7 `
LLL LY LL






D %% E ** F ..
% * .
* % *% . .
%* . ..
% %* *
* % %%
% *% * 3 ..
* L % % ..

.
.
55
LL 3 .
LLL .



%







3UREDELOLW\ DĂƚŚĞŵĂƚŝĐƐ Ͳ ϭϬͮ

PRIME Questions for More Practice

D ,Q D VXUYH\ RI SHRSOH WKH QXPEHU RI SHRSOH ZKR GRQ¶W OLNH WHD LV GRQ¶W OLNH FR൵HH LV DQG OLNH
E RQO\ WHD LV )LQG KRZ PDQ\ OLNH HLWKHU RI WKHP E\ GUDZLQJ YHQQ GLDJUDP >$QV @
2XW RI WRXULVW WKH QXPEHU RI WRXULVW ZKR OLNH 3RNKDUD DQG -DQDNSXU DUH LQ WKH UDWLR ZKHUH
F OLNH WR WUDYHO RWKHU SODFHV DQG OLNH WR WUDYHO ERWK SODFHV )LQG WKH QXPEHU RI WRXULVW ZKR OLNH WR WUDYHO
RQO\ RQH SODFH E\ GUDZLQJ YHQQ GLDJUDP >$QV @
G ,Q D VXUYH\ RI SHRSOH RQH ¿IWK SHRSOH OLNH PRELOH SKRQH RQO\ GRQ¶W OLNH PRELOH SKRQH DW DOO OLNH
ODQG OLQH SKRQH DQG GRQ¶W OLNH DQ\ RQH RI WKHP )LQG KRZ PDQ\ SHRSOH WRRN SDUW LQ WKH VXUYH\ DQG ZKR
H OLNH ERWK WKH SKRQHV E\ GUDZLQJ YHQQ GLDJUDP >$QV @
D ,Q D VXUYH\ RI VWXGHQWV OLNH 7KUHH 6WDU IRRWEDOO WHDP OLNH 1HZ 5RDG 7HDP ,I DOO WKH VWXGHQWV
ZKR OLNH 157 DOVR OLNH 7KUHH 6WDU DQG GLG QRW OLNH ERWK WKH WHDPV )LQG WKH QXPEHU RI VWXGHQWV ZKR
E OLNH 7KUHH 6WDU WHDP EXW QRW OLNH 157 WHDP E\ GUDZLQJ YHQQ GLDJUDP >$QV @
,Q D VXUYH\ RI VWXGHQWV VWXGHQWV OLNH PDWK RQO\ GRQ¶W OLNH PDWK OLNH VFLHQFH DQG GRQ¶W OLNH
F RQH RI WKHP )LQG WKH QXPEHU RI VWXGHQWV ZKR OLNH ERWK WKH VXEMHFW E\ GUDZLQJ YHQQ GLDJUDP >$QV @
G $ PDQ H[FKDQJHG 5V LQWR 86 GROODU DW UDWH RI 5V $IWHU D GD\ 1HSDOL FXUUHQF\ LV
H GHYDOXDWHG E\ DQG KH H[FKDQJHG WR 1HSDOL FXUUHQF\ DJDLQ )LQG KLV DFWXDOO\ SUR¿W LQ SHUFHQWDJH
D >$QV SUR¿W@
E 3UDQDY H[FKDQJHG 5V WR SRXQG VWHUOLQJ DW WKH UDWH RI 5V $IWHU VRPH GD\V 1HSDOL
F FXUUHQF\ LV UHYDOXDWHG E\ DQG KH H[FKDQJHG 1HSDOL FXUUHQF\ DJDLQ SD\LQJ FRPPLVVLRQ WR WKH
H[FKDQJHU )LQG KLV DFWXDO ORVV LQ SHUFHQWDJH >$QV @
G $Q DUWLFOH LV VROG DW 5V ZLWK GLVFRXQW LQFOXGLQJ 9$7 ZKHUH SULFH ZDV PDUNHG 5V )LQG
WKH UDWH RI GLVFRXQW DQG 9$7 DPRXQW >$QV @
H 7KH SULFH RI D 0RELOH VHW LV ¿[HG 5V ZKHUH GLVFRXQW UDWH DQG 9$7 UDWH LQ WKH UDWLR ,I WKH SULFH
RI PRELOH VHW ZLWK 9$7 EHFRPHV PRUH WKDQ WKH PDUNHG SULFH E\ )LQG WKH UDWH RI 9$7 >$QV @
D $ ELF\FOH LV VROG DW 5V ZLWK GLVFRXQW LQFOXGLQJ 9$7 ,I SULFH ZDV PDUNHG DERYH WKH
FRVW SULFH ZKDW ZDV WKH FRVW SULFH DQG PDUNHG SULFH RI WKH ELF\FOH >$QV 5V @
E 7KH FRPSRXQG DPRXQW RQ D VXP RI PRQH\ FRPSRXQG VHPL DQQXDOO\ LQ \HDU DQG \HDU DUH UHVSHFWLYHO\
F 5V DQG 5V )LQG WKDW UDWH RI LQWHUHVW DQG SULQFLSDO >$QV 5V @
7KH FRPSRXQG LQWHUHVW RQ D VXP RI PRQH\ LQ \HDU DQG \HDU DUH UHVSHFWLYH 5V DQG 5V
)LQG WKH UDWH RI LQWHUHVW DQG SULQFLSDO >$QV 5V @
$ PDQ ERUURZHG 5V IRU \HDU DW SHU DQQXP FRPSRXQGHG DQQXDOO\ +H SDLG KDOI RI WKH
SULQFLSDO DIWHU RQH \HDU DQG DQRWKHU KDIW ZLWK LQWHUHVW DW WKH HQG RI \HDUV +RZ PXFK SDLG E\ KLP DW ODVW "
>$QV 5V @
'LYLGHG LQWR WZR SDUWV ZKHUH WKHUH LV VLPSOH LQWHUHVW RQ ¿UVW SDUW RI WKH UDWH RI DQG FRPSRXQG
LQWHUHVW RQ VHFRQG SDUW DW FRPSRXQGHG VHPL DQQXDOO\ DUH ¿[HG WR SD\ DQG 5V LV SDLG DV WRWDO
LQWHUHVW DIWHU \HDUV >$QV 5V 5V @
$ PDQ ERXJKW D WHOHYLVLRQ VHW IURP D VKRS LQ WZR HTXDO \HDUO\ LQVWDOOPHQWV DW WKH UDWH RI FRPSRXQG
LQWHUHVW SHU DQQXP FRPSRXQG DQQXDOO\ DQG SDLG 5V LQ HDFK LQVWDOOPHQW WR FOHDU WKH FRVW )LQG
WKH FRVW SULFH RI WKH 79 VHW >5V @
$Q XPEUHOOD LV PDGH E\ VWLWFKLQJ WKH LVRVFHOHV WULDQJXODU SLHFHV RI GL൵HUHQW FRORXU KDYLQJ VL]H FP
î FP î FP ,I FRVW RI FORWKHV LV 5V SHU Pð DQG 5V LV XVHG IRU RWKHU SXUSRVH WR PDNH WKH
XPEUHOOD ZKDW ZLOO EH WKH SULFH RI XPEUHOOD " >$QV 5V @
3HULPHWHU RI D WULDQJXODU VKDSHG ODQG LV P KDYLQJ WZR HGJHV P DQG P )LQG WKH FRVW RI SODQWLQJ
JUDVV LQWR WKH ODQG DW WKH UDWH RI 5V SHU Pð >$QV 5V @
,I 76$ RI WKH JLYHQ VROLG LV FPð )LQG WKH KHLJKW RI WKH F\OLQGHUV >$QV FP@

47 cm

G ,I 3' FP DQG 32 FP LQ WKH JLYHQ VTXDUH EDVHG S\UDPLG )LQG WKH WRWDO P
VXUIDFH DUHD RI WKH S\UDPLG >$QV FPð@
A D
O
H 7KH UDWLR RI KHLJKW DQG VODQWHG KHLJKW RI D VTXDUH EDVHG S\UDPLG LV DQG YROXPH
C
LV FPñ )LQG WKH DUHD RI EDVH RI WKH S\UDPLG >$QV FPð@ B

