The words you are searching are inside this book. To get more targeted content, please make full-text search by clicking here.
Discover the best professional documents and content resources in AnyFlip Document Base.
Search
Published by Geo Sustainability Club, 2020-04-22 23:10:11

Publication 2015-2019

my publication 2015-2019

Proceedings Vimoltip Singtuen, Ph.D.

Publication in Thai

1.Phajuy, B. & Singtuen, M. (2015) Cenozoic Volcanic Rocks in the Northern Part of Thailand, Faculty of Sciences CMU News
(in Thai), V. 21, 1-3.

2.Phajuy, B. & Singtuen, M. (2016) Rock Soil Minerals, Vegetable and Geologic Hazards in Doi Suthep-Pui National Park,
Guidebook for Excursion of the 2nd Doi Suthep Symposium (in Thai), 15-16 August, 5-10.

Publication in English

1.Singtuen, V. & Won-in, K. (2018) Geodiversity and Geoconservation of the Chaiyaphum Region in Thailand for Sustainable
Geotourism Planning. Geojournal of Tourism and Geosites. 22(2), 548–560. https://doi.org/10.30892/gtg.22223-310
(SCOPUS)

2.Singtuen, V. & Won-in, K. (2018) Preliminary Geotourism Study in Ancient Khmer Civilization Area, Buriram Province,
Northeastern Thailand. The Turkish Online Journal of Design, Art and Communication. 8, 1538-1544.
https://doi.org/10.7456/1080sse/206

3.Won-in, K., & Singtuen, V. (2018) Geoheritage Conservation for Sustainable Geotourism in Petrified Wood Forest Park, Tak
Province, Thailand. The Turkish Online Journal of Design, Art and Communication. 8, 1532-1537.
https://doi.org/10.7456/1080sse/205

4.Singtuen, V., & Won-In, K. (2018). Geological Perspective for Geotourism Development in Uthai Thani Province, Thailand.
Journal of Environmental Management and Tourism, 9(5), 1003-1010. https://doi.org/10.14505//jemt.9.5(29).12 (SCOPUS)

5.Singtuen, V. & Won-in, K. (2018) Geoheritage Sites and Geoconservation at Pha Chan - Sam Phan Bok Geopark, Ubon
Ratchathani Province, Thailand. Journal of Geoconservation Research, 2(1), 12-25.
https://doi.org/10.30486/GCR.2019.664490

6.Phajuy, B. & Singtuen, V. (2019) Petrochemical Characteristics of Tak Volcanic Rocks, Thailand: Implication for Tectonic
Significance. Science Asia, 45(4), 350-360. https://doi.org/10.2306/scienceasia1513-1874.2019.45.350 (ISI 0.452)

7.Singtuen, V., Gałka, E., Phajuy, B., Won-in, K. (2019) Evaluation and Geopark Perspective of the Geoheritage Resources in
Chiang Mai Area, Northern Thailand. Geoheritage 11. 1955–1972. doi:10.1007/s12371-019-00410-0 (ISI 2.597)

ORAL PRESENTATION
1.Singtuen, M. & Phajuy, B. (2015) Petrogenesis of Mafic Dikes in the Ban Chun Area, Tambon Chun, Chun District, Phayao
Province, Full Paper Proceeding in Geoindo, 23-24 November, 59.
2.Phajuy, B. & Singtuen, M. (2016) Lithology Petrography and Geochemistry of Limestone for Lime Industry Ban Pong, Hang
Dong District, Chiang Mai Province, Abstract Proceeding in 2nd Doi Suthep Symposium, 15-16 August, 11.
3.Singtuen, M. & Won-in, K. (2017) Geotourism and Sustainable Development Perspectives of the Khao Phra Wihan National
Park on the Southern Edge of the Khorat Plateau, Thailand, Full Paper Proceeding in Description 8th International
Conference on Environment, Agriculture, Biology and Natural Sciences, 25 December, 35-41.
4.Singtuen, V. & Won-in, K. (2018) An Assessment of the Potential Island for Geotourism Value in Ko Kham Undersea Park,
Chonburi, Gulf of Thailand, Full Paper Proceeding in “Regional Geoheritage Conference 2018”, 3 April, 11-18.

POSTER PRESENTATION
1.Singtuen, M. & Phajuy, B. (2015) Geological Map of Ban Cham Khi Mod, Tambon Sribuaban, Mueang Lamphun District,
Lamphun Province, Abstract Proceeding in 10th the Institute for the Promotion of Teaching Science and Technology, 19
June, 38.
2.Singtuen, M. & Phajuy, B. (2016) Geochemistry and Tectonic Significance of Andesitic Rocks in Tak Province, Thailand, Full
Paper Proceeding in 52nd CCOP Annual Session “Geoscience for the Society”, 1 November, 65-74.
3.Singtuen, M. & Phajuy, B. (2017) Petrography and Geochemistry of Felsic Extrusive Rocks in Southern Part of the Chiang
Khong – Lampang –Tak Volcanic Belt, Thailand, Full Paper Proceeding in 6th International Graduate Research Conference,
9-10 February, 27-32.
4.Singtuen, V., Gałka, E., Won-in, K., And Phajuy, B. (2019) The Potential of Post-mining Management as a Sustainable
Geopark in Thailand- A Case Study From the Muskauer Faltenbogen/ Łuk Mużakowa Unesco Global Geopark, Central
Europe. Abstract Proceeding in International Conference On Biodiversity, 22-24 May, 376.

M.S. in Geology, Chinag Mai University
Ph.D. in Earth Science and Technology, Kasetsart University
Non-Degree

Publication 2015-2019

ปที่ 21 เดือนเมษายน-มถิ นุ ายน 2558 ขา วสารคณะวิทยาศาสตร มช. 1

สาระวชิ าการ

โดย ผชู้ ว่ ยศาสตราจารย์ ดร. บูรพา แพจยุ้ และนางสาวมุกดา สงิ หเ์ ถื�อน

ภูเขาไฟอายุอ่อน (Cenozoic Era)
ในภาคเหนือของประเทศไทย

ภเู ขาไฟ เกดิ จากหนิ หนดื ทอี่ ยใู ตเปลือกโลกถูกแรงดัน อัดใหแทรกตามรอยแตกข้นึ สูผวิ โลกโดยมีแรงปะทุหรือ
ระเบิดข้ึน ถาแรงดันไมมากจะมีหินหลอมเหลวปะทุและไหลออกจากปลองภูเขาไฟ แตถามีแรงดันมากจะเกิดการ
ระเบิดอยา งรนุ แรง

ภาคเหนอื ของประเทศไทย เมื่อมหายุคซโี นโซอกิ (Cenozoic Era) หรอื ราว 65.5 ลานปกอ น ซึง่ นับไดวา
เปน ชว งเวลาทีม่ อี ายุออนตามตารางธรณีกาล (Geologic Time Scale) มีภเู ขาไฟกระจายตวั อยทู ่ัวไปเปนบรเิ วณ
เลก็ ๆ โดยพบในหลายบริเวณตามจงั หวัดตางๆ ไดแก เชยี งราย ลําปาง แพร และแมฮ อ งสอน

ภเู ขาไฟอายอุ อ นในไทยนน้ั สว นใหญเ ปน ภเู ขาไฟขนาดเลก็ เกดิ จากลาวาทมี่ คี วามเปน เบส (basic lava volcano)
ประกอบดวยธาตุ Mg และ Fe สงู และ SiO2 นอย เกิดเปนหนิ อคั นีภูเขาไฟสเี ขม จาํ พวกหินบะซอลต (basalt)
ลาวามลี กั ษณะเหลว ไหลไดเ รว็ และแขง็ ตวั ชา ทงั้ นเี้ พราะหนิ หนดื ไหลออกมาจากปลอ งมอี ณุ หภมู สิ งู มาก และมอี ตั รา
การไหลเรว็ มาก เกิดเปนธารลาวาทีไ่ หลไปไดเ ปนระยะทางไกล ไมเกิดการทบั ถมของเถา ถานเปนรูปกรวย แตจ ะ
ขยายแผก วา งออกไปเปน ทงุ ลาวา ภเู ขาไฟแบบน้ีมกั จะเกิดการปะทแุ บบเงียบ ซึ่งเปน การปะทไุ มรนุ แรง ไมม ีการ
ระเบิดหรือมีเพียงเล็กนอย มีเพียงลาวาหลากออกมาตามปากปลองภูเขาไฟหรือตามแนวแตกตางๆ เปนสวนใหญ
เกดิ เปน ภูเขาไฟทีม่ ีรูปทรงแบนเมื่อเทียบกับภเู ขาไฟทเ่ี ปนหินชนิดอน่ื ทาํ ใหเ กดิ เปน ภูเขาไฟรปู โล (shield volcano)
ทม่ี ลี กั ษณะกวา งเต้ยี คลายรูปโลห รอื จานควาํ่ เชน ภูเขาไฟจาํ ปา แดด และภูเขาไฟผาคอกหนิ ฟู ในเขตอาํ เภอแมเมาะ
จังหวดั ลําปาง

การปะทอุ อกมาของหนิ บะซอลต มี 2 แบบดวยกัน คอื
1. ปะทอุ อกมาสะสมตวั บนบก (subaerial) บริเวณปลอ งภูเขาไฟ จะทาํ ใหพ บรฟู องอากาศในหนิ และอาจพบ

กอ นบะซอลตท เี่ กดิ จากการเยน็ ตวั ของลาวาในอากาศจากการกระเซน็ ขน้ึ ไปในขณะทม่ี กี ารปะทุ ไดเ ปน บอมบภ เู ขาไฟ
(รูปท่ี 1)

2. ปะทอุ อกมาสะสมตัวในนา้ํ (subaqueous) อาจหมายถึงการทีล่ าวาไหลลงน้าํ เชน การปะทุของภูเขาไฟ
ในทะเล หรอื ลาวาไหลลงในทะเลสาบ การมฝี นตกขณะไหลหรอื การไหลผา นช้ันน้ําใตด นิ ซ่ึงการเกิดหนิ บะซอลต
ในนํ้าน้นั มี 2 แบบดวยกนั คอื

• แบบไมเ กดิ การระเบิด การไหลของลาวาบนพืน้ เอียงลงในนํ้า และการเยน็ ตัวในนา้ํ ทาํ ใหเกดิ การยืดหยุน
มว นตัวจะไดก อนลาวารปู หมอน (pillow lava)

• แบบเกิดการระเบิด ลาวาท่ีสัมผัสกับนํ้าแลวระเบิดออกทันที จะไดเศษหินบะซอลตท่ีแตกเปนเหลี่ยม มี
ขนาดกอนแตกตา งกัน ขนาดของเศษชิ้นหนิ บะซอลตอาจมขี นาดใหญแ บบกอ นกรวด (pillow breccia)
หรือขนาดเลก็ ประมาณเม็ดทราย (hyaloclastite)

หอ งปฏิบตั ิการวิจัยหินอคั นแี ละแรเศรษฐกิจทเ่ี ก่ยี วของ ภาควชิ าธรณวี ทิ ยา คณะวทิ ยาศาสตร

2 ขาวสารคณะวิทยาศาสตร มช. ปที่ 21 เดือนเมษายน-มิถนุ ายน 2558

รปู ท่ี 1. หนิ บะซอลตทมี่ ีรูฟองอากาศ และบางตวั อยา งมีแรแ คลไซต (สีขาว) เขาไปตกผลึกในรูฟองอากาศ จาก
มวลลาวาชนดิ บะซอลต บริเวณขา งทางหลวงหมายเลข 1 เขตอําเภอสบปราบ จงั หวดั ลําปาง

