The words you are searching are inside this book. To get more targeted content, please make full-text search by clicking here.
Discover the best professional documents and content resources in AnyFlip Document Base.
Search
Published by Stanly Maharjan, 2020-05-20 03:34:51

Prime Mathematics 10

Prime Mathematics 10

Keywords: Prime Mathematics 10

Proof :

6WDWHPHQWV 5HDVRQV

$%&( LV D SDUDOOHORJUDP 7KH RSSRVLWH VLGHV SDUDOOHO L H
$% (& $( %&

'$%& $%&( LQ DUHD 'LDJRQDO ELVHFWV WKH SDUDOOHORJUDP LQ
HTXDO DUHD

''%& $%&( LQ DUHD %RWK DUH VWDQGLQJ RQ WKH VDPH EDVH %&
DQG EHWZHHQ WKH VDPH SDUDOOHO OLQHV

?'$%& ''%& LQ DUHD )URP VWDWHPHQW DQG

Proved

? 7ULDQJOHV RQ WKH VDPH EDVH DQG EHWZHHQ WKH VDPH SDUDOOHO OLQHV DUH HTXDO LQ DUHD

1RWH 7KLV WKHRUHP FDQ EH SURYHG E\ XVLQJ WKH IRUPXOD RI WKH DUHD RI D WULDQJOH

:RUNHG 2XW ([DPSOHV

([DPSOH 3 6$ %
Solution:
,Q WKH JLYHQ ILJXUH 3% 45 3456 DQG
([DPSOH VTXDUH $45% DUH VWDQGLQJ RQ WKH VDPH
Solution: EDVH 45 DQG EHWZHHQ VDPH SDUDOOHOV ,I

WKH OHQJWK RI GLDJRQDO %4 FP 45
)LQG WKH DUHD RI 3456
+HUH
$45% LV D VTXDUH

%4 FP
? $UHD RI WKH VTXDUH GLDJRQDO

î FP FP

%RWK DUH VWDQGLQJ RQ WKH VDPH EDVH DQG
EHWZHHQ VDPH SDUDOOHOV
1RZ $UHD RI WKH SDUDOOHORJUDP 3456

$UHD RI WKH VTXDUH $45%
FP

,Q WKH DGMRLQLQJ ILJXUH $' %& '$%& LV $ '

DQ HTXLODWHUDO WULDQJOH LQ ZKLFK $&

FP )LQG WKH DUHD RI WKH ''%&

+HUH

'$%& LV DQ HTXLODWHUDO WULDQJOH DQG $& FP

? $UHD RI WKH HTXLODWHUDO WULDQJOH $%& VLGH % &

î FP

FP FP

1RZ $UHD RI ''%& $UHD RI '$%& 7KH\ DUH VWDQ G L Q J R Q WKH VDPH EDVH DQG
? $UHD RI ''%& FP EHWZHHQ WKH VDPH SDUDOOHOV

ͮDĂƚŚĞŵĂƚŝĐƐ Ͳ ϭϬ *HRPHWU\

([DPSOH ,Q WKH JLYHQ ILJXUH $%&' LV D UHFWDQJOH 1

DQG 0 LV DQ\ SRLQW RQ $' ,I %0 01

$% FP DQG %& FP ILQG WKH DUHD

Solution: RI '&01 $0 '
+HUH

$% FP %& FP

? $UHD RI UHFWDQJOH $%&' l î E

FP î FP % &
FP

1RZ $UHD '%0& DUHD RI UHFWDQJOH $%&' 6WD QGLQJ RQ VDPH EDVH DQG
EHWZHHQ VDPH SDUDOOHOV

$UHD RI '%0& î FP

FP

1RZ $UHD RI '&01 DUHD RI '%0& > &0 LV D PHGLDQ RI '%&1 @

FP

,Q WKH JLYHQ ILJXUH 3456 LV D 3 6
SDUDOOHORJUDP 7 LV DQ\ SRLQW RQ GLDJRQDO
([DPSOH 35 3URYH WKDW DUHD RI '457 DUHD RI 7
'657 2

Solution:

*LYHQ L 3456 LV D SDUDOOHORJUDP 4 5
LL 7 LV DQ\ SRLQW RQ GLDJRQDO 35

7R SURYH $UHD RI '457 DUHD RI '657

&RQVWUXFWLRQ -RLQ 4 DQG 6 ZKLFK LQWHUVHFWV 35 DW 2

Proof :

6WDWHPHQWV 5HDVRQV

,Q '456 42 62 'LDJRQDOV RI WKH SDUDOOHORJUDP
ELVHFW HDFK RWKHU

$UHD RI '425 DUHD RI '625 52 LV D PHGLDQ RI '456

$UHD RI '472 DUHD RI '672 72 LV D PHGLDQ RI '746

'425 '472 '625 '672 LQ )URP VWDWHPHQW DQG
DUHD

? $UHD RI '457 DUHD RI '657 %\ ZKROH SDUW D[LRP
Proved
*HRPHWU\
DĂƚŚĞŵĂƚŝĐƐ Ͳ ϭϬͮ

$
([DPSOH ,Q WKH DGMRLQLQJ ILJXUH $' DQG &( DUH WZR
(
PHGLDQV RI '$%& ZKLFK LQWHUVHFW DW 2 3URYH 2
WKDW $UHD RI TXDGULODWHUDO %'2( DUHD RI '$2&

Solution:

*LYHQ ,Q '$%& $' DQG &( DUH PHGLDQV RI '$%&

7R SURYH $UHD RI TXDGULODWHUDO %'2( DUHD RI '$2& % '&



Proof :

6WDWHPHQWV 5HDVRQV

$UHD RI '$%' DUHD RI '$%& $' LV D PHGLDQ RI '$%&

$UHD RI '$&( DUHD RI '$%& &( LV D PHGLDQ RI '$%&

$UHD RI '$%' DUHD RI '$&( )URP VWDWHPHQWV DQG

'$%' '$2( '$&( '$2( LQ 6XEWUDFWLQJ '$2( IURP ERWK
DUHD VLGHV

$UHD RI TXDGULODWHUDO %'2( DUHD RI 5HPDLQLQJ IDFWV
'$2&

Proved

([DPSOH ,Q WKH DGMRLQLQJ ILJXUH 3456 LV D SDUDOOHORJUDP $ LV DQ\ SRLQW RQ 45

VXFK WKDW 3$ DQG 65 DUH SURGXFHG WR PHHW DW WKH SRLQW % 3URYH WKDW

$UHD RI 'Y Z с ƌĞĂ ŽĨ ' ^͘ 36
Solution:

*LYHQ L 3456 LV D SDUDOOHORJUDP
LL $ LV DQ\ SRLQW RQ 45 VXFK WKDW 3$ DQG 65 DUH 4 $ 5

SURGXFHG WR PHHW DW WKH SRLQW % %
7R SURYH $UHD RI '4%5 DUHD RI '$%6



ͮDĂƚŚĞŵĂƚŝĐƐ Ͳ ϭϬ *HRPHWU\

Proof :

6WDWHPHQWV 5HDVRQV

$UHD RI '3$6 DUHD RI 3456 6WDQGLQJ RQ WKH VDPH EDVH 36 DQG
$UHD RI '3$4 DUHD RI '6$5 EHWZHHQ VDPH SDUDOOHO OLQHV

3456 LQ DUHD 5HPDLQLQJ SDUWV DUH DOVR KDOI RI DUHD
RI SDUDOOHORJUDP

$UHD RI '34% 3456 7KH\ DUH VWDQGLQJ RQ WKH VDPH EDVH
34 DQG EHWZHHQ WKH VDPH SDUDOOHO

$UHD RI '3$4 '$%4 '34% LQ :KROH SDUW D[LRP
DUHD

'3$4 '%$4 '3$4 '6$5 LQ )URP VWDWHPHQWV DQG
DUHD

'%$4 '6$5 LQ DUHD )URP VWDWHPHQW

'%$4 '%$5 '6$5 '%$5 LQ $GGLQJ '%$5 RQ ERWK VLGHV
DUHD

$UHD RI '4%5 DUHD RI '$%6 :KROH SDUW D[LRP

Proved

([HUFLVH
*URXS
$

$ '(

,Q WKH DGMRLQLQJ ILJXUH $%&' LV D VTXDUH LQ ZKLFK %& 7
36
$& LV D GLDJRQDO DQG $( %& ,I $& FP
45
FDOFXODWH WKH DUHD RI '%&(

DĂƚŚĞŵĂƚŝĐƐ Ͳ ϭϬͮ



,Q WKH JLYHQ ILJXUH '345 DQG UKRPEXV 6457 DUH

VWDQGLQJ RQ WKH VDPH EDVH 45 DQG EHWZHHQ WKH VDPH
SDUDOOHO OLQHV 37 DQG 45 ,I 65 FP DQG 47
FP ILQG WKH DUHD RI '345





,Q WKH JLYHQ ILJXUH '$%& DQG ''%& DUH VWDQGLQJ

RQ WKH VDPH EDVH %& DQG EHWZHHQ WKH VDPH SDUDOOHO
OLQHV '$ DQG %& ,I WKH OHQJWK RI VLGH $& LV FP RI
HTXLODWHUDO WULDQJOH $%& ILQG WKH DUHD RI ''%&




*HRPHWU\

$( ' )

,Q WKH DGMRLQLQJ ILJXUH $) %& 5HFWDQJOH $%&' %&

DQG SDUDOOHORJUDP (%&) DUH VWDQGLQJ RQ WKH VDPH 3 $%
EDVH %& DQG EHWZHHQ WKH VDPH SDUDOOHO OLQHV ,I %&
45
FP '( %& FP DQG &) FP FDOFXODWH
WKH DUHD RI WUDSH]LXP $%&) DQG SDUDOOHORJUDP
(%&)
$'

%& (

3 76
'345 LV D ULJKW DQJOHG WULDQJOH 3% 45 $45% LV
40 5
D SDUDOOHORJUDP $% FP 35 FP )LQG WKH DUHD
$ '(
RI '345 DQG $45%
3
%&

,Q WKH JLYHQ ILJXUH $% '& '$%& LV DQ HTXLODWHUDO ;

WULDQJOH 7KH DUHD RI '$%' LV FP :KDW LV WKH 01
OHQJWK RI $& "





,Q WKH DGMRLQLQJ ILJXUH $& '( ,I $% FP $(

FP DQG %( FP ILQG WKH DUHD RI TXDGULODWHUDO
$%&'

3456 LV D UHFWDQJOH LQ ZKLFK 34 40 45 ,I

WKH DUHD RI '740 FP FDOFXODWH WKH OHQJWK
RI 65




,Q WKH JLYHQ ILJXUH $( %& 3 LV D PLG SRLQW RI $&

'$%& DQG '%&( DUH VWDQGLQJ RQ WKH VDPH EDVH
%& DQG EHWZHHQ VDPH SDUDOOHO OLQHV ,I WKH DUHD RI

'%&( LV FP ZKDW ZLOO EH WKH DUHD RI '$%3






,Q WKH DGMRLQLQJ ILJXUH 0 DQG 1 DUH PLG SRLQWV RI

;< DQG ;= UHVSHFWLYHO\ ,I WKH DUHD RI '01< LV
FP ILQG WKH DUHD RI ';<=

<=
*HRPHWU\
ͮDĂƚŚĞŵĂƚŝĐƐ Ͳ ϭϬ

*URXS
%
$

,Q WKH JLYHQ ILJXUH 3 LV DQ\ SRLQW RQ $' ZKHUH $' 3 &
6
LV D PHGLDQ RI '$%& 3URYH WKDW DUHD RI '$%3 LV '
HTXDO WR WKH DUHD RI '$3& %

3
7

4 5 )
,Q WKH JLYHQ ILJXUH 3456 LV D SDUDOOHORJUDP 7 LV $ ('

DQ\ SRLQW RQ GLDJRQDO 35 3URYH WKDW DUHD RI '347 % &
DUHD RI '367 DQG WKH DUHD RI '745 DUHD RI 3 6

'765


,Q WKH DGMRLQLQJ ILJXUH UHFWDQJOH $%&' DQG

SDUDOOHORJUDP (%&) DUH VWDQGLQJ RQ WKH VDPH EDVH
%& DQG EHWZHHQ WKH VDPH SDUDOOHO OLQHV $) DQG %&
3URYH WKDW
L DUHD RI '$%( DUHD ''&)
LL DUHD RI $%&' DUHD RI (%&)



,Q WKH JLYHQ ILJXUH 35 67 3URYH WKDW DUHD RI '347 45 7

DUHD RI TXDGULODWHUDO 3456



$0 '

,Q WKH DGMRLQLQJ ILJXUH $%&' LV D SDUDOOHORJUDP 0 DQG 1 1

DUH DQ\ SRLQWV RQ $' DQG '& UHVSHFWLYHO\ 3URYH WKDW DUHD %&
$'
RI '$%1 DUHD RI '%&0
< &
%;
;
,Q WKH JLYHQ ILJXUH $%&' LV D SDUDOOHORJUDP LQ ZKLFK ;