310|Mathematics–10

D )LQG WKH +&) DQG /&0 RI

L [ð [ ± [ð ± [ ± DQG [ð ± [

LL ± [ñ [ð [ DQG [ [ð ± [

LLL Dð ± Eð Fð ± Gð DEFG DQG DðF DEG DðG ± DEF

LY [ð Eð ± Dð [ð E DQG [ ± E D[ð [ D

Y [ [ [ [ [ DQG [ñ ± [
6LPSOLI\ [

D ± ± >$QV @


a a a[ \
E ×[ \ \ ] ×\ ] ] [ ] [ >$QV @

a\ [ a] \ a[ ]

F ,DaI S T U b b P P Q bD S ±U ±R Y ba H WPKn D WQ >$ Q ±V S ±ba TP± ± Q @
G ± T ± U± ± U ± S±

H ,I Pð ± 3URYH WKDW Pñ P

6LPSOLI\ WKH IROORZLQJV
[\ ± [ \
D [ ± [\ \ ± [ [\ \ ± [ [ \ \ >$QV [ [ \ \ @

E [ [ ± ± >$QV [ ± @
[ [ [ ± [ [ [ [ ± [

F [ [ [ >$QV @
[ D [ D [ D [ ± D D ± [

G ± ± >$QV @
D D D D D D

H S ST S T × ± q >$QV @
S ± T p

6ROYH WKH IROORZLQJV D[
b c
D D[ ± E ± c
D[ ± E

E [ [ ± [ ±
F
,I D E F N SURYH WKDW [ D [ E [ F
[ D [N±E [N±F [ E [N±F [N±D [ F [N±D [N±E

G [± D[± ± [± D [± >$QV @

H 6ROYH [[ [[ $OVR YHULI\ LW IRU [ ± ± [

D 7KH SUHVHQW DJH RI IDWKHUV LV WKUHH WLPHV WKH DJH RI KLV VRQ \HDU DJR 7HQ \HDU KHQFH IDWKHU ZLOO EH RQO\
E WLPHV WKH DJH RI KLV VRQ ZLOO EH \HDUV KHQFH DQG PRUH WKDQ E\ \HDUV )LQG WKHLU SUHVHQW DJHV >$QV @
F $ QXPEHUV RI WZR GLJLWDOV H[FHHGV WLPHV WKH VXP RI LWV GLJLWV E\ ,I LV DGGHG WR WKH QXPEHU WKH
G GLJLWV ZLOO EH LQWHU FKDQJHG )LQG WKH QXPEHU >$QV @
'HQRPLQDWRU RI D IUDFWLRQ LV OHVV WKDQ WLPHV LWV QXPHUDWRU E\ ,I LV DGGHG WR WKH QXPHUDWRU DQG LV
H VXEWUDFWHG IURP WLPHV LWV GHQRPLQDWRU WKH QHZ IUDFWLRQ ZLOO EH )LQG WKH IUDFWLRQ >$QV @
7ZR FDUV VWDUWHG WR PRYH IURP WZR SODFH WRZDUGV HDFK RWKHU ZKLFK DUH NP DSDUW ,I YHORFLW\ RI RQH
LV PRUH WKDQ WKH RWKHU E\ NP K DQG ERWK FDUV PHHW DIWHU KRXUV ZKDW ZLOO EH WKH VSHHG RI WKHP " >$QV
NP K NP K@
7KH VXP RI WKH SUHVHQW DJHV RI IDWKHU DQG KLV VRQ LV \HDUV %RWK RI WKHP OLYH RQ WLOO WKH VRQ ZLOO EH DV
PXFK DV IDWKHU QRZ DQG SURGXFW RI WKHLU DJHV ZLOO EH )LQG WKHLU SUHVHQW DJHV >$QV @

Mathematics–10 | 311

L ,I $%&' DQG 3%&' DUH VWDQGLQJ RQ VDPH EDVH DQG EHWZHHQ VDPH SDUDOOHOV SURYH WKDW

LL D ¨$%& # ¨%&4 E $%&' 3%&4
LLL
LY 3URYH WKDW DUHD RI ¨$/, LV HTXDO WR %/,3 ZKLFK DUH VDPH EDVH DQG EHWZHHQ VDPH SDUDOOHOV
Y
D 3URYH WKH DUHD RI WULDQJOHV VWDQGLQJ RQ VDPH EDVH 01 DQG EHWZHHQ VDPH SDUDOOHOV 34 01 DUH HTXDO
E
F 3URYH WKDW WKH LQVFULEHG DQJOH LV KDOI RI WKH FHQWUDO DQJOH VWDQGLQJ RQ VDPH DUF RI D FLUFOH
G
H 3URYH WKDW WKH RSSRVLWH DQJOHV RI D F\FOLF TXDGULODWHUDO $183 DUH VXSSOHPHQWDU\
D
9HULI\ H[SHULPHQWDOO\ WKDW FHQWUDO DQJOH LV GRXEOH WKH LQVFULEHG DQJOH VWDQGLQJ RQ VDPH DUF RI D FLUFOH
E
9HULI\ H[SHULPHQWDOO\ WKDW LQVFULEHG ‘345 DQG ‘$34 DUH HTXDO ZKLFK DUH VWDQGLQJ RQ VDPH VHJPHQW RI D FLUFOH
F
9HULI\ H[SHULPHQWDOO\ WKDW RSSRVLWH DQJOHV RI F\FOLF TXDGULODWHUDO DUH VXSSOHPHQWDU\
G
9HULI\ H[SHULPHQWDOO\ WKDW LQVFULEHG DQJOH IRUPHG LQ D VHPL FLUFOH KDYLQJ GLDPHWHU 01 LV D ULJKW DQJOH
H
9HULI\ H[SHULPHQWDOO\ WKDW H[WHULRU DQJOH RI D F\FOLF TXDGULODWHUDO 3456 LV HTXDO WR LWV RSSRVLWH LQWHULRU DQJOH
D
7KH DQJOH RI GHSUHVVLRQ RI WKH URRI RI D KRXVH IURP WKH WRS RI WUHH ZKLFK DUH P DQG P UHVSHFWLYHO\ LV
E IRXQG WR EH ƒ )LQG WKH GLVWDQFH EHWZHHQ WKH KRXVH DQG WKH WUHH >$QV ± @

F $ P WDOO ER\ LV VWDQGLQJ P DZD\ IURP WKH IRRW RI D SROH DQG ¿QGV WKH DQJOH RI HOHYDWLRQ ƒ WR WKH
G
WRS RI WKH SROH )LQG WKH KHLJKW RI WKH SROH IURP WKH JURXQG >$QV P@
H
$ P WDOO WUHH LV EURNHQ E\ WKH ZLQG DQG WKH WRS WRXFKHV WKH JURXQG PDNLQJ DQ DQJOH RI ƒ )LQG WKH

OHQJWK RI WKH EURNHQ SDUW RI WKH WUHH >$QV P@

$ P ORQJ ODGGHU LV WDNHQ RQ D ZDOO ZKHUH WKH WRS WRXFKHV WKH ZDOO P EHORZ IURP WKH WRS RI WKH ZDOO ,I

DQJOH RI HOHYDWLRQ RI WKH WR WKH ZDOO IURP WKH IRRW RI WKH ODGGHUV LV ƒ )LQG WKH KHLJKW RI WKH ZDOO > P@

)LQG WKH OHQJWK RI WKH VKDGRZ RI D SROH P KLJK ZKHUH OHQJWK RI WKH VKDGRZ RI D PHQ P WDOO DW WKH

VDPH VXQ¶V DOWLWXGH LV P $OVR ¿QG WKH VXQ¶V DOWLWXGH DW WKDW WLPH >$QV P ƒ@

&RQVWUXFW D TXDGULODWHUDO KDYLQJ $% %& FP &' '$ FP ‘$%& ƒ $OVR FRQVWUXFWLRQ

HTXLYDOHQW WULDQJOH ¨$%& ZLWK LW

&RQVWUXFW D TXDGULODWHUDO KDYLQJ 34 FP 45 FP 56 FP 63 FP DQG GLDJRQDO 35

FP $OVR FRQVWUXFW DQ HTXLYDOHQW ¨36$ ZLWK LW

&RQVWUXFW D ¨$%& KDYLQJ $% FP ‘$ ƒ & ƒ $OVR FRQVWUXFW HTXLYDOHQW UHFWDQJOH ZLWK LW

&RQVWUXFW D ¨345 KDYLQJ 45 FP ‘4 ƒ DQG 35 FP $OVR FRQVWUXFWLRQ D SDUDOOHORJUDP RI

D VLGH FP ZKLFK LV HTXLYDOHQW WR WKH SDUDOOHORJUDP

&RQVWUXFW D SDUDOOHORJUDP KDYLQJ D VLGH FP DQG WZR GLDJRQDOV FP DQG FP

$OVR FRQVWUXFW D HTXLYDOHQW WULDQJOH ZLWK LW

D ,I D VTXDUH EDVHG UHFWDQJXODU VKDSHG SLOODU SRVVHV D S\UDPLG VKDSHG WRS DV VKRZQ
LQ GLDJUDP ¿QG WKH FRVW RI SDLQWLQJ LWV VXUIDFH DW WKH UDWH RI SDLVD SHU FPð
>$QV 5V @ 10.06 m
16cm