หินบะซอลตอายอุ อ นทเี่ กดิ ในภาคเหนือของประเทศไทย เกดิ ขนึ้ บนพืน้ บก จึงมักพบเปน ผืนบะซอลตกวา งใหญ
เชน บะซอลตบริเวณอําเภอสบปราบ อําเภอแมทะ และอําเภอแมเมาะ จังหวัดลําปาง แตมีบางบริเวณท่ีมีการ
ไหลลงในนาํ้ ทําใหไดล าวารปู หมอน เชน บริเวณขางทางรถไฟ สถานีรถไฟแมเมาะ จงั หวัดลาํ ปาง

หนิ ภเู ขาไฟอายุออนในภาคเหนอื ของไทย มีดังนี้
หนว ยหนิ บะซอลตเชียงราย (Chiangrai Basalt) พบในเขตจงั หวัดเชียงราย บริเวณบา นชา งเคี่ยน อาํ เภอ

เทิง ไหลปดทับหินตะกอนที่มีอายุแกกวา (250-300 ลานป) ลักษณะหินมีเน้ือละเอียด สีเทาออนและมีรูพรุน
ประกอบดว ยแรโอลิวนี แรไ คลโนไพรอกซีน และแรแ พลจโิ อเคลส (แลบราโดไรต) เมือ่ ศึกษาภายใตกลอ งจุลทรรศน
พบแรทึบแสงฝงตัวอยใู นเนือ้ หินบางสว น ไคลโนไพรอกซนี ในบรเิ วณนเ้ี ปลย่ี นไปเปน คลอไรตบางสว น สวนประกอบ
ทางเคมีของหนิ บะซอลตน้ีเปน โทเลอติ ิกบะซอลต (Barr and Macdonald, 1978)

หนว ยหินบะซอลตล ําปาง (Lampang Basalt) พบในเขตจงั หวดั ลาํ ปาง ครอบคลมุ พน้ื ท่ี 2 บริเวณ คอื หนิ
บะซอลตแมทะ (Mae Tha Basalt) อยบู รเิ วณอําเภอแมท ะและอาํ เภอแมเ มาะ ทางดานตะวนั ตกออกของจังหวัด
ลําปาง และหินบะซอลตสบปราบ (Sob Prab Basalt) อยบู รเิ วณเสน ทางสายลําปาง-สบปราบ ทางดานตะวันตก
เฉียงใตของจงั หวัดลาํ ปาง

หนิ บะซอลตแ มท ะ (Mae Tha Basalt) ไหลออกจากปลอ งภเู ขาไฟลกู เลก็ ๆ 2 ลกู คอื ปลอ งภเู ขาไฟผาคอกหนิ ฟู
และปลอ งภเู ขาไฟผาคอกจาํ ปาแดด ซึง่ เรยี งตัวกันในแนวเหนอื -ใต ไหลปดทบั หนิ ภูเขาไฟและหินปนู ทมี่ อี ายแุ กกวา

ปท่ี 21 เดือนเมษายน-มถิ ุนายน 2558 ขา วสารคณะวิทยาศาสตร มช. 3

(200-250 ลา นป) และไหลปดทบั ชัน้ หินกรวดทมี่ ีอายุนอยกวา 1 แสนป ในบริเวณฝง แมน ้ําจาง สันนิษฐานวาหิน
บริเวณน้ีสะสมตัวท้ังบนบกและในน้ํา น่ันคือไหลลงนํ้าแลวเกิดการมวนตัวในลักษณะของลาวารูปหมอนท่ีประกอบ
ดวยเน้อื หิน 3 สว น ไดแ ก เน้อื แกว ผิวมลี ักษณะคลายเกลียวเชือกอยดู า นนอก ถัดไปเปน เน้ือแบบมรี พู รนุ และเน้อื
แนน ละเอยี ดมากอยดู า นในสดุ หนิ บะซอลตแ มท ะประกอบดว ยผลกึ แรโ อลวิ นี ฝง ตวั อยใู นเนอ้ื หนิ ซง่ึ ประกอบดว ยผลกึ
ของแรแพลจิโอเคลสเกดิ เปน แทงเล็กๆ แรไ คลโนไพรอกซีน แรแ มกนไี ทต และแกว สว นประกอบทางเคมขี องหิน
บะซอลตน เ้ี ปน บาซาไนต (Barr and Macdonald, 1978)

หนิ บะซอลตส บปราบ (Sob Prab Basalt) มลี กั ษณะการไหลเปนช้นั ๆ อยูหลายช้นั สีเทาดํา ถึงดํา เวลา
ผจุ ะใหส นี ้าํ ตาลแดง บริเวณชวงบนของชนั้ จะพบเนื้อหนิ ทมี่ รี พู รุนมาก เนอื้ หินบะซอลตจะมเี ศษหินเพริโดไทต และ
เลอซูไตต ช้ินเล็กๆ ฝงอยู สวนประกอบทางเคมขี องหนิ บะซอลตน เ้ี ปน ฮาวายไอต (Barr and Macdonald, 1978)

หนว ยหนิ บะซอลตเ ดนชัย (Den Chai Basalt) ไหลปกคลุมพนื้ ท่บี รเิ วณทศิ ใตของอําเภอเดน ชยั จงั หวดั แพร
รูปรา งแคบและยาวในแนวตะวันออกเฉียงเหนอื -ตะวนั ตกเฉยี งใต และอาจนบั รวมไปถึงหนิ บะซอลตทกี่ ระจายตัวใน
เขตอาํ เภอศรสี ชั นาลยั และอาํ เภอวงั ชน้ิ ลาวาไหลปด ทบั หนิ ตะกอนอายแุ กก วา (200-300 ลา นป) หนิ บะซอลตบ รเิ วณ
เดน ชัยประกอบดวยชน้ั วาลา 7 ช้นั ทไี่ หลปด ทบั กนั อยา งตอเน่อื ง แนวสมั ผัสระหวา งช้นั ชัดเจน โดยบริเวณสวนบน
สุดของแตละชัน้ จะมรี พู รนุ มาก

หินบะซอลตตงั้ แตช ้นั ที่ 1 ถึงชั้นที่ 6 เปน พวกเนอื้ ละเอยี ด ประกอบดว ยผลกึ แรโ อลิวินจาํ นวนมาก และผลกึ
แรแพลจโิ อเคลสบาง สวนผลกึ แรไ คลโนไพรอกซีนพบนอ ยมาก และพบแรทบึ แสง และพวกชน้ิ สวนหนิ อลั ตราเมฟก
(สปเนล เลอโซไลต) บรเิ วณสวนลา งของชัน้ ท่ี 6

หนิ บะซอลตช้นั บนสดุ ชน้ั ที่ 7 มีสดี ํา เนอ้ื แนน และละเอยี ดมาก แสดงลกั ษณะแนวแตกเปน แทงเสาหนิ อยา ง
ชดั เจน หนิ บะซอลตป ระกอบดว ยผลกึ แรโ อลวิ นิ แกว สนี าํ้ ตาลแดง แรไ คลโนไพรอกซนี แรแ พลจโิ อเคลส (แลบราโดไรต)
และแรทบึ แสง พบช้ินสวนหินอลั ตราเมฟก (สปเนล เลอโซไลต) จาํ นวนมาก หนิ บะซอลตชนั้ ที่ 7 นเ้ี ปนหนิ บะซอลต
ท่ใี หแรพลอย (Barr and Macdonald, 1978)

สว นประกอบทางเคมขี องหินบะซอลตเ ดนชยั น้ี ชัน้ ที่ 1 ถึงช้ันท่ี 4 เปนทรานสิชั่น ฮาวายไอต ช้ันที่ 5 และ
ชน้ั ที่ 6 เปน ฮาวายไอต และชน้ั ท่ี 7 เปน บะซาไนต (Barr and Macdonald, 1978) แตจ าํ แนกเปน หนิ บะซอลตกิ แอนดไี ซต
โดย Panjasawatwong (1983)

หนว ยหินบะซอลตแมล ามา (Mae Lama Basalt) เกิดบรเิ วณแคบๆ ของบา นแมลามา จังหวัดแมฮ องสอน
หนิ บะซอลตก ลมุ นมี้ ลี กั ษณะรพู รนุ สงู ประกอบดว ยผลกึ แรโ อลวิ นี แรไ คลโนไพรอกซนี แรแ พลจโิ อเคลสและแรท บึ แสง
สว นประกอบทางเคมขี องหนิ บะซอลตน้เี ปน โทเลไอต (Barr and Macdonald, 1978)

เอกสารอางอิง

กรมทรพั ยากรธรณวี ิทยา, 2542, ธรณวี ทิ ยาประเทศไทย, กระทรวงอุตสาหกรรม, กรุงเทพฯ, 556 หนา
Barr, S.M. and Macdonal, A.S., 1978, Geochemistry and petrogenesis of Late Cenozoic alkaline basalts of

Thailand, Geological Society of Malaysia Bulletin, Part II, v. 92, p. 1069-1142.
Limtrakun, P. and Zaw, K. and Ryan, C.G. and Mernagh, (2001), Formation of the Denchai gem sapphires,

northern Thailand: evidence from mineral chemistry and fluid/melt inclusion characteristics. Mineralogical
Magazine, v. 65 (6), p. 725-735.
Panjasawatwong, W., 1983, Chemical variation within a basalt flow at Denchai, Phrae, Proceedings on
Annual Technical Meeting, Department of Geological Sciences, Chiang Mai University.
Winetr, J.D., 2001, Igneous and Metamorphic Petrology, Prince Hall, New Jersey.

หนิ แร่ ดิน ตน้ ไม้ และธรณพี บิ ตั ิภัย
ดอยสเุ ทพ

บรู พา แพจุ้ย และมกุ ดา สิงห์เถื่อน

ภาควิชาธรณีวทิ ยา คณะวิทยาศาสตร์ มหาวิทยาลัยเชยี งใหม่

เทอื กเขาสเุ ทพ-ปยุ เทอื กเขาขุนตาล

จังหวัดเชียงใหม่ต้ังอยู่บริเวณแอ่งตะกอนท่ีวางตัวอยู่ในแนวเกือบเหนือ-ใต้ แอ่งเชียงใหม่นี้
เกิดจากการทรดุ ตัวของหนิ แขง็ โดยรอยเล่ือนปกติเม่ือประมาณ 60 ลา้ นปกี ่อน รอยเลื่อนนี้ยังคงมีพลัง
อยู่ จากข้อมูลการแปรสภาพของแรภ่ ายในหินแกรนติ บริเวณดอยสุเทพและดอยอินทนนท์ท่ีกล่าวว่ามี
การแปรสภาพลา่ สุดเมือ่ 20 ล้านปีก่อน (Macdonald et al., 2010) รอยเล่ือนปกติมีมุมการเอียงเท
ท่ีน้อยมาก แต่ลักษณะการเล่ือนทาให้เกิดการการทรุด ซึ่งเป็นผลให้เทือกเขาสุเทพ-ปุยปรากฏเป็น
ระนาบที่ลาดชนั มากกว่ามุมเอียงเทจริงของรอยเลื่อน (พิณสวรรค์ ศรีใส, 2556) หินแข็งท่ีทรุดตัวลง
ไปมีลักษณะดังท่ีปรากฏเป็นเทือกเขาสุเทพ-ปุยและเทือกเขาขุนตาลซ่ึงขนาบอยู่สองข้างของแอ่ง
ตะกอนท่ีสะสมในแอ่งเกดิ จากการพัดพาท้ังของลมและน้า จังหวัดเชียงใหม่มีแม่น้าสายหลักไหลผ่าน
ตอนกลางทาใหม้ กี ารสะสมตะกอนทางนา้ จานวนมาก คอื แมน่ า้ ปิง