DQG < DUH DQ\ SRLQWV RQ %& DQG $% UHVSHFWLYHO\ 3URYH

WKDW '$'< '%&< '$%; '&'; LQ DUHD



,Q WKH JLYHQ ILJXUH <1 DQG =0 DUH WZR PHGLDQV RI ';<=

ZKLFK LQWHUVHFW DW 2 01
2
3URYH WKDW L '02< '12= LQ DUHD
<=
LL DUHD RI '<2= DUHD RI TXDGULODWHUDO

;021



*HRPHWU\ DĂƚŚĞŵĂƚŝĐƐ Ͳ ϭϬͮ

$ '
3
,Q WKH SDUDOOHORJUDP $%&' 3 LV DQ\ SRLQW ZLWKLQ LW 3URYH
% &
WKDW '$'3 '%&3 $%&' LQ DUHD $( '

*, +
%) &
,Q WKH JLYHQ SDUDOOHORJUDP $%&' $% () *+ %& %' LV '
$(
GLDJRQDO RI SDUDOOHORJUDP $%&'

3URYH WKDW DUHD RI $*,( DUHD RI ,)&+



,Q WKH DGMRLQLQJ ILJXUH $%&' DQG (%)+ DUH % +
$
SDUDOOHORJUDPV 3URYH WKDW $%&' (%)+ LQ DUHD &
)

*'
,Q WKH JLYHQ ILJXUH $%&' DQG $()* DUH WZR
% &
SDUDOOHORJUDPV ZLWK HTXDO DUHD 3URYH WKDW %* )&
()
$

%'
3

(&
,Q WKH JLYHQ ILJXUH $%&' LV D SDUDOOHORJUDP 3 LV DQ\ SRLQW $'

RQ %& $% DQG '3 DUH SURGXFHG WR PHHW DW ( ( DQG & DUH 01

MRLQHG 3URYH WKDW DUHD RI TXDGULODWHUDO %'&( DUHD RI %&
'$'( $'

01
,Q WKH JLYHQ WUDSH]LXP $%&' LQ ZKLFK $' %& 01 01
%$ &
LV D PHGLDQ 3URYH WKDW
L $UHD RI '$%1 DUHD RI ''&0 '
LL $UHD RI '$%1 DUHD RI RI WUDSH]LXP $%&' 1

% 0&
*HRPHWU\
,Q WKH JLYHQ WUDSH]LXP $%&' LQ ZKLFK $' %& 0

DQG 1 DUH PLG SRLQWV RI GLDJRQDOV %' DQG $&
UHVSHFWLYHO\ 3URYH WKDW DUHD RI '$0& DUHD RI
''1%


,Q WKH JLYHQ ILJXUH ' DQG 0 DUH PLG SRLQWV RI $&

DQG %& UHVSHFWLYHO\ RI '$%& 1 LV DQ\ SRLQW RI &'
VXFK WKDW 01 %' 3URYH WKDW DUHD RI '$%&
'%01


ͮDĂƚŚĞŵĂƚŝĐƐ Ͳ ϭϬ

$

01

,Q WKH DGMRLQLQJ '$%& 0 DQG 1 DUH PLG SRLQWV RI %3 &
$
$% DQG $& UHVSHFWLYHO\ 3 LV DQ\ SRLQW RQ %& 6
3URYH WKDW '301 '$%& LQ DUHD
35

%4 &
,Q WKH JLYHQ ILJXUH 3 DQG 4 DUH PLG SRLQWV RI $% 4 '

DQG %& UHVSHFWLYHO\ RI '$%& LQ ZKLFK 36 45 $3

3URYH WKDW DUHD RI '$%& DUHD RI 3456 %&
)




,Q WKH JLYHQ ILJXUH $%&' LV D SDUDOOHORJUDP 3 LV

DQ\ SRLQW RQ $' %$ DQG &3 DUH SURGXFHG WR PHHW
DW 4 3URYH WKDW DUHD RI '$%3 DUHD RI ''34



$' (
*
,Q WKH ILJXUH DORQJVLGH $% '& )( $( %& DQG
%& '
&( %) 3URYH WKDW &()* $%&' LQ DUHD $

)


,Q WKH JLYHQ ILJXUH $%&' LV D SDUDOOHORJUDP LQ

ZKLFK %' LV D GLDJRQDO ,I %' () SURYH WKDW DUHD
RI '$%( DUHD RI '$')

% (&



0LVFHOODQHRXV ([HUFLVH


,Q WKH JLYHQ ILJXUH $' __ %& $% __ 3& 3% __ '& 3URYH
WKDW '$3% '&'3 ,Q DUHD



,Q WKH JLYHQ ILJXUH 34 __ 65 __ 01 30 __ 41 06 __ 15
3URYH WKDW $UHD RI 3DUDOOHORJUDP 3410 $UHD RI
3DUDOOHORJUDP 1065

*HRPHWU\
DĂƚŚĞŵĂƚŝĐƐ Ͳ ϭϬͮ

,Q '$%& %3 3& $% __ 34 35 __ &$ 3URYH WKDW $UHD
RI '$%& DUHD RI 3DUDOOHORJUDP $534

,Q WKH JLYHQ ILJXUH 0 ; DQG = DUH WKH PLG SRLQWV RI 45
34 DQG 30 UHVSHFWLYHO\ \ EH DQ\ SRLQW RQ 40 3URYH WKDW
';<= '345 ,Q DUHD

,Q WKH JLYHQ ILJXUH ' ( ) DQG * DUH WKH PLG SRLQWV RI *HRPHWU\
%& %) $' DQG (& UHVSHFWLYHO\ 3URYH WKDW $UHD RI
'$%& DUHD RI '()*

,Q WKH DGMRLQLQJ ILJXUH 04 =41 35 45 3URYH WKDW
'315 '301 ,Q DUHD

345 LV DQ HTXLODWHUDO WULDQJOH 30A45 4;A45
2<A34 2=A35 3URYH WKDW 30 2; 2< 2=


ͮDĂƚŚĞŵĂƚŝĐƐ Ͳ ϭϬ

5.2 Construction

Introduction

We have already learnt to construct triangles, squares, rectangles, rhombus, parallelograms, trapezium
and quadrilateral, in previous classes and also have learned about the following theorems:

¾ Area of parallelograms standing on the same base or equal bases and between the same
parallel lines are equal.

¾ Area of triangle is equal to the half of the area of parallelogram standing on the same base or
equal bases between same parallel lines.

¾ Area of triangles standing on the same base or equal bases and between same parallel lines
are equal.
Here we are going to construct equivalent figures based on these theorems with given
measurements. We follow the following steps before drawing the actual figure.

x Draw a rough sketch of the figure from the given condition.

x Write the given measurements in rough sketch.
x Analyze the figure and construct the actual figure.

Construction of a parallelogram whose area is equal to the area of a given triangle.

Example 1: Construct a triangle ABC in which AB = 6.6cm, BC = 5.3cm and AC = 7.1cm.

a) Construct a parallelogram having an angle 60o and equal in area to
the triangle.

b) Construct a parallelogram with one side 6cm equal in area to the
triangle.

a) Steps

i. Draw a 'ABC with AB = F E C
6.6cm, BC = 5.3cm and AC = M N

7.1cm.

ii. Draw MN parallel to AB

through the point C.

[Making ‘BAC = ‘ACM]

iii. Locate the point D as midpoint

of AB. AD B
iv. Draw an angle ADE = 60o at D,

such that DE meets MN at E. (a)
v. From the point E, draw an arc

with radius EF = AD to cut MN

at F.

vi. Join A and F.

Now, ADEF is the required parallelogram which is equal in area to the triangle
ABC.

Geometry Mathematics - 10|201

b) Steps

i. (i), (ii) and (iii) are same MF E CN

steps of (a)

ii. From the point D draw an arc

with radius 6cm to cut MN at

E.

iii. From the points E, draw an
arc with radius EF = AD to
cut MN at F.

iv. Join A and F. AD B

Now, ADEF is the required (b)
parallelogram which is equal
in area to the triangle ABC.

Construction of a triangle whose area is equal to the area of a given parallelogram.

Example 2: Construct a parallelogram ABCD in which AB = 5.7cm, AC = 6.6cm and
BD = 8.4cm and construct

a) a triangle with one side 7.7cm and equal in area to the parallelogram
ABCD.

b) a triangle having an angle 45o and equal in area to the parallelogram
ABCD.

a) Steps CF
B
i. Draw a parallelogram ABCD D
having AB = 5.7cm, AvC = 6.6cm
and BD = 8.4cm.

ii. Produce AB to E such that AB = BE.

iii. From A, draw an arc with radius A E
AF=7.7cm to cut DC (or DC
produced) at F.

iv. Join A, F and E, F.

Now, 'AEF is the required
triangle, which is equal to

ABCD in area.

b) Steps CF
i. (i) and (ii) steps are same as (a). D
ii. At point E, draw an angle AEF = 45o
BE
45o, such that EF meets DF at F.
iii. Join A and F. Geometry

Now, 'AEF is the required A
triangle, which is equal to

ABCD in area.

202|Mathematics - 10

Example 3: Construct a rhombus ABCD with diagonal AC = 8cm. and diagonal BD =
6cm. Also construct a triangle AEF equal in Area to the rhombus having
one side 9cm.

Steps
1. Draw BD = 6cm. and draw perpendicular bisector of BD which intersect BD at O.

2. From O take OA = 4cm. and OC = 4cm. along the bisector. Thus rhombus ABCD is
constructed.

3. AB is produced to E such that AB = BE.

4. Take AF = 9cm. to cut DC produced at F.

5. Join E and F. Thus 'AEF = rhombus ABCD is constructed.

Construction of a triangle whose area is equal to the area of a given quadrilateral.

Example 4: Construct a quadrilateral ABCD in which AB = 5.4cm, BC = 5cm,
CD = 4.9cm, AD = 6.1cm and ‘BAD = 60o. Construct a triangle equal in
area to the quadrilateral.

Steps D C

i. Construct a quadrilateral ABCD in
which AB = 5.4cm, BC = 5.1cm,
CD = 4.9cm, AD = 6.1cm and
‘BAD = 60o.

ii. From C draw CE//BD.

iii. Join D and E. A B E

iv. 'ADE is the required triangle
whose area is equal to the area of
quadrilateral ABCD.

Verification :

Here,

BD || EC (By construction)

i) Area of 'BDC = Area of 'BDE

[They are standing on same base BD and betn same parallel BD and CE.

ii) Area of 'ADE = 'ABD + 'BDE
iii) Area of Quad ABCD = 'ABD + 'BDC

? Area of Quad ABCD = Area of 'ADE

Proved.

Geometry Mathematics - 10|203

Exercise 5.2

1. a) Construct a Parallelogram ABCD in which AB = 6.2cm, BC = 5.2cm and ‘ABC = 60o.

Also construct a parallelogram BCMN with a side 7.3cm and equal area with the
parallelogram ABCD.

b) Construct a parallelogram PQRS in which PQ = 6cm, QR = 7cm, PR = 8cm. Also

construct a parallelogram YZQR with an angle ZQR = 75q and equal area with the
parallelogram PQRS.
c) Construct a parallelogram MNOP in which MO = 8cm. NP = 7cm and NO = 5.6cm.
Also construct a rectangle XNOY having equal area with the parallelogram MNOP.

2. a) Construct a parallelogram XYMN in which XY = 7.3cm, YM = 6.2cm ‘XYM = 75q.
Also construct a triangle XAB with a side 8cm and equal area with the parallelogram
XYMN.

b) Construct a parallelogram PQRS in which PQ = 5.8cm PS = 4.9cm and angle QPR = 30o
and construct a triangle QSZ having equal area with the parallelogram PQRS.

c) Construct a parallelogram ABCD in which AB = 5.9cm AC = 8.6cm and
BD = 6.8cm. And construct a triangle with the side 9cm. having the area half of the area

parallelogram ABCD.

3. a) Construct a Parallelogram ABCD in which AC = 7cm., BC = 5.2cm and ‘ACD = 30q.
Also construct a triangle CPQ having an angle CPQ = 75q, and equal area with the
parallelogram ABCD.

b) Construct a parallelogram PQRS in which PQ = 5.2cm, PR = 7.6cm, QS = 8.2cm and
construct a triangle BAR with an angle ARQ = 45o equal area with the parallelogram
PQRS.

c) Construct a Parallelogram ABCD in which AB = 5.2cm, BC = 6.1cm and ‘ABC = 120 o
and construct a triangle AEF with an angle AFE = 30o equal area with the parallelogram
ABCD.

4. a) Construct a triangle PQR in which p = 7.3cm, ‘Q = 75 o and ‘R = 45o and construct a
triangle SQR having SQ = 6.7cm. equal area to the triangle PQR.

b) Construct a triangle EFG in which EF = 4.8cm ‘EFG = 45 o and FG = 5.9cm. Also
construct an isosceles triangle AFG, whose area equal to the area triangle EFG.

c) Construct a triangle ABC in which ‘B = 60 o, AB = 7cm. AC = 6cm. Also construct a
triangle MBA equal area to the triangle ABC.

5. a) Construct a triangle ABC in which AB = 7.1cm, BC = 5.9cm and AC = 6.3 cm, Also
construct a rectangle BDCF equal an area to the triangle ABC.

b) Construct a triangle XYZ in which YZ = 6cm ‘YXZ = 75o, ‘XYZ = 60o. Also
construct a parallelogram YABC with a side YA = 7.6cm equal area to the triangle XYZ.

c) Construct a triangle WXY in which XY = 7.4cm ‘X = 45 o, ‘W = 60 o. Also construct a
parallelogram YPQR where ‘QPY = 135 o equal area to the triangle WXY.

