The words you are searching are inside this book. To get more targeted content, please make full-text search by clicking here.
Discover the best professional documents and content resources in AnyFlip Document Base.
Search
Published by Persatuan Jurufalak Syarie; Buku Digital Percuma, 2022-12-25 20:02:50

DIMENSI ILMU ASTRONOMI ABAD KE-21

DIMENSI ILMU ASTRONOMI
ABAD KE-21

METHODOLOGY
Solar Observation at Pusat GENIUS@Pintar Negara, UKM
The solar observation site is at Pusat GENIUS@Pintar Negara, Universiti
Kebangsaan Malaysia, Selangor of coordinate 2.9170° N, 101.7883° E. Moreover,
this solar observation used the Orion ED80-T-CF Telescope mounted on GoTo
Alt-Azimuth Mount as the primary instrument to observe the Sun and used
Canon EODS 600D to capture the images of the Sun for further analysis. In
Figure 1, the complete setup of the instrumentation used at Pusat
GENIUS@Pintar Negara for the daily solar observations.

Sunspot observations were performed daily at PGPN whenever the
weather was favourable, especially between 9.30 AM to 11.00 AM local time.
This time range is not affected by the atmosphere and has a slightly higher
altitude than the Sun. Thus, the final image of the Sun had less turbulence. The
sky condition may affect the result of images; therefore, the observations were
repeated throughout the day to ensure the quality of the images improved.

In Figure 2, the example of the best image of the Sun was taken by using
the DSLR camera Canon EOS 1200D. About six shots of the image of the Sun
were taken daily to make sure the best picture of the Sun could be selected for
further analysis. The observer manually counted the sunspot through the digital
image based on the Wolf formula as mentioned before.

Figure 1. Complete setup of Orion ED80-T-CF Telescope for sunspot
observation at PGPN.

143

Figure 2. An example image of Sun during solar observation at PGPN on 22
April 2021.

Figure 3. Pusat GENIUS@Pintar Negara RSN, RPG (red line) compared to
three International Sunspot Number (blue, yellow, and green line).

RESULT AND DISCUSSION
After observations, one best image of the Sun was selected from the multiple
shots from daily observations at PGPN for further analysis in manually counted
sunspot numbers. The best image of the Sun should have a clear and better
quality of resolution to make sure the analysis can be accurate as possible.

144

Relatives Sunspot Numbers Compared

Table 1 shows the sunspots numbers of data collected from the observation at
PGPN and multiple international data from SIDC and NASA. Twelve days of
data collection have been approved for further analysis in the duration of 2
months of solar observation at PGPN. This was also because of the lockdown of
Movement Control Order (MCO) due to the Covid-19 pandemic Malaysia
government ordered. All International Sunspot Numbers have higher relative
sunspot numbers than RPG on the first nine days of the observations. Based on
Figure 3, we can see that all relative sunspot numbers (RSN) from these four
sources have similar trends, and this can prove that solar observation at PGPN is
acceptable and reliable.

Table 1. Relative sunspot numbers from Pusat GENIUS@Pintar Negara and
multiple International Sunspot Numbers.

Date RPG RSILSO RUSET RSDO
14/04/2021 23 17
15/04/2021 16 21 21 22
20/04/2021 71 54
16 25
21/04/2021 42 57 43 47

22/04/2021 37 46 50 42

23/04/2021 23 44 31 29

26/04/2021 22 36 33 54

27/04/2021 17 50 51 47

28/04/2021 22 55 46 42

03/05/2021 21 46 0 0

04/05/2021 00 0 0

05/05/2021 00 0 0

00

The percentage difference of each RSN is calculated based on the daily
basis of the observations. Figure 4 shows the result of the percentage difference

and error obtained from the observation at PGPN. Percentage difference
between RPG and RSILSO, RSDO and RUSET showed that April 26 and April
27 have the highest error more than 50%. The high value in the percentage
difference could be due to the different types of instruments used to capture the
Sun’s images. Observation at PGPN used digital photos captured by Canon
EODS 600D for analysis purposes, while other international observations used
the projection method to provide better quality and more explicit images. We can
conclude that solar observations using the solar projection method are more
accurate than using a DSLR camera (Rasmani et al., 2017). Other than that, some
observation days are affected due to seeing and sky conditions. Therefore, digital
images of the Sun on certain days of observations at PGPN have some
disturbances. Figure 5 below shows the weather conditions for April 27 from
timeanddate.com.

145

Figure 4. Percentage difference between (left) RPG and RSILSO (right) RPG
and RSDO and (below) RPG and RUSET for 12 days.

Figure 5. Weather record on April 27 at Bandar Baru Bangi. (Source:
https://www.timeanddate.com/weather/malaysia/kuala-
lumpur/historic?month=4&year=2021)

146

CONCLUSION

This study has shown that the data of relative sunspot numbers collected by
using Orion ED80-T-CF Telescope and manually counted from digital images
have reliable results after comparing it with multiple international data as the
percentage differences of observations at PGPN with SILSO, USET and SDO is
20-66%, 14-57% and 6-69% respectively. Based on this paper, further
observation activities at PGPN could ensure the collection of digital images of
the Sun is improved.

ACKNOWLEDGEMENT

The authors are grateful and would like to express our gratitude to SIDC and
NASA for providing the data set about sunspot numbers that have been referred
to and used in this study. Special thanks to GENOME TO SPACE grant
(PERMATA-2015-001) and Pusat GENIUS@Pintar Negara, UKM for giving us
a chance to utilize their facilities and instruments throughout this project.

REFERENCES

1. Clette, F., Svalgaard, L., Vaquero, J. M. & Cliver, E. W. 2014. Revisiting
the Sunspot Number. Space Science Reviews. doi:10.1007/s11214-014-0074-2

2. Kamarudin, F., Tahar, M. R., Saibaka, N. R. & Padang, L. A. L. 2017.
Relative sunspot number observed from 2013 to 2015 at langkawi national
observatory. Advanced Science Letters. doi:10.1166/asl.2017.8353

3. Koskinen, H. 2011. Physics of Space Storms. Physics of Space Storms.
doi:10.1007/978-3-642-00319-6

4. Nguyen, T. T., Willis, C. P., Paddon, D. J., Nguyen, S. H. & Nguyen, H.
S. 2006. Learning sunspot classification. Fundamenta Informaticae.

5. Radzi, Z. M., Kamarudin, F., Hashim, M. H., Tahar, M. R., Saibaka, N.
R., Ishak, A. N. & Nurlisman, Z. K. D. 2017. Space weather monitoring using
facilities in national space agency. Advanced Science Letters.
doi:10.1166/asl.2017.8396

6. Rasmani, N., Hamid, N. S. A., Kamarudin, F., Kamil, W. M. A. W. M. &
Sarudin, I. 2017. Comparison of relative sunspot numbers measured in Malaysia
with international sunspot number calculated by SIDC-SILSO. Journal of
Physics: Conference Series. doi:10.1088/1742-6596/852/1/012004

147

REQUIREMENTS OF ASTRONOMICAL STUDIES IN
POSTGRADUATE LEVEL USING INSTRUMENTATION

AND TECHNOLOGY IR 4.0 OF ASTRONOMY AT
UNIVERSITY TECHNOLOGY MALAYSIA

Othman Zainon
Department of Geoinformation, Faculty of Built Environment and Surveying,

Universiti Teknologi Malaysia, Skudai, 83100 Johor Bahru, Johor.