หนิ แร่ ดิน ตน้ ไม้ และธรณพี ิบตั ิภยั ดอยสเุ ทพ

ตะกอน 2

Qt (1) ดอยคา (2) ดอยคา
(3) ดอยคา
ตะกอนตะพักลาน้า กรวด (5) ออบขาน
ทราย ทรายแป้ง ดินเหนียว
และศลิ าแลง อายุปัจจบุ นั (6) อ่างเก็บนา้ เกษตรและวดั พระพทุ ธบาทสี่รอย

หินตะกอนหรือหนิ ชน้ั

C

(1)หนิ ทราย และหินดินดาน
อายุ 350 ลา้ นปี

SDct (3) สะเมงิ

(2)หpินดินดานสีดา หินเชิร์ต
และหนิ ทรายแป้ง อายุ 450
ล้านปี

O (4) วดั ผาลาด
(5) ดอยคา
( 3 ) หิ น ปู น เ น้ื อ ดิ น แ ล ะ
หนิ ปูนอายุ 500 ลา้ นปี

หนิ อคั นแี ทรกซอน

Trgr
p

( 4 ) หิ น ไ บ โ อ ไ ท ต์ แ ก ร นิ ต
ทัวรม์ าลนี แกรนิต แกรโนได
โอไรต์ ไบโอไทต์มัสโคไวต์
แกรนิต อายุ 200 ลา้ นปี
หนิ แปร

PE

(5) หินออร์โทไนส์ และ
พาราไนส์ แสดงแนวชั้นและ
ลกั ษณะรปู ตา (6)หนิ แคลก์-
ซิลเิ กต อายุ 600 ลา้ นปี

ลกั ษณะธรณวี ิทยาและหนิ โผล่บริเวณอุทยานแห่งชาติสุเทพ-ปุย จงั หวัดเชยี งใหม่

ภาควชิ าธรณีวทิ ยา คณะวิทยาศาสตร์ มหาวิทยาลัยเชียงใหม่

หิน แร่ ดนิ ต้นไม้ และธรณีพิบัติภยั ดอยสุเทพ

1. หิน

3อุทยานแหง่ ชาตสิ ุเทพ-ปยุ เปน็ ส่วนหน่งึ ของเทอื กเขาสุเทพ-ปุยอยูบ่ รเิ วณทิศตะวันตกของแอ่ง

เชียงใหม่ ครอบคลุมพื้นท่ีอาเภอเมืองเชียงใหม่ หางดง สะเมิง แม่ริม และแม่แตง ประกอบด้วยหิน
แข็งหลายประเภทด้วยกันทั้งหินอัคนี (หินแกรนิต) หินตะกอน (หินปูน หินดินดาน และหินทราย)
และหนิ แปร (หินไนส์และหินแคลก์-ซิลเิ กต) วางตัวกันไมต่ อ่ เน่ืองด้วยรอยผิดวิสัยและรอยเล่ือน (กรม
ทรัพยากรธรณี, 2550) หินในบรเิ วณนีเ้ กอื บทั้งหมดมกั แสดงรอยแตก และการถูกแรงมากระทา

2. แร่
พ้ืนทขี่ องเทอื กเขาสเุ ทพ-ปยุ จะเป็นหนิ แกรนิตโดยส่วนใหญ่ ประกอบดว้ ยแร่หลายชนิด ได้แก่

ควอตซ์ (ผลึกใส) อัลคาไลน์เฟลด์สปาร์-แพลจิโอเคลส (ผลึกสีขาวขุ่น) ไบโอไทต์ (แผ่นสีดาประกาย
มุก) มัสโคไวต์ (แผ่นสีขาวประกายมุก) และแร่อ่ืนๆ แร่ต่างๆเหล่าน้ีจะเกิดการแปรเปล่ียนหรือผุพัง
เปน็ ตะกอนซ่งึ ประกอบ กรวด ทราย และดิน แร่ดิน (clay minerals) ท่ีมีส่วนประกอบทางเคมีและ
โครงสรา้ งทีแ่ ตกตา่ งกนั เมอ่ื ไดร้ ับความช้ืนหรือการเปลยี่ นแปลงอุณหภมู ิ

ท่ีสภาวะเป็นกรดและอุณหภูมิต่ามากๆ อัลคาไลน์เฟลด์สปาร์ และแพลจิโอเคลส จะ

แปรเปล่ยี นใหแ้ รด่ ินจาพวกเคโอลิไนต์ สเมกไทต์ และอิลไลต์ แต่เมื่ออุณหภูมิสูงขึ้นจะแปรเปล่ียนให้

แรด่ ินประเภท sericite แตใ่ นกรณกี ารผุพังตามธรรมชาติจะอยู่ในเงื่อนไขอุณหภูมิต่า ดังนั้นจึงไม่มีเซ

อริไซต์เกดิ ขึ้นในระบบนี้

อัลคาไลน์เฟลด์สปาร์ KAlSi3O8

แพลจโิ อเคลส NaAlSi3O8

ไบโอไทต์ K(Mg,Fe)3AlSi3O10(OH)2

มสั โคไวต์ KAl2(AlSi3O10)(F,OH)2

เคโอลิไนต์ Al2Si2O5(OH)4

ภาควชิ าธรณวี ิทยา คณะวทิ ยาศาสตร์ มหาวิทยาลยั เชียงใหม่

สเมกไทต์ หิน แร่ ดิน ต้นไม้ และธรณีพิบตั ิภยั ดอยสเุ ทพ
อลิ ไลต์
4(Na,Ca)0.33(Al,Mg)2(Si4O10)(OH)2·nH2O

K0.6(H3O)0.4Al1.3Mg0.3Fe2+0.1Si3.5O10(OH)2·(H2O)

3. ดนิ

อัลคาไลน์เฟลด์สปาร์ แพลจิโอเคลส มัสโคไวต์ จะผุพังให้แร่ดินจาพวกเคโอลิไนต์ เป็นส่วน
ใหญ่ และ K+ Na+ จะถูกไล่ออกจากโครงสร้างไปเป็นไอออนอิสระ แต่มัสโคไวต์จะสามารถผุพังให้ส
เมกไทต์ได้ในขนั้ แรก ซึ่งมีโครงสร้างซับซ้อน มีช่องว่างในโครงสร้างที่พอจะให้ K+ Na+ และ H2O อยู่
ในโครงสร้างได้ เมื่ออัตราการผุพังเพิ่มสูงข้ึน อุณหภูมิลดต่าลงและแรงดันเพิ่มขึ้น จะเปลี่ยนแปลง
โครงสรา้ งเปน็ อลิ ไลต์ ซงึ่ ไมม่ ชี ่องว่างภายในโครงสร้างเล็กลงมากๆ ส่วนไบโอไทต์จะผุพังให้สเมกไทต์
และอลิ ไลต์

2 KAlSi3O8 + 2 H2CO3 + 9 H2O => Al2Si2O5(OH)4 + 4 H4SiO4 + 2 K+ + 2 HCO3−

แร่ในหินจะเปน็ ตวั ควบคุมลักษณะดินในแต่ละบริเวณเนื่องจากดินมีส่วนประกอบเป็นอนินท
รีย์สารมากถึงร้อยละ 45 ซึ่งมีผลทาให้คุณสมบัติของดินแตกต่างกันได้มากและจะมีผลต่อการ

ภาควชิ าธรณีวทิ ยา คณะวิทยาศาสตร์ มหาวทิ ยาลัยเชียงใหม่

หนิ แร่ ดนิ ตน้ ไม้ และธรณีพบิ ตั ภิ ยั ดอยสเุ ทพ

เจรญิ เติบโตของพชื ท่ีขนึ้ อยู่ในดนิ นน้ั ๆ ซงึ่ สามารถสรุปบทบาทความสาคัญของอนินทรีย์สารในดินต่อ

5การเจริญเตบิ โตของพชื ได้ดังน้ี

1) เป็นแหล่งที่ให้ธาตุอาหารท่ีจาเป็นต่อการเจริญเติบโตของพืช เช่น ดินท่ีมีแร่เฟลสปาร์ซึ่ง
สลายตวั ได้ง่าย เป็นองค์ประกอบอย่มู ากจะมีความอดุ มสมบูรณ์สูง

2) เป็นส่วนควบคุมลักษณะเนื้อดิน (soil texture) เช่น ดินที่มีแร่ควอทซ์เป็นองค์ประกอบอยู่
มากจะทาให้เกดิ ดินเนอ้ื หยาบ แต่ถา้ หากมแี รแ่ คลไซต์เป็นองค์ประกอบอยู่มากจะทาให้ได้ดิน
เนื้อละเอยี ด เปน็ ตน้

3) เปน็ สว่ นควบคุมคุณสมบตั ทิ างเคมีและกายภาพของดิน ตัวอย่างเช่น ควบคุมสภาพความเป็น
กรดเป็นด่าง (soil pH) ควบคุมความสามารถการแลกเปลี่ยนประจุ (ion exchange
capacity) หรอื ควบคมุ ความสามารถในการดูดยึดนา้ ของดนิ (water holding capacity)

4. ต้นไม้
ดนิ ท่ผี พุ งั มาจากหนิ แกรนิตจงึ มีแรธ่ าตขุ อง K+ และ Na+ อยูจ่ านวนมากจากแรเ่ ฟลดส์ ปาร์ ซึ่ง

เป็นธาตุทีจ่ าเปน็ ในพืชและมสี ภาวะเป็นกรดอ่อนๆตามความเหมาะสมที่พืชต้องการ น้าและแร่ธาตุที่
รากดูดซึมจากดินจะผ่านเซลล์ชั้นนอกคือ epidermis เข้าสู่เซลล์ช้ันใน คือ cortex, endodermis
และ xylem ของราก โดยอาศัยการลาเลียงทางด้านข้าง (Lateral transport) ซึ่งอยู่ในแนวรัศมีของ
ต้นพืช และเป็นระยะทางสั้นๆ น้าและแร่ธาตุจากดินจะถูกดูดซึม โดยขนรากผ่านช้ัน cortex จนถึง
endodermis

โปแตสเซียม (K+) มีบทบาทในการควบคุมการเปิดปิดของรูใบสโตมา (Stoma) ดังนั้นโพแต
สเซียมจงึ ช่วยลดการคายนา้ จากใบและเพม่ิ ความต้านทานสภาพแล้ง-สภาพร้อน-สภาพหนาวให้กับพืช
ได้ การขาดโปแตสเซียม อาจทาให้เกิดการตายเฉพาะส่วน หรือเกิดการเหลืองระหว่างเส้นใบ
(interveinal chlorosis) โพแตสเซียมสามารถละลายน้าได้ดี จึงทาให้อาจโดนชะล้างออกไปจากดิน
โดยเฉพาะพนื้ ท่ีลักษณะเปน็ หนิ หรือทราย

โซเดียม (Na+) เกี่ยวข้องกับการสร้างphosphoenolpyruvate ของพืชท่ีเป็น CAM
(Crassulacean acid metabolism plant) และ C4 (C4 carbon fixation plant)

ซิลิคอน (Si4+) จะถูกเก็บไว้ที่ผนังเซลล์ของพืช และจะช่วยทาให้ผนังเซลล์แข็งแรงและ
ยดื หย่นุ

แคลเซียม (Ca2+) ทาหน้าท่ีในการควบคุมการเคล่ือนย้ายของสารอาหารต่างๆเข้าสู่พืช และ
ยงั ทาหน้าทเ่ี กีย่ วกบั การทางานของเอนไซม์พืชหลายชนิด การขาดแคลเซียม มีผลทาให้พืชชะงักการ
เจริญเตบิ โต