204|Mathematics - 10 Geometry

d) Construct a parallelogram having an angle 60o, equal area to the bigger triangle ABC

having AB = 5cm, ‘B = 45 o, AC = 4cm.

6. a) Construct a quadrilateral ABCD in which AB = BC = 5.3cm, CD = AD = 4.8cm and

‘BAD = 60o and construct a triangle ADE equal in area to the quadrilateral ABCD.

b) Construct a quadrilateral PQRS in which PQ = 5.5cm, QR = 4.8cm, RS = 4.2cm,
PS = 5.9cm, QS = 5.1cm and construct a triangle PST equal in area to the quadrilateral
PQRS.

7. a) Construct a quadrilateral DEFG in which DE = 4.8cm, EF = 5.7cm, FG = 5.1cm,
DG = 6.2cm, DF = 4.9cm and construct a triangle CEF equal in area to the quadrilateral
DEFG.

b) Construct a quadrilateral ABCD in which AB = BC = 5.9cm, CD = AD = 4.9cm,
‘ABC = 45o and construct a triangle BCE equal in area to the quadrilateral ABCD.

8. a) Construct a rhombus ABCD in which diagonals AC = 7cm BD = 6.5cm. And also
construct a ' ABZ = having equal area with the rhombus ABCD.

b) Construct a rhombus PQRS in which a side PQ = 5cm. diagonal PR = 8cm. And also
construct a 'QRW having equal area with the rhombus PQRS.

9. a) Construct a square ABCD in which AB = 6cm. and construct a 'ABM having equal area
with the square ABCD.

b) Construct a rectangle PQRS in which PQ = 5cm. and QR = 7cm. and construct a 'QXY
with QX = 7.5cm having equal area with the rectangle PQRS.

c) Construct a rectangle WXYZ in which the length of diagonal WY = 8cm. and angle
between the diagonals is 60. Also construct a 'WMN with a side 7.2cm and having
equal area with the rectangle WXYZ.

Geometry Mathematics - 10|205

&LUFOH

:H KDYH DOUHDG\ VWXGLHG DERXW WKH EDVLF WHUPV RI D FLUFOH DQG VRPH WKHRUHPV DQG UHODWHG H[HUFLVHV LQ

JUDGH 1LQH ,Q JUDGH 7HQ ZH ZLOO VWXG\ DERXW WKH FHQWUDO DQJOH LQVFULEHG DQJOH DQJOH DW WKH

FLUFXPIHUHQFH DQJOH DW WKH VHPL FLUFOH F\FOLF TXDGULODWHUDO DQG WDQJHQW RI D FLUFOH

&HQWUDO $QJOH 0

,Q WKH ILJXUH DORQJVLGH 2 LV WKH FHQWUH RI D FLUFOH 2$ DQG 2% DUH UDGLL RI 2\
WKH FLUFOH ZKLFK IRUP DQ DFXWH RU REWXVH DQJOH ‘$2% [ DQG UHIOH[ [

‘$2% \ VXEWHQGHG E\ $% DQG %0$ UHVSHFWLYHO\ %RWK RI WKHVH DQJOHV $%
DUH FDOOHG FHQWUDO DQJOH RI D FLUFOH



‘$2% [ LV VXEWHQGHG E\ $%DQG UHIOH[ DQJOH $2% \ LV VXEWHQGHG E\ %0$ $V WKH OHQJWK RI
DUF LQFUHDVHV WKH PHDVXUH RI WKH FHQWUDO DQJOH VXEWHQGHG E\ WKH DUF DOVR LQFUHDVHV 6R WKH FHQWUDO
DQJOHV DUH GLUHFWO\ SURSRUWLRQDO WR WKHLU FRUUHVSRQGLQJ DUFV 7KXV WKH GHJUHH PHDVXUHPHQWV RI

$% DQG ‘$2% [ DUH H[DFWO\ WKH VDPH 6LPLODUO\ WKH GHJUHH PHDVXUHPHQWV RI %0$DQG ‘$2%

\ DUH DOVR VDPH 6\PEROLFDOO\ ZH XVH ‘$2% [ сŽ $% DQG ‘$2% \ сŽ %0$ RU ‘$2%

[ { $% DQG ‘$2% \ { %0$


:H FRQFOXGH WKDW WKH GHJUHH PHDVXUHPHQW RI WKH DQJOH DW WKH FHQWUH RI D FLUFOH LV HTXDO WR WKH GHJUHH
PHDVXUHPHQW RI LWV RSSRVLWH DUF



,QVFULEHG DQJOH DQJOH DW WKH FLUFXPIHUHQFH % &

,Q WKH DGMRLQLQJ ILJXUH ‘$%& LV VXEWHQGHG E\ WKH DUF $& DW $
FLUFXPIHUHQFH RI WKH FLUFOH ‘$%& LV VDLG WR EH DQ DQJOH DW WKH 0
FLUFXPIHUHQFH RI WKH FLUFOH 7KLV DQJOH $%& LV DOVR FDOOHG LQVFULEHG
DQJOH ,QVFULEHG DQJOH LV DOVR PHDVXUHG LQ WHUPV RI LWV FRUUHVSRQGLQJ DUF
,QVFULEHG DQJOH LV DOZD\V HTXDO WR WKH KDOI RI LWV FRUUHVSRQGLQJ DUF

L H ‘$%& сŽ $& RU ‘$%& { $&



$UF IRUPHG E\ FKRUG

,Q WKH ILJXUH DORQJVLGH 34 LV D FKRUG 7KH FKRUG 34 GLYLGHV WKH 3 4
FLUFXPIHUHQFH RI WKH FLUFOH LQWR WZR SDUWV 7KH DUF 314 DQG DUF 403 DUH
IRUPHG E\ WKH FKRUG 34

&\FOLF TXDGULODWHUDO 1

,Q WKH DGMRLQLQJ ILJXUH 2 LV WKH FHQWUH RI D FLUFOH LQ ZKLFK $%&' LV D $
TXDGULODWHUDO ZKHUH DOO WKH YHUWLFHV RI WKH TXDGULODWHUDO DUH RQ WKH 2
FLUFXPIHUHQFH RI WKH FLUFOH 7KXV WKH TXDGULODWHUDO $%&' LV FDOOHG D
F\FOLF TXDGULODWHUDO

,Q RWKHU ZRUGV WKH TXDGULODWHUDO LQVFULEHG E\ D FLUFOH LV FDOOHG D F\FOLF % '

TXDGULODWHUDO DQG WKH SRLQWV $ % & DQG ' DUH FDOOHG FRQF\FOLF SRLQWV &

ͮDĂƚŚĞŵĂƚŝĐƐ Ͳ ϭϬ *HRPHWU\

7KHRUHP

The arcs subtending equal angles at the centre of a circle are equal.

([SHULPHQWDO YHULILFDWLRQ
Experiment: L 'UDZ WKUHH FLUFOHV RI GLIIHUHQW UDGLL ZLWK FHQWUH 2

& $ & &
' 2
2 $
2

% ' %'
LL LLL
$%

L

LL 'UDZ WZR HTXDO FHQWUDO DQJOHV $2% DQG &2' DW WKH FHQWUH RI HDFK FLUFOH

To verify: ‫ܣ‬෢‫ܦ ܤ‬෢‫ ܥ‬
Verification: 0HDVXUH WKH OHQJWK RI ‫ܣ‬෢‫ܤ‬DQG ‫ܦ‬෢‫ ܥ‬DQG FRPSOHWH WKH IROORZLQJ WDEOH 0HDVXUH WKH OHQJWK

RI DUF ZLWK WKH KHOS RI D WKUHDG DQG D UXOHU

)LJ ‫ۯ‬෢۰ ۱෢۲ 5HVXOW
L ෢ ෢

LL ෢ ෢
LLL ෢ ෢

Conclusion: 7KH DERYH H[SHULPHQW VKRZV WKDW WKH DUFV VXEWHQGLQJ HTXDO DQJOHV DW WKH FHQWUH RI D
FLUFOH DUH HTXDO

&RQYHUVH RI WKHRUHP

Equal arcs of a circle subtend equal angles at the centre.

([SHULPHQWDO YHULILFDWLRQ

Experiment: L 'UDZ WKUHH FLUFOHV RI GLIIHUHQW UDGLL ZLWK FHQWUH 2

& ' &

$ 2

2

$% % '
L LL


LL 'UDZ HTXDO DUFV $% DQG '& ZLWK WKH KHOS RI SHQFLO FRPSDVV

*HRPHWU\ DĂƚŚĞŵĂƚŝĐƐ Ͳ ϭϬͮ

To verify: ‘$2% ‘&2'

Verification: 0HDVXUH WKH FHQWUDO DQJOHV $2% DQG &2' DQG WDEXODWH

)LJ ‘$2% ‘&2' 5HVXOW

L ‘$2% ‘&2'

LL ‘$2% ‘&2'

LLL ‘$2% ‘&2'

Conclusion: 7KH DERYH H[SHULPHQW VKRZV WKDW WKH HTXDO DUFV RI D FLUFOH VXEWHQG HTXDO DQJOHV DW WKH
FHQWUH

7KHRUHP

Equal chords of a circle cut off equal arcs in the circle.

([SHULPHQWDO YHULILFDWLRQ

Experiment: 'UDZ WKUHH FLUFOHV RI GLIIHUHQW UDGLL ZLWK FHQWUH 2 DQG GUDZ HTXDO FKRUGV $% DQG &' LQ
HDFK FLUFOH

% $& $&
2 2
$
%'
LL

2

& '

L % '
LLL

To verify:࡭෢࡮ ൌ ࡯෢ࡰ

Verification: 0HDVXUH WKH OHQJWK RI ෢ DQG ෢ ZLWK WKH KHOS RI WKUHDG DQG UXOHU DQG WDEXODWH

)LJ /HQJWK RI ‫ۯ‬෢۰ /HQJWK RI ۱෢۲ 5HVXOW
L ෢ ෢
LL ෢ ෢
LLL ෢ ෢

Conclusion: 7KH DERYH H[SHULPHQW VKRZV WKDW WKH HTXDO FKRUGV RI D FLUFOH FXW RII HTXDO DUFV LQ WKH
FLUFOH

*HRPHWU\
ͮDĂƚŚĞŵĂƚŝĐƐ Ͳ ϭϬ

&RQYHUVH RI WKHRUHP

Equal arcs subtend equal chords in the circle.

Experiment: 'UDZ WKUHH FLUFOHV RI GLIIHUHQW UDGLL ZLWK FHQWUH 2 DQG GUDZ HTXDO DUFV $% DQG &' LQ
HDFK FLUFOH ZLWK WKH KHOS RI SHQFLO FRPSDVV

$& & &

'$
2
2 2
$ '

' %
LL
% % LLL

L

To verify: ෢ с ෢

Verification: 0HDVXUH WKH OHQJWKV RI FKRUGV $% DQG &' ZLWK WKH KHOS RI D UXOHU DQG WDEXODWH

)LJ /HQJWK RI ‫ۯ‬෢۰ /HQJWK RI ۱෢۲ 5HVXOW

L ෢ ෢

LL ෢ ෢

LLL ෢ ෢
Conclusion: 7KH DERYH H[SHULPHQW VKRZV WKDW HTXDO DUFV VXEWHQG HTXDO FKRUGV LQ WKH FLUFOH

7KHRUHP

The angle at the centre of a circle is twice the angle at the circumference standing on the
same arc.

([SHULPHQWDO YHULILFDWLRQ

Experiment: L 'UDZ WKUHH FLUFOHV RI GLIIHUHQW UDGLL ZLWK FHQWUH 2

& &



2 2 2&

% % $ %
LLL
$ $
LL
L



*HRPHWU\ DĂƚŚĞŵĂƚŝĐƐ Ͳ ϭϬͮ

LL 'UDZ WKH FHQWUDO DQJOH $2% DQG DQJOH DW WKH FLUFXPIHUHQFH $&% VWDQGLQJ RQ WKH VDPH
DUF $% LQ HDFK FLUFOH

To verify: ‘$2% ‘$&%

Verification: 0HDVXUH ‘$2% DQG ‘$&% E\ SURWUDFWRU LQ HDFK ILJXUH DQG WDEXODWH

)LJ ‘$&% ‘$2% 5HVXOW

L ‘$&% ‘$2%

LL ‘$&% ‘$2%

LLL ‘$&% ‘$2%

Conclusion: 7KH DERYH H[SHULPHQW VKRZV WKDW WKH DQJOH DW WKH FHQWUH RI D FLUFOH LV WZLFH WKH DQJOH DW
FLUFXPIHUHQFH

7KHRUHWLFDO 3URRI

*LYHQ L 2 LV WKH FHQWUH RI WKH FLUFOH &

LL ‘$2% LV WKH FHQWUDO DQJOH DQG ‘$&% LV WKH 2
DQJOH DW WKH FLUFXPIHUHQFH RI WKH FLUFOH
VWDQGLQJ RQ WKH VDPH DUF $%

7R SURYH ‘$2% ‘$&% $' %
&RQVWUXFWLRQ -RLQ &2 DQG SURGXFH &2 WR SRLQW '

Proof :

6WDWHPHQWV 5HDVRQV
,Q '$2&

L $2 &2
LL ‘2$& ‘2&$ L 5DGLL RI WKH VDPH FLUFOH

LL %DVH DQJOHV RI DQ LVRVFHOHV WULDQJOH

LLL ‘$2' ‘2$& ‘2&$ LLL ([WHULRU DQJOH RI D WULDQJOH LV HTXDO W
WKH VXP RI WZR RSSRVLWH LQWHULRU DQJOHV

LY ‘$2' ‘2&$ ‘2&$ LY %HLQJ ‘2$& ‘2&$
Y ‘$2' ‘2&$
6LPLODUO\ LQ '%2& Y )URP LY

‘%2' ‘2&% 6DPH DV DERYH IDFWV DQG UHDVRQV
‘$2' ‘%2' ‘2&$ ‘2&%
‘$2% ‘2&$ ‘2&% )URP Y RI DQG

‘$&% :KROH SDUW D[LRP

Proved



ͮDĂƚŚĞŵĂƚŝĐƐ Ͳ ϭϬ *HRPHWU\

$OWHUQDWLYH PHWKRG %

2 &
$



Proof :

6WDWHPHQW 5HDVRQ

‘$2& R ෢ 5HODWLRQ EHWZHHQ FHQWUDO DQJOH DQG LWV
RSSRVLWH DUF RI WKH FLUFOH
‘$%& R ෢
‘$%& R ෢ 5HODWLRQ EHWZHHQ LQVFULEHG DQJOH DQG
?‘$2& ‘$%& LWV RSSRVLWH DUF RI WKH FLUFOH

)URP

)URP DQG

Proved

7KHRUHP

The angles at the circumference of a circle standing on the same arc are equal.
Or

Angles standing at the same segment of a circle are equal.