Abstract: Astronomy course is a course offered for the undergraduate
programme of Geomatic Engineering or Land Surveying in the Higher
Education Institutions (HEI) in Malaysia. However, the astronomy
programme was not offered through taught course mode in the
postgraduate study. Therefore, for those who want to persuade their
postgraduate study in astronomy they must be registered through
research mode as offered by many HEI in Malaysia. Universiti
Teknologi Malaysia (UTM) as a public university that produces many
scholars in various professional fields with a background in engineering,
technology, and science. One of the professional fields is Geomatic
Engineering (formerly known as Land Surveying). The contribution of
land surveying studies to the advancement of astronomy has been
introduced since the early 1970s. Land Surveying Graduates of UTM
who serve in the Department of Survey and Mapping Malaysia (DSMM)
are those who are directly involved with astronomy activities in Malaysia
such as determining the azimuth for the outline of mapping control
networks, setting qibla directions for mosques and suraus, providing
data for the calculation of prayer time, observation hilal and so on. In
addition, we have also offered short courses and workshops on a part-
time basis to other agency officers and the public since 1994. However,
since 2000 these courses are no longer the choice of the public
especially the Johore community in general. Realizing the need to
develop astronomy in the Industrial Revolution IR4.0 and based on our
experience in teaching and research in astronomy, we have offered a
postgraduate programme by research in astronomy. Therefore, this
paper discusses the development of astronomy education at UTM from
1990 to 2021 at the Undergraduate and Postgraduate degree levels. The
results showed that UTM is still actively conducting the development of
astronomy education in the state of Johor and Malaysia in general.
Keywords: Astronomy, Postgraduate, Instrumentation, Technology, IR
4.0.

148

INTRODUCTION

Astronomy practices have been seen as important knowledge and tools in the
development of a country. The astronomy practice can be divided into three
namely fundamental or directional astronomy, positional astronomy, and Islamic
astronomy. Astronomy is still seen as an overly complex concept, especially
astronomy practice involving star observations that have various methods for
positioning purposes and so on. Astronomy course was offered to Geomatic
Engineering or Land Surveying undergraduate students in the Higher Education
Institutions (HEI) in Malaysia. However, the astronomy programme was not
offered through taught course mode at the postgraduate level. Therefore, for
those who want to persuade their postgraduate study in astronomy must be
registered through research mode as offered by many HEI in Malaysia.

Universiti Teknologi Malaysia (UTM) has produced many scholars in
various professional fields with a background in engineering, technology, and
science has offered a Geomatic Engineering programme. Astronomy studies at
UTM began as early as the 1970s but it only exposed in year 1990s. In the early
1990s, UTM offered short courses and workshops on a part-time basis to other
agency officers and the public. Realizing the requirements need to enhance
astronomy in the Industrial Revolution IR4.0 and based on our experience in
teaching and research in astronomy, the postgraduate programme by research in
astronomy was offered to those who want to persuade their study at Master or
Doctorate level.

Geomatic Engineering

The Geomatic term was proposed in French ("géomatique") in 1969 by scientist
Bernard Dubuisson which was taken from a combination of geoscience and
geoinformatics words. The term geomatic was used in Canada in the early 1980s.
The geomatic term comes from a combination of the words "Geos" which
means earth's surface and size and "matics" which means informatics (Mario,
2009).

Geomatics is a profession that is closely related to the field of
measurement science and spatial information management. Fundamentally,
Geomatics is closely related to the measurement, procurement, acquisition, and
display of physical spatial data of the Earth and the built environment. Among
the main disciplines covered by Geomatics are mapping science, land
administration system, environmental visualization, geodesy, photogrammetry,
remote sensing, and measurement.

149

This geomatics has been taken by the International Organization for
Standardization, Royal Institution of Chartered Surveyors, and most authorities at
the level International. In this regard, this geomatic term is closely related to the
development of today's measurement technology where this geomatic term also
covers the application of new technologies in the field of education and career.
The contribution of land survey studies to the advancement of astronomy in
Malaysia has long begun whereby land survey graduates who have served in the
Department of Survey and Mapping (JUPEM) are those who are involved in the
activities of astronomy.

Typically, some graduates of geomatic engineering who are land
surveyors serve in the Department of Survey and Mapping Malaysia. These
people are involved in astronomy activities such as setting the direction of Qibla
in mosques, surau and cemeteries; data preparation for the calculation of prayer
times; hilal observations (moon child) and so on. Although the knowledge of
astronomy is very important as it is closely related to the specific worship of
Muslims, the development of its education is quite limited. Previously, graduates
in geomatic engineering had the opportunity to formally attend astronomy
courses at a bachelor's degree in geomatic engineering. Graduates in geomatic
engineering must attend the Field Astronomy course which is the core course in
the geomatic engineering curriculum and the elective course, Falak Syarie
(Othman and Mohamad Saupi, 2015). Educational methods encompass the best
and most effective process of learning and teaching to restore the glorious rays of
astronomy. These efforts should be made with full commitment by all parties
concerned about the advancement of this knowledge. This paper scans the
development of astronomical knowledge including learning and teaching
activities as well as research conducted in the field of astronomy at the
Department of Geoinformation, Faculty of Built Environment and Surveying,
Universiti Teknologi Malaysia.

ASTRONOMY COURSE IN UTM GEOMATIC ENGINEERING
CURRICULUM

Geomatics Engineering (formerly known as Land Surveying) is a professional
field offered in UTM since the year 1980s. The overview of the geomatic
program curriculum shown in Figure 1 clearly shows that astronomy is one of the
backgrounds of theoretical subjects that are important for supporting geomatic
programs. It is as important as math, physics, satellite technology, and other
courses. In fact, the inclusion of satellite technology in the same group is to show
that the astronomical course will be along with technology, not the other way
around.

150

Figure 1. Global geomatic programme curriculum (Source: Konecny, 2002)

The Bachelor of Geomatic Engineering curriculum in UTM is almost
identical to the contents of the global curriculum (Othman and Mohamad Saupi,
2015). Astronomy taught in Field Astronomy subjects is taken compulsorily for
the entire geomatic program. Basically, this astronomy course is offered in
Semester 5 Year 3 (Department of Geoinformation, 2015). The objective of the
subject of astronomy is basically to provide students with basic knowledge of the
field of astronomy and to expose students with basic skills in conducting
astronomical observations to determine the azimuth, latitude, and longitude to be
used in measuring such practices as cadastral and geodetic surveying. Table 1
shows the field astronomical syllabus. In realising this scenario, continuous
efforts should be made towards upholding UTM status through astronomical
education and research. From Semester December 1998 until now, the syllabus
for Falak Syarie course offered to undergraduates in geomatic engineering as an
optional course is shown in Table 2 (Othman and Mohamad Saupi, 2015).