ภาควิชาธรณวี ทิ ยา คณะวทิ ยาศาสตร์ มหาวิทยาลยั เชยี งใหม่

หนิ แร่ ดนิ ตน้ ไม้ และธรณพี บิ ัตภิ ัย ดอยสุเทพ

6

ความเปน็ กรดหรือดา่ งของดินจะถูกควบคุมโดยปัจจัยต่างๆ หลายอย่าง เช่น วัตถุต้นกาเนิด
ดิน ถ้าหากวัตถุตน้ กาเนดิ ดินมสี มบตั ิเป็นกรด เม่อื สลายตวั เป็นดินแล้วมักจะได้ดินท่ีมี pH ต่า หรือดิน
เป็นกรด หินปูนเม่ือสลายตัวเป็นดินแล้วจะได้ดินท่ีมี pH สูง หรือดินเป็นด่าง ชนิดและปริมาณของ
ประจบุ วกที่ถูกดูดซับอยู่ในดิน จะควบคุมความเป็นกรดหรือด่างของดิน เช่นดินที่มีประจุ H+, Al+3 ,
NH+4 และ Fe+3 มีสมบัติเป็นกรด ในขณะท่ีดินท่ีประจุ Ca+2, Mg+2 และ Na+2 มีสมบัติเป็นด่าง
นอกจากนน้ั ดนิ ทม่ี คี อลลอยด์ (colloid) ทีแ่ ตกตัวให้ H+ ออกมามาก เช่น ดินที่มีฮิวมัสมากมักจะเป็น
ดินท่ีมี pH ต่าหรือดนิ เป็นกรด ดินกรดจะพบอยู่ท่ัวไป โดยเฉพาะในเขตที่มีฝนตกชุก หรือดินท่ีใช้ทา
การเกษตร และมีการใส่ปยุ๋ วทิ ยาศาสตรบ์ างชนดิ ตดิ ตอ่ กนั เป็นเวลานาน สาหรบั ดินดา่ งที่พบโดยทั่วไป
แตกตา่ งกัน 3 ชนดิ คือ
ภาควิชาธรณวี ิทยา คณะวทิ ยาศาสตร์ มหาวิทยาลยั เชียงใหม่

หิน แร่ ดนิ ตน้ ไม้ และธรณีพิบัติภัย ดอยสเุ ทพ

1) ดนิ เคม็ (saline soil) เปน็ ดินที่มีเกลือเป็นกลางของ แคลเซียม และ แมกนีเซยี ม อยู่สูง ใน

7สภาพที่ดินแห้งจะเห็นคราบเกลือสีขาวตกตะกอนอยู่ตามผิวหน้าดิน จึงมักเรียกดินชนิดนี้ว่าดินด่าง

ขาว (white alkaline soil)
2) ดินด่าง (sodic soil) เป็นดนิ ท่ีมีเกลือโซเดียมในรูปของ โซเดียมคาร์บอเนต อยู่สูงเมื่อดิน

เปียกจะเหลวและมีอินทรีย์สารละลายอยู่มากเมื่อดินแห้งจะแข็งและมีคราบเกลือสีดาตกตะกอนอยู่
ตามผวิ หน้าดนิ จงึ เรยี กดนิ ดา่ งชนิดนี้วา่ ดินดา่ งดา (black alkali soil)

3) ดินเค็มท่ีเป็นด่าง (saline sodic/alkaline soil) เป็นดินที่มีสมบัติผสมระหว่างดินเค็มกับ
ดนิ ดา่ งจะมเี กลือของ แคลเซยี ม แมกนีเซียม และโซเดียมสงู

การเจรญิ เติบโตของจลุ นิ ทรียพ์ วกแบคทีเรยี จะดาเนินไปไดด้ ีที่ pH เป็นกรดอ่อนๆ ถึงเป็นด่าง
อ่อนๆ เช่นเดียวกับธาตุอาหารพืชส่วนใหญ่ ยกเว้นธาตุเหล็ก แมงกานีส สังกะสี ทองแดง และโค
บอลท์ จะอยใู่ นรปู ท่เี ป็นประโยชน์กบั พชื ในสภาพทด่ี นิ เป็นกรดและหากมมี ากจะเกิดอาการเป็นพิษกับ
พืชได้ หลักและวธิ ีการปรบั ปรุงความเป็นกรดของดินโดยทั่วไปทาได้โดยใช้สารที่มีปฏิกิริยาเป็นด่างใส่
ลงไปในดนิ ทใ่ี ชก้ ันมากคอื หินปูน (lime) ชนิดตา่ ง ๆ เชน่ CaO หรอื MgO

จากลักษณะของธาตุท่ีจาเป็นต่อพืชท่ีถูก
ควบคุมด้วยลักษณะหินในแต่ละบริเวณ สามารถ
สรุปเป็นข้อสังเกตง่ายๆได้ว่า หินปูน (limestone)
จะผุพังให้ดินเนื้อแน่นละเอียด มีความเป็นด่างสูง
ประกอบด้วยธาตุแคลเซียม Ca2+ เพียงอย่างเดียว
ทาใหม้ เี พียงพืชตระกลู หญา้ และไผ่เท่านั้นที่สามารถ
เจริญเติบโตได้ดี เน่ืองจากเป็นพืชท่ีเจริญเติบโตได้
ง่ายและไม่ต้องการธาตุอาหารมาก หนิ แกรนิต (granite) จะผพุ ังให้ดินและ/หรือทราย ที่มีธาตุอาหาร
แตกตา่ งกันไปตามสัดสว่ นของควอตซก์ บั แรเ่ ฟลดส์ ปารแ์ ละแร่อ่ืนๆ หากมีสัดส่วนของควอตซ์เยอะจะ
ทาใหด้ ินมีลักษณะปนทราย อมุ้ นา้ ไดไ้ มด่ ี มธี าตุ Si4+ สูงมาก ส่งผลให้พืชในบริเวณน้ันมีลาต้นแข็งแรง
และใบท่ีใหญ่หยาบกร่าน เน้ือผิวของลาต้นและใบขรุขระเนื่องจากปริมาณ Si4+ ที่มากไปสะสมตาม
ผนังเซลล์ กิ่งก้านและใบน้อยเพ่ือควบคุมปริมาณน้าภายในลาต้นให้สมดุลกับดิน แต่ มีสัดส่วนของ
ควอตซ์น้อยกว่าแรอ่ น่ื ๆจะทาใหด้ นิ มลี กั ษณะเนอ้ื แน่นละเอียด มีแร่ดินจานวนมาก สามารถอุ้มน้าหรือ
ดูดซบั น้าไดด้ ี มธี าตอุ าหารท่จี าเป็นตอ่ พชื อยา่ งหลากหลาย ส่งผลให้พชื ในบรเิ วณดงั กล่าวมีลาต้นเรียบ
เนยี นและใบเล็ก กง่ิ กา้ นและใบมากเนือ่ งจากมีปริมาณพอเพียงตอ่ การเจรญิ เติบโต ยงิ่ บรเิ วณที่มีแร่อัล
คาไลน์เฟลด์สปาร์สูง จะมี K+ ซึ่งจาเป็นต่อดอกและผลของพืชทาให้พืชดอกมีสีสันสวยงาม พืชผลมี

ภาควชิ าธรณีวิทยา คณะวทิ ยาศาสตร์ มหาวิทยาลัยเชียงใหม่

หิน แร่ ดิน ต้นไม้ และธรณพี ิบัตภิ ัย ดอยสุเทพ

รสชาตหิ วาน เป็นทน่ี ่าสังเกตในแหลง่ ผลิตลาไย มะขาวหวาน หรือผลไม้ยืนต้นท่ีมีชื่อเสียงในประเทศ

8ไทยขนาดใหญ่จะครอบคลมุ บริเวณท่มี หี ินแกรนติ เป็นหนิ ฐานในบรเิ วณน้ันๆ

5. ธรณีพบิ ัตภิ ัย
ลักษณะเน้ือ (soil texture) เช่น ดินท่ีมีแร่ควอทซ์เป็นองค์ประกอบอยู่มากจะทาให้เกิดดิน

เนื้อหยาบหรอื เป็นดนิ ปนทราย แตถ่ า้ หากมีแรแ่ คลไซต์หรือแร่ดินเป็นองค์ประกอบอยู่มากจะทาให้ได้
ดินเน้อื ละเอียด ซึ่งความตา่ งเหล่านีส้ ่งผลตอ่ การยดึ เกาะกันของเน้ือดินและการควบคุมความสามารถ
ในการดูดยึดน้าของดนิ (water holding capacity) ดินรว่ นหรือร่วนปนทรายจะอมุ้ น้าได้ไม่ดี ระบาย
น้าได้ง่าย ทาให้หน้าดินไม่พงั ทลายเมือ่ มปี รมิ าณนา้ ฝนสูง แต่ดินเน้ือละเอยี ด มีแรด่ นิ และไอออนต่างๆ
เยอะ ทาให้ความสามารถในการยดึ เกาะกนั ดีมากและอุ้มน้าได้ดี เมื่อพ้ืนที่ที่มีดินเป็นลักษณะดังกล่าว
มีปรมิ าณน้าฝนมากจะทาใหเ้ กิดภัยพิบัติเกี่ยวกบั ดนิ ถลม่ ไดง้ า่ ย เนื่องจากหน้าดินอุ้มน้าไว้ปริมาณมาก
และดินยึดเกาะกันไว้ได้ดีเม่ือปริมาณน้าเพ่ิมมากขึ้นเรื่อยๆ หน้าดินจะเสียเสถียรภาพทาให้เกิดการ
พังทลาย เคโอลิไนต์จะมีเสถียรภาพสูงสุดเน่ืองจากไม่มีช่องว่างภายในโครงสร้างแร่ แร่ดินท่ีมี
เสถยี รภาพรองลงมาคอื อลิ ไลต์เน่ืองจากมชี ่องวา่ งในโครงสร้างพอท่ีจะให้ไอออนเข้ามาในโครงสร้างแร่
สว่ นสเมกไทต์จะมีเสถียรภาพน้อยที่สุดเน่ืองจากช่องว่างในโครงสร้างแร่มีขนาดใหญ่ที่สุดพอที่จะให้
โมเลกุลของน้าเขา้ ไปในโครงสรา้ ง

พื้นท่แี หง้ แล้งไร้ซึ่งพืชพันธุ์และป่าไม้นั่นเป็นเหตุเนื่องมาจากดินท่ีไร้ความอุดมสมบูรณ์ มีแร่
ดนิ น้อย มีกรวดและทรายในปรมิ าณมาก เหตนุ ี้จงึ ทาใหม้ กี ารระบายนา้ ไดด้ ี บรเิ วณดังกล่าวจึงไม่เสี่ยง
ต่อการเกิดธรณีพบิ ตั ิภยั ดนิ ถลม่ ส่วนพ้ืนทที่ อ่ี ุดมไปด้วยแรด่ นิ จะเสย่ี งต่อการเกิดดนิ ถล่มแต่เน่ืองจากมี
พันธ์ุไม้ท่ีอุดมสมบูรณ์ช่วยยึดเกาะอนุภาคของตะกอนดินเหล่าน้ันทาให้ภาวะเสี่ยงทาง ธรณีพิบัติภัย
ประเภทนี้น้อยลงมาก แต่เมื่อใดท่ีการตัดต้นไม้หรือทาลายป่าเกิดขึ้นส่ิงยึดเหน่ียวอนุภาคดินให้ยึด
เกาะกนั ได้กจ็ ะหมดไป เม่อื ถงึ ฤดฝู นหรอื น้าหลากธรณีพบิ ตั ภิ ัยดินถลม่ กจ็ ะเกดิ ขนึ้

แบบจาลองลกั ษณะของดินถล่ม ( คัดลอกจาก L.M. Highland and P. Bobrowsky, 2008)

ภาควชิ าธรณีวทิ ยา คณะวทิ ยาศาสตร์ มหาวิทยาลยั เชยี งใหม่

Proceedings Vimoltip Singtuen, Ph.D.