([SHULPHQWDO YHULILFDWLRQ

Experiment: L 'UDZ WKUHH FLUFOHV LQ GLIIHUHQW UDGLL ZLWK FHQWUH 2

LL 'UDZ LQVFULEHG DQJOHV $%& DQG $'& RQ WKH VDPH DUF $&

% ' %%
'
'
2 $2 &

2

&

$ $ &

L LL LLL

To verify: ‘$%& ‘$'&

Verification: 0HDVXUH ‘$%& DQG ‘$'& ZLWK WKH KHOS RI SURWUDFWRU LQ HDFK ILJXUH DQG WDEXODWH

)LJ ‘$%& ‘$'& 5HVXOW

‘$%& ‘$'&

‘$%& ‘$'&

‘$%& ‘$'&

Conclusion: 7KH DERYH H[SHULPHQW VKRZV WKDW WKH DQJOHV DW WKH FLUFXPIHUHQFH RI D FLUFOH VWDQGLQJ RQ
WKH VDPH DUF DUH HTXDO

DĂƚŚĞŵĂƚŝĐƐ Ͳ ϭϬͮ
*HRPHWU\

7KHRUHWLFDO SURRI %
'

*LYHQ L 2 LV WKH FHQWUH RI D FLUFOH

LL ‘$%& DQG ‘$'& DUH WKH LQVFULEHG DQJOHV 2
VWDQGLQJ RQ WKH VDPH DUF $& $

7R SURYH ‘$%& ‘$'& &

&RQVWUXFWLRQ -RLQ $ DQG & ZLWK FHQWUH 2

Proof : 6WDWHPHQW 5HDVRQ
&HQWUDO DQJOH LV GRXEOH WKH DQJOH DW WKH
‘$2& ‘$%&
FLUFXPIHUHQFH VWDQGLQJ RQ WKH VDPH DUF
‘$2& ‘$'& 6DPH UHDVRQLQJ DV QR
‘$%& ‘$'&
‘$%& ‘$'& )URP DQG

'LYLGLQJ ERWK VLGHV E\

Proved

%
$OWHUQDWLYH PHWKRG '



2&

$

Proof

6WDWHPHQW 5HDVRQ

‘$%& R ෢ 5HODWLRQ EHWZHHQ LQVFULEHG DQJOH DQG LWV
RSSRVLWH DUF RI WKH FLUFOH

‘$'& R ෢ 6DPH UHDVRQLQJ DV
?‘$%& ‘$'& )URP DQG

7KHRUHP Proved

The angle at semi circle is a right angle. % &
2
7KHRUHWLFDO SURRI $

*LYHQ L 2 LV WKH FHQWUH RI D FLUFOH

ͮDĂƚŚĞŵĂƚŝĐƐ Ͳ ϭϬ *HRPHWU\

LL $2& LV WKH GLDPHWHU RI WKH FLUFOH DQG ‘$%& LV
DQ DQJOH LQ VHPL FLUFOH

7R SURYH ‘$%& R

Proof :

6WDWHPHQWV 5HDVRQV
‘$2& R
‘$%& ‘$2& %HLQJ VWUDLJKW DQJOH

‘$%& î R ,QVFULEHG DQJOH LV KDOI RI WKH FHQWUDO DQJOH
? ‘$%& R VWDQGLQJ RQ VDPH DUF RI WKH FLUFOH

)URP VWDWHPHQW DQG

)URP VWDWHPHQWV

Proved

7KHRUHP

The opposite angles of a cyclic quadrilateral are supplementary.

Or
Sum of two opposite angles of a cyclic quadrilateral is 180o (two right angles).



([SHULPHQWDO YHULILFDWLRQ

Experiment: L 'UDZ WKUHH FLUFOHV RI GLIIHUHQW UDGLL ZLWK FHQWUH 2



LL 'UDZ D F\FOLF TXDGULODWHUDO $%&' LQ HDFK FLUFOH

$

$ '

$ %'
'



% &% & &



L LL LLL

To verify: ‘$%& ‘$'& R ‘%$' ‘ %&' R

Verification: 0HDVXUH WKH RSSRVLWH DQJOHV RI TXDGULODWHUDO $%&' ZLWK WKH KHOS RI D SURWUDFWRU LQ HDFK

ILJXUH DQG WDEXODWH

)LJ ‘$ ‘& ‘$ ‘& ‘% ‘' ‘% ‘' 5HVXOW

, ‘$ ‘& R
‘% ‘' R

LL ‘$ ‘& R
‘% ‘' R

LLL ‘$ ‘& R
‘% ‘' R

Conclusion: 7KH DERYH H[SHULPHQW VKRZV WKDW WKH RSSRVLWH DQJOHV RI D F\FOLF TXDGULODWHUDO DUH

VXSSOHPHQWDU\

*HRPHWU\ DĂƚŚĞŵĂƚŝĐƐ Ͳ ϭϬͮ

7KHRUHWLFDO SURRI

*LYHQ L 2 LV WKH FHQWUH RI WKH FLUFOH
LL $%&' LV D F\FOLF TXDGULODWHUDO
7R SURYH ‘%$' ‘%&' R
‘$%& ‘$'& R

&RQVWUXFWLRQ -RLQ %2 DQG '2 6XSSRVH REWXVH ‘%2' [ DQG UHIOH[ ‘%2' \

Proof

6WDWHPHQW 5HDVRQ

L ‘%$' ‘%2' [ ,QVFULEHG DQJOH LV KDOI RI WKH DQJOH DW WKH
L FHQWUH RI D FLUFOH VWDQGLQJ RQ WKH VDPH DUF

%&'

LL ‘%&' ‘%2' \ LL 6DPH UHDVRQ DV LQ L VWDQGLQJ RQ WKH
VDPH DUF %$'

LLL ‘%$' ‘%&' ‘%2' [ LLL )URP L DQG LL RI
‘%2' \

LY ‘%$' ‘%&' [ \ LY )URP LLL RI

Y ‘%$' ‘%&' î R Y $QJOH LQ D FRPSOHWH WXUQ LV R
LH [ \ R

YL ‘%$' ‘%&' R YL )URP Y RI

6LPLODUO\ ‘$%& ‘$'& R %\ MRLQLQJ $2 DQG &2 VDPH DV DERYH
IDFWV DQG UHDVRQV
Proved

$

$OWHUQDWLYH PHWKRG

2

%'

Proof : &

L 6WDWHPHQW 5HDVRQ
LL
‘%$' R ෣ L 5HODWLRQ EHWZHHQ LQVFULEHG DQJOH DQG
LWV RSSRVLWH DUF
‘%&' R ෣
LL 6DPH DV UHDVRQ L

LLL ‘%$' ‘%&' R ෣ ෣ LLL )URP L DQG LL

LY ‘%$' ‘%&' R FLUFXPIHUHQFH LY :KROH SDUW D[LRP

Y ‘%$' ‘%&' î R Y &LUFXPIHUHQFH { R
YL ‘%$' ‘%&' R
6LPLODUO\ ‘$%& ‘$'& R YL )URP Y
6DPH DV DERYH IDFWV DQG UHDVRQV

Proved

ͮDĂƚŚĞŵĂƚŝĐƐ Ͳ ϭϬ *HRPHWU\

&RUROODU\

7KH H[WHULRU DQJOH RI D F\FOLF TXDGULODWHUDO LV HTXDO WR WKH VXP RI LWV RSSRVLWH LQWHULRU DQJOHV YHULI\
H[SHULPHQWDOO\

([SHULPHQWDO YHULILFDWLRQ

L 'UDZ WKUHH FLUFOHV LQ GLIIHUHQW UDGLL ZLWK FHQWUH 2
LL 'UDZ D F\FOLF TXDGULODWHUDO $%&' DQG SURGXFH D VLGH %& XS WR (




L LL LLL


7R YHULI\ ‘%$' ‘'&(

0HDVXUH WKH ‘%$' DQG ‘'&( ZLWK WKH KHOS RI SURWUDFWRU WKHQ WDEXODWH WKHP

ILJXUH ‘%$' ‘'&( 5HVXOW
L
LL ‘%$' ‘'&(
LL ‘%$' ‘'&(
‘%$' ‘'&(


&RQFOXVLRQ 7KH DERYH H[SHULPHQW VKRZV WKDW WKH H[WHULRU RU DQJOH RI WKH F\FOLF TXDGULODWHUDO LV HTXDO
WR WKH VXP RI LWV RSSRVLWH LQWHULRU DQJOHV

7KHRUHWLFDO SURRI

*LYHQ R LV WKH FHQWUH RI FLUFOH
$%&' LV D F\FOLF TXDGULODWHUDO VLGH LV %& LV
SURGXFHG XSWR (
7R SURYH ‘%$' ‘'&(

&RQVWUXFWLRQ

3URRI 6WDWHPHQW 5HDVRQV
‘%$' ‘%&'
EHLQJ RSSRVLWH DQJOHV RI D F\FOLF TXDGULODWHUDO
‘%&' ‘'&(

‘%$' ‘%&' ‘%&' EHLQJ VXSSOHPHQWDU\ DQJOHV
‘'&(

‘%$' ‘'&( )URP VWDWHPHQWV DQG

8VLQJ WKH FDQFHOODWLRQ ODZ LQ VWDWHPHQW

3URYHG

*HRPHWU\

DĂƚŚĞŵĂƚŝĐƐ Ͳ ϭϬͮ

:RUNHG 2XW ([DPSOHV

([DPSOH )LQG WKH YDOXHV RI x DQG y IURP WKH IROORZLQJ ILJXUHV

D % E % F

\ $ 2 [& &\ 2
\ R [
2 '
%
[
& $ R '
R (

$

Solution:
D L ‘2$& ‘2&$ R
LL ‘$2& R ‘2$& >EHLQJ 2$ 2& EDVH DQJOHV@
R î R >VXP RI DQJOHV RI D WULDQJOH LV R@
R R
, QVFULEHG DQJOH LV KDOI RI WKH DQJOH DW WKH FHQWUH
?‘$2& [ R
RI D FLUFOH VWDQGLQJ RQ WKH VDPH DUF
LLL ‘$%& ‘$2&
>WKH\ DUH VWDQGLQJ RQ WKH VDPH DUF %&@
? ‘$%& \ î R
>VWDQGLQJ RQ WKH VDPH DUF @
R 7KH H[WHULRU DQJOH RI D F\FOLF TXDGULODWHUDO
E L ‘%'& ‘%$& R
LL ‘$&% R ‘%$& $%&' LV HTXDO WR WKH LQWHULRU RSSRVLWH DQJOH
R ± R
7KH DQJOH DW WKH FHQWUH RI D FLUFOH LV WZLFH WKH
? [ R
LLL ‘$&% ‘$'% R LQVFULEHG DQJOH VWDQGLQJ RQ WKH VDPH DUF
? \ R
F L ‘$'( ‘$&% R
? \ R


LL ‘$2% ‘$&%
? [ R




([DPSOH ,Q WKH JLYHQ ILJXUH ‘234 R DQG ‘254 R )LQG 4
WKH PHDVXUHV RI ‘325 DQG ‘365

Solution: 2

-RLQ 4 DQG 2 35
L ‘243 ‘234 R DQG ‘245 ‘254 R
6


LL ‘345 ‘243 ‘245 %D VH DQJOHV RI DQ LVRVFHOHV WULDQJOH

R R R



ͮDĂƚŚĞŵĂƚŝĐƐ Ͳ ϭϬ *HRPHWU\

LLL ‘325 ‘345
î R 7KH DQJOH DW WKH FHQWUH RI D FLUFOH LV WZLFH WKH
R
LQVFULEHG DQJOH VWDQGLQJ RQ WKH VDPH DUF 365

LY ‘365 R ‘345 6XP RI WKH RSSRVLWH DQJOHV RI D F\FOLF

R ± R TXDGULODWHUDO LV R &
%
R $
([DPSOH ,Q WKH DGMRLQLQJ ILJXUH 2 LV WKH FHQWUH
RI D FLUFOH ,I ‘2$% R ILQG ‘$&%
2
Solution:
L ‘2$% ‘2%$ R >%HLQJ 2$ 2%@