151

Now, graduates of geomatic engineering have been formally exposed to
astronomy courses. In other words, they have been specifically involved in

astronomy programs. Realising the need for knowledge of astronomy developed,
based on our experience in teaching, learning and research in astronomical
science, the department has offered field astronomy (compulsory courses) and
falak syarie (optional courses) to UTM students, especially geomatic engineering
students.

Table 1. Field Astronomical Syllabus
(Faculty of Built Environment and Surveying, 2020a)

Three hours of credit Field astronomy syllabus involves the
Lecture (two hours a week) introduction of astronomy, astronomical
peras in geomatics, celestial sphere, space
objects movement law, astronomical
coordinate systems, time system, solar and
star systems, sun observations for the
determination of azimuth, star
observations for the determination of the
latitude and longitude of the observation
station.

Practical training Sun observations for the determination of
azimuth, star observations for the

(Four hours a week) determination of latitude and longitude.

Assessment Methodology Individual assignments, tests, service-
learning, fieldwork, and final exams.

Nevertheless, for postgraduate study, UTM offered Doctor of
Philosophy (PhD) and Research Masters’ Degrees by research in Geomatic
Engineering or Generic programme with a speciality in Astronomy or Falak
Syarie. Doctor of Philosophy (PhD) is a research-only qualification designed for
students who intend to pursue an academic or research career. The degree is
awarded based on the submission of a thesis which should give evidence of the
candidate’s ability to carry out research, evidence that the candidate has shown
originality and independence, and that the candidate has made a significant
contribution to knowledge in a particular field. Whereby, Master by research is
supervised by a graduate faculty (or a panel of graduate faculty members). The
directed research work introduces candidates to the processes by which new
knowledge is developed and applied accordingly (Faculty of Built Environment
and Surveying, 2020b).

152

Table 2. Falak Syllabus
(Faculty of Built Environment and Surveying, 2020a)

The students need to take a Field Astronomy
Prerequisites course and pass it before registering this

preferred course

Credit 3 (2 hours of lecture and 2 hours of tutorials)

Assessment Individual assignments, tests, service-learning,
Methodology fieldwork, and final exams.

Main content of the lecture: Introduction:
Cosmology Aspect. Field Astronomical Aspect.
The policy and implementation of falak syarie in
Malaysia; Qibla Direction: Shariah aspects,
methods of calculation and marking; Prayer
Time: Shariah Aspect, Astronomical
Interpretation of prayer time limits, Method of
Calculation of Prayer Time using Almanac
Course content Falak Syarie, formation of prayer time zone in
Malaysia, prayer time in high latitude area;
Hijriah Calendar Formation System: Shariah
aspect, Comparison of Hijra calendar system
and other calendars, Imkanur-rukyah calendar
system for Malaysia and MABIMS,
International Month Date Line Concept
(ILDL); Hilal sighting: requirements,
procedures, equipment, factors affect hilal wear.

Determination of Qibla Direction and
Calculation of Prayer Time Observation
Practical or fieldwork
Hilal in Pontian Kechil (or any official gazette
place in Malaysia)

• This course received high responses from students including non-Muslim
students.

153

INSTRUMENTATION AND TECHNOLOGY IR 4.0 IN GEOMATIC
ENGINEERING

Geomatics or Land surveying has occurred since humans built the first large
structures in several human civilizations such as Egyptian civilization,
Mesopotamian civilization, and Chinese civilization. The ancient Egyptians used
land surveying dates back at least to 1,400 B.C. The Egyptians used measuring
ropes, plumb bobs, and other instruments to gauge the dimensions of plots of
land. Mesopotamian civilization has invented an early surveying instrument
namely groma. According to Hong-Sen and Marco (2009), groma has been used
by the Romans and Greeks as early as 400 B.C. Groma has been used as a tool to
help land surveying profession as a basic term of measurements for the Romans
to divide the Roman Empire for taxation.

In the modern era, Geomatics Engineering or Land Surveying
instruments also undergoing the transition of the Industrial Revolution process.
The Industrial Revolution was the transition to new manufacturing processes in
Europe and the United States from hand production methods to machines, new
chemical manufacturing and iron production processes, the increasing use of
steam power and water power, the development of machine tools and the rise of
the mechanized factory system. The Industrial Revolution also led to an
unprecedented rise in the rate of population growth (Council of Europe, 2021).
Figure 2 shows the revolution of surveying equipment.

The transition of instrument and technique was started early in the year
1551 with the use of a plane table by Abel Foullon. Next an English
mathematician Edmund Gunter in 1620 introduced Gunter’s chain to enable
plots of land to be accurately surveyed and plotted for legal and commercial
purposes (Figure 3). In the year 1571, Leonard Digges described a theodolite that
measured horizontal angles. While Joshua Habermel created a theodolite with a
compass and tripod in 1576. Johnathon Sission was the first to incorporate a
telescope on a theodolite in the year 1725 (Turner, 1983).

The use of modern techniques and instruments for surveying began at the
first industrial revolution in the 18th century. Turner (1983) stated that the first
precision theodolite has been introduced in the year 1787 by Jesse Ramsden as
shown in Figure 4. Theodolite was an instrument for measuring angles in the
horizontal and vertical planes with an accurate dividing engine. Ramsden's
theodolite represented a great step forward in the instrument's accuracy. In the
year 1640, William Gascoigne invented an instrument that used a telescope with
an installed crosshair as a target device. Next, James Watt developed an optical
meter for measuring distance in 1771. It measured the parallactic angle from
which the distance to a point could be deduced (Turner, 1983).

154

According to Turner (1983), Willebrord Snellius a Dutch mathematician
introduced the modern systematic use of triangulation. In 1615, Snell has

surveyed the distance from Alkmaar to Breda with 33 triangles using a chain of
quadrangles and the distance was approximately 72 miles (116 km) with a
difference of 3.5%. Snell showed how planar formulae could be corrected to
allow for the curvature of the earth and how to resect, or calculate, the position
of a point inside a triangle using the angles cast between the vertices at the
unknown point.

Figure 2. Revolution on survey instrument from IR1.0 until IR 4.0

Figure 3. Gunter chain

155

Figure 4. Ramsden Theodolite

In the second industrial revolution era, the surveyors had improved the
older chains and ropes, but still faced the problem of accurate measurement of
long distances. Therefore, in the 1950s Trevor Lloyd Wadley has developed the
Tellurometer to measure long distances using two microwave
transmitter/receivers (Sturman and Wright, 2014).

Chevas (2014) During the late 1950s Geodimeter introduced electronic
distance measurement (EDM) equipment. According to Mahun (2020), EDM
units use a multi-frequency phase shift of light waves to find a distance. These
instruments saved the need for days or weeks of chain measurement by
measuring between points kilometres apart in one go. In the 1970s the first
instruments combining angle and distance measurement appeared, becoming
known as total stations with a major advanced function including tilt
compensators, data recorders, and onboard calculation programs. The first
successful satellite positioning system namely the Transit system was launched in
1960 by the US Navy. The system's main purpose was to provide position
information to Polaris’s missile submarines. Surveyors found they could use field
receivers to determine the location of a point. Then in 1978, the US Air Force
launched the first prototype satellites of the Global Positioning System (GPS).
GPS used a larger constellation of satellites and improved signal transmission to
provide more accuracy. Early GPS observations required several hours of
observations by a static receiver to reach survey accuracy requirements.