10m

E )LQG WKH FRVW RI ZDWHU WR ¿OO WKH JLYHQ WDQN PDGH E\ FRQQHFWLQJ KHPL VSKHULFDO WRS 5m
WR WKH F\OLQGULFDO WDQN DW WKH UDWH RI SDLVD SHU OLWHUV >$QV 5V @

15m

F )LQG WKH FRVW RI FDQYDV XVHG LQ WKH JLYHQ WHQW ZKHUH 2.1 m
G
S\UDPLG VKDSHG WHQW LV FRQQHFWHG ZLWK VTXDUH EDVHG FXERLG

12m DV VKRZQ LQ GLDJUDP ZKHUH WKH UDWH LV 5V SHUV Pð >$QV 5V @

$ FRQH LV IXOO\ ¿OOHG ZLWK ZDWHU ZKLFK LV SRXUHG LQWR D F\OLQGULFDO YHVVHO DV
VKRZQ LQ GLDJUDP )LQG WKH KHLJKW RI ZDWHU LQWR WKH F\OLQGHU >$QV FP@

24m

312|Mathematics–10

12cm

H $ FRQLFDO VKDSHG WHQW DV VKRZQ LV GLDJUDP 6 10cm 18cm
LV WKHUH ,I D SHUVRQ QHHGV Pñ DLU IRU 12cm
EUHDWKLQJ +RZ PDQ\ SHRSOH FDQ VWD\ LQWR WKH
WHQW " >$QV @

25cm

24cm

3URYH WKDW WKH IROORZLQJ
D 3URYH WKDW ‘$53 ‘$23 ‘%24 IURP WKH DGMRLQLQJ GLDJUDP

O

A RQ
PB

E ,I 3$ ELVHFWV ‘435 LQ WKH DGMRLQLQJ GLDJUDP SURYH WKDW 01__45
PB

MN

QR
A

F ,I WZR FLUFOHV DUH LQWHUVHFWHG DW SRLQW $ DQG % LQ WKH DGMRLQLQJ GLDJUDP SURYH WKDW $& %'
C

A

PQ

B
D

G ,I FKRUGV $% DQG 34 DUH SHUSHQGLFXODU WR HDFK RWKHU LQ WKH JLYHQ GLDJUDP SURYH WKDW ‘32% ‘$24
ƒ
A

O

m Q

P

B

H ,I 3 4 DQG 5 DUH WKH PLG SRLQW RI VLGHV RI $%& DQG $6_%& LQ WKH JLYHQ ¿JXUH SURYH WKDW 3 4 5 DQG 6

DUH FRQ F\FOLF

Mathematics–10 | 313

A

PQ

B ST C
I 3URYH WKDW 4567 LV D F\FOLF TXDGULODWHUDO LQ WKH DGMRLQLQJ GLDJUDP ZKHUH WZR FLUFOHV DUH LQWHUVHFWHG DW

SRLQWV 8 DQG 7
R

Q UV
PS

T
J ,I $ % DQG 6 DUH WKH PLG SRLQW RI VLGHV LQ WKH DGMRLQLQJ GLDJUDP SURYH WKDW '345 '$%&

P

AB

Q CS R

K ,Q WKH JLYHQ SDUDOOHORJUDP $%&' 3URYH WKDW '$%3 '$'3
AD

P

B C
)LQG PHGLDQ IURP WKH IROORZLQJ GDWD
D
Class ± ± ± ± ±
E
f
F >$QV @
G
H ,I WKLUG TXDUWLOH LV ¿QG WKH YDOXH RI P

0DUNV

f P P P

>$QV ± @

)LQG WKH SUREDELOLW\ RI JHWWLQJ D NLQJ RU UHG FDUG ZKHQ D FDUG LV GUDZQ IURP D SDFN RI FDUGV

$ EDJ FRQWDLQV UHG JUHHQ DQG EOXH EDOOV RI VDPH VL]H LI WZR EDOOV DUH GUDZQ RQH DIWHU DQRWKHU

ZLWKRXW UHSODFHPHQW ZULWH GRZQ DOO SRVVLEOH SUREDELOLWLHV VKRZLQJ WUHH GLDJUDP

7ZR FDUGV DUH GUDZQ RQH DIWHU DQRWKHU ZLWK UHSODFHPHQW )LQG WKH SUREDELOLW\ RI JHWWLQJ ERWK IDFH FDUGV

E\ GUDZLQJ WUHH GLDJUDP

***

314|Mathematics–10

Model Questions Set-A

Group A [3 × (1 + 1) = 6]
ͳǤ ƒǤ ”‹–‡ †‘™ –Ї ˆ‘”—Žƒ –‘ ϐ‹† ’‡”…‡–ƒ‰‡ ™Š‡ α ƒ ƒ† ™‹–Š α „ ƒ”‡ ‰‹˜‡Ǥ
„Ǥ ”‹–‡ †‘™ –Ї ˆ‘”—Žƒ –‘ ϐ‹† ƒ”‡ƒ ‘ˆ •…ƒŽ‡‡ –”‹ƒ‰Ž‡ having side x cm, y cm and z cm.

ʹǤ ƒǤ ‘” ™Šƒ– ˜ƒŽ—‡ ‘ˆ šǡ ™‹ŽŽ –Ї”‡ „‡ x + 5 = 9 .
„Ǥ ”‹–‡ †‘™ –Ї ˆ‘”—Žƒ –‘ ϐ‹† –Ї ƒ…–—ƒŽ ‡†‹ƒ ‘ˆ ‘„•‡”˜ƒ–‹‘• Šƒ˜‹‰ …Žƒ••
‹–‡”˜ƒŽǤ

3. a. If area of ' α Ͷš …2 ƒ† –Ї ƒ”‡ƒ ‘ˆ –Ї ’ƒ”ƒŽŽ‡Ž‘‰”ƒ α ͶͲ …2 ™Š‹…Š
ƒ”‡ ‹ „‡–™‡‡ –Ї •ƒ‡ ’ƒ”ƒŽŽ‡Ž• ƒ† ‘ –Ї •ƒ‡ „ƒ•‡ ϐ‹† –Ї ˜ƒŽ—‡ ‘ˆ šǤ
„Ǥ ƒŽ…—Žƒ–‡ –Ї ˜ƒŽ—‡ ‘ˆ ‘ ™Š‡”‡ –Ї ˜ƒŽ—‡ ‘ˆ ‘ α ͻ͸ιǤ


Group – B [17 × 2 = 34]
ͶǤ ƒǤ  ƒ”–‹…އ ‹• •‘ކ ƒ– –Ї …‘•– ‘ˆ ͷ އ‘• ‹…Ž—†‹‰ ƒ‘—– ™Š‡”‡ –Ї …‘•–
™‹–Š‘—– ™ƒ• –Ї …‘•– ‘ˆ Ͷ އ‘•Ǥ ‹† –Ї ’‡”…‡–ƒ‰‡Ǥ
„Ǥ Ї ‘”‹‰‹ƒŽ ’”‹…‡ ‘ˆ ƒ ƒ…Š‹‡ ‹• •Ǥ ʹͲǡͲͲͲǤ – ‹• •‘ކ ƒ– •Ǥ ͳʹǡͺͲͲ ƒ– –Ї ”ƒ–‡ ‘ˆ †‡’”‡…‹ƒ–‹‘ ʹͲΨ
ƒˆ–‡” •‘‡ ›‡ƒ”•Ǥ ‹† –Ї –‹‡Ǥ
ͷǤ ƒǤ ˆ ƒ† ‘ˆ ƒ …›Ž‹†‡” ƒ”‡ ʹǡͻͻʹ…2 ƒ† ͳǡ͹͸Ͳ…2 ϐ‹† –Ї ”ƒ†‹—• ‘ˆ –Ї „ƒ•‡ ‘ˆ –Ї …›Ž‹†‡”Ǥ
„Ǥ ‹† –Ї ‘ˆ –Ї ˜‡••‡Žǡ ‹ˆ –Ї …ƒ’ƒ…‹–› ‘ˆ ƒ …‘‹…ƒŽ ˜‡••‡Ž ‘ˆ Ї‹‰Š– ͵Ͳ … ‹• ͳǤͷͶ Ž‹–‡”•Ǥ
…Ǥ ‹† –Ї ˜‘Ž—‡ ‘ˆ –Ї ‰‹˜‡ •“—ƒ”‡ „ƒ•‡† ’›”ƒ‹† ‘ˆ •‹†‡ ͳ͸ … ƒ† •Žƒ–‡† Ї‹‰Š– ‹• ͳͲ …Ǥ
͸Ǥ ƒǤ ‹† –Ї ǣ š2 Ȃ ʹš Ȃ ͳͷ ƒ† š2 Ȃ ʹͷǤ