LL ‘$2% R ‘2$% >6XP RI DQJOHV RI D WULDQJOH LV R@
R ± î R

R ± R R

LLL 5HIOH[ ‘$2% R ± R ƒ >2QH FRPSOHWH WXUQ LV R@

LY ‘$&% UHIOH[ ‘$2% ,QVFULEHG DQJOH LV KDOI WKH DQJOH DW WKH FHQWUH RI
î R R D FLUFOH VWDQGLQJ RQ VDPH DUF

([DPSOH ,Q WKH JLYHQ ILJXUH 2 LV WKH FHQWUH RI D FLUFOH LQ $ (
ZKLFK $2% LV D GLDPHWHU DQG $%&' LV D F\FOLF 2%
TXDGULODWHUDO ,I ‘$(' R ILQG WKH VL]H RI ‘%&'

Solution:

-RLQ % DQG (

L ‘$(% R >DQJOH DW VHPL FLUFOH@ ' &
LL ‘%(' R ‘$('
R ± R R >EHLQJ FRPSOHPHQWDU\ DQJOHV@

LLL ‘%&' R ‘%(' >VXP RI WKH RSSRVLWH DQJOHV RI D F\FOLF TXDGULODWHUDO@

R ± R R (' 2 &
([DPSOH ,Q WKH DGMRLQLQJ ILJXUH $%&' LV D F\FOLF TXDGULODWHUDO
$
,I ‘$(' R DQG ‘$)% ƒ ILQG WKH ‘%&' [
Solution: /HW ‘%$) [

1RZ ‘%$) ‘'$( [ >YHUWLFDOO\ RSSRVLWH DQJOHV DUH HTXDO@ %

)
‘$'& ƒ [ >VLQFH H[WHULRU DQJOH LV HTXDO WR WKH VXP RI WZR LQWHULRU RSSRVLWH DQJOHV @

‘$%& ƒ [ >VLQFH H[WHULRU DQJOH LV HTXDO WR WKH VXP RI WZR LQWHULRU RSSRVLWH DQJOHV @

?‘$%& ‘$'& ƒ >VXP RI WKH RSSRVLWH DQJOHV RI WKH F\FOLF TXDGULODWHUDO@

ƒ [ ƒ [ ƒ

RU [ ƒ ƒ

RU [ ƒ ƒ

*HRPHWU\ DĂƚŚĞŵĂƚŝĐƐ Ͳ ϭϬͮ

? ‘%$) ‘%&' [ ([ WHULRU DQJOH RI D F\FOLF TXDGULODWHUDO LV HTXDO

? ‘%&' ƒ WR LQWHULRU RSSRVLWH DQJOH

([DPSOH ,Q WKH JLYHQ ILJXUH 3456 LV D F\FOLF 3
TXDGULODWHUDO 36 LV SURGXFHG WR 7 LI 65 LV DQ 6
DQJOH ELVHFWRU RI ‘467 SURYH WKDW 35 45 7

Solution:

*LYHQ L 3456 LV D F\FOLF TXDGULODWHUDO 45

LL 65 LV DQ DQJOH ELVHFWRU RI ‘467 ‘465 ‘765

7R SURYH 35 45

Proof :

6WDWHPHQWV 5HDVRQV

‘465 ‘765 *LYHQ

‘465 ‘435 7KH\ DUH VWDQGLQJ RQ WKH VDPH DUF 45

‘765 ‘435 )URP VWDWHPHQW DQG

‘765 ‘345 ([WHULRU DQJOH RI WKH F\FOLF TXDGULODWHUDO LV
HTXDO WR WKH LQWHULRU RSSRVLWH DQJOHV

‘435 ‘345 )URP VWDWHPHQW DQG

?35 45 %DVH DQJOHV EHLQJ HTXDO

Proved

([DPSOH ,Q WKH ILJXUH DORQJ VLGH $% &' 3URYH WKDW ‘%0& ‘$1'

Solution:

*LYHQ L $% &' $ %
'
LL ‘%0& DQG ‘'1$ DUH VWDQGLQJ RQ WKH DUFV %$& &

DQG $%' UHVSHFWLYHO\

7R SURYH ‘%0& ‘$1' 0

&RQVWUXFWLRQ -RLQ $ DQG ' 1

Proof :

6WDWHPHQW 5HDVRQ

‘%$' ‘$'& %HLQJ DOWHUQDWH DQJOHV VLQFH $% &'

෢ ෢ 5HODWLRQ EHWZHHQ WKH DQJOH DW WKH FLUFXPIHUHQFH RI
෢ ෢ WKH FLUFOH DQG WKH RSSRVLWH DUF
෢ ෢ ෢ ෢
෣ ෢ )URP VWDWHPHQW
෣ ෢
$GGLQJ ෢ RQ ERWK VLGHV

:KROH SDUW D[LRP

'LYLGLQJ ERWK VLGHV E\

‘$1' ‘%0& )URP 5HODWLRQ EHWZHHQ WKH DQJOH DW WKH
FLUFXPIHUHQFH RI WKH FLUFOH DQG WKH RSSRVLWH DUF

Proved






ͮDĂƚŚĞŵĂƚŝĐƐ Ͳ ϭϬ *HRPHWU\

([DPSOH ,Q WKH JLYHQ ILJXUH $34& DQG '34% $3 '

LQWHUVHFWHG DW 3 DQG 4 $% DQG &' SDVV %

WKURXJK WKH SRLQW 3 & $ ' DQG % DUH MRLQHG WR &
WKH SRLQW 4 3URYH WKDW ‘$4& ‘%4'

Solution:

*LYHQ L $34& DQG '34% DUH WZR LQWHUVHFWLQJ FLUFOHV ZKLFK 4

LQWHUVHFW DW 3 DQG 4

LL $% DQG &' SDVV WKURXJK WKH SRLQW 3

7R SURYH ‘$4& ‘%4'

Proof

6WDWHPHQWV 5HDVRQV

‘%4' ‘%3' ,QVFULEHG DQJOHV VWDQGLQJ RQ WKH VDPH
DUF %'

‘%3' ‘$3& 9HUWLFDOO\ RSSRVLWH DQJOHV DUF HTXDO

‘%4' ‘$3& )URP VWDWHPHQW DQG

‘$3& ‘$4& 6WDQGLQJ RQ WKH VDPH DUF $&

‘%4' ‘$4& )URP VWDWHPHQW DQG

Proved

([DPSOH ,Q WKH DGMRLQLQJ ILJXUH '$%& LV DQ LQVFULEHG $
WULDQJOH ( LV WKH PLG SRLQW RI DUF %& ZKHUH ( '

DQG $ DUH MRLQHG 3URYH WKDW 01 %&

Solution: 01

*LYHQ L '$%& LV DQ LQVFULEHG WULDQJOH %( &
LL ෢ с ෢
7R SURYH 01 %&

&RQVWUXFWLRQ -RLQ $ DQG '

Proof:

6WDWHPHQW 5HDVRQ

L ෞ ෢ L *LYHQ

LL ‘%$( ‘&$( LL $QJOHV DW WKH FLUFXPIHUHQFH RI FLUFOH VWDQGLQJ RQ
WKH HTXDO DUF DUH HTXDO

LLL ‘%$( ‘%'( LLL 6WDQGLQJ RQ WKH VDPH DUF %(

LY ‘&$( ‘%'( LY )URP LL DQG LLL RI

L ‘0$1 ‘1'0 L )URP LY RI

LL ?0 $ ' DQG 1 DUH LL %HLQJ ‘0$1 ‘0'1
FRLQ F\FOLF SRLQWV

LLL ‘'$1 ‘'01 LLL %RWK DQJOHV DUH VWDQGLQJ RQ WKH VDPH DUF '1
6LQFH 0 $ ' DQG 1 DUH FRQF\FOLF SRLQWV

L ‘'$& ‘'%& L $JDLQ WKH\ DUH VWDQGLQJ RQ WKH VDPH DUF '& RI
WKH FLUFOH

LL ‘'01 ‘'%& LL )URP VWDWHPHQWV LLL RI DQG L RI

LLL ?01 %& LLL )URP L FRUUHVSRQGLQJ DQJOHV EHLQJ HTXDO
VLQFH ‘'01 ‘'%&

Proved

*HRPHWU\ DĂƚŚĞŵĂƚŝĐƐ Ͳ ϭϬͮ

([HUFLVH

*URXS
$


)LQG WKH VL]H RI XQNQRZQ DQJOHV LQ WKH IROORZLQJ ILJXUHV ZKHUH 2 LV WKH FHQWUH RI WKH FLUFOH

& 2 4 ; '
R 2[ [
\
\ % R = 2
2 \
$ 35
[ R

< R ()

L LL LLL LY

& 3'

$ R 2 $ 2 ' 4 \ 6
[ \ ( R 2 [ *
\ [
R 2 \

[ %& R )

%



5

Y YL YLL YLLL

& ; : 4

< R $ R [7
$ [ = 5
2
2 \' \ 2 2

$ ;[ R

[

% = < 6
[L [LL
L[ [
$
% & '[ * \% 4 6
[ [ 2 [ [
$ R R
R \ 2
2 ) 2 3
\ ( ' \
]
R 5

' [LY & [YL
[Y
[LLL

$ ' ) $ '$ '

[ (% 2
% 2 [
' \ R [ & \
&
$ 2 [ &%
%
&

[YLL [YLLL [L[ [[



ͮDĂƚŚĞŵĂƚŝĐƐ Ͳ ϭϬ *HRPHWU\

4

D ,Q WKH JLYHQ ILJXUH 2 LV WKH FHQWUH RI WKH FLUFOH ,I 2 5
‘234 ‘254 R ILQG WKH ‘345 ‘325 DQG 3 7
‘567
6 %
E ,Q WKH DGMRLQLQJ ILJXUH 2 LV WKH FHQWUH RI WKH FLUFOH ,I &
‘2$% R ILQG WKH ‘$&% $

2

F ,Q WKH JLYHQ ILJXUH 2 LV WKH FHQWUH RI WKH FLUFOH LQ ZKLFK 2
2345 LV D SDUDOOHORJUDP )LQG ‘234 35

G ,Q WKH JLYHQ ILJXUH 2 LV WKH FHQWUH RI WKH FLUFOH 2$ DQG 4
2& DUH DQJOH ELVHFWRUV RI ‘%$& DQG ‘%&$
UHVSHFWLYHO\ ,I $% $& ILQG ‘$2& DQG ‘2$% $&
2
D ,Q WKH DGMRLQLQJ ILJXUH 2 LV WKH FHQWUH DQG %2( LV D
GLDPHWHU RI WKH FLUFOH ,I ‘'%( [R DQG ‘%(' [R %
ILQG WKH ‘%$' DQG ‘%&' $'

E ,Q WKH ILJXUH DORQJVLGH 2 LV WKH FHQWUH RI WKH FLUFOH ,I % [ [ (
‘%'& R DQG ‘%$' R ILQG WKH ‘2$' 2

F ,Q WKH JLYHQ ILJXUH 2 LV WKH FHQWUH RI WKH FLUFOH DQG &
45A36 ,I ‘345 R ILQG WKH DQJOH 526
2&
'
$%

356

2

G ,Q WKH DGMRLQLQJ ILJXUH 3& %& DQG ‘3$' R 4%
$
)LQG WKH ‘$3& 3
2
&

D ,Q WKH ILJXUH DORQJVLGH 2 LV WKH FHQWUH RI WKH FLUFOH ,I '
$
%' &' DQG ‘$%' R ILQG WKH ‘%$& %
2

'&

*HRPHWU\ DĂƚŚĞŵĂƚŝĐƐ Ͳ ϭϬͮ

$
%
E ,Q WKH JLYHQ ILJXUH $%&' LV D F\FOLF TXDGULODWHUDO ,I
'
R R$' &' DQG ‘$%& R ILQG WKH ‘&$'

F ,Q WKH DGMRLQLQJ ILJXUH $%&' LV D F\FOLF TXDGULODWHUDO &
,I ‘$3% R DQG ‘%4& R ILQG WKH ‘$'&
(
3$

%2 '

&
4
G ,Q WKH DGMRLQLQJ ILJXUH 3456 LV D F\FOLF TXDGULODWHUDO ,I $3
‘365 R DQG ‘3$4 ƒ ILQG WKH ‘4%5
4 26

%5
*URXS
%
&

$
D ,Q WKH JLYHQ ILJXUH $% &' VKRZ WKDW (
‘%$' ‘$(&
%
'