Publication in Thai

1.Phajuy, B. & Singtuen, M. (2015) Cenozoic Volcanic Rocks in the Northern Part of Thailand, Faculty of Sciences CMU News
(in Thai), V. 21, 1-3.

2.Phajuy, B. & Singtuen, M. (2016) Rock Soil Minerals, Vegetable and Geologic Hazards in Doi Suthep-Pui National Park,
Guidebook for Excursion of the 2nd Doi Suthep Symposium (in Thai), 15-16 August, 5-10.

  Publication in English

1.Singtuen, V. & Won-in, K. (2018) Geodiversity and Geoconservation of the Chaiyaphum Region in Thailand for Sustainable
Geotourism Planning. Geojournal of Tourism and Geosites. 22(2), 548–560. https://doi.org/10.30892/gtg.22223-310
(SCOPUS)

2.Singtuen, V. & Won-in, K. (2018) Preliminary Geotourism Study in Ancient Khmer Civilization Area, Buriram Province,
Northeastern Thailand. The Turkish Online Journal of Design, Art and Communication. 8, 1538-1544.
https://doi.org/10.7456/1080sse/206

3.Won-in, K., & Singtuen, V. (2018) Geoheritage Conservation for Sustainable Geotourism in Petrified Wood Forest Park, Tak
Province, Thailand. The Turkish Online Journal of Design, Art and Communication. 8, 1532-1537.
https://doi.org/10.7456/1080sse/205

4.Singtuen, V., & Won-In, K. (2018). Geological Perspective for Geotourism Development in Uthai Thani Province, Thailand.
Journal of Environmental Management and Tourism, 9(5), 1003-1010. https://doi.org/10.14505//jemt.9.5(29).12
(SCOPUS)

5.Singtuen, V. & Won-in, K. (2018) Geoheritage Sites and Geoconservation at Pha Chan - Sam Phan Bok Geopark, Ubon
Ratchathani Province, Thailand. Journal of Geoconservation Research, 2(1), 12-25.
https://doi.org/10.30486/GCR.2019.664490

6.Phajuy, B. & Singtuen, V. (2019) Petrochemical Characteristics of Tak Volcanic Rocks, Thailand: Implication for Tectonic
Significance. Science Asia, 45(4), 350-360. https://doi.org/10.2306/scienceasia1513-1874.2019.45.350 (ISI 0.452)

7.Singtuen, V., Gałka, E., Phajuy, B., Won-in, K. (2019) Evaluation and Geopark Perspective of the Geoheritage Resources in
Chiang Mai Area, Northern Thailand. Geoheritage 11. 1955–1972. doi:10.1007/s12371-019-00410-0 (ISI 2.597)

 
ORAL PRESENTATION

1.Singtuen, M. & Phajuy, B. (2015) Petrogenesis of Mafic Dikes in the Ban Chun Area, Tambon Chun, Chun District, Phayao
Province, Full Paper Proceeding in Geoindo, 23-24 November, 59.

2.Phajuy, B. & Singtuen, M. (2016) Lithology Petrography and Geochemistry of Limestone for Lime Industry Ban Pong, Hang
Dong District, Chiang Mai Province, Abstract Proceeding in 2nd Doi Suthep Symposium, 15-16 August, 11.

3.Singtuen, M. & Won-in, K. (2017) Geotourism and Sustainable Development Perspectives of the Khao Phra Wihan National
Park on the Southern Edge of the Khorat Plateau, Thailand, Full Paper Proceeding in Description 8th International
Conference on Environment, Agriculture, Biology and Natural Sciences, 25 December, 35-41.

4.Singtuen, V. & Won-in, K. (2018) An Assessment of the Potential Island for Geotourism Value in Ko Kham Undersea Park,
Chonburi, Gulf of Thailand, Full Paper Proceeding in “Regional Geoheritage Conference 2018”, 3 April, 11-18.

 
POSTER PRESENTATION

1.Singtuen, M. & Phajuy, B. (2015) Geological Map of Ban Cham Khi Mod, Tambon Sribuaban, Mueang Lamphun District,
Lamphun Province, Abstract Proceeding in 10th the Institute for the Promotion of Teaching Science and Technology, 19
June, 38.

2.Singtuen, M. & Phajuy, B. (2016) Geochemistry and Tectonic Significance of Andesitic Rocks in Tak Province, Thailand, Full
Paper Proceeding in 52nd CCOP Annual Session “Geoscience for the Society”, 1 November, 65-74.

3.Singtuen, M. & Phajuy, B. (2017) Petrography and Geochemistry of Felsic Extrusive Rocks in Southern Part of the Chiang
Khong – Lampang –Tak Volcanic Belt, Thailand, Full Paper Proceeding in 6th International Graduate Research Conference,
9-10 February, 27-32.

4.Singtuen, V., Gałka, E., Won-in, K., And Phajuy, B. (2019) The Potential of Post-mining Management as a Sustainable
Geopark in Thailand- A Case Study From the Muskauer Faltenbogen/ Łuk Mużakowa Unesco Global Geopark, Central
Europe. Abstract Proceeding in International Conference On Biodiversity, 22-24 May, 376.

M.S. in Geology, Chinag Mai University
Ph.D. in Earth Science and Technology, Kasetsart University
Non-Degree

Publication 2015-2019

GeoJournal of Tourism and Geosites Year XI, vol. 22, no. 2, 2018, p.548-560
ISSN 2065-0817, E-ISSN 2065-1198 DOI 10.30892/gtg.22223-310

GEODIVERSITY AND GEOCONSERVATION OF THE
CHAIYAPHUM REGION IN THAILAND

FOR SUSTAINABLE GEOTOURISM PLANNING

Vimoltip SINGTUEN

Department of Earth Sciences, Faculty of Science, Kasetsart University, 50 Phahon Yothin Rd.,
Khwaeng Lat Yao, Chatuchak, Bangkok10900 Thailand, e-mail: [email protected]

Krit WON-IN*

Department of Earth Sciences, Faculty of Science, Kasetsart University, 50 Phahon Yothin Rd.,
Khwaeng Lat Yao, Chatuchak, Bangkok10900 Thailand, e-mail: [email protected]

Citation: Singtuen, V., & Won-In, K. (2018). GEODIVERSITY AND
GEOCONSERVATION OF THE CHAIYAPHUM REGION IN THAILAND FOR
SUSTAINABLE GEOTOURISM PLANNING. GeoJournal of Tourism and Geosites.
22(2), 548–560. https://doi.org/10.30892/gtg.22223-310

Abstract: Chaiyaphum region in the westernmost edge of Khorat Plateau is the
most famous natural land of northeastern Thailand. There are many spectacular
landforms such as cliffs, pillar or pedestal rocks, and cascades. The selected
geosites are located in Pa Hin Ngam, Sai Thong, Tat Ton and Phu Laen Kha
National Parks and are covered by the Jurassic-Cretaceous (50-100 Ma) clastic
sedimentary rocks of the Phra Wihan Formation, Khorat group. Based on
geodiversity, scope and their values (scientific, tourism, natural, and aesthetic
values) which are analyzed from field investigation data suggest this area is a highly
valuable part for geotourism development. Promoting geotourism will help tourists
understand the geological processes and realize the importance of the
geomorphological heritage conservation. This research is the first step of
geotourism announcement of the studied area, which is a powerful tool for
sustainable economic and scientific development at both local and national scale.

Key words: Geodiversity, Geoconservation, Geotourism, Chaiyaphum, Thailand,
Sustainable Development

******

INTRODUCTION
The spectacular landforms, valuable Earth materials and rare geological
phenomena can be tourism attractions all around the world. The values include scientific,
aesthetic, economic, historical, cultural and functional values of the geoheritage.
Geological concepts are developed from the potential geological attractions that focus on
characteristic geological features (Gray, 2005; GSA, 2012; Nazaruddin, 2016). The

* Corresponding author

http://gtg.webhost.uoradea.ro/

Geodiversity and Geoconservation of the Chaiyaphum Region
in Thailand for Sustainable Geotourism Planning

geotourism is referred to as a form of tourism, which focused primarily on the geology
and landscape in the natural area (Gray, 2011; Newsome & Dowling, 2010; Hose, 1995,
2000). It is the new trend within the last two decades and promotes geological heritages
and geoscientific knowledge to people (Demarest, 1997; Liebowitz, 1999; Hose, 2008,
2012; Reynard, 2008; Ruban et al., 2010; Henriques et al., 2011; Wimbledon & Smith-
Meyer, 2012; Gray, 2013; Prosser, 2013; Reynard & Coratza, 2013; Ruban, 2015; Brilha,
2016; Neches, 2016; Mikhailenko et al., 2017; Sallam et al., 2017). In addition, it is the
new form of tourism and research in Northeastern Africa, Western Asia, and Southeast
Asia especially Thailand, which will help the economic and scientific development both at
local and national scale (AbdelMaksoud et. al., 2018; Habibi & Ruban, 2017, 2018; Habibi
et. al., 2017; Sallam et. al., 2017, 2018a, 2018b;). These relevant issues in Thailand were
discussed, for instance, by Singtuen and Won-In (2017, 2018). Geotourism can be a threat
to the geoheritage resources, due to its ability to increase visits to this area without
sufficient protective regulations, could eventually mean a ruction of the geosite. However,
an efficiently managed geotourism is a beginning process to sustainable development.

Geosite is any site with the feature or landform that contains significant
geodiversity and indicates these high geodiversity values (Wimbledon, 1996; Komoo,
2004). In 2011, ProGEO defined geosite as an area shows geological features with
scientific values and make people understand the geologic processes and the evolution of
the Earth. In addition, geomorphosites is defined as any site, which particularly applies to
highlights the distinctiveness of scientific and additional values especially
geomorphological interest (Panizza 2001; Reynard et al., 2007). According to many kinds
of research (Ruban, 2005, 2010; Ruban & Kuo, 2010; Neches, 2016), geosite were
identified into 21 types as cosmogenic, economic, engineering, geochemical,
geocryological, geohistorical, geomorphological, geothermal, hydrological and
hydrogeological, igneous, metamorphic, mineralogical, neotectonical, paleogeographical,
paleontological, pedological, radiogeological, sedimentary, seismical, stratigraphical and
structural types. The Chaiyaphum Province means “The Land of Victory” and is the
gateway to northeastern Thailand. The Chaiyaphim region was a small town of the Khmer
Empire in the 12th century and was settled between Angkor and Prasat Singh by Laotians
in 1817. This region is located in the Phetchabun Mountain Range, which was originally
paleo-Tethys between Shan-Thai and Indochina Terranes and closed in Permo-Triassic
Period (Kamvong et al., 2006; Boonsoong et al., 2011). Because this area is a part of the
suture zone, many structures are presented such as faults and folds. It is mostly covered
by Triassic-Tertiary sedimentary rocks of the Khorat Group and Permian Limestone, with
a small amount of Permo-Triassic Volcanic Rocks (Figure1). However, all of the geosites
are located in the Phra Wihan Formation, which is a sedimentary rock formation of the
Khorat Group. These geosites show the uniqueness and rarity of geological features in this
region and have high scientific values. The geosites in the Chaiyaphum region are divided
into three groups such as cliffs, pillars, and cascades that are distributed in 4 National
Parks; (1) Pa Hin Ngam, (2) Sai Thong, (3) Tat Ton, and (4) Phu Laen Kha.