„Ǥ ‹‹‘Ž˜’’‡ŽŽǣ‹‹ ˆˆ3›› ǣǣx 211–46–9341x×× aα2–7 b͵17 4+ F

͹Ǥ ƒǤ 1
„Ǥ 1 – xb–a

…Ǥ ‹† ƒ› –™‘ …‘•‡…—–‹˜‡ ‡˜‡ —„‡”• ™Š‘•‡ ’”‘†—…– ‹• ͳʹͲǤ
ͺǤ ƒǤ ‹† –Ї އ‰–Š ‘ˆ †‹ƒ‰‘ƒŽ ‘ˆ ”Š‘„—• ™Š‡”‡ … ‹• –Ї ‹† ’‘‹– ‘ˆ
•‹†‡ ǡ †‹ƒ‰‘ƒŽ α ͺ … ƒ† ƒ”‡ƒ ‘ˆ –”‹ƒ‰Ž‡ α ͳͲ …2.


„Ǥ  –Ї ƒ†Œ‘‹‹‰ †‹ƒ‰”ƒǡ ‹• –Ї …‡–‡” ‘ˆ ƒ …‹”…އ ƒ† ‘„–—•‡ ‘ α ͳʹͲιǡ
ϐ‹† –Ї ‘ ƒ† ‘ Ǥ


…Ǥ ”‘ –Ї ƒ†Œ‘‹‹‰ †‹ƒ‰”ƒ ϐ‹† –Ї ˜ƒŽ—‡ ‘ˆ š ™Š‡”‡ ‘ α ͺͲιǡ ‘ α
š ƒ† α Ǥ






ͻǤ ƒǤ Šƒ– ‹• –Ї ˜ƒŽ—‡ ‘ˆ އ‰–Š ‘ˆ •‹†‡ ‘ˆ ' ™Š‡”‡ ‘ α ͸Ͳιǡ α ͸… ƒ† ƒ”‡ƒ ‘ˆ ' α ͳʹ

…2?
„Ǥ ˆ ¦ˆš α ͶͲͲ Ϊ ʹͲƒ Ƭ ¦ˆ α ͶͲ Ϊ ʹƒǡ ϐ‹† –Ї ˜ƒŽ—‡ ‘ˆ ƒ”‹–Š‡–‹… ‡ƒ ‘ˆ –Ї ‘„•‡”˜ƒ–‹‘•Ǥ
ͳͲǤ ƒǤ …ƒ”† ‹• †”ƒ™ ƒ– ”ƒ†‘ ˆ”‘ –Ї †‡… ‘ˆ …ƒ”†•Ǥ ‹† –Ї ’”‘„ƒ„‹Ž‹–› ‘ˆ –Ї …ƒ”† „‡‹‰ ˆƒ…‡ …ƒ”†

‘” …Ž—„ …ƒ”†Ǥ
„Ǥ „ƒ‰ …‘–ƒ‹• ͳ ”‡†ǡ ͳ „Ž—‡ ƒ† ͵ ‰”‡‡ ƒ”„އ•Ǥ ™‘ ƒ”„އ• ƒ”‡ †”ƒ™ ƒ– ”ƒ†‘ ‘‡ ƒˆ–‡”

ƒ‘–Ї” ™‹–Š‘—– ”‡’Žƒ…‡‡–Ǥ Š‘™ ƒŽŽ –Ї ’”‘„ƒ„‹Ž‹–‹‡• ™‹–Š –”‡‡ †‹ƒ‰”ƒǤ

Group – C [10 × 4 = 40]
ͳͳǤ  ƒ …Žƒ•• ‘ˆ •–—†‡–• ͷͲΨ Ž‹‡ –‘ –”ƒ˜‡Ž ‘Šƒ”ƒ ‹ ‡†—…ƒ–‹‘ƒŽ –‘—”ǡ ͸ͲΨ Ž‹‡ –‘ –”ƒ˜‡Ž —„‹‹ǡ ͺΨ

†‘ǯ– Ž‹‡ –‘ –”ƒ˜‡Ž „‘–Š ’Žƒ…‡• ƒ† ʹΨ ™‡”‡ ƒ„•‡–Ǥ ˆ ͵Ͳ •–—†‡–• Ž‹‡ –‘ –”ƒ˜‡Ž ‹ „‘–Š ’Žƒ…‡• „›
†”ƒ™‹‰ ˜‡ †‹ƒ‰”ƒǡ ϐ‹† –‘–ƒŽ —„‡” ‘ˆ •–—†‡–• ƒ† ™Š‘ ™ƒ– –‘ –”ƒ˜‡Ž ‘Ž› ‘‡ ’Žƒ…‡Ǥ
ͳʹǤ Ї ’”‹…‡ ‘ˆ ƒ ƒ”–‹…އ ‹• ƒ”‡† ͶͲΨ ƒ„‘˜‡ –Ї …‘•– ’”‹…‡Ǥ Šƒ– ’‡”…‡– ‰ƒ‹ ™‹ŽŽ „‡ –Ї”‡ ‘ ‰‹˜‹‰
ʹͷΨ †‹•…‘—–ǫ Ž•‘ ϐ‹† –Ї ƒ”‡† ’”‹…‡ ‘ˆ –Ї ƒ”–‹…އ ™Š‹…Š ‹• •‘ކ ƒ– •Ǥ Ͷ͹Ͷ͸ ‹…Ž—†‹‰ ͳ͵Ψ Ǥ
ͳ͵Ǥ  —„”‡ŽŽƒ ‹• ƒ†‡ „› •–‹–…Š‹‰ ͳͲ –”‹ƒ‰—Žƒ” ’‹‡…‡• ‘ˆ …Ž‘–Š ‘ˆ –™‘ †‹ˆˆ‡”‡– …‘Ž‘—”•ǡ ‡ƒ…Š ’‹‡…‡
‡ƒ•—”‹‰ ʹͲ …ǡ ͶͲ … ƒ† ͶͲ … ‘ˆ ‹•‘•…‡Ž‡• –”‹ƒ‰—Žƒ” ’‹‡…‡•Ǥ ‹† –Ї …‘•– ‘ˆ …Ž‘–Ї• —•‡† ‹ ‹– ƒ–
–Ї ”ƒ–‡ ‘ˆ •Ǥ ͷͲͲ ’‡” 2.

Mathematics–10 | 315

ͳͶǤ ‹’Ž‹ˆ› ǣ x 1 1 + 1 + 1 + x + 2x + 3x
+ x+2 x+3 x3 + x2 x3 + 2x2 x3 + 3x2

ͳͷǤ Ї ’”‘†—…– ‘ˆ –Ї †‹‰‹–• ‘ˆ –™‘ †‹‰‹–• —„‡” ‹• ʹͳǤ ˆ ͵͸ ‹• •—„–”ƒ…–‡† ˆ”‘ ‹–• ”‡˜‡”•‡† —„‡” –Ї”‡
™‹ŽŽ „‡ –Ї ‘”‹‰‹ƒŽ —„‡”Ǥ ‹† –Ї —„‡”Ǥ

ͳ͸Ǥ ”‘˜‡ –Šƒ– ƒ”‡ƒ ‘ˆ ”‡…–ƒ‰Ž‡ ‹• ‡“—ƒŽ –‘ –Ї ƒ”‡ƒ ‘ˆ ’ƒ”ƒŽŽ‡Ž‘‰”ƒ Š‹…Š ƒ”‡ •–ƒ†‹‰ ‘
•ƒ‡ „ƒ•‡ ƒ† „‡–™‡‡ •ƒ‡ ’ƒ”ƒŽŽ‡Ž•Ǥ