0

E ,Q WKH JLYHQ ILJXUH 34 56 3URYH WKDW 3 24
‘406 ‘315 56
1
F ,Q WKH JLYHQ ILJXUH LI ‘1$6 ‘0%5
SURYH WKDW 01 56 $
01

G ,Q WKH JLYHQ ILJXUH '( )* 3URYH 5 6
% 4
WKDW ‘'4) ‘*3(
3 (
D ,Q WKH JLYHQ ILJXUH $% &' 3URYH WKDW '
‘$(' ‘%)&
)*
E ,Q WKH JLYHQ ILJXUH LI ‘*;) ‘(<+ ()
SURYH WKDW () *+
$ %
& '
( )

* +

;<

ͮDĂƚŚĞŵĂƚŝĐƐ Ͳ ϭϬ *HRPHWU\

F ,Q WKH DGMRLQLQJ ILJXUH 01 DQG 56 DUH WZR FKRUGV 06
ZKLFK LQWHUVHFW DW 3 ,I 0$A56 DQG 6%A01 SURYH
WKDW $% 51 3

G ,Q WKH JLYHQ ILJXUH 2 LV WKH FHQWUH RI WKH FLUFOH DQG $%
$% LV D GLDPHWHU ,I ෢ с ෢ SURYH WKDW $0 21 51

$

D ,Q WKH DGMRLQLQJ ILJXUH 34 DQG 56 DUH WZR FKRUGV RI 02
WKH FLUFOH ZKLFK LQWHUVHFW DW $ 3URYH WKDW
1
L ‘3$5 сŽ ෢ ෢ %
LL ‘4$5 сŽ ෢ ෢
6

E $% DQG &' DUH WZR FKRUGV RI WKH FLUFOH WKDW 3 4
$ $
LQWHUVHFW H[WHUQDOO\ DW 3 3URYH WKDW
5 &
‘%3' сŽ ෢ ෢
%
3

'

F ,Q WKH JLYHQ ILJXUH WZR FKRUGV $% DQG &' LQWHUVHFW DW $

ULJKW DQJOH DW ( RI WKH FLUFOH 3URYH WKDW ( '
L ෢ ෢ с ෢ ෢ & &
LL ෢ ෢ с ෢ ෢
%
G ,Q WKH JLYHQ ILJXUH 021 LV D GLDPHWHU ZLWK FHQWUH 2 ,I 1

෢ ෢ ͕ SURYH WKDW ‘$01 ‘$%& ‘$&% $
2

%
0

D ,Q WKH JLYHQ ILJXUH 3 DQG 4 DUH WKH FHQWUH RI WKH FLUFOHV %
ZKLFK LQWHUVHFW DW $ DQG & 3$ DQG 3& DUH SURGXFHG WR $
PHHW WKH RWKHU FLUFOH DW % DQG ' UHVSHFWLYHO\ 3URYH
WKDW $% &' 34

E ,Q WKH JLYHQ ILJXUH 2 LV WKH FHQWUH RI WKH FLUFOH ' DQG ) &
DUH WZR SRLQWV RQ WKH FKRUG $% VXFK WKDW $' %) '

&(
,I ෢ с ෢ SURYH WKDW ‘$'& ‘%)( 2

$' ) %

*HRPHWU\ DĂƚŚĞŵĂƚŝĐƐ Ͳ ϭϬͮ

$

F ,Q WKH JLYHQ ILJXUH WZR FKRUGV %$ DQG &$ PHHW DW $
0 DQG 1 DUH PLG SRLQWV RI ෢ DQG ෢ UHVSHFWLYHO\ 01 0 ( 2 ) 1

FXWV $% DQG $& DW ( DQG ) UHVSHFWLYHO\ 3URYH WKDW

$( $) %&

G  –Ї ƒ†Œ‘‹‹‰ ˆ‹‰—”‡ ‹• –Ї …‡–”‡ǡ ‹ˆ
A ”‘˜‡ –Šƒ– ‘ α ‘


%'

()

‡Ȍ  –Ї ƒ†Œ‘‹‹‰ ˆ‹‰—”‡ǡ –™‘ …‹”…އ• ‹–‡”•‡…–• &
$
ƒ– Ƭ ǡ ‹• ƒ •–”ƒ‹‰Š– Ž‹‡ǡ ’”‘˜‡ –Šƒ–
‹• ƒ …›…Ž‹… “—ƒ†”‹Žƒ–‡”ƒŽǤ 0

$ %
) '

&( 2


D ,Q WKH ILJXUH DORQJVLGH () $& 3URYH WKDW

L % ( ) DQG ' DUH FRQF\FOLF SRLQWV
LL ෢ ෢

E ,Q WKH DGMRLQLQJ ILJXUH 2 LV WKH FHQWUH RI D FLUFOH ,I
‘$%& ‘&$( SURYH WKDW % ' ( DQG ) DUH
FRQFO\FOLF SRLQWV

$ )

F ,Q WKH JLYHQ ILJXUH 2 LV WKH FHQWUH RI WKH FLUFOH DQG &3 2 '
$%A&' DW 3 3URYH WKDW $2() LV D F\FOLF (

TXDGULODWHUDO %

$

54

G ,Q WKH DGMRLQLQJ ILJXUH 3 4 DQG 5 DUH PLG SRLQWV RI % 63 &
(
%& $& DQG $% UHVSHFWLYHO\ ,I $6 A %& SURYH
WKDW 3456 LV D F\FOLF TXDGULODWHUDO $

&

D ,Q WKH JLYHQ ILJXUH 2 LV WKH FHQWUH RI D FLUFOH 2 '

,I $% $& SURYH WKDW %' &' %

*HRPHWU\
ͮDĂƚŚĞŵĂƚŝĐƐ Ͳ ϭϬ

E ,Q WKH ILJXUH DORQJVLGH $%&' LV D F\FOLF '

TXDGULODWHUDO %& LV SURGXFHG WR ( VXFK WKDW $

$% &( DQG %' LV DQ DQJOH ELVHFWRU RI ‘$%&

3URYH WKDW '% '( % &(

$
'

% &
F ,Q WKH ILJXUH $% '( DQG ‘$%' ‘&%' 3URYH ( 6
WKDW ෢ ෢
3
2

/
45

G 3URYH WKDW ‘324 ‘526 ‘3/4





H ,Q WKH JLYHQ ILJXUH LV WKH FHQWUH RI FLUFOH &KRUGV

$& DQG %' LQWHUVHFWV DW ( 3URYH WKDW ‘$(%

‘$2% ‘&2%



‹•…‡ŽŽƒ‡‘—• š‡”…‹•‡

)'

,Q WKH DGMRLQLQJ ILJXUH 2 LV WKH FHQWUH RI D FLUFOH $ 2& %
(
LQ ZKLFK $% LV D GLDPHWHU ,I &' &( SURYH

WKDW ‘2)& ‘2'&


ʹǤ ‹• –Ї …‡–‡” ‘ˆ –Ї …‹”…އ ‹ˆ ܲ෢ܻ α ‫ܯ‬෢ܻǡ –Ї
”‘˜‡ –Šƒ– ܻܺԡ




&
͵Ǥ ,Q WKH DGMRLQLQJ ILJXUH FKRUGV $% DQG &' RI D $
03 1
FLUFOH LQWHUVHFW DW ULJKW DQJOH DW 3 1 LV WKH PLG ' %

SRLQW RI %& DQG 13 LV SURGXFHG WR PHHW $' DW

0 3URYH WKDW 30 A $'


ͶǤ ™‘ …‹”…އ• ‹–‡”•‡…– ƒ– ƒ† ǡ ƒ†
ƒ”‡ –Ї •–”ƒ‹‰Š– Ž‹‡• ƒ† ‫ܰܯ‬ԡ Ǥ Ї
’”‘˜‡ –Šƒ– ‫ܺܯ‬ԡ



*HRPHWU\ DĂƚŚĞŵĂƚŝĐƐ Ͳ ϭϬͮ

ͷǤ ‹• –Ї …‡–”‡ ‘ˆ –Ї …‹”…އ ǡ ‹ˆ α ǡ ”‘˜‡
–Šƒ– ͵ ܶ෢ܵ α ܳ෢ܴ

͸Ǥ ‹• –Ї …‡–”‡ ‘ˆ –Ї …‹”…އǡ …Š‘”†• ƒ†
‹–‡”•‡…– ƒ– ”‹‰Š– ƒ‰Ž‡ ƒ– Ǥ ”‘˜‡ –Šƒ– ‘
α ‘

͹Ǥ  –Ї ƒ†Œ‘‹‹‰ ˆ‹‰—”‡ǡ ƒ† ƒ”‡ –Ї …‡–”‡
‘ˆ …‹”…އ•Ǥ ƒ† ƒ”‡ –Ї ‹–‡”•‡…–‹‰ ’‘‹–
‘ˆ –™‘ …‹”…އǡ ’”‘˜‡ –Šƒ– ‹• –Ї
’‡”’‡†‹…—Žƒ” „‹•‡…–‘” ‘ˆ –Ї …Š‘”† Ǥ

 –Ї ‰‹˜‡ ˆ‹‰—”‡ǡ ܵ෢ܴ α ܶ෢ܳ ƒ† ƒ†
‹–‡”•‡…– ”‹‰Š– ƒ‰Ž‡ ƒ– Ǥ ”‘˜‡ –Šƒ– ‹• ƒ
†‹ƒ‡–‡”Ǥ

ͻǤ  –Ї ‰‹˜‡ ‹‰—”‡ ƒ† „‹•‡…–‘”• ‘ˆ
‘ ƒ† ‘ ”‡•’‡…–‹˜‡Ž›Ǥ ”‘˜‡ –Šƒ–
A Ǥ

ͳͲǤ ˆ α ƒ† ‘ α ʹ‘ ǡ ”‘˜‡ –Šƒ–
‹• ƒ …›…އ “—ƒ†”‹Žƒ–‡”ƒŽǤ

ͳͳǤ  –Ї ƒ†Œ‘‹‹‰ ˆ‹‰—”‡ǡ ‹• ƒ –”ƒ’‡œ‹—
‹ ™Š‹…Š α ƒ† ‫ܳܯ‬ԡ ǡ ”‘˜‡ –Šƒ–
‹• ƒ …›…Ž‹… “—ƒ†”‹Žƒ–‡”ƒŽǤ

ͳʹǤ  –Ї ‰‹˜‡ ˆ‹‰—”‡ǡ …Š‘”†• ƒ† ƒ”‡
‡“—ƒŽǡ ”‘˜‡ –Šƒ– ‘ Ϊ ‘ α ͳͺͲι
*HRPHWU\


ͮDĂƚŚĞŵĂƚŝĐƐ Ͳ ϭϬ

7DQJHQW $ 2
7%
$ WDQJHQW WR D FLUFOH LV D VWUDLJKW OLQH WKDW PHHWV DW RQH DQG RQO\ RQH SRLQW
VLQJOH SRLQW RQ WKH FLUFXPIHUHQFH RI WKH FLUFOH ,Q WKH DGMRLQLQJ ILJXUH 2 '%
$% LV D WDQJHQW DQG 7 LV D SRLQW RI FRQWDFW RI WKH FLUFOH :H FDQ GUDZ
QXPHURXV WDQJHQWV LQ D FLUFOH %XW ZH FDQ GUDZ RQO\ WZR WDQJHQWV IURP
WKH H[WHUQDO VLQJOH SRLQW WR D FLUFOH

6HFDQW $ VHFDQW LV D VWUDLJKW OLQH WKDW LQWHUVHFWV D FLUFOH ,W FXWV WKH
FLUFXPIHUHQFH DW DQ\ WZR SRLQWV ,Q WKH ILJXUH DORQJVLGH $&'% LV D
VHFDQW $ VWUDLJKW OLQH $% LQWHUVHFWV WKH FLUFOH DW WZR SRLQWV & DQG ' :H
FDQ GUDZ QXPHURXV VHFDQWV LQ D FLUFOH

&RPPRQ WDQJHQWV $&

,I D VWUDLJKW OLQH LV WDQJHQW WR WZR FLUFOHV WKHQ LW LV FDOOHG FRPPRQ WDQJHQW ,Q WKH DGMRLQLQJ ILJXUHV

$% LV WKH FRPPRQ WDQJHQW WR WKH FLUFOHV

$ $ $&
&
'
& %

% %



7KHRUHP

The tangent to the circle at any point is perpendicular to the radius at the point of contact.

([SHULPHQWDO YHULILFDWLRQ

Experiment: L 'UDZ WKUHH FLUFOHV RI GLIIHUHQW UDGLL ZLWK FHQWUH
2


LL 'UDZ WDQJHQWV $&% DW WKH SRLQW RI FRQWDFW & DQG MRLQ 2 DQG & LQ HDFK FLUFOH



22 2
&%
&% $&% $

$



To verify: 2& A $%

Verification: 0HDVXUH ‘2&$ RU ‘2&% DQG WDEXODWH

)LJXUH ‘2&$ RU ‘2&% 5HVXOWV

L ‘2&$ ‘2&% R

LL

LLL

Conclusion: 7KH DERYH H[SHULPHQW VKRZV WKDW WKH WDQJHQW WR WKH FLUFOH DW DQ\ SRLQW LV SHUSHQGLFXODU WR

WKH UDGLXV DW WKH SRLQW RI FRQWDFW




*HRPHWU\ DĂƚŚĞŵĂƚŝĐƐ Ͳ ϭϬͮ

7KHRUHP
The lengths of tangents to a circle drawn from an external point are equal to each other.
([SHULPHQWDO YHULILFDWLRQ

Experiment: L 'UDZ WKUHH FLUFOHV RI GLIIHUHQW UDGLL ZLWK FHQWUH
2

LL 'UDZ WDQJHQWV 3$ DQG 3% IURP DQ H[WHUQDO SRLQW 3 ZKHUH $ DQG % DUH SRLQW RI FRQWDFW

UHVSHFWLYHO\
$3

2

$ 3 2
%
%$

%2

LL LLL

3

L

To verify: 3$ 3%

Verification: 0HDVXUH WKH OHQJWK RI 3$ DQG 3% DQG WDEXODWH

)LJXUH 3$ 3% 5HVXOWV

L 3$ 3%

LL 3$ 3%

LLL 3$ 3%

Conclusion: 7KH OHQJWK RI WDQJHQWV WR D FLUFOH GUDZQ IURP DQ H[WHUQDO SRLQW DUH HTXDO




7KHRUHP

The angles made by a tangent of a circle with a chord at the point of contact are
respectively equal to the angles in the alternate segments of the circle.