The Phra Wihan Formation comprises fine-coarse grained pale yellow sandstone,
siltstone, mudstone, and conglomerate. They show well-sorted and rounded grain. Most
of the detrital grains in sandstone are quartz. Thick sandstone beds occurred as high cliffs
were deposited in braided stream environment, whereas thinner sandstone beds were
deposited in meandering rivers (Meesook, 2000). Intercalations of siltstone and
mudstone are found mainly in the latter sandstone beds which show little resistance to
weathering and reduced them to small hills. Palynomorphs include Cyathidites sp.,
Classopollis sp., Ballosporites hians, Lycopodiacidites sp., Calamospora sp.,

549

Vimoltip SINGTUEN,
Krit WON-IN

Monosuleites sp.,? Ballosporites sp., Cyclotriletes subgranulatus MADL, Minutosaccus
sp., Chasmatosporites sp., and cf. Anulatizonites indicating a Late Triassic to Early
Jurassic age (Hahn, 1982). There are many fault segments of the Phetchabun Fault Line
and the rocks have different weathering rate, so the sedimentary rocks in the Chaiyaphum
region show many outstanding geologic features for tourist attraction especially "Mo Hin
Khao". This research groups the potential geosites to each national park and describes
them so that the national park can be promoted for ecotourism. There is a strategy to
interpolate the scientific and geological data to each site and to assess the national park in
the value of geoheritage resources. This research for broader publication will help tourists
understand the geological features and realize the importance of conservation.

Figure 1. Location and Geologic map of study area
in Chaiyaphum Province, Thailand (modified from DMR, 2007)

MATERIALS AND METHODOLOGY
The topographic map of the study area scale 1:50000, geologic map of Chaiyaphum
Province, Thailand scale 1:1000,000 and many kinds of literature are studied by the
methodology, which comprises the inventory, characterization, classification and assessment
respectively. First, geosites were identified, inventoried and mapped in the field. The
characterization of geosites was carried out by observations and description of the landform
groups occurrence. The assessment comprises qualitative and quantitative methods. The
qualitative method is the basic assessment, which determines geosite in term of the values
and levels of significance. On the other hand, the quantitative method uses valuing
assessment of the studied geoites. Geosites where than described in terms of attractiveness
and spatial distribution within each national park. Classification details are comprising the
geodiversity, scope and scale of the sites were presented. In addition, SWOT analysis was
performed in order to identify strengths, weaknesses, opportunities, and threats of potential
geosites for geoconservation and geotourism development in the Chaiyaphum Region.
550

Geodiversity and Geoconservation of the Chaiyaphum Region
in Thailand for Sustainable Geotourism Planning

INVENTORY
Based on the previous famous attraction in Chaiyaphum Province, researchers were
identified and mapped the geological sites in the study area. Although this area is popular
and easy to reach, the geoscientific knowledges have never been demonstrated in any
scientific description to educate people. Accordingly, with the theory of Đurović and
Đurović (2010) and Pralong (2005), criteria such as their occurrence, rarity, integrity, and
representativeness of geological features must be taking into consideration for the geosites
identification process. In this study case, the criteria used for geosites identification was
the occurrence, identity, rarity and outstanding. These criteria can be divided geosites in
Chaiyaphum Province into cliffs, pillar or pedestal rock, and cascade. Thailand consists of
many kinds of rock and structural geology and Chaiyaphum is the typically geosite of the
clastic sedimentary rocks. The studied geosites are located in Pa Hin Ngam, Sai Thong, Tat
Ton and Phu Laen Kha National Parks. The study area has the unique sandstone cliff,
which formed by tectonic setting at the western edge of the Khorat Plateau and linked with
the central plain of Thailand. The sedimentary rocks also formed the spectacular cascade,
which is flat, wide and parallel with their sedimentary layer. Moreover, there is the Mo Hin
Khao, which is the only one geosite of pillar rocks of Thailand.

CHARACTERIZATION
The geosite of the Chaiyaphum Region, which is located in the westernmost edge of

Khorat Plateau, consists of the cliff, pillars and cascade. These geosites in Chaiyaphum
Province were classified as geomorphological, sedimentary, stratigraphical and structural
types based on their origin and characteristics of sites (Ruban, 2005, 2010; Ruban & Kuo,
2010; Neches, 2016). Meanwhile, the national park has many other attractions such as

Siam Tulip Fields and Viewpoints (Table 1).

Table1. Information delivery and interpretive strategies
used in geotourism (modified from D. Newsome et al., 2012)

Strategy Pa Hin Ngam Sai Thong Tat Ton Phu Laen Kha
Geosite
Lan Hin Ngam, Sai Thong Tat Ton Cascade, Mo Hin Khao,
Sut Phaen Din Cliff, Cascade, Tat Fah Cascade, Pa Hin Ngam
Thep Phana Cascade Hum Hod Cliff Pha Lang Cascade Chan-Daeng,
Pratu Khlong,
Pha Hua Nak Cliff,
Pha Phae Cliff

Geotails Thung Dok Krachiao- Sai Thong Nature Trails Nature Trails
Nature Trail Cascade- Trail
Geological Pa Hin Ngam,
garden Dok Kra Jiao Field Thung Bua Thung Khlong-
Sawan- Field Chang flower Field

Visitor centers National Park

The Pa Hin Ngam National Park consists of the great unusual rocks such as nail,
large snake and castle, which are identity and rarity geosite in Thailand. These sites are
developed by the geological phenomena, which is a weathering process with different
erosion ratio of sedimentary rock layers (Figure 2a). The Dok Krachiao or Siam Tulips

(a type of wildflower related to ginger) sprout cheery pink and white blooms all over the
area (Figure 2b) during the early rainy season in July. Also, orchids emerge from the
fracture of the rocks, alongside numerous wildflowers in the winter. The Sut Phaendin
is a steep sandstone cliff and connects Mountain range of northeast Regions with the

551

Vimoltip SINGTUEN,
Krit WON-IN

central plain of Thailand (Figure 2c). Curved faces or slickrock slopes on Sut Phaen Din
Cliff are mainly the results of grain-by-grain weathering and erosion, and of the peeling
of thin weathered rinds like the curved faces on cliffs in Monolith Valley, southern
Sydney Basin, Australia (Young et al., 2009). The tourists can enjoy the surrounding
area with the rocks and the panoramic views from the highest viewpoint. In addition,
there is Namtok Thep Pratha, which is a medium-sized cascade and it is the most
beautiful in the rainy season (Figure 2d). Ahnert (1998) divided waterfall into 3 types; 1)
the Niagara type of waterfall 2) Cascade waterfall and 3) Hanging valley waterfall.
Namtok Thep Pratha has the character like the cascade type that he also described it is
the waterfall over several, usually small, step rather than other waterfalls.

Figure 2. The geodiversity of the Pa Hin Ngam National Park; a) Lan Hin Ngam,
b) Thung Dok Krachiao Nature Trail, c) Sut Phaen Din Cliff, and d) Thep Phana Cascade

The Sai Thong Cascade is the highlight of the Sai Thong National Park, which is
located approximately 1 kilometer from the park office (Figure 3a). This is the spectacular
cascade in this region, which is very wide and parallel to their bedding. In this case, the
rocks are divided by layer of sedimentary rocks and almost vertical tectonic joints that
provide the weathering and erosion on surfaces and create the step-like form of the
cascade (Ahnert, 1998). The stream of cascades flows down that has the height of about
100 meters. There is a large field of Dok Krachiao the same as the Pa Hin Ngam National
Park. The tourists can access this field by hiking only and can camp overnight. In
addition, the tourist can see a panoramic view from the Pha Ham Hod cliff, which is a
projecting plate like the Eagle rock in the Royal National Park of Sydney ( Young et al. ,
2009) (Figure 3b). This is one of cliff fascinating of Thailand.

In the case of the Pha Ham Hod Cliff, where the undercut section of sandstone takes
the form of a block or plate projecting from the cliff, rather than a column, its stability can
be more appropriately analyzed by considering it to be analogous to a simple cantilever.
Tensional stress at the junction of the projecting plate and the cliff will again be
determined by the density of the sandstone and the dimensions of the plate (Figure 4). The
552

Geodiversity and Geoconservation of the Chaiyaphum Region
in Thailand for Sustainable Geotourism Planning

stress arises from the load P = 2clp. The density is p, which acts along a moment arm of
length l/2 of a cantilever of thickness 2c (Robinson, 1970). Following the method of
Timoshenko and Goodyer, Robinson (1970) derived the tensile stress acting along the
junction of the plate and the cliff and then rearranged the equation to give a ratio of the
plate dimensions at the critical level at which failure occurs: where σ is the tensile strength.
Assuming a density of 2.3 g/cm3, a tensile strength of 2MPa and letting 2c = 40 m,
Robinson computed a critical length of 34 m for projecting plate in the Navajo Sandstone.

Figure 3. The geodiversity of the Sai Thong National Park; a) Sai Thong Cascade and b) Hum Hod Cliff

l / c = ( 2σ / 3pc ) 1/2 (1)

l
2c

Figure 4. The parameters used in Equation (1), representing
a projecting plate as a cantilever (modified from Young et al., 2009)

The Tat Ton National Park is a part of the Phu Laen Kha Mountain and located
close to the Phu Laen Kha National Park. There are many beautiful cascades such as Tat
Ton, Pha Lang, and Tat Fa, but the Tat Ton cascade is the most famous one in this area
(Figure 5a). The Tat Ton cascade was grouped into the Niagara type of waterfall (Ahnert,
1998), the steep scarp is formed of the very resistant sandstone. The less resistant rocks
are siltstone and mudstone. This type of waterfall is rare in Thailand; however, the Tat
Ton cascade is the representative in this area. On the other hands, the Tat Fa cascade was
grouped into the cascade type like the other previous listing (Figure 5b).

Cascades are geologically formed and represent major interruptions in river flow.
The difference in rock types is the common conditions that gave rise to the cascades. The
streams quickly erode the soft rock layers and steepen their gradient at the rock
boundaries. The river cuts and exhumes a junction that is created between different rock
beds. However, the character of rock formations and the geologic structures can cause the
cascades. The geomorphology of the Northeastern part of Thailand is a high plateau

553

Vimoltip SINGTUEN,
Krit WON-IN

surrounded by a steep escarpment slope. This characteristic landform creates many
cascades and rapids on the rivers. Whereas, the fault movement may encourage the
establishment of a cascade because it can bring hard and soft rocks together. There are
many factors that can make cascade worn away, especially the rapidity of erosion, which
depends on the type of cascade, the height of cascade, the volume of flow, and structure of
rocks involved. The cascade presents downward flow in wide rock plateau, which is a
wonderful view, especially in the rainy season from May to August. The Pha Lang cascade
is far away from the city on the Chaiyaphum-Nong Bua Daeng road approximately 32
kilometers While the Tat Fa cascade is located on the eastern flank of the headquarters
and far away from the central city 25 kilometers on the Chaiyaphum-Kaeng Khro road.