ͳ͹Ǥ ‡”‹ˆ› ‡š’‡”‹‡–ƒŽŽ› –Šƒ– ‘’’‘•‹–‡ ƒ‰Ž‡• ‘ˆ ƒ …›…Ž‹… “—ƒ†”‹Žƒ–‡”ƒŽ ƒ”‡ •—’’އ‡–ƒ”›Ǥ
ͳͺǤ ‘•–”—…– ƒ “—ƒ†”‹Žƒ–‡”ƒŽ ‘ˆ α α ͸…ǡ α α ͷ… ƒ† †‹ƒ‰‘ƒŽ α ͹…Ǥ Ž•‘ …‘•–”—…– ƒ

‡“—‹˜ƒŽ‡– ' ™‹–Š –Ї “—ƒ†”‹Žƒ–‡”ƒŽǤ
ͳͻǤ –”‡‡ ‹• „”‘‡ „› –Ї ™‹† ƒ† ‹• ‘– ˆ—ŽŽ› †‡–ƒ…Ї† ƒ† –Ї –‘’ –‘—…Ї• –Ї ‰”‘—† ™‹–Š ƒ ƒ‰Ž‡ ‘ˆ

͵Ͳι ™Š‡”‡ އ‰–Š ‘ˆ –Ї „”‘‡ ’ƒ”– ‘ˆ –Ї –”‡‡ ‹• ͳʹǤ ‹† –Ї ‘”‹‰‹ƒŽ Ї‹‰Š– ‘ˆ –Ї –”‡‡Ǥ
ʹͲǤ ˆ —’’‡” “—ƒ”–‹Ž‡ ‘ˆ –Ї ‰‹˜‡ ‘„•‡”˜ƒ–‹‘• ‹• Ͷʹǡ ϐ‹† –Ї ˜ƒŽ—‡ ‘ˆ Ǯǯ

Žƒ•• Ͳ Ǧ ͳʹ ͳʹ Ǧ ʹͶ ʹͶ Ǧ ͵͸ ͵͸ Ǧ Ͷͺ Ͷͺ Ǧ ͸Ͳ

f Ͷ m 12 ͳͲ ͷ

Group – D [4 × 5 = 20]
ʹͳǤ Ї …‘’‘—† ‹–‡”‡•– ‘ ƒ •— ‘ˆ ‘‡› ƒ– ͳͲΨ …‘’‘—†‡† •‡‹Ǧƒ—ƒŽŽ› ‹ ͳ ›‡ƒ” ͸ ‘–Š• ‹•

‘”‡ –Šƒ –Ї •‹’އ ‹–‡”‡•– „› • ͳͷʹǤͷͲǤ ‹† –Ї •—Ǥ
ʹʹǤ Ї ”ƒ†‹—• ‘ˆ „ƒ•‡ ƒ† •Žƒ– Ї‹‰Š– ‘ˆ ƒ …‘‡ ƒ”‡ ‹ –Ї ”ƒ–‹‘ Ͷǣͷ ™Š‘•‡ ˜‡”–‹…ƒŽ Ї‹‰Š– ‹• ͸…Ǥ ˆ ‹– ‹•

…‘‡…–‡† –‘ ƒ …›Ž‹†‡” ƒ† Ї‹‰Š– ‘ˆ •‘Ž‹† „‡…‘‡• ʹ͹…Ǥ ‹† –Ї –‘–ƒŽ •—”ˆƒ…‡ ƒ”‡ƒ ‘ˆ –Ї •‘Ž‹†Ǥ

ʹ͵Ǥ ‹’Ž‹ˆ›ǣ


ʹͶǤ  –Ї ƒ†Œ‘‹‹‰ †‹ƒ‰”ƒǡ α ǡ ’”‘˜‡ –Šƒ– ȀȀ

****

Model Questions Set-B

Group A [3 × (1 + 1) = 6]
ͳǤ ƒǤ ”‹–‡ †‘™ –Ї ˆ‘”—Žƒ –‘ ϐ‹† †‹•…‘—– ’‡”…‡–ƒ‰‡ ™Š‡ ƒ”‡† ’”‹…‡ ƒ† •‡ŽŽ‹‰ ’”‹…‡ ‘ˆ ƒ
ƒ”–‹…އ ƒ”‡ ‰‹˜‡Ǥ
„Ǥ ”‹–‡ †‘™ –Ї ˆ‘”—Žƒ –‘ ϐ‹† ƒ”‡ƒ ‘ˆ ƒ ‹•‘•…‡Ž‡• –”‹ƒ‰Ž‡ ™Š‡ ‡“—ƒŽ •‹†‡•  ƒ† —‡“—ƒŽ •‹†‡ 
ƒ”‡ ‰‹˜‡Ǥ

ʹǤ ƒǤ ‘” ™Šƒ– ˜ƒŽ—‡ ‘ˆ šǡ ™‹ŽŽ –Ї”‡ „‡ 3 x – 5 α ʹ ǫ
„Ǥ ”‹–‡ †‘™ –Ї ˆ‘”—Žƒ –‘ ϐ‹† –Ї ƒ”‹–Š‡–‹… ‡ƒ ƒ……‘”†‹‰ –‘ •–‡’ †‡˜‹ƒ–‹‘
method.

3. a. If area of ' α ʹͲ…2ǡ ™Šƒ– ™‹ŽŽ „‡ –Ї ƒ”‡ƒ ‘ˆ ’ƒ”ƒŽŽ‡Ž‘‰”ƒ ™Š‹…Š ƒ”‡ ‹
„‡–™‡‡ –Ї •ƒ‡ ’ƒ”ƒŽŽ‡Ž•Ǥ
„Ǥ ƒŽ…—Žƒ–‡ –Ї ˜ƒŽ—‡ ‘ˆ ‘ ™Š‡”‡ –Ї ˜ƒŽ—‡ ‘ˆ ‘ α ͶͲιǤ

Group – B [17×2 = 34]
ͶǤ ƒǤ  ƒ”–‹…އ ‹• •‘ކ ƒ– •Ǥ ͷ͸ͷ ‹…Ž—†‹‰ ƒ‘—– •Ǥ ͸ͷǡ ϐ‹† –Ї ’‡”…‡–ƒ‰‡Ǥ
„Ǥ Ї ’”‡•‡– ’‘’—Žƒ–‹‘ ‘ˆ ƒ ’Žƒ…‡ ‹• ʹͲǡͲͲͲǤ ˆ–‡” ʹ ›‡ƒ”• ‹– …Šƒ‰‡• –‘ ʹʹǡ͵ͲͲ ™‹–Š ‹‰”ƒ–‹‘ ‘ˆ
ʹͷͲ ’‡‘’އ –‘ Ї”‡ ˆ”‘ ‘–Ї” ’Žƒ…‡•Ǥ ‹† –Ї ‰”‘™–Š ”ƒ–‡ ‘ˆ ’‘’—Žƒ–‹‘Ǥ
ͷǤ ƒǤ ˆ ͵ •’Ї”‡• ‘ˆ ”ƒ†‹‹ ͳ…ǡ ͸… ƒ† ͺ… ƒ”‡ ‡Ž–‡† ƒ† ƒ ‡™ •’Ї”‡ ‹• ƒ†‡ǡ

ϐ‹† –Ї ”ƒ†‹—• ‘ˆ ‡™ •’Ї”‡Ǥ
„Ǥ  –Ї ‰‹˜‡ …‘‡ α ͳͶ…ǡ ‘ α ͸ͲιǤ ‹† ‹–• Ǥ
…Ǥ ˆ ˜‘Ž—‡ ‘ˆ –Ї ‰‹˜‡ ’”‹• ‹• ͳͺͲ 3…3ǡ ϐ‹† –Ї އ‰–Š ‘ˆ Ǥ




͸…

ʹͲ…

316|Mathematics–10

͸Ǥ ƒǤ ‹† –Ї ‘ˆ ǣ š3 – 1 ƒ† š2 + 1 + 1
„Ǥ ‹’Ž‹ˆ›ǣ 3 375 + 3 2x43 – 3 648 x2

͹Ǥ ƒǤ ‹’Ž‹ˆ›ǣ 7x+1 – 49 × 7x–2
„Ǥ ‘Ž˜‡ǣ x 7+x x–1
– 7 – x7
α ͹
…Ǥ ‹† ƒ› –™‘ —„‡”• ™Š‘•‡ •— ‹• ͹ ƒ† –Ї‹” ’”‘†—…– ‹• ͳͲǤ

ͺǤ ƒǤ ‹† –Ї އ‰–Š ‘ˆ ™Š‡”‡ ‹• ƒ ”Š‘„—•ǡ α ǡ α ͸… Ƭ ƒ”‡ƒ ‘ˆ ' αʹͶ…2.