([SHULPHQWDO YHULILFDWLRQ

Experiment: L 'UDZ WKUHH FLUFOHV RI GLIIHUHQW UDGLL ZLWK FHQWUH
2


LL 'UDZ WDQJHQWV 3$4 ZKHUH $ LV WKH SRLQW RI FRQWDFW

& & %
2
&%
$4
' 2% 2'
LLL
'

3 $ 43 $ 43

L LL

To verify: ‘&$4 ‘$'& DQG ‘&$3 ‘$%&

ͮDĂƚŚĞŵĂƚŝĐƐ Ͳ ϭϬ *HRPHWU\

Verification: 0HDVXUH WKH DQJOHV &$4 $'& &$3 DQG $%& DQG WDEXODWH

)LJXUH ‘&$4 ‘$'& 5HVXOWV ‘&$3 ‘$%& 5HVXOWV

L ‘&$4 ‘$'& ‘&$3 ‘$%&

LL ‘&$4 ‘$'& ‘&$3 ‘$%&

LLL ‘&$4 ‘$'& ‘&$3 ‘$%&

Conclusion: 7KH DERYH H[SHULPHQW VKRZV WKDW WKH DQJOH PDGH E\ D WDQJHQW RI D FLUFOH ZLWK D FKRUG DW
WKH SRLQW RI FRQWDFW DUH UHVSHFWLYHO\ HTXDO WR WKH DQJOHV LQ WKH DOWHUQDWH VHJPHQWV RI WKH
FLUFOH

:RUNHG 2XW ([DPSOHV

([DPSOH )LQG WKH VL]H RI DQJOHV PDUNHG IURP WKH IROORZLQJ FLUFOHV ZLWK FHQWUH 2

DQG SRLQW RI FRQWDFW ZLWK WDQJHQWV DUH DOVR JLYHQ DV LQ WKH ILJXUHV



D 6 E $ F

4
2
2[ 2 R

R 6[

3 45 R [ 357
% &'



D L ‘245 R >5DGLXV RI WKH FLUFOH LV SHUSHQGLFXODU WR WKH WDQJHQW DW WKH SRLQW RI

FRQWDFW

LL ‘246 ‘264 R ± R R > 26 24 DQG FRPSOHPHQWDU\ DQJOHV @

LLL ‘426 [ R u R R R R >6XP RI WKH DQJOHV RI D WULDQJOH@



E L ‘%$& R ± R R >5HPDLQLQJ DQJOH RI ULJKW DQJOHG WULDQJOH@

LL ‘%2' u R R >&HQWUDO DQJOH LV GRXEOH WKH DQJOH DW WKH FLUFXPIHUHQFH @

LLL ‘2'% [ R R R >5HPDLQLQJ DQJOHV RI D ULJKW DQJOHG WULDQJOH@

F L ‘534 ‘345 R > 35 45@

LL ‘ 754 u ‘345 u R R >([WHULRU DQJOH LV HTXDO WR WKH VXP RI WZR

LQWHULRU RSSRVLWH DQJOHV@

LLL ‘754 ‘564 [ R >%HLQJ DQJOHV RI WKH DOWHUQDWH VHJPHQWV RI WKH FLUFOH @

([DPSOH ,Q WKH DGMRLQLQJ ILJXUH 2 LV WKH FHQWUH RI D 3 &
FLUFOH 3& LV D WDQJHQW DQG & LV WKH SRLQW RI 2
FRQWDFW 3$% LV D VHFDQW ZKHUH 3$ FP DQG $
$% FP )LQG WKH OHQJWK RI 3&

Solution: L 2 LV WKH FHQWUH RI D FLUFOH %
*LYHQ

LL 3& LV D WDQJHQW DQG & LV WKH SRLQW RI FRQWDFW

LLL 3$% LV VHFDQW

7R ILQG /HQJWK RI 3&

*HRPHWU\ DĂƚŚĞŵĂƚŝĐƐ Ͳ ϭϬͮ

&RQVWUXFWLRQ -RLQ $ DQG % ZLWK WKH SRLQW RI FRQWDFW &

D ,Q '3%& DQG '$3&

L ‘%3& ‘$3& >&RPPRQ DQJOH @

LL ‘3%& ‘$&3 >$QJOH DW WKH DOWHUQDWH VHJPHQWV RI WKH FLUFOH DUH HTXDO @

LLL ‘3&% ‘3$& >5HPDLQLQJ DQJOHV RI D WULDQJOH @

?'3%& a'$3& >E\ $ $ $@

E $3&3 3%&3 >&RUUHVSRQGLQJ VLGHV DUH SURSRUWLRQDO@

F 3& %3 $3 FP u FP RU 3& FP FP



([DPSOH ,Q WKH DGMRLQLQJ ILJXUH 2 LV WKH FHQWUH RI D FLUFOH $ %
$% DQG $& DUH WZR WDQJHQWV ZKLFK DUH GUDZQ 2
IURP WKH H[WHUQDO SRLQW $ WR WKH FLUFOH ZKHUH %
DQG & DUH SRLQWV RI FRQWDFW UHVSHFWLYHO\ &
3URYH WKDW ‘2%& ‘%$&


Solution:

*LYHQ L 2 LV WKH FHQWUH RI D FLUFOH

LL $% DQG $& DUH WDQJHQWV ZKHUH % DQG & DUH SRLQWV RI FRQWDFW

7R SURYH ‘2%& ‘%$&



Proof:

6WDWHPHQWV 5HDVRQV

‘$%& ‘$&% %HLQJ $% $&
‘ %$& R ‘$%&
‘%$& R ‘$%& 6XP RI WKH DQJOHV RI D WULDQJOH LV
R

'LYLGLQJ ERWK VLGHV E\

‘2%$ R 5DGLXV RI WKH FLUFOH LV SHUSHQGLFXODU
WR WKH WDQJHQW DW WKH SRLQW RI FRQWDFW
‘2%& R ‘$%&
‘2%& ‘%$& %HLQJ FRPSOHPHQWDU\ DGMDFHQW
DQJOHV

)URP DQG

Proved

ͮDĂƚŚĞŵĂƚŝĐƐ Ͳ ϭϬ *HRPHWU\

([HUFLVH







)LQG WKH VL]H RI DQJOHV PDUNHG IURP WKH IROORZLQJ FLUFOHV ZLWK FHQWUH 2 DQG SRLQW RI FRQWDFW

ZLWK WDQJHQWV DV JLYHQ LQ WKH ILJXUHV

% '
\


2 $[ 2 5 2 6[ 2 R &
R $
\

'
[ R
[\

$ % && % '3 7 4
L LL LLL LY



0 3 $

' $ 2 [%
\
2%

$ 2 \% ' \ 2 R )
[
R R [
&( \ R
[&
1 4% '& (

Y YL YLL YLLL





'& 4 5



R \ 2
R
$2 [ %&

3\ 2 [ 2[ R 3
$
[( R

5 4

%

L[ [ [L [LL

3

$ (& % ' % \&[ '
\
R (

2 2[ D

2 2 D

[
R
\ R \ [
% &' 4 56
$ $

[LLL [LY [Y [YL



DĂƚŚĞŵĂƚŝĐƐ Ͳ ϭϬͮ
*HRPHWU\

3 3 5 33 5
R \ $ \\
$

%4 [ [ % 4
2 R
[ R
2
[
\ R & V
& V [L[
[[
[YLL [YLLL

D ,Q WKH DGMRLQLQJ ILJXUH 2 LV WKH FHQWUH RI WKH FLUFOH $



'%( LV D WDQJHQW ZKHUH % LV WKH SRLQW RI FRQWDFW ,I 2 &
‘$%' R DQG ‘%2& R ILQG ‘$%2 DQG R

‘$&2 R

'% (

E ,Q WKH JLYHQ ILJXUH 2 LV WKH FHQWUH RI WKH FLUFOH $% $ 3

LV D WDQJHQW ZKHUH 4 LV WKH SRLQW RI FRQWDFW ,I D

‘435 ‘354 ILQG WKH VL]H RI ‘465 DQG ‘$43 4 2

D 6
%5

$
F ,Q WKH JLYHQ ILJXUH 2 LV WKH FHQWUH RI WKH FLUFOH '&(

LV D WDQJHQW ZKHUH & LV WKH SRLQW RI FRQWDFW ,I R )
&' &) DQG ‘ %$& R ILQG WKH ‘$%)
2

%

' & (

G ,Q WKH DGMRLQLQJ ILJXUH 2 LV WKH FHQWUH RI WKH FLUFOH $ '
$%&' LV D F\FOLF TXDGULODWHUDO 3%4 LV D WDQJHQW ZLWK 2

SRLQW RI FRQWDFW % ,I %& &' DQG ‘'%& R ILQG &

WKH ‘3%'

3 % 4
%

D ,Q WKH DGMRLQLQJ ILJXUH 37 LV D WDQJHQW DQG 3$% LV $2
VHFDQW ,I $% 3$ FP ILQG WKH OHQJWK RI 37

37

E ,Q WKH JLYHQ ILJXUH 2 LV WKH FHQWUH RI WKH FLUFOH ,I 2
4
25 45 FP DQG 35 FP ILQG WKH ‘345 DQG 5
OHQJWK RI 34

3

ͮDĂƚŚĞŵĂƚŝĐƐ Ͳ ϭϬ *HRPHWU\

F ,Q WKH JLYHQ ILJXUH 2 LV WKH FHQWUH RI WKH FLUFOH %$ 2
LV WDQJHQW ZKHUH $ LV SRLQW RI FRQWDFW ,I 2& FP &
DQG %& FP ILQG WKH OHQJWK RI $%

% $
$
G ,Q WKH JLYHQ ILJXUH ;< LV D GLDPHWHU ZLWK FHQWUH 2 3 <
3$ DQG 3% DUH WDQJHQWV GUDZQ IURP WKH H[WHUQDO 2
SRLQW 3 RI WKH FLUFOH ,I 3; FP DQG ;< FP ;
ILQG WKH OHQJWK RI 3$ DQG 3%
%

H ,Q WKH JLYHQ ILJXUH 2 , WKH FHQWUH RI FLUFOH 76
WDQJHQW 4 SRLQW RI FRQWDFW ,I 35 _ _ 46 WKHQ SURYH
WKDW '345 a '264



0LVFHOODQHRXV ([HUFLVH

&

D ,Q WKH JLYHQ ILJXUH $7 LV D WDQJHQW DW 7 DQG $%& LV D %
VHFDQW 3URYH WKDW $7 $& $%

$7

E ,Q WKH JLYHQ ILJXUH $% LV D FKRUG DQG ($ LV D WDQJHQW %
ZKHUH $ LV SRLQW RI FRQWDFW ,I 0 LV PLG SRLQW RI $%
2
0&A($ DQG 0'A$% SURYH WKDW 0& 0' '
0

& $
$
( 2
%
F ,Q WKH DGMRLQLQJ ILJXUH 3$ DQG 3% DUH WZR WDQJHQWV

GUDZQ IURP WKH H[WHUQDO SRLQW 3 RI D FLUFOH ZKHUH $ DQG

% DUH WZR FRQWDFW SRLQWV RI UHVSHFWLYH WDQJHQWV

3URYH WKDW L ‘2$% ‘$3% 3

LL ‘$%3 ‘$2%



G ,Q WKH DGMRLQLQJ ILJXUH 34 LV D WDQJHQW DW $ $%& LV DQ % &
LQVFULEHG WULDQJOH ,I ' DQG ( DUH PLG SRLQWV RI $% DQG

$& UHVSHFWLYHO\ DQG ‘3$% ‘4$& SURYH WKDW '(

L %& 34

LL %'(& LV D F\FOLF TXDGULODWHUDO 3$ 4
LLL '$'( LV DQ LVRVFHOHV WULDQJOH



*HRPHWU\ DĂƚŚĞŵĂƚŝĐƐ Ͳ ϭϬͮ

D '$%& LV DQ LQVFULEHG WULDQJOH 34 LV D WDQJHQW DW $ 0 3 $ 4

LV DQ\ SRLQW RQ $% VXFK WKDW 01 34 3URYH WKDW

%&10 LV D F\FOLF TXDGULODWHUDO 01

%&

$



%

E 3 DQG 4 DUH FHQWUH RI WKH WZR FLUFOHV $&; DQG %&< 3 &
; 4
UHVSHFWLYHO\ WRXFKLQJ DW & $% LV D FRPPRQ WDQJHQW
3URYH WKDW $% $& %& 4 3<
$5