The Fourth Industrial Revolution in the 21st century, also known as
Industry 4.0, IR 4.0 involves the adoption of cyber-physical systems like the
Internet of Things (Change, 2017). Internet of Things (IoT) is a network of
interconnected smart devices that allow each separate device to interact (i.e., send
or receive data) with other devices on the network. As the Internet of Things
becomes more mainstream, smart devices will have more access to data which
could allow them to become more independent. Eventually, smart devices might
have enough information to make autonomously make decisions and control key
business processes like supply chains without human input.

156

According to Maddison (2019), the advent of Industry 4.0 will cause an
increase in dominance and reliance on technology to produce far-reaching
efficiencies across a wide variety of sectors. The revolution of Industry 4.0 is
giving manufacturers faster, more flexible, and more efficient processes to
produce higher quality goods at lower costs.

Recent improvements to both satellites and receivers of the GPS system
allow Real Time Kinematic (RTK) surveying. RTK surveys get high-accuracy
measurements by using a fixed base station and a second roving antenna. The
position of the roving antenna can be tracked. Enhancement of the IR 4.0
technology transition has given an impact on the Remote Sensing technique and
satellite imagery continues to improve and become cheaper, allowing more
commonplace use. Prominent new technologies include three-dimensional (3D)
scanning and the use of lidar for topographical surveys. UAV technology along
with photogrammetric image processing is also appearing. Lidar is a method for
determining ranges by targeting an object with a laser and measuring the time for
the reflected light to return to the receiver. Lidar can also be used to make digital
3-D representations of areas on the earth's surface and ocean. An unmanned
aerial vehicle (UAV), commonly known as a drone, is an aircraft without any
human pilot, crew, or passengers on board. UAVs are a component of an
unmanned aircraft system (UAS), which includes additionally a ground-based
controller and a system of communications with the UAV.
RESEARCH AT THE UNDERGRADUATE AND POSTGRADUATE
DEGREE
Short courses and Workshops on Islamic Astronomy from 2000 to 2015
continued from year to year although not as active as in the 1990s. Table 3 shows
the number of theses produced in the field of Islamic astronomical studies that
have been produced at the bachelor’s degree level.

157

Table 3. Number of theses according to the field of astronomy studies at
undergraduate level

Areas of study Number of
Theses
Direction of Qibla 10
Prayer Time 17
17
Software Development
Teaching and Learning 10
8
Islamic Calendar
Instrumentation (traditional and

modern)

However, astronomy studies at Master and Doctor of Philosophy levels
in UTM has being implemented since early 2010 with a small number of
graduates either in geomatic engineering or generic programme. Table 4 shows
the number of theses according to the field of astronomy studies at the
postgraduate level in UTM.

Table 4. Number of theses according to the field of astronomy studies at the
postgraduate level

Areas of study Number of
Thesis
Prayer Time or Time Keeping
Islamic Calendar Master PhD

11

11

158

Based on Table 3 and Table 4, it can be considered that the number of
studies related is astronomy is moderate for undergraduate programmes
compared to postgraduate is still lower. Table 3 shows that the study of prayer
time and the development of the teaching and learning system has the highest
number of theses which is 17 theses, respectively. Compared to the study of the
direction of Qibla (10 theses), Islamic Calendar (10 theses) and the use of
equipment either traditional or modern (8 theses). This shows that the
researchers' strength in the Department of Geoinformation, Faculty of Built
Environment and Surveying is in the study of prayer time and the construction of
teaching and learning software due to the background of researchers as an
academic. For postgraduate level, the number of studies is still lower with only 2
graduates for both master and PhD programme, respectively. The study mostly
on the topics of prayer time and calendar.

CONCLUSIONS AND RECOMMENDATIONS

Astronomy study needs to be enhanced and expanded especially in the
postgraduate level because of its needs and relevance to the field of geomatic
engineering in UTM and the completeness of worship. Nevertheless, efforts are
being made to intensify the study at master's and doctoral levels with the
involvement of new instrumentation technology based on IR 4.0 in geomatic
engineerings such as robotic total stations, Global Navigation Satellite System,
Laser Scanner, LiDAR, Drone, mobile telescope, and robotic telescope that have
in UTM laboratory and observatory. With these instruments, a lot of
postgraduate studies can be explored and being study in Malaysia such as
astroarchaeology, sky brightness, light pollution, Islamic astronomy etc. Some
recommendations that could shape synergistic efforts toward IR 4.0 applications
such as follows:

• To intensify the education system including further studies at master’s
and Doctorate levels by considering aspects of modern educational methodology
so that the dissemination and development of this knowledge can be carried out
more effectively in line with IR 4,0 based on the development of ICT and space-
based technologies.

• In the context of education and the expansion of knowledge, astronomy
should be open to other related fields and should not be limited to graduates of
geomatic engineering only.

• To strengthen the existing cooperation between educational institutions
expertise and government agencies that are directly involved, especially the
National Planetarium, Malaysia Space Centre, JAKIM, State Mufti Departments,
Ministry of Education, Ministry of Higher Education, and other agencies so that
adequate funds are provided for education and research.

159

• To include elements of astronomy in the curriculum of science studies at
the primary and secondary education levels.

• The government, organization and society give due recognition to the
scholars involved in the field of astronomy as to the scholars involved in other
fields.

ACKNOWLEDGEMENT

The authors would like to thank Universiti Teknologi Malaysia for the support
and allocation given to conduct this study under the Research University Grant
Fund (GUP) (Vote No.: Q.J130000.2527.19H35).

REFERENCE

1. A Rahman Omar, (1995). Islam dan Astronomi, dalam Sains Menurut
Perspektif Islam, Dewan Bahasa dan Pustaka, Kuala Lumpur.

2. Archives of the Photogrammetry, Remote Sensing and Spatial
Information Sciences, ComVI, San Jose dos Campos, Vol XXXIV, Part 6.