„Ǥ  –Ї ƒ†Œ‘‹‹‰ †‹ƒ‰”ƒǡ ȀȀ ǡ ‘ α ͳͲͷιǡ ‘ α ͺͷιǡ ϐ‹† –Ї ˜ƒŽ—‡ ‘ˆ ‘ Ǥ


F


…Ǥ ”‘ –Ї ƒ†Œ‘‹‹‰ †‹ƒ‰”ƒ ϐ‹† –Ї ˜ƒŽ—‡ ‘ˆ ”ƒ†‹—• ‘ˆ …‹”…އ ™Š‡”‡ α ͺ…ǡ α ͳʹ…Ǥ






ͻǤ ƒǤ Šƒ– ‹• –Ї ˜ƒŽ—‡ ‘ˆ ‘ ‘ˆ ƒ ' ™Š‡”‡ α ͸…ǡ α ͺ … ƒ† ƒ”‡ƒ ‘ˆ ' α ͳʹ …2?
„Ǥ ˆ •— ‘ˆ –Ї ’”‘†—…–• ‘ˆ ˆ”‡“—‡…› ƒ† ‘„•‡”˜ƒ–‹‘• ‹• ͶͲ Ϊ ʹͲƒǡ •— ‘ˆ –Ї ˆ”‡“—‡…› ‹• ͳͺ Ϊ ʹƒ

ƒ† ‡ƒ ‹• ʹͲǤ ‹† –Ї ˜ƒŽ—‡ ‘ˆ ǮƒǯǤ
ͳͲǤ ƒǤ …ƒ”† ‹• †”ƒ™ ƒ– ”ƒ†‘ ˆ”‘ –Ї —„‡” …ƒ”†• ‘ˆ ͵ –‘ ͵ͲǤ ‹† –Ї ’”‘„ƒ„‹Ž‹–› ‘ˆ –Ї …ƒ”† „‡‹‰

’”‹‡ ‘” —Ž–‹’އ ‘ˆ –Š”‡‡Ǥ
„Ǥ †‹…‡ ‹• –Š”‘™ –™‹…‡Ǥ ‹† –Ї ’”‘„ƒ„‹Ž‹–› ‘ˆ ‰‡––‹‰ ‘†† ‹ „‘–Š –Š”‘™ „› —•‹‰ –”‡‡ †‹ƒ‰”ƒǤ

Group – C [10 × 4 = 40]
ͳͳǤ  ƒ •—”˜‡› ‘ˆ ͳͷͲ ’‡‘’އǡ –Ї —„‡” ‘ˆ ’‡‘’އ ™Š‘ Ž‹‡ –‘ ”‡ƒ†
‘”Šƒ’ƒ–”ƒ ‘Ž› ‹• †‘—„އ –Ї ’‡‘’އ
™Š‘ Ž‹‡ –‘ ”‡ƒ† ƒ–‹’—” Ž›Ǥ ˆ ͵Ͳ Ž‹‡ –‘ ”‡ƒ† „‘–Šǡ ʹͷ ‡‹–Ї” ‘ˆ –Ї ƒ† ʹͲ ™‡”‡ ƒ„•‡–ǡ ϐ‹† –Ї
ˆ‘ŽŽ‘™‹‰ „› †”ƒ™‹‰ ˜‡ †‹ƒ‰”ƒǤ
‹Ǥ Š‘ Ž‹‡ –‘ ”‡ƒ† ƒ–‹’—”Ǥ
‹‹Ǥ Š‘ †‘ǯ– Ž‹‡ –‘ ”‡ƒ†
‘”‰Šƒ’ƒ–”ƒǤ
ͳʹǤ  ƒ”–‹…އ ‹• „‘—‰Š– „› ƒ …‘•—‡” ƒ– •Ǥ ͵ͺͶʹ ™‹–Š –Ї †‹•…‘—– ‘ˆ •Ǥ ͸ͲͲ …Ž—†‹‰ ͳ͵Ψ Ǥ ‹† –Ї
ƒ”‡† ’”‹…‡ ƒ† ’‡”…‡–ƒ‰‡ ‘ˆ †‹•…‘—–Ǥ
ͳ͵Ǥ ‹† –Ї …‘•– ‘ˆ ’ƒ˜‹‰ –Ї ›ƒ”† ‘ˆ ƒ Š‘—•‡ ‰‹˜‡ ‹ †‹ƒ‰”ƒ ƒ– –Ї ”ƒ–‡ ‘ˆ •Ǥ ʹͲ ’‡” ’‹‡…‡ ‘ˆ •–‘‡ ‘ˆ
•‹œ‡ ͶͲ… έ ͷͲ…Ǥ
ͳͲ

13m

x+1 22m
x2 + x + x –1 2
ͳͶǤ ‹’Ž‹ˆ›ǣ 1 – x2– x + 1 + x4 –x2 + 1

ͳͷǤ Ї •— ‘ˆ –Ї ƒ‰‡• ‘ˆ ˆƒ–Ї” ƒ† Š‹• •‘ ‹• ͹Ͷ ›‡ƒ”•Ǥ ‘–Š ‘ˆ –Ї Ž‹˜‡ ‘ –‹ŽŽ –Ї •‘ ™‹ŽŽ „‡ ƒ• —…Š ƒ•
ˆƒ–Ї” ‘™ ƒ† •— ‘ˆ –Ї‹” ƒ‰‡• ™‹ŽŽ „‡ ͳ͹Ͷ ›‡ƒ”•Ǥ ‹† –Ї‹” ’”‡•‡– ƒ‰‡•Ǥ

ͳ͸Ǥ ”‘˜‡ –Šƒ– ƒ”‡ƒ ‘ˆ ' ‹• ‡“—ƒŽ –‘ ŠƒŽˆ ‘ˆ –Ї ƒ”‡ƒ ‘ˆ Ǥ Š‹…Š ƒ”‡ •–ƒ†‹‰ ‘ •ƒ‡ „ƒ•‡ ƒ†
„‡–™‡‡ ȀȀ Ǥ

Mathematics–10 | 317

ͳ͹Ǥ ‡”‹ˆ› ‡š’‡”‹‡–ƒŽŽ› –Šƒ– ‡š–‡”‹‘” ƒ‰Ž‡ ‘ˆ ƒ …›…Ž‹… “—ƒ†”‹Žƒ–‡”ƒŽ ‹• ‡“—ƒŽ –‘ ‹–• ‘’’‘•‹–‡ ‹–‡”‹‘”
ƒ‰Ž‡Ǥ

ͳͺǤ ‘•–”—…– ƒ ' Šƒ˜‹‰ α ͸…ǡ ‘ α ͸Ͳιǡ ‘ α ͶͷιǤ Ž•‘ …‘•–”—…– ƒ ‡“—‹˜ƒŽ‡– ”‡…–ƒ‰Ž‡ ‘ ‹–Ǥ
ͳͻǤ „‘› ‘ˆ Ї‹‰Š– ͳǤ͸ ‹• ϐŽ›‹‰ ƒ ‹–‡ ™Š‡”‡ –Ї –Š”‡ƒ† ‘ˆ އ‰–Š ʹͲͲ ƒ‡• ƒ ƒ‰Ž‡ ǮɅǯ ™‹–Š Š‘”‹œ‘–ƒŽ

Ž‹‡ ƒ† –Ї ‹–‡ ‹• ƒ– ƒ Ї‹‰Š– ‘ˆ ͳͲͳǤ͸ ˆ”‘ –Ї ‰”‘—†Ǥ ‹† –Ї ˜ƒŽ—‡ ‘ˆ ǮɅǯǤ
ʹͲǤ ‹† –Ї ‡†‹ƒǤ

‹† ˜ƒŽ—‡ ‘ˆ ƒ”• ͳͷ ʹͷ ͵ͷ Ͷͷ ͷͷ

‘Ǥ ‘ˆ •–—†‡–• ͷ͸ͺ ͳͲ 3

Group – D [4 × 5 = 20]
ʹͳǤ Ї …‘’‘—† ‹–‡”‡•– ‘ ƒ •— ‘ˆ ‘‡› ‹ ʹ ›‡ƒ”• ƒ† Ͷ ›‡ƒ”• ƒ”‡ ”‡•’‡…–‹˜‡Ž› •Ǥ ͶʹͲͲǡ •Ǥ ͻʹͺʹǤ
‹† –Ї ”ƒ–‡ ƒ† •—Ǥ

ʹʹǤ ˆ ’ Ϊ “ Ϊ ” α ǡ ’”‘˜‡ –Šƒ–ǣ x2p + x2p + xm–r + x2q + x2r α ͳ
xm–q x2q + xm–r + xm–p x2r + xm–p + xm–q

ʹ͵Ǥ ˆ ˜‘Ž—‡ ‘ˆ –Ї ‰‹˜‡ –‡– ‹• ͵ͷͺͶ 3ǡ ϐ‹† –Ї …‘•– ‘ˆ …ƒ˜ƒ• —•‡† ‹ ‹– ƒ– –Ї ”ƒ–‡ ‘ˆ ͷ ’ƒ‹•ƒ ’‡” …2.