Figure 5. The geodiversity of the Tat Ton National Park - a) Tat Ton Cascade and b) Tat Fah Cascade

The Phu Laen Kha National Park is a mountain in Khao Phang Hoei mountain
range. There are massive jungles and watershed of many streams, which run to join the
Chi River. Cliffs, mountain ridges, stone terraces, and strange rock formations are
fascinating sights. There are many natural trails, which have outstanding rocks such as Pa
Hin Ngam Chan Daeng, Phu Khi, Pa Hin Ngam Thung Khlong Chang flower field, and Pa
Hin Prasat Viewpoint. The most famous attraction of this park is "Mo Hin Khao" that is
the isolated pillars (Figure 6a), which are accessible from the Tat Ton National Park.
Meanwhile, tourists can visit the Pha Hua Nak, which is the highest cliff in this area
(Figure 6b). The road will reach all of the sites as long as you can drive.

The Cliff is a steep sloping rock which is very high, tilting and near vertical. It may
be overhanging from the mountain and stand out in the high land. However, the cliff is
formed as the result of fault movement and the differential resistance of rock. Cliffs are
associated with several rock types such as limestones, sandstones, and gritstones. This
research focuses on the sandstone cliff, which is valleys and around the edges of the
plateau like this area. Isolated pillars of rock are also common at such sites. Throughout
the world, sandstone cliffs and pillars are distinctive features of a sandstone terrain. Many
sandstone cliffs and pillars are undercut towards their bases (Robinson & Williams, 1994).
The layer of soft rock is more readily eroded, leading to the formation of a lowland. The
resistant rock on the top of the layer will become the isolated pillars, which upright above
554

Geodiversity and Geoconservation of the Chaiyaphum Region
in Thailand for Sustainable Geotourism Planning

the new lower plain. The curve slopes on sandstones may be decorated by polygonal
cracking, commonly called ‘elephant skin weathering.’ This form of tessellation should not
be confused with patterns found on benches or platforms due to weathering and widening
of intersecting joints (Young et al., 2009). However, most forms of tessellation are not
related to jointing, being a surface phenomenon, which dies out within a few centimeters
depth, and which follows the curvature of outcrops, even appearing on overhanging faces
such as the surface of Mo Hin Khao and outcrops in the Phu Lan Kha National Park.

Figure 6. The geodiversity of the Phu Laen Kha National Park
a) Mo Hin Khao and b) Pha Hua Nak Viewpoint

CLASSIFICATION

The classification of the potential geosites in Chaiyaphum Region is shown in Table 2.
It focuses on the hypothesis of many researchers such as Gray (2005), Brocx and Semeniuk
(2007) and Đurović and Đurović (2010), and comprises geodiversity, scope and scale.

Table2. Classification of potential geoheritage resources in Chaiyaphum Region

National Park Geological Site Geodiversity a Scope b Scale c

Lan Hin Ngam Rock P, G, STG Small
Medium
Pa Hin Ngam Sut Phaen Din Cliff Rock, landform/ landscape P, G, STR Small
Medium
Thep Phana Cascade Rock, landform/ landscape P, G, STR Medium
Medium
Sai Thong Sai Thong Cascade Rock, landform/ landscape P, G, STR Small
Hum Hod Cliff Rock, landform/ landscape P, G, STR Small
Small
Tat Ton Cascade Rock, landform/ landscape P, G, STR
Small
Tat Ton Tat Fah Cascade Rock, landform/ landscape P, G, STR
Small
Pha Lang cascade Rock, landform/ landscape P, G, STR
Medium
Mo Hin Khao Rock, landform/ landscape P, G, STG
Small
Pa Hin Ngam Chan Daeng Rock P, G, STG

Phu Laen Kha Pratu Khlong Rock P, G, STG

Pha Hua Nak Cliff Rock, landform/ landscape P, G, STR

Pha Phae Cliff Rock, landform/ landscape P, G, STR

P: petrological site, G: geomorphological site, STG: stratigraphic site, STR: structural site
a Gray 2005), b Brocx and Semeniuk 2007; Predrag and Mirela 2010, c Brocx and Semeniuk 2007

555

Vimoltip SINGTUEN,
Krit WON-IN

The geodiversity was divided by Gray (2005), in rocks, minerals, fossils, landforms,
landscape, processes, soil and other resources. In addition, Brocx and Semeniuk (2007)
and Đurović and Đurović (2010) classified the geological sites, including mineralogical,
petrological, structural, stratigraphic, geomorphological, speleological and
hydrological/hydrogeological sites. The scales of geological features comprise regional

scale (>10000 km2), large-scale (>100 km2), medium scale (>1 km2), small-scale (>10000
m2), fine-scale (>1 m2) and very fine scale (<1 mm2) (Brocx & Semeniuk, 2007). The
potential geosites in Chaiyaphum Region are made up of rocks, landform and landscape
features including sandstone hills, cliffs, cascades and pillars. These geosites have the area
between small to medium scales (Brocx & Semeniuk, 2007).

ASSESSMENT
The effective conservation and management depend on the geosite assessment as a

potential resources for geotourism. The SWOT analysis in terms of the strengths,
weaknesses, opportunities, and threats of potential geosite resources was used for
assessment in this research (Table 3). The type of geoheritage conservation is part of the
geoheritage evaluation, which comprises geosite, geomorphosite, geotope, geological

monument, Geopark, National Park and World Heritage Site (Brocx & Semeniuk, 2011;
Nazaruddin, 2015). The National Park is the natural area, which is established in both
land and sea for ecological protection. Furthermore, it is the useful tool to conserve the
integrity of natural systems for the next generations. In addition, the National Park
manages many activities according to the environment and culture of the community,
which have the advantage to the scientific, educational, recreational, and tourism
opportunities. Meanwhile, the UNESCO World Heritage Sites are any cultural and/or
natural sites, which are deemed to be unique and important in the future to the whole
world for conservation. The World Heritage Site made up of cultural heritage sites and

natural heritage sites, which are part of our shared global heritage (Nazaruddin, 2015). All
of these geosites in the research are geoheritage resources, which are located in the
national park of Thailand. These national parks have many rules to protect and conserve
natural sites and geosites. The relatively high geodiversity of the study area makes the
geosites in the Chaiyaphum Region outstanding and valuable.

Table 3. SWOT analysis to evaluate the potential geosite resources
of the study area for conservation and development

SWOT Remark

Strength Good potential for research and education
High aesthetic value of some sites
Weakness Good potential for recreational activities
Opportunity Relatively high geodiversity of the study area
Good accessibility
Threat Good management and protection from National Park
Bad accessibility of some sites
Lack of promotion of the area
Study area is suitable for research and educational activities
Need geological knowledge panels to serve visitors
Suitable for some recreational activities, such as hiking, swimming etc.
Increase the attractiveness of the area and possible development of local community
Cooperation between local authority, university, community, and government
Vandalism

Encroachment on the public land

556

Geodiversity and Geoconservation of the Chaiyaphum Region
in Thailand for Sustainable Geotourism Planning

DISCUSSION FOR GEOTOURISM PLANNING
The examples selected for this research present the method to introduce the
sedimentary geosites to travel industry. There are many interesting landforms in
Thailand, which are managed as geosites. The tourists can focus on rocks and landforms
in typical geosites such as a cliff, pillar and cascade. The travel route map of the potential
geosite resources in Chaiyaphum Province was created in this research (Figure 7).

Figure 7. Travel route of the potential geosite resources in Chaiyaphum Province

However, in the four case study sites, the tourists cannot receive any explanation
on the spot about the geological background. The sedimentary rocks have both soft and
hard layers which are caused by the differential ratio of their erosion. The soft
sedimentary layers are easily eroded, while the hard layers are more resistant to
erosion. In this assumption, the differential erosion ratio of the rock layers creates the
outstanding landform and geomorphology including previously listed geosites. These
study sites are regarded as the local peculiarities, which should have more value to the
geoscientific sites. The accessibility of the four locations is comfortable and the tourists
can walk from the parking areas for nearest distances. Thus, all of the studied areas
have significant aesthetic values, which comprise the exhibitions of rocks and
harmonious cultural-landscapes announcement. However, an important
geomorphological component is still missing. The most visible part of sedimentary
rocks geosites are apparently considered as more landscape curiosities rather than
features of significance. All of the geosites, which are distributed in four national parks
are close to one another. This research provides the geotourism data for planning the
travel route in Chaiyaphum province. The tourists can travel to the Pa Hin Ngam
National Park, Sai Thong National Park, Tat Ton National Park, and Phu Laen Kha
National Park respectively. These four national parks are part of the famous National
Parks in Thailand, which are the natural attraction and advertised as both interesting
and easily accessibility sites. National parks are the geosites and natural sites, with legal
forms to protect these areas for purposes of sustainable aesthetic value. The
information center at the park headquarters advises and helps the tourists. National
Parks are effectively designed with road leading to the developed parking areas and

557

Vimoltip SINGTUEN,
Krit WON-IN

information panels. However, there is no interpretation of the geodiversity and rock
occurrence in the park. Due to their large site and having various geosites, they are
mainly developed as recreation areas. Thus, the tourists frequently visit them for
amusement. Facilities in the national parks include a small hall, viewing points, rock
exhibition, and accommodation. All of the previous listings are the important
components of the travel industry, which can be managed for sustainable development
in the economy, society, earth sciences, and culture of the community.

CONCLUSION
The diverse geological features of the Chaiyaphum Region are essential parts of the
geological heritage. This research studies 4 National Parks and three groups of dominant
geosites, which are the geomorphological features such as cliff, pillar and cascade. It
assumes the erosion and weathering trend of sedimentary rocks which will destroy
geosites and create a way for tourists to understand the geological processes and be aware
of the needed conservation. In the case of pillars, they are exposed to a higher risk of
being destroyed by man- or nature than other landforms. However, the destruction of
these landforms cannot be estimated as the violence of water volume which can destroy
the pattern of cliff and cascade. The edge of Khorat Plateau and the area nearby are well
suitable for geotourism development. Both geoconservation and geotourism can be
encouraged by the established natural protectorate in promoting the new type of tourism
in Thailand, resulting to economic, scientific, and social developments.

Acknowledgements

The authors would like to thank the authorities of the National Park for their
obligingness. Dr. Panu Trivej of the Department of Earth Sciences, Kasetsart University is
thanked for his comments and reviews on the manuscript for English language clarity.
Thanks to the Science Achievement Scholarship of Thailand (SAST) for the funding,
which supported this research.

REFERENCES

AbdelMaksoud, K., M., Al-Metwaly, W., M., Ruban, D., A., & Yashalova, N., N. (2018). Geological heritage under
strong urbanization pressure: El-Mokattam and Abu Roash as examples from Cairo, Egypt. in Journal
of African Earth Sciences, vol, 141, p. 86-93, Elsevier Science, Amsterdam.

Ahnert, F. (1998), Introduction to Geomorphology. Arnold, Routledge, p. 352.
Boonsoong, A., Panjasawatwong, Y., & Metparsopsan, K. (2011). Petrochemistry and tectonic setting of mafic

volcanic rocks in the Chon Daen–Wang Pong area, Phetchabun, Thailand. in Island Arc, Vol, 20, p. 107-
124, Blackwell Publishing Asia, Queensland.
Brilha, J. (2016). Inventory and quantitative assessment of geosites and geodiversity sites: a review. in
Geoheritage, vol, 8, p. 119-134, Springer, Heidelberg.
Brocx, M., & Semeniuk, V. (2007). Geoheritage and geoconservation—history, definition, scope, and scale. in
Journal of the Royal Society of Western Australia Abbreviation, vol, 90, p. 53–80, Royal Society of
Western Australia Inc., South Perth.
Chichester, J., & Gray, M. (2004). Geodiversity: valuing and conserving abiotic nature. John Wiley,
Chichester, p. 508.
Demarest, M. (1997). Understanding knowledge management. in Long range planning, vol, 30, p. 374-384,
Elsevier Science, Amsterdam.
Đurović, P., & Đurović, M. (2010). Inventory of geoheritage sites – the base of geotourism development in
Montenegro. in Geographica Pannonica, vol, 14, p. 126–132, Department of Geography, Tourism and
Hotel Management within the Faculty of Sciences, University of Novi Sad.
Gray, M. (2005). Geodiversity and geoconservation: what, why, and how? in The George Wright Forum, p. 4-
12, The George Wright Society, Michigan.
Gray, M. (2011). Other nature: Geodiversity and geosystem services. in Environmental Conservation, vol, 38,
p. 271-274, Cambridge University Press.