%


F 7ZR FLUFOHV LQWHUVHFW DW WKH SRLQW $ DQG % $ OLQH

GUDZQ WKURXJK WKH SRLQW $ PHHWV WKH FRQWDFW SRLQWV

4 DQG 5 RI WKH WDQJHQWV 34 DQG 35 UHVSHFWLYHO\

3URYH WKDW 7KH SRLQWV 3 4 % DQG 5 DUH FRQF\FOLF

SRLQWV



G ,Q WKH JLYHQ ILJXUH $% DQG $& DUH WZR WDQJHQWV '%

GUDZQ IURP WKH H[WHUQDO SRLQW $ ) LV DOVR SRLQW RI $ )

FRQWDFW RI WDQJHQW '(

3URYH WKDW $% $& SHULPHWHU RI '$'( (&



ͮDĂƚŚĞŵĂƚŝĐƐ Ͳ ϭϬ *HRPHWU\

) 0 ±
hŶŝƚ dĞƐƚ





*URXS ± $ î



,Q WKH DGMRLQLQJ ILJXUH 2 LV WKH FHQWUH RI
WKH FLUFOH )LQG WKH YDOXH RI [



*URXS ± % î

,Q WKH JLYHQ ILJXUH
DUHD RI ο
FP )LQG WKH DUHD
RI ο Ǥ



,Q WKH JLYHQ ILJXUH

LV WKH FHQWUH RI FLUFOH
)LQG WKH YDOXH RI [


,Q WKH JLYHQ ILJXUH R LV 7
WKH FHQWUH RI FLUFOH DQG 76
DQG 74 DUH WZR WDQJHQWV
)LQG WKH YDOXH RI D DQG [





*URXS ± & î

3URYH WKDW WKH DUHD RI D WULDQJOH LV KDOI RI WKH DUHD RI SDUDOOHORJUDP RQ WKH VDPH EDVH

EHWZHHQ WKH VDPH SDUDOOHO OLQHV

2 LV WKH FHQWUH RI WKH
JLYHQ FLUFOH %& %3
SURYH WKDW $' '3
DQG 2' __ $3





*URXS ±
'
î
&RQVWUXFW D TXDGULODWHUDO 0123 LQ ZKLFK 01 FP 21 FP 23 FP 30 FP

DQG ‘ ൌ ͵Ͳ଴ FRQVWUXFW D WULDQJOH 014 ZKHUH DUHD LV HTXDO WR WKH TXDGULODWHUDO 0123

*HRPHWU\ DĂƚŚĞŵĂƚŝĐƐ Ͳ ϭϬͮ

Answers

Exercise: 5.1.1 (Area of Triangle and Quadrilateral)

1. 54cm2 2. 8 2 cm 3. 5cm 4. 10cm 5. 13cm 6. 5 2 cm 7. 4cm 8. 5cm
9. 9cm2 10. 27cm2 11. 48cm2 12. 35cm2 13. 12cm 14. 3cm

Exercise: 5.1.2

Group ‘A’ 2. 10cm2 3. 9 3 cm2 4. 30cm2 5. 6cm2, 12cm2 6. 4cm
1. 18cm2 8. 5cm 9. 7cm2 10. 40cm2
7. 6 6 cm2

Exercise: 5.3 (Circle)

Group ‘A’

1. i) 54° ii) 43° iii) 112°, 56° iv) 48°, 96° v) 26°, 26° vi) 43°, 43° vii) 102°, 129°
x) 27°, 54° xiv) 28°, 96°
viii) 35° ix) 45°, 45° xvii) 90° xi) 88° xii) 82° xiii) 132°, 48°
b) 129° d) 30°
xv) 102°, 78° xvi) 43°, 86°, 47° d) 28° xviii) 44°, 44° xix) 90°, 45°

xx) 90° 2. a) 54°, 108°, 54° c) 60° d) 30°, 120° 3. a) 126°, 54°

b) 22° c) 64° 4. a) 92° b) 48° c) 45°

Exercise: 5.4 (Tangent)

Group ‘A’ ii) 48°, 84° iii) 45°, 45° iv) 32°, 58° v) 62°, 28° vi) 58°, 32° vii) 52°, 52°
1. i) 27° ix) 21°, 21° x) 52°, 76° xi) 84° xii) 114° xiii) 48°, 66° xiv) 68°, 22°
xvi) 30°, 60° xvii) 118°, 59° xviii) 92°, 88° xix) 136°, 44° xx) 54°, 72° 2. a) 16°, 37°
viii) 52°, 52°
xv) 29°, 61° c) 24cm d) 12cm, 12cm

b) 30°, 60° c) 34° d) 132° 3. a) 6 6 cm b) 30°, 12cm

236|Mathema s - 10 Geometry

Chapter

6 Trigonometry

Objectives

At the end of this chapter, the Students will be able to
• calculate the area of triangle and quadrilateral by using trigonometrical

formulae.
• Solve the problems related to height and distance by using trigonometrical

ratios.

Teaching materials:

&KDUW SDSHU ÀDVK FDUGV FKDUW RI WULJRQRPHWULFDO IRUPXOD IRU DUHD RI WULDQJOH
chart of trigonometrical ratios and their values with standard angles, angle
of elevation and angle of depression by using local materials if necessary,
model of clinometer, picture of sextant and theodilite.

+LVWRULFDO IDFW

,Q *UHHN WUL WKULFH JRQLD DQJOH DQG PHWURQ PHDVXUH WKXV WULJRQRPHWU\ LV WKH PHDVXUHPHQW RI D
WULDQJOH 7KH ILUVW WULJRQRPHWULFDO WDEOH ZDV SUHSDUHG E\ +LSSDUFKXV % & +H HVWDEOLVKHG WKH
UHODWLRQ EHWZHHQ VLGHV DQG DQJOHV RI WULDQJOHV 6R KH HDUQV WKH ULJKW WR EH NQRZQ DV 7KH IDWKHU RI
WULJRQRPHWU\ *HRUJ -RDFKLP 5KDHWLFXV ZDV WKH ILUVW WR GHILQH WKH WULJRQRPHWULF
IXQFWLRQV DV UDWLRV RI WKH VLGHV RI D ULJKW DQJOHG WULDQJOH

5HYLHZ

7ULJRQRPHWULF 5DWLRV

,Q D ULJKW DQJOHG WULDQJOH $%& $& LV K\SRWHQXVH DQG $% DQG %& UHVSHFWLYHO\ SHUSHQGLFXODU DQG EDVH
ZLWK UHVSHFW WR T ‘& ZKHUH

6LQT KS $$%& &RVHFT SK $$&% $

&RVT KE $%&& 6HFT EK $%&&

7DQT ES $%&% &RWT SE $%&% &%



7KH YDOXHV RI WKH UDWLRV RI IL[HG UHIHUHQFH DQJOH LV IL[HG IRU DQ\ ULJKW DQJOHG WULDQJOH 7KH YDOXHV RI
WKH UDWLRV RI VWDQGDUG DQJOHV ƒ ƒ ƒ ƒ ƒ DUH JLYHQ LQ WKH WDEOH

5DWLRV $QJOHV ƒ ƒ ƒ ƒ ƒ
6LQ


&RV

7DQ v

&RVHF v

6HF v

&RW v

1RWH 7KH YDOXH RI WKH UDWLR RI RWKHU DQJOHV DUH IRXQG E\ XVLQJ WULJRQRPHWULF WDEOH



ͮDĂƚŚĞŵĂƚŝĐƐ Ͳ ϭϬ 7ULJRQRPHWU\

$UHD RI 7ULDQJOHV

:H KDYH WZR LPSRUWDQW IRUPXODH WR PHDVXUH WKH DUHD RI WULDQJOHV
$UHD RI ' E K >:KHQ EDVH DQG KHLJKW RYHU LW DUH NQRZQ@

$UHD RI WULDQJOH V V D V E V F >+HURQ
V IRUPXOD ZKHQ DOO WKUHH VLGHV DUH NQRZQ@

Where, no use of angles and trigonometrical ratios are made.

1RZ ZH DUH JRLQJ WR GLVFXVV DERXW WKH FRQGLWLRQV WR ILQG WKH DUHD RI D WULDQJOH ZKHUH ZH XVH
WULJRQRPHWULFDO UDWLRV

$ :KHQ WZR VLGHV RI D WULDQJOH DQG DQJOH LQFOXGHG E\ WKHP DUH NQRZQ

/HW LQ WULDQJOH $%& %& D $& E DQG VL]H RI ‘$&% DUH NQRZQ 'UDZLQJ $'A%&

:H JHW $

VLQ & $$'& E
RU VLQ & $E'

? $' E VLQ& % 'D &
1RZ DUHD RI '$%& %& $'

? $UHD RI '$%& D E VLQ&

6LPLODUO\ ZKHQ WKH VLGHV E DQG F DQG DQJOH $ DUH NQRZQ

$UHD RI '$%& E F VLQ$

$QG ZKHQ WKH VLGHV D DQG F DQG DQJOH % DUH NQRZQ

$UHD RI '$%& D F VLQ%

)URP WKHVH UHODWLRQV ZH FDQ GHULYH DQ LPSRUWDQW UHODWLRQ FDOOHG VLQH ODZ

6LQFH

$UHD RI '$%& D E VLQ& E F VLQ$ D F VLQ%

Ÿ E F VLQ$ D F VLQ% D E VLQ&

Ÿ EF VLQ $ FD VLQ% DE VLQ&
Ÿ EFD VELFQ$ FDD VELFQ% DED VELFQ& >GLYLGLQJ E\ DEF@
Ÿ VLQD$ VLEQ% VLQF&
? VLQD$ VLEQ% VLQF&
L H VLGHV DQG VLQH RI WKHLU FRUUHVSRQGLQJ RSSRVLWH DQJOH DUH SURSRUWLRQDO

7ULJRQRPHWU\ DĂƚŚĞŵĂƚŝĐƐ Ͳ ϭϬͮ

1RWH L :KHQ WZR VLGHV DQG LQFOXGHG DQJOH DUH JLYHQ 6$6 FRQGLWLRQ VLPSO\ ZH XVH DUHD RI
' D E VLQT

LL ZKHQ WZR DQJOHV DQG RQH VLGH $6$ RU $$6 FRQGLWLRQ DQG WZR VLGHV DQG RQH DQJOH RWKHU

WKDQ LQFOXGHG DQJOH 66$ FRQGLWLRQ DUH JLYHQ XVH VLQH ODZ WR ILQG RQH RI WKH VLGHV RU

DQJOHV DQG XVH WKH VDPH IRUPXOD WR ILQG WKH DUHD RI WKH WULDQJOH



:RUNHG 2XW ([DPSOHV $

([DPSOH )LQG WKH DUHD RI WKH WULDQJOH $%& ZKHUH $% FP

%& FP DQG ‘$%& R

Solution: +HUH

%& D FP

$% F FP R &
‘% R %
:H KDYH

$UHD RI '$%& D F VLQ%

î FP î FP FP

?$UHD RI '$%& FP

$
R
([DPSOH )LQG WKH DUHD RI WKH WULDQJOH $%& ZKHUH %& FP
‘$ R DQG ‘& R

Solution: +HUH %& FP ‘$ R ‘& R

? ‘ % R ‘$ ‘&

R ± R ± R % R &
R

8VLQJ VLQH ODZ

VLQF& VLQD$

RU VL$Q % R VL%Q & R

RU VL$Q % R V L QF P R

RU $% FPVL Qî V LQƒ ƒ

RU $% FP î

? $% FP
1RZ $UHD RI '$%& $% %& VLQ%

ͮDĂƚŚĞŵĂƚŝĐƐ Ͳ ϭϬ 7ULJRQRPHWU\

î FP î FP îVLQ R $
FP î
FP
? 7KH DUHD RI WKH WULDQJOH $%& LV FP

([DPSOH ,I WKH DUHD RI '$%& LV FP $& FP DQG
%& FP ILQG WKH ‘&

Solution: +HUH LQ '$%&
$& FP %& FP

$UHD RI '$%& FP ‘& " & %
:H KDYH

$UHD RI '$%& FP
RU $& %& VLQ& FP
RU î FP î FP î VLQ& FP

RU VLQ&

RU & VLQ

? ‘& R



([DPSOH ,Q '$%& ‘& ƒ %& FP DQG DUHD RI '$%& LV
FP ILQG WKH OHQJWK RI WKH VLGH $&

Solution: +HUH
$UHD RI '$%& FP %& FP ‘$&% ƒ $& "
:H KDYH

$UHD RI '$%& FP
RU $& %& VLQ& FP
RU î $& î FP î VLQ R FP
RU $& î î FP

? $& FP $'

([DPSOH ,Q WKH ILJXUH JLYHQ DORQJVLGH $%&' LV D R
SDUDOOHORJUDP ZKHUH $% FP %& FP
DQG DQJOH $'& ƒ ILQG WKH DUHD RI WKH FP
SDUDOOHORJUDP $%&'
% FP &
Solution: +HUH LQ WKH SDUDOOHORJUDP $%&'
DĂƚŚĞŵĂƚŝĐƐ Ͳ ϭϬͮ
7ULJRQRPHWU\


Click to View FlipBook Version