ͻš ͸š

ͺš
ʹͶǤ  –Ї ƒ†Œ‘‹‹‰ †‹ƒ‰”ƒǡ ǡ ƒ† ƒ”‡ –Ї ‹†Ǧ’‘‹–• ‘ˆ •‹†‡•

‘ˆ ο ǡ ‹• ’‡”’‡†‹…—Žƒ” –‘ Ǥ ”‘˜‡ –Šƒ– ‹• ƒ …›…Ž‹…
“—ƒ†”‹Žƒ–‡”ƒŽǤ


****

Model Questions Set-C

Group A [3 × (1 + 1) = 6]
ͳǤ ƒǤ ˆ α š ƒ† ™‹–Š α ›ǡ ϐ‹† –Ї ’‡”…‡–ƒ‰‡Ǥ
„Ǥ ‹† –Ї ƒ”‡ƒ ‘ˆ ƒ ‡“—‹Žƒ–‡”ƒŽ –”‹ƒ‰Ž‡ Šƒ˜‹‰ •‹†‡•  …Ǥ
‹”‹–’‡Ž ‹†ˆ›‘ǣ™ šm ––nŠ÷‡ ˆ‘x1”n–m —Žƒ ‘ˆ ƒ”‹–Š‡–‹… ‡ƒ „› —•‹‰ •–‡’ †‡˜‹ƒ–‹‘ ‡–Š‘†Ǥ
ʹǤ ƒǤ
„Ǥ
͵Ǥ ƒǤ ˆ ƒ”‡ƒ ‘ˆ ο α ͸ …2 ǡ ϐ‹† –Ї ƒ”‡ƒ ‘ˆ ƒ”ƒŽŽ‡Ž‘‰”ƒ ‹ˆ –Ї› ƒ”‡ •–ƒ†‹‰ ‘ –Ї •ƒ‡ „ƒ•‡
ƒ† „‡–™‡‡ –Ї •ƒ‡ ’ƒ”ƒŽŽ‡Ž Ž‹‡Ǥ
„Ǥ ”‘ –Ї ƒ†Œ‘‹‹‰ †‹ƒ‰”ƒǡ ϐ‹† –Ї ˜ƒŽ—‡ ‘ˆ ǮšǯǤ


š

ͳͷͲι


Group ’B’ [ 17 x 2 = 34 ]
ͶǤ ƒǤ Ї …‘•– ‘ˆ ƒ ™ƒ–…Š ‹…Ž—†‹‰ ‹• •Ǥ ͶͷʹͲ ™Š‡”‡ ƒ‘—– ‹• •Ǥ ͷʹͲǡ ϐ‹† –Ї ’‡”…‡–ƒ‰‡ ‘ˆ

Ǥ
„Ǥ Ї ’‘’—Žƒ–‹‘ ‘ˆ ƒ ’Žƒ…‡ „‡…‘‡• ʹʹǡʹͲͲ ™‹–Š ‰”‘™–Š ”ƒ–‡ ‘ˆ ͷΨ ‹ –™‘ ›‡ƒ”• ™Š‡”‡ ͳͷͲ ’‡‘’އ

‹‰”ƒ–‡† –‘ Ї”‡ ˆ”‘ ‘–Ї” ’Žƒ…‡•Ǥ ‹† –Ї ’‘’—Žƒ–‹‘ „‡ˆ‘”‡ ʹ ›‡ƒ”•Ǥ
ͷǤ ƒǤ •’Ї”‹…ƒŽ ‡–ƒŽŽ‹… „ƒŽŽ ‘ˆ ”ƒ†‹—• ʹǤͳ … ‹• ‡Ž–‡† ƒ† ƒ ™‹”‡ Šƒ˜‹‰ –Š‹…‡•• ʹǤͳ  ‹• ƒ†‡ǡ ϐ‹†

–Ї އ‰–Š ‘ˆ –Ї ™‹”‡Ǥ
„Ǥ ƒ–‡”ƒŽ •—”ˆƒ…‡ ƒ”‡ƒ ‘ˆ ƒ •“—ƒ”‡ „ƒ•‡† ’›”ƒ‹† ‘ˆ •Žƒ–‡† Ї‹‰Š– ͳͲ … ‹• ͵ʹͲ …2ǡ ϐ‹† –Ї ƒ”‡ƒ ‘ˆ

‹–• „ƒ•‡Ǥ
…Ǥ ‹† –Ї …—”˜‡ •—”ˆƒ…‡ ƒ”‡ƒ ‘ˆ –Ї …‘‡ ™Š‘•‡ „ƒ•‡ ƒ† ˜‡”–‹…ƒŽ Š‹‰Š– ƒ”‡ ͳͷͶ …2 ƒ ͺ…

”‡•’‡…–‹˜‡Ž›Ǥ

318|Mathematics–10

͸Ǥ ƒǤ ‹† –Ї ‘ˆǣ Ͷš2 Ȃ ͳͲͲ ƒ† ͸ ȋš2 Ȃ ͵š Ȃ ͳͲȌ
„ƒǤǤ ‹˜ƒŽ’—Žƒ‹ˆ–›‡ǣǣ 351x+852xx–+215y+2x–51 έ×x– 193 912x4 y–5

͹Ǥ
„Ǥ ‘Ž˜‡ ǣ ʹx + 1 + 2x Ȃ ͵ α Ͳ

…ƒǤǤ ˆ ‹ ƒ†” ‡ƒƒ  ‘—ˆ ’„ƒ‡”ƒ” Ž™Ž‡ŠŽ‘‘‰•”‡ƒ •—  ™ ‹ –Š α‹– •Ͷ ͺ”‡……‹’2 ”‹‘… ƒ–ŠŽ ‡‹• ‰‹1˜14‡25 .
ͺǤ †‹ƒ‰”ƒ ™Š‡”‡
‘ α ͳͷͲι ƒ† α ͳʹ…Ǥ ‹† –Ї އ‰–Š ‘ˆ –Ї •‹†‡ Ǥ

„Ǥ ‹† –Ї ˜ƒŽ—‡ ‘ˆ ‘ ™Š‡”‡ ‹• –Ї …‡–”‡ ‘ˆ ƒ …‹”…އ ‘ ǡ ‘
α ͵ͷι ‹ –Ї ƒ†Œ‘‹‹‰ †‹ƒ‰”ƒǤ


͵ͷι


…Ǥ  –Ї ƒ†Œ‘‹‹‰ †‹ƒ‰”ƒ ‘ α ͶͲι ƒ† ‘ α ͸ͲιǤ ‹† –Ї ˜ƒŽ—‡ ‘ˆ ‘ ™Š‡”‡ ‹• ƒ –ƒ‰‡–
ƒ– ƒ† ‹• –Ї …‡–‡” ‘ˆ –Ї …‹”…އǤǤ




ͻǤ ƒǤ ‹† –Ї ƒ”‡ƒ ‘ˆ –”‹ƒ‰Ž‡ ‰‹˜‡ ‹ †‹ƒ‰”ƒ ™Š‡”‡ α α ͺ … ƒ† ‘ α ͹ͷιǤ



„Ǥ ¦ˆ† α ͸ͲͲǡ ¦ˆ α ͵Ͳ ƒ† ƒ••—‡ ‡ƒ α ʹͷǤ ‹† –Ї ˜ƒŽ—‡ ‘ˆ ƒ”‹–Š‡–‹… ‡ƒǤ

ͳͲǤ ƒǤ „ƒ‰ …‘–ƒ‹• ͵ ”‡†ǡ Ͷ ‰”‡‡ ƒ† ͷ ›‡ŽŽ‘™ „ƒŽŽ•Ǥ ‡ „ƒŽŽ ‹• †”ƒ™ ƒ– ”ƒ†‘ǡ ϐ‹† –Ї ’”‘„ƒ„‹Ž‹–›
‘ˆ –Ї „ƒŽŽ „‡‹‰ ”‡† ‘” ›‡ŽŽ‘™Ǥ