3. Change (2017). What is the Fourth Industri Revolution?. Archived from
the original on 30 August 2021. Available at
https://www,changerecruitmentgroup.com/knowledge-centre/how-will-the-
fourth-industrial-revolution-impact-the-future-of-work

4. Cheves, Marc. (1999) Geodimeter-The First Name in EDM. Archived
from the original on 30 August 2021. Available at
https://web.archive.org/web/20140310225310/http://www.profsurv.com/
magazine/article.aspx?i=394

5. Council of Europe (2018) Industrial History of European Countries".
European Route of Industrial Heritage. Retrieved 2 August 2021. Available at
https://www.erih.net/how-it-started/industrial-history-of-european-countries

6. Faculty of Built Environment and Surveying, (2020a) Undergraduate
Academic Guidebook Academic Year 2020/2021 Universiti Teknologi Malaysia

7. Faculty of Built Environment and Surveying, (2020b). Postgraduate
Academic Guidebook Academic Year 2020/2021 Universiti Teknologi Malaysia

8. Hong-Sen Yan & Marco Ceccarelli (2009), International Symposium on
History of Machines and Mechanisms

9. Konecny, G., (2002), Recent Global Changes in Geomatics Education,
International

160

10. Maddison Brown (2019). How Industry 4.0 Is Affectingf Jobs. Archived
from the original on 30 August 2021. Available at
https://industryeurope.com/how-industry-4.0-is-affecting-jobs/
11. Mahun, Jerry. (2020). Electronic Distance Measurement.
Jerrymahun.com. Retrieved 20 July 2021. Available at
https://jerrymahun.com/index.php/home/open-access/distances/192-chap-f-
edm
12. Mario A. G., (2009). Basics of Geomatics. Springer.
13. Mechanisms: Proceedings of HMM 2008, Springer, p. 107, ISBN 978-1-
4020-9484-2
14. Mohamad Saupi Bin Che Awang, (2007a). Modul Pembelajaran dan
Pengajaran Falak Syarie di UTM, dibentang di Seminar Ilmu Falak anjuran
Persatuan Falak Syarie Malaysia, bertempat di Universiti Tenaga Nasional, Bangi,
13-14 Julai,2007.
15. Mohamad Saupi Che Awang and Md Nor Kamarudin (2007b),
Astronomy Education in Geomatics, presented at the International Symposium
and Exhibition on Geoinformation and Global Navigation Satellite System
(GNSS) 2007, 3-5 Nov. 2007, Johor Bahru.
16. Mohammad Illyas, (1996). Islamic Astronomy and Science Development,
Pelanduk Publication, Kuala Lumpur.
17. Othman Zainon, Mohamad Saupi Che Awang (2015). Pembangunan
Pendidikan Ilmu Astronomi Islam Di Universiti Teknologi Malaysia. Proceeding
Islamic Conference on Astronomy in Muslim World, Bangi, 19-20 November,
2015.
18. Sturman, Brian; Wright, Alan (2008). The History of the Tellurometer.
International Federation of Surveyors. Integrating the Generations FIG Working
Week 2008 Stockholm, Sweden 14-19 June 2008
19. Turner, Gerard L'E. (1983) Nineteenth Century Scientific Instruments,
Sotheby Publications, 1983, ISBN 0-85667-170-3

161

TEKNIK CERAPAN ASTROMETRI TERHADAP ASTEROID
1087 ARABIS

Abdullah Faiq Irfan Abdullaha Nazhatulshima Ahmadb, Raihana Abdul
Wahaba

aProgram Astronomi Islam, Jabatan Fiqh dan Usul, Akademi Pengajian Islam,
Universiti Malaya, 50603 Kuala Lumpur.

bJabatan Fizik, Fakulti Sains, Universiti Malaya, 50603, Kuala Lumpur.

Abstract: Kertas ini bertujuan membentangkan kejituan penunjuk
(pointing accuracy) dan penjejakan teleskop 21 inci di Balai cerap
Negara, Langkawi (ONL) melalui pengimejan asteroid. Imej asteroid
1087 Arabis telah diambil menggunakan kamera peranti cas berganda
(CCD). Data imej tersebut kemudian dianalisa menggunakan teknik
astrometri bagi menentukan koordinat Jarak Hamal (RA) dan deklinasi
(Dek) asteroid tersebut. Kejituan penunjuk teleskop tersebut dinilai
melalui ralat bagi RA dan Dek dengan membandingkan koordinat
asteroid yang diperolehi dari cerapan dengan koordinat dari pangkalan
data JPL Horizon. Melalui kajian ini, purata ralat untuk koordinat bagi
jarak hamal adalah 0.022 ± 0.011 arka saat, manakala purata ralat bagi
deklinasi adalah 0.400 ± 0.120 arka saat. Justeru, hasil ini menunjukkan
sistem pengukuran adalah tepat dan keberkesanan penjejakan yang
digunakan di Balai Cerap Negara Langkawi adalah baik kerana
pengukuran astrometri dalam klasifikasi baik mempunyai ralat kurang
daripada 0.5 arka saat dalam setiap koordinat dan ketepatan 0.3 arka-
saat..
Keywords: Astrometri, Asteroid, RA, Dek.

PENDAHULUAN

Kebanyakan asteroid berada di lingkaran asteroid (asteroid belt) yang
terletak diantara planet Marikh dan Musytari (Bennett et al., 2017). Walau
bagaimanapun, asteroid juga boleh berada di tempat lain dalam lingkungan sistem
suria kita. Sebagai contoh, terdapat juga asteroid yang mengorbit Matahari dalam
masa yang sama membawa ia ke laluan yang berhampiran dengan Bumi. Maka,
cerapan terhadap kedudukan asteroid adalah sangat penting bagi mengenalpasti
asteroid yang berpotensi memberikan ancaman terhadap Bumi. Kedudukan
koordinat asteroid merujuk kepada Bumi boleh ditentukan dengan menggunakan
teknik astrometri (Kovalevsky & Seidelmann, 2004). Teknik ini boleh digunakan
bagi tujuan penemuan objek-objek samawi yang baru dengan mengenalpasti
koordinat objek iaitu Jarak Hamal (RA) dan Deklinasi (Dek) tersebut beserta
sifatnya melalui pengimejan dan pemprosesan menggunakan kamera peranti cas
berganda (CCD).

162

Oleh itu, bagi mendapatkan kejituan data, teknik pengimejan CCD
digunakan dalam memperoleh nilai ralat ketepatan koordinat objek samawi yang
dicerap. Ketepatan data astrometrik adalah bergantung kepada ketepatan
keseluruhan peralatan yang digunakan dalam proses pengimejan objek iaitu
sistem teleskop dan sistem kamera yang digunakan. (Monet & Dahn, 1983).
Penggunaan kamera CCD pada teleskop yang mempunyai ketepatan penunjuk
0.2 arka-saat, membolehkan aktiviti cerapan dijalankan dengan lebih cepat dan
tepat. Oleh yang demikian, kajian ini adalah bertujuan untuk mengaplikasikan
teknik astrometri dalam menentukan kedudukan koordinat (RA dan Dek)
sesebuah asteroid seperti 1087 Arabis. Justeru, pengukuran dan penilaian terhadap
kemampuan kejituan sistem teleskop yang digunakan dapat diuji dalam mengesan
dan menjejaki asteroid.