„Ǥ ™‘ …ƒ”†• ƒ”‡ †”ƒ™ ƒ– ”ƒ†‘ ‘‡ ƒˆ–‡” ƒ‘–Ї” ˆ”‘ ƒ †‡… ‘ˆ …ƒ”†• ™‹–Š ”‡’Žƒ…‡‡–Ǥ ‹† –Ї
’”‘„ƒ„‹Ž‹–‹‡• ‘ˆ –Ї …ƒ”†• „‡‹‰ „‘–Š ˆƒ…‡ …ƒ”†• „› †”ƒ™‹‰ –”‡‡ †‹ƒ‰”ƒǤ

Group - C (10 x 4 = 40)
ͳͳǤ  ƒ •—”˜‡› ‘ˆ ʹͲͲ ’‡‘’އ ™Š‘ Ž‹‡ ˆ‘‘–„ƒŽŽ –‡ƒ ƒ† …”‹…‡– –‡ƒ ‘ˆ ‘—” …‘—–”› ‹ –Ї ”ƒ–‹‘ ͵ǣͶ ™Š‡”‡
ͳͲ †‘ǯ– Ž‹‡ „‘–Š –Ї –‡ƒ• ƒ† ͻͲ Ž‹‡ „‘–Š –Ї –‡ƒ•Ǥ ‹† –Ї —„‡” ‘ˆ ’‡‘’އ „› †”ƒ™‹‰ ˜‡
†‹ƒ‰”ƒ ™Š‘ Ž‹‡Ǥ
‹Ǥ ‘‘–„ƒŽŽ –‡ƒ ‘Ž›Ǥ
‹‹Ǥ ‘ǯ– Ž‹‡ …”‹…‡– –‡ƒǤ
ͳʹǤ –‘—”‹•– „”‘—‰Š– ƒ ƒ”–‹…އ ™‹–Š ͳʹΨ †‹•…‘—– ‹…Ž—†‹‰ ͳ͵Ψ Ǥ ˆ Ї ”‡…‡‹˜‡† •Ǥ ʹͺ͸Ͳ „ƒ… ƒ– –Ї
ƒ‹”’‘”– †—”‹‰ އƒ˜‹‰ ‡’ƒŽǤ ‘™ —…Š ’ƒ‹† „› Š‹ –‘ –Ї ƒ”–‹…އ ‹…Ž—†‹‰ ǫ
ͳ͵Ǥ Ї •‹†‡ ‘ˆ ƒ •“—ƒ”‡ ‹• ͺš …ǡ Ї‹‰Š– ‹• ͵š … ƒ† ˜‘Ž—‡ ‹• ͷͳʹ …3 ‘ˆ ƒ •“—ƒ”‡ „ƒ•‡ ’›”ƒ‹† ‰‹˜‡ ‹
†‹ƒ‰”ƒǤ ‹† ‹–ǯ• –‘–ƒŽ •—”ˆƒ…‡ ƒ”‡ƒǤ


͵š

ͺš

Mathematics–10 | 319

ͳͶǤ Ї ƒ‰‡ ‘ˆ ˆƒ–Ї” ʹ ›‡ƒ”• ƒ‰‘ ™ƒ• ‘”‡ –Šƒ ͸ –‹‡• –Ї ƒ‰‡ ‘ˆ Š‹• •‘ „› ͶǤ ‹š ›‡ƒ”• Ї…‡ Ї ™‹ŽŽ „‡
އ•• –Šƒ ͳͲ –‹‡• –Ї ƒ‰‡ ‘ˆ Š‹• •‘ ™ƒ• ͵ ›‡ƒ”• ƒ‰‘ „› ʹ ›‡ƒ”•Ǥ
1 2 4 8
ͳͷǤ ‹’Ž‹ˆ› ǣ x+1 + x2 + 1 + x4 + 1 – 1 – x8

ͳ͸Ǥ ”‘˜‡ –Šƒ– ƒ”‡ƒ ‘ˆ ' ƒ† ' •–ƒ†‹‰ ‘ •ƒ‡ „ƒ•‡ ƒ† „‡–™‡‡ •ƒ‡ ’ƒ”ƒŽŽ‡Ž• ƒ”‡ ‡“—ƒŽ ‹ ƒ”‡ƒǤ
ͳ͹Ǥ ‡”‹ˆ› ‡š’‡”‹‡–ƒŽŽ› –Šƒ– –Ї ‹•…”‹„‡† ƒ‰Ž‡ ‹• ŠƒŽˆ ‘ˆ –Ї …‡–”ƒŽ ƒ‰Ž‡ •–ƒ†‹‰ ‘ •ƒ‡ ƒ”… ‘ˆ ƒ

…‹”…އǤ ȋ ƒ†‹—• ‘ˆ „‘–Š …‹”…އ• •Š‘—ކ ‘– „‡ އ•• –Šƒ ͵ …Ȍ
ͳͺǤ ‘•–”—…– ƒ “—ƒ†”‹Žƒ–‡”ƒŽ Šƒ˜‹‰ α ͸Ǥͷ …ǡ α ͷǤͷ …ǡ α ͷ …ǡ α ͷǤͷ … ƒ† ‘ α ͸ͲιǤ Ž•‘

…‘•–”—…– ƒ ‡“—‹˜ƒŽ‡– ' ™‹–Š –Ї “—ƒ†”‹Žƒ–‡”ƒŽǤ
ͳͻǤ „‘› ‹• ϐŽ›‹‰ ƒ ‹–‡ ™Š‡”‡ –Ї ‹–‡ ‹• ƒ– –Ї Ї‹‰Š– ‘ˆ ͳͲʹ  ˆ”‘ –Ї ‰”‘—† ƒ† ʹͲͲ  Ž‘‰ •–”‹‰

ƒ‡• ƒ ƒ‰Ž‡ ‘ˆ ͵Ͳι ™‹–Š –Ї Š‘”‹œ‘–ƒŽ Ž‹‡Ǥ ‹† –Ї Ї‹‰Š– ‘ˆ –Ї „‘›Ǥ
ʹͲǤ ‹† –Ї —’’‡” “—ƒ”–‹Ž‡ ‘ˆ –Ї ‰‹˜‡ ‘„•‡”˜ƒ–‹‘• ˆ”‘ –Ї ˆ‘ŽŽ‘™‹‰•ǣ

ƒ”• Ͳ Ǧ ͺ Ͳ Ǧ ͳ͸ Ͳ Ǧ ʹͶ Ͳ Ǧ ͵ʹ Ͳ Ǧ ͶͲ

‘Ǥ ‘ˆ •–—†‡–• ͷ ͳͷ ʹͺ ͵Ͷ ͶͲ

Group - D ( 4 x 5 = 20 )
ʹͳǤ Ї …‘’‘—† ƒ‘—– ‘ ƒ •— ‘ˆ ‘‡› ‹ ͳ ›‡ƒ” ƒ† ͳ ›‡ƒ” ͸ ‘–Š• ‹• •Ǥ ʹʹǡͲͷͲ ƒ† •Ǥ ʹ͵ǡͳͷʹǤͷͲ

”‡•’‡…–‹˜‡Ž› …‘’‘—†‡† •‡‹Ǧƒ—ƒŽŽ›Ǥ ‹† –Ї ”ƒ–‡ ƒ† •—Ǥ
ʹʹǤ ‹† –Ї ‘–ƒŽ •—”ˆƒ…‡ ƒ”‡ƒ ‘ˆ –Ї …‹”…—Žƒ” „ƒ•‡† –‡– ‰‹˜‡ ‹ –Ї †‹ƒ‰”ƒǤ

ͳͷ
͹

͵Ͳ

ʹ͵Ǥ ˆ ƒ„… Ϊ ͳ α Ͳǡ ’”‘˜‡ –Šƒ– ǣ 1 – 1 b–1 + 1 + 1 a–1 α ͳ
a– 1 – b – c–1 1–c–

ʹͶǤ  –Ї ƒ†Œ‘‹‹‰ †‹ƒ‰”ƒǡ ‹• ƒ †‹ƒ‡–‡” ‘ˆ ƒ …‹”…އǡ ‘ α ‘ ǡ ’”‘˜‡ –Šƒ– ‹• ƒ ’‡”’‡†‹…—Žƒ”
–‘ –Ї †‹ƒ‡–‡” ‘ˆ Ǥ








The End

320|Mathematics–10


Click to View FlipBook Version