METODOLOGI KAJIAN

Kaedah Pengumpulan Data

Pengimejan asteroid dijalankan melalui teknik fotometri dengan menggunakan
kamera CCD yang berpenuras visual dan dipasangkan pada teleskop 21 inci di
Balai cerap Negara, Langkawi. Sebelum aktiviti pencerapan dijalankan proses
pemilihan asteroid yang sesuai dilakukan menerusi Observing Target List (OTL) di
laman web rasmi IAU Minor Planet Center (MPC). OTL digunakan bagi menjana
dan mengenalpasti sasaran asteroid dengan memasukkan perincian-perincian
seperti tarikh, latitud, longitud dan jangkaan waktu cerapan dijalankan. Asteroid
akan dipilih mengikut kesesuaian magnitud, waktu cerapan mula dan akhir serta
altitud awal, maksimum dan akhir asteroid. Teleskop 21 inci dengan keadaan
kecerahan langit di ONL 19 mpsas hanya membenarkan magnitud asteroid tidak
melebihi 17. Bagi membolehkan penjejakan yang lama pada asteroid, waku
cerapan mula dan akhir serta kedudukan altitud asteroid perlu diambil kira dalam
pemilihan asteroid. Pengimejan asteroid dijalankan pada sela masa tidak lebih dari
2 minit bagi setiap data. Sebanyak 10 imej asteroid 1087 Arabis telah diambil
sepanjang 57 minit tempoh cerapan. Penetapan skala piksel kamera CCD
dinasihatkan tidak melebihi daripada 2 arka-saat per piksel (Monet 1992).
Penetapan ini adalah penting untuk memastikan sasaran tidak terdedah terlalu
lama ketika cerapan. Hal ini kerana semakin besar skala piksel lebih banyak foton
berbanding sasaran jatuh pada piksel. Skala piksel dapat ditentukan melalui
formula di bawah. Proses pengumpulan data ini ditunjukkan secara ringkas
melalui Rajah 1.

163

Skala Piksel (arka-saat) = 206 × Saiz piksel (mikron) / Panjang fokus (mm)

Rajah 1. Proses Langkah-langkah Pengumpulan Data
Analisis Data

Rajah 2. Proses Analisis Data
Analisis data dimulakan dengan proses reduksi imej bagi membuang
hingar yang terhasil oleh penggunaan kamera CCD (Cooray, P. T. L. V., 2018)
dan juga kecacatan pada sistem optik teleskop dan penuras semasa imej diambil.
Dalam kajian ini pemprosesan reduksi dijalankan dengan menggunakan perisian
IRAF melalui proses aritmatik yang berikut:

164

Imej terkalibrasi= Imej mentah – Imej Bias – Imej Gelap
Imej Medan Datar

Imej terkalibrasi kemudiannya dianalisa secara teknik astrometri
menggunakan perisian Maxim DL 6. Dengan menggunakan teknik ini koordinat
bagi asteroid 1087 Arabis iaitu Jarak Hamal (RA) dan Deklinasi (Dek) dapat
ditentukan dan dibandingkan dengan nilai yang terdapat pada pangkalan data
perisian JPL Horizon. Perbezaan nilai koordinat RA dan Dek memberi nilai
ketepatan penunjuk dan penjejakan pada sistem teleskop.
KEPUTUSAN DAN PERBINCANGAN
Jadual 1 merupakan Perbandingan Nilai RA antara imej cerapan dan pangkalan
data daripada JPL Horizon bagi Asteroid 1087 Arabis. Melalui data-data di dalam
Jadual 1, dapat dikenalpasti bahawa kecenderungan ralat sistematik bagi RA
Asteroid 1087 Arabis direkodkan paling rendah iaitu -0.04 arka saat sahaja pada
imej ke-4. Manakala rekod ralat sistematik direkodkan paling tinggi iaitu 0.06 arka
saat pada imej ke-8 dengan purata nilai ralat bagi semua imej adalah 0.022 ± 0.011
arka saat.

Jadual 2 pula menunjukkan perbandingan nilai Dek bagi Asteroid 1087
Arabis di antara koordinat dari imej cerapan dan koordinat dari pangkalan data
daripada JPL Horizon.

165

Jadual 1. Analisa nilai ralat bagi Jarak Hamal (RA) Asteroid 1087 Arabis

Jarak Hamal (R.A)

Nilai Nilai Sisih

Bil Imej Cerapan JPL Horizon Ralat* Min Piawai
(Arka saat, ") Ralat perbezaan

1 13h 50m 13h 50m -0.03
15.14s 15.11s

2 13h 50m 13h 50m 0.00
14.99s 14.99s

3 13h 50m 13h 50m -0.02
14.88s 14.86s

4 13h 50m 13h 50m -0.04
14.73s 14.77s
n/a n/a
5 13h 50m 13h 50m14.67s 0.00 0.022 0.011

14.67s

6 13h 50m 13h 50m -0.01
14.56s 14.57s

7 13h 50m 13h 50m 0.02
14.50s 14.48s

8 13h 50m 13h 50m 0.06
14.32s 14.38s

9 13h 50m 13h 50m 0.01
14.27s 14.28s

10 13h 50m 13h 50m 0.00
14.19s 14.19s

*RA katalog JPL Horizon – RA Imej cerapan

166

Melalui data yang terdapat pada Jadual 2 menunjukkan bahawa
kecenderungan ralat sistematik bagi Dek bagi Asreroid 1087 Arabis direkodkan
paling rendah iaitu -1.0 arka saat pada imej ke-8. Manakala rekod ralat sistematik
direkodkan paling tinggi iaitu 0.3 arka saat pada imej ke-9 dengan purata nilai ralat
bagi semua imej adalah 0.4 00 ± 0.12 arka saat.

Graf dalam Rajah 3 pula memaparkan ralat bagi ketepatan koordinat
asteroid 1087 Arabis. Dari analisa yang dijalankan, didapati nilai purata ralat bagi
jarak Hamal adalah 0.022 ± 0.011 arka saat, manakala purata ralat bagi deklinasi
adalah 0.400 ± 0.120 arka saat. Pengukuran astrometri yang baik mempunyai ralat

kurang daripada 0.5 arka saat dalam setiap koordinat dan ketepatan 0.3 arka saat.
Ini menunjukkan bahawa sistem teleskop di Observatori Negara Langkawi masih
mempunyai ketepatan penunjuk yang tinggi dan sistem penjejakan yang konsisten
dan stabil.

Jadual 2. Analisa nilai ralat bagi Deklinasi Asteroid 1087 Arabis

Deklinasi (DEK)

Imej JPL Horizon Nilai ralat** Nilai Sisih

Bil Cerapan (arka saat, ") Purata Piawai ralat
ralat

1 -07°46'50.0" - 07°46'50.2" -0.2

2 -07°46'49.8" -07°46'49.9" -0.1

3 -07°46'49.6" -07°46'49.7" -0.1

4 -07°46'49.4" -07°46'49.6" -0.2

5 -07°46'49.4" -07°46'49.4" 0.0 n/a n/a

6 -07°46'48.6" -07°46'49.3" -0.7

7 -07°46'48.4" -07°46'49.2" -0.8

8 -07°46'48.0" -07°46'49.0" -1.0 0.4 0.12
9 -07°46'49.2" -07°46'48.9" 0.3

10 -07°46'48.10" -07°46'48.7" -0.6
**DEK katalog – DEK imej

167

Rajah 3. Graf gabungan bagi Jarak Hamal (RA) dan Deklinasi (Dek) terhadap
bilangan data

KESIMPULAN
Berdasarkan Rajah 4, dapat dikenalpasti perubahan kedudukan asteroid dalam
orbit laluannya iaitu pada awal kedudukan (titik warna firus), pertengahan (titik
warna merah) dan akhir (titik warna kuning). Sekiranya asteroid menghentam
bumi, pelbagai ancaman akan wujud terhadap kehidupan kerana impak hentaman
boleh mencetuskan bencana alam seperti tsunami dan tanah runtuh. Hal ini
sangat penting sebagai langkah berjaga-jaga bagi menghadapi ancaman asteroid di
samping menyumbangkan rekod data tersebut kepada badan-badan pemantau
asteroid yang berperanan terhadap misi-misi pengawasan tersebut. Hasil kajian ini
menunjukkan bahawa analisa teknik astrometri terhadap asteroid boleh
digunakan dalam menentukan ketepatan dan kestabilan sesuatu sistem teleskop.
Penggunaan teknik ini membolehkan koordinat pada imej sesuatu objek
ditentukan selain dapat mengukur ketepatan sistem teleskop yang digunakan.
Penggunaan kamera CCD pada teleskop membantu proses pengimejan fotometri
dan seterusnya membolehkan pengukuran ketepatan sesuatu sistem teleskop
dijalankan dengan lebih berkesan.

168

Rajah 4. Imej di atas menunjukkan trajektori asteroid 1087 Arabis selama 57
minit di angkasa lepas pada tahun 2014.

RUJUKAN

1. “Asteroids”
https://nssdc.gsfc.nasa.gov/planetary/planets/asteroidpage.html (retrieved from
23 July 2020)

2. Berry, R and J Burnell. Astronomical Image Processing : Willman-Bell,
Inc, 2000

3. Bennett, J. O., Donahue, M. O., Schneider, N., & Voit, M. (2017). The
essential cosmic perspective. Pearson.

4. Cooray, P. T. L. V. (2018). Light curve analysis of SZ Lyn (Doctoral
dissertation, Department of Physics A Dissertation submitted in partial
fulfillment of the requirements of the course unit PHY 494 6.0–Internship for B.
Sc.(Special) Degree in Physics in the Department of Physics, Faculty of Applied
Sciences, University of Sri Jayewardenepura).

5. Clark R. Chapman .May 2004. "The hazard of near-Earth asteroid
impacts on earth". Earth and Planetary Science Letters. 222 (1): 1–15.

6. "Discovery Statistics." https://cneos.jpl.nasa.gov/stats/totals.html
(retrieved July 21, 2020)

169

7. https://cneos.jpl.nasa.gov/about/neo_groups.html (retrieved January 6,
2021).
8. https://www.minorplanetcenter.net (retrieved January 6, 2021).
9. Kovalevsky, J., & Seidelmann, P. K. (2004). Fundamentals of astrometry.
Cambridge University Press.
10. Monet, D. G., & Dahn, C. C. (1983). CCD astrometry. I-Preliminary
results from the KPNO 4-m/CCD parallax program. The Astronomical Journal,
88, 1489-1507.
11. Monet, D. G. (1992). Introduction to CCD astrometry. In Astronomical
CCD observing and reduction techniques (Vol. 23, p. 221).
12. NEO Basics." https://cneos.jpl.nasa.gov/about/neo_groups.html
(retrieved July 20, 2020)
13. “Planetary defense”. https://www.nasa.gov/planetarydefense/neo
(retrieved from 23 July 2020)
14. Reid, M J. and M Honma. "Microarcsecond radio astrometry." Annual
Review of Astronomy and Astrophysics (2014): 339-372.
15. Tinney, C G.. ""CCD astrometry of southern very low-mass stars."
Monthly Notices of the Royal Astronomical Society 281, no." 2 (1996): 644-658.
16. III, C C.. "Radio astrometry." Annual review of astronomy and
astrophysics 14 (1976): 197-214

170

171

Sesi Pandang – Pembentang Utama
Sesi Soal Jawab

PENDIDIKAN ASTRONOMI DALAM ERA MASAKINI
Mohd Zambri Zainuddin

Soalan: Apa pandangan Prof tentang Pendidikan astronomi di sekolah rendah
dan sekolah menengah di Malaysia? Adakah cukup silibus astronomi di sekolah
rendah dan menengah khususnya masa kini berkait rapat dan dimasukkan dalam
subjek fizik di sekolah menengah?
Jawapan: Silibus astronomi di sekolah rendah lebih meluas dan mencakupi
hampir ke semua bidang astronomi. Tetapi silibus tersebut semakin berkurang
apabila naik ke sekolah menengah di tingkatan 1 & 2, malah hilang di tingkatan 3
hingga 5. Oleh yang demikian, kini sedang diusahakan bersama pihak berautoriti
JAKIM untuk menyusun semula sukatan bagi silibus astronomi di sekolah rendah
dan menengah. Di peringkat universiti juga, astronomi hanya menjadi cabang
subjek melainkan di Akademi Pengajian Islam Universiti Malaya yang terdapat
satu bidang pengajian khusus iaitu Syariah Astronomi Islam. Selain itu,
kebanyakan pihak jabatan mufti negeri berkerjasama dengan kementerian untuk
menubuhkan kelab astronomi di sekolah-sekolah sebagai usaha sama
memartabatkan ilmu astronomi dalam kalangan pelajar sekolah.
Soalan: Apakah peluang bidang astronomi dalam keperluan industri di Malaysia
sekiranya dijadikan sebagai silibus Pendidikan di Malaysia?
Jawapan: Kelebihan utama jika astronomi dijadikan silibus Pendidikan di
Malaysia adalah melahirkan kepakaran dan kemahiran dalam kalangan ahli
astronomi di industri. Hal ini kerana, bidang astronomi seperti urusan
pemprosesan imej dan sebagainya, memerlukan kemahiran untuk penyelenggaran
alatan astronomi. Selain itu, bidang penyelidikan juga menjadi peluang kerjaya
bagi yang ingin meneruskan pengajian dalam bidang astronomi. Buat masa ini
memang tidak banyak peluang kerjaya, tetapi tidak mustahil pada masa akan
datang akan bertambah sebagaimana bertambahnya bilangan balai-balai cerap di
Malaysia.

172

Sesi Soal Jawab
ENJOY THE UNIVERSE WITH DIVERSE PEOPLE:
INCLUSIVE ASTRONOMY AND CITIZEN SCIENCE

Kumiko Usuda-Sato

Question: How active is the government of Japan in enhancing & exploring
astronomy in Japan?

Answer: Every year, the ministry in Japan held a science and technology week
with a variety of activities in the programme including astronomy. Each week of
Science & Technology programme will have a new poster provided by the
government and distributed all over Japan, such as Periodic Chart and Universe
Diagram created by many astronomers all over Japan. The government also
encourage us to widen the astronomical field in Japan by doing presentations for
example about Science in Antarctica or Science in Outer Space.

Question: Do you freely distribute the STLs for those 3D printable models?

Answer: We have a website and those who are interested in the printable models
can download it from the website.

Question: What was the size of the 3D model of those objects that are shown in
the slide?

Answer: the size of the 3D model is about 30 centimeters in size so that people
can touch the concave mirror with their fingers.

Question: Do all the galaxy images in the Galaxy Cruise taken using the Subaru
telescope?

Answer: Yes, all the galaxy images in the Galaxy Cruise were taken by using
Subaru telescope. As I explained, the telescope has a very powerful camera and
Subaru scientists conducted a survey by taking the deepest and widest pictures of
the universe for people to enjoy looking at it.

Question: Based on your experience, how do you evaluate or measure the
success of inclusive outreaches to cater for the different underrepresented
minorities in the community of astronomy?

Answer: The most important thing is the target of making people feel happy and
enjoy. I just want to talk to people in front of me, and if he or she is happy then
to me that is successful. So, I will repeat the activity again and the measurement is
by people’s understanding and awareness from them.

173

Sesi Soal Jawab
SCIENTIFIC ACTIVITIES WITH A 1.5 METER TELESCOPE

AT GUNMA ASTRONOMICAL OBSERVATORY
Osamu Hashimoto
Hikaru Taguchi
Hakim L. Malasan

Question: In Japan, how does GAO strategically plan and carry out astronomical
activities/outreaches, particularly during typhoons or cloudy seasons?
Answer: As GAO is an optical observatory, it would be likely impossible to carry
out observation activities during bad weather season. What we can do is organize
indoor activities regarding astronomy as our backup plan during the cloudy
season.
Question: What is the real motivation of your local government want to build
GAO with a large telescope size and support the research continuously? What
kind of challenges to maintain the GAO productivity?
Answer: The local government supports the building of GAO mainly to
promote research and astronomical activities among citizens. This should be the
main and realistic motivation. I don’t think government should support the
building of any observatory solely due economical perspective.

174

Sesi Soal Jawab
ARKEOLOGI GALAKSI MELALUI BINTANG HALO

Mohd Hafiz Mohd Saadon

Soalan: Adakah potensi galaksi bima sakti menelan galaksi-galaksi lain yang lebih
besar?
Jawapan: Memang ada. Sebab semua benda dalam galaksi bergerak dalam
laluannya. Begitu juga dalam galaksi lain. Sebagai contoh, galaksi kita bakal ditelan
oleh galaksi Andromeda yang lebih besar dari galaksi Bima Sakti. Tetapi
bukannya berlaku dalam setahun lagi, tetapi ia akan berlaku dalam jutaan tahun.
Memang akan berlaku. Selagi mana wujud, akan ditelan atau menelan.
Soalan: Adakah juga kajian mengenai "Stellar Stream" di galaksi-galaksi yang lain
selain bimasakti? Apakah persamaan dan perbezaan yang ketara tentang Stellar
Stream di galaksi lain tersebut?
Jawapan: Ya. Stellar stream ini boleh didapati di galaksi yang lain. Contoh yang
paling ketara dan mudah ialah kajian stellar stream di Andromeda, galaksi
terdekat Bima Sakti. Jalur E, F, dan SW antaranya, dikatakan merentang pada
kedudukan 150 kiloparsek dari pusat Andromeda, kesan gabungan dengan
struktur kecil lain. Dari segi rupa dan struktur, tidak banyak beza memandangkan
kedua-duanya dipengaruhi oleh kesan tidal force, tetapi kebarangkalian berbeza
adalah unsur kimianya. Walau bagaimanapun, ia masih dikaji.
Soalan: Kesan nova and supernova, mungkinkah logam-logamnya turun atau
jatuh ke Bumi.
Jawapan: Seperti yang kita tahu, nova dan supernova ialah kesan daripada
bintang yang telah mati, dan bintang-bintang ini lazimnya telahpun menghasilkan
unsur-unsur berat berbanding sebelumnya. Walau bagaimanapun, kebarangkalian
untuk logam-logamnya turun ke bumi amat rendah memandangkan jarak bintang-
bintang tersebut ke Bumi amat jauh. Jika jatuhpun, ia mungkin sudah melepasi
jangkauan hayat tamadun manusia.

175

Soalan: Apakah impak kajian arkeologi galaksi kepada kelangsungan hidup
manusia?
Jawapan: Impak langsung daripada kajian arkeologi galaksi ini mungkin tidak
ketara memandangkan kajian-kajian ini khusus kepada galaksi. Walau
bagaimanapun, kita boleh mempelajari pola-pola interaksi sesama bintang dan
galaksi, yang daripadanya, kita boleh mengambil ibrah alam semester untuk
kelangsungan manusia seperti pentingnya yang kaya memberi kepada yang miskin
(melalui kes kelogaman) dan bagaimana bergabung itu boleh mewujudkan
struktur yang kuat. Pada masa yang sama, arkeologi galaksi ini memberi kita
kefahaman bahawa setiap sesuatu itu mempunyai asal-usulnya masing-masing,
dan perlu dimanfaatkan sebaik mungkin untuk kelangsungan hidup.
Soalan: Syabas atas kajian julung-julung kali tentang arkeologi galaksi dan inisiatif
jawi yang disemarakkan dalam bidang sains. Kita belajar bahawa evolusi bintang
ditentukan oleh jisim bintang tersebut. Dan kita tahu bahawa sekumpulan
bintang-bintang akan mengalami supernova dan berakhir menjadi lohong hitam
di akhir hayatnya. Soalannya apakah lohong hitam juga wujud di kawasan bintang
halo? Jika tidak wujud apakah kita boleh katakan bahawa pada populasi bintang-
bintang halo tidak memiliki jisim yang membolehkannya menjadi lohong hitam?
Jawapan: Sebenarnya, walaupun kawasan halo itu tidak sepadat kawasan cakera,
lohong hitam masih boleh wujud. Malah, salah satu artikel dalam jurnal Nature
pada Julai 2021 baru-baru ini mengesahkan wujudnya lohong hitam yang
bersembunyi di dalam kelompok-kelompok bintang yang bergerak di kawasan
halo. Jadi, bintang-bintang persendirian di halo mungkin tidak cukup jirim untuk
menghasilkan lohong hitam, tetapi perkumpulan bintang seperti kelompok globul
mampu mewujudkan lohong hitam di dalamnya, kesan interaksi bintang-bintang
yang banyak dalam kelompok itu sendiri.

176

SOUTHEAST A sa r a sOMY SEMINAR

SIA-REGIONAL ASTRON

Buku Dimensi Ilmu Astronomi Abad ke-21 merupakan
perbincangan mengenai ilmu astronomi dari pelbagai
perspektif dan manfaat ilmu ini kepada makhluk
umumnya. Buku ini memuatkan pelbagai dimensi atau
sisi pandang ilmu astronomi sama ada dari aspek
pendidikan, sejarah, komuniti, mahupun astronomi
cerapan. Ia menyajikan hasil penyelidikan dan
pengalaman ahli-ahli yang menekuni bidang ini dari
Malaysia, Indonesia dan Jepun. Tuntasnya, buku ini
penting kepada orang awam dan penyelidik bagi
melihat perkembangan terkini dalam ilmu tertua ini.
Disamping itu, banyak cetusan idea-idea boleh
dimanfaatkan oleh semua pihak.

e ISBN 978-967-16077-6-3

9789671607763


Click to View FlipBook Version