558

Geodiversity and Geoconservation of the Chaiyaphum Region
in Thailand for Sustainable Geotourism Planning

Gray, M. (2013). Geodiversity. Valuing and Conserving Abiotic Nature, Wiley-Blackwell. Chichester, p. 115.
Habibi, T., Golubova, N., V., & Ruban, D., A. (2018), New evidence of highly-complex geological heritage in

Iran: Miocene sections in the Zagros Fold-Thrust Belt. in GeoResJ, vol, 13, p. 96-102, Elsevier
Science, Amsterdam.
Habibi, T., & Ruban, D., A. (2017). Outstanding diversity of heritage features in large geological bodies: The
Gachsaran Formation in southwest Iran. in Journal of African Earth Sciences, vol, 133, p. 1-6, Elsevier
Science, Amsterdam.
Habibi, T., & Ruban, D., A. (2018). Geoheritage of the Neyriz ophiolite-related radiolarite sequence (Cretaceous;
southwest Iran): First report and evaluation in regional and global contexts. in Journal of African Earth
Sciences, vol, 145, p. 227-233, Elsevier Science, Amsterdam.
Hahn, L. (1982). Stratigraphy and marine ingressions of the Mesozoic Khorat Group in Northeastern Thailand.
in Geologische Jahrbuch, vol, 43, p. 7-35, German Geological Survey BGR, Hannover.
Henriques, M., H., Pena dos Reis, R., Brilha, J., & Mota, T. (2011). Geoconservation as an emerging geoscience.
in Geoheritage, vol, 3, p. 117-128, Springer, Heidelberg.
Hose, T., A. (1995). Selling the story of Britain's stone. in Environmental Interpretation, vol, 10, p. 16–17, North
American Press.
Hose, T., A. (2000). Geological Interpretation and Geoconservation Promotion for Tourists. in Barretino, D.,
Wimbledon, W., A., P., Gallego, E. (eds.), Geological Heritage: Its Conservation and Management, Sociedad
Geologica de Espana/Instituto Technologico GeoMinero de Espana/ProGEO, Madrid, p. 127-146.
Hose, T., A. (2008). Towards a history of geotourism: definitions, antecedents, and the future. in Burek, C.,
V., Prosser, C., D., (eds) The history of geoconservation. The Geological Society, London, p. 37–60.
Hose, T., A. (2012). Editorial: geotourism and geoconservation. in Geoheritage, vol, 4, p. 1–6, Springer,
Heidelberg.
Kamvong, T., Charusiri, P., & Intasopa, B., S. (2006). Petrochemical characteristics of igneous rocks from the
Wang Pong area, Phetchabun, North Central Thailand: implication for tectonic setting. in Journal of
Geological Society of Thailand, vol, 1, p. 9-26, Geological Society of Thailand, Bangkok.
Komoo, I. (2004). Geoheritage conservation and its potential for geopark development in Asia – Oceania. in
Leman, M., S., Komoo, I., (eds) Geological heritage of Malaysia (theoritical framework and assessment

of geoheritage), LESTARI UKM, Bangi, p. 221–230.

Liebowitz, J. (1999). Knowledgemanagement handbook. CRC Press, Boca Raton, p. 21.
Meesook, A. (2000). Cretaceous environment of northeastern Thailand. in Cretaceous environment of Asia, vol,

17, p. 207-223, Elsevier Science, Amsterdam.
Mikhailenko, A., V., Nazarenko, O., V., Ruban, D., A., & Zayats, P., P. (2017). Aesthetics-based classification of

geological structures in outcrops for geotourism purposes: a tentative proposal. in Geologos, vol, 23, p.
45–52, Instytut Geologii UAM, Poznań.
Nazaruddin, D., A. (2015). Systematic Studies of Geoheritage in Jeli District, Kelantan, Malaysia. in
Geoheritage, vol, 9, p.19–33, Springer, Heidelberg.
Nazaruddin, D., A. (2016). Geoheritage from the remote rainforest: hidden treasures in the upstream of the
Pertang River, Taman Negara Kuala Koh (National Park). Kelantan, Malaysia, in Environmental Earth
Sciences, vol, 75, p. 1-12, Springer, Heidelberg.
Neches, I., M. (2016). Geodiversity beyond material evidence: Geosite Type based interpretation of geological
heritage. in Proceedings of the Geologists' Association, vol, 127, p. 78-89, Elsevier Science, Amsterdam.
Newsome, D., & Dowling, R., K. (2010). Geotourism: The tourism of geology and landscape. Goodfellow
Publishers Limited, Oxford, p. 246.
Newsome, D., Dowling, R., & Leung, Y., F. (2012). The nature and management of geotourism: A case study of
two established iconic geotourism destinations. in Tourism Management Perspectives, vol, 2, p. 19–27,
Elsevier Science, Amsterdam.
Panizza, M. (2001). Geomorphosites: concepts, methods and examples of geomorphological survey. in Chinese
Science Bulletin, Suppl, 46, p. 4–6, Springer, Heidelberg.
Pralong, J., P. (2005). A method for assessing tourist potential and use of geomorphological sites. in
Geomorphologie: relief, processus, environnement, vol, 3, p. 189–196, revues.org, Paris.
Prosser, C., D. (2013). Our rich and varied geoconservation portfolio: the foundation for the future. in
Proceedings of the Geologists Association, vol, 124, p. 568–580, Elsevier Science, Amsterdam.
Reynard, E. (2008). Scientific research and tourist promotion of geomorphological heritage. in Geografia
Fisica e Dinamica Quaternaria, vol, 31, p. 225–230, Comitato Glaciologico Italiano, Torino.
Reynard, E., & Coratza, P. (2013). Scientific research on geomorphosites. A review of the activities of the IAG
working group on geomorphosites over the last twelve years. in Geografia Fisica e Dinamica
Quaternaria, vol, 36, p. 159–168, Comitato Glaciologico Italiano, Torino.
Reynard, E., Fontana, G., Kozlik, L., & Scapozza, C. (2007). A method for assessing <<scientific>> and
<<additional values>> of geomorphosites, in Geographica Helvetica, vol, 62, p. 148–158, Copernicus
GmbH, Göttingen.

559

Vimoltip SINGTUEN,
Krit WON-IN

Robinson, D., A., Robinson, D., A., Williams, R., B., G., & Robinson, D., A. (1994). Sandstone weathering and
landforms in Britain and Europe. in Robinson, D., A., Williams, R., B., G., (eds) Rock Weathering and
Landform Evolution, Wiley, Chichester, p. 371–392.

Robinson, E., R. (1970). Mechanical disintegration of the Navajo sandstone in Zion Canyon, Utah. Geological
Society of America Bulletin, vol, 81, p. 2799-2806, Geological Society of America, Colorado.

Ruban, D., A. (2005). Geologitcheskie pamjatniki: kratkij obzor klassifikatsionnykh priznakov (Geological
monuments: brief review of classification criteria). Izves-tija Vysshikh Utchebnykh Zavedenij,
Geologija i Razvedka, No, 4, p. 67–69.

Ruban, D., A. (2010). Quantification of geodiversity and its loss. in Proceedings of the Geologists’ Association,
vol, 121, p. 326–333, Elsevier Science, Amsterdam.

Ruban, D., A. (2015). Geotourism — A geographical review of the literature. in Tourism Management
Perspectives, vol, 15, p. 1-15, Elsevier Science, Amsterdam.

Ruban, D., A., & Kuo, I. (2010). Essentials of geological heritage site (geosite) management: a conceptual
assessment of interests and conflicts. in Natura Nascosta, vol, 41, p. 16–31, Gruppo Speleologico
Monfalconese, Gorizia.

Ruban, D., A., Zorina, S., O., & Conrad, C., P. (2010). No global-scale transgressive-regressive cycles in the
Thanetian (Paleocene): evidence from interregional correlation Palaeogeography. in Palaeogeography
Palaeoclimatology Palaeoecology, vol, 295, p. 226-235, Elsevier Science, Amsterdam.

Sallam, E., S., Abd El-Aal, A., K., Fedorov, Y., A., Bobrysheva, O., R., & Ruban, D., A. (2018b). Geological
heritage as a new kind of natural resource in the Siwa Oasis, Egypt: The first assessment, comparison to
the Russian South, and sustainable development issues. in Journal of African Earth Sciences, vol, 144,
p. 151-160, Elsevier Science, Amsterdam.

Sallam, E., S., Fathy, E., E., Ruban, D., A., Ponedelnik, A., A., & Yashalova, N., N. (2018a). Geological heritage
diversity in the Faiyum Oasis (Egypt): A comprehensive assessment. in Journal of African Earth
Sciences, vol, 140, p. 212-224, Elsevier Science, Amsterdam.

Sallam, E., S., Ponedelnik, A., A., Tiess, G., Yashalova, N., N., & Ruban, D., A. (2017). The geological heritage of
the KurkureDungul area in southern Egypt. in Journal of African Earth Sciences, vol, 137, p. 103-115,
Elsevier Science, Amsterdam.

Singtuen, M., & Won-In, K. (2017). Geotourism and Sustainable Development Perspectives of the Khao Phra
Wihan National Park on the Southern Edge of the Khorat Plateau, Thailand, in Proceedings of the 8th
International Conference on Environment, Agriculture, Biology and Natural Sciences (EABNS-2017), p.
35-41, Universal Researchers in Engineering, Bangkok.

Singtuen, V., & won-in, K., (2018). An Assessment of the Potential Island for Geotourism Value in Ko
Kham Undersea Park, Chonburi, Gulf oThailand. in Proceedings of the “Regional Geoheritage
Conference 2018” with the theme “Geoheritages for People”, p. 11-18, Department of Mineral
Resources Thailand, Bangkok.

Wimbledon, W., A. (1996). Geosite—a new conservation initiative. in Episodes, vol, 19, p. 87–88, Geological
Society of Korea, Seoul.

Wimbledon, W., A., P., & Smith-Meyer, S. (2012). Geoheritage in Europe and its Conservation. Uppsala,
Sweden: ProGEO, p. 405.

Young, R., W., Wray, R., A., L., & Young, A., R., M. (2009). Sandstone Landforms. Cambridge University Press, p. 314.
*** (2011). ProGEO - The European Association for the Conservation of the Geological Heritage. Conserving

our shared geoheritage – a protocol on geoconservation principles, Sustainable Site Use,
Management, Field Work, Fossil and Mineral Collecting. 10, p. 32 Geoheritage (2017), vol, 9, p. 19–33.
http://www.progeo.se/progeo-protocol-definitions-20110915.pdf [Accessed on 15 June 2018]
*** (2007). DMR, Geologic map of Chaiyaphum Province, scale 1:1000000 Department of Mineral Resources
Thailand, Bangkok.
*** (2012). GSA, Geoheritage, in Geological Society of America Position Statement, p. 56-58, Washington, DC.

Submitted: Revised: Accepted and published online
24.04.2018 07.09.2018 10.09.2018

560

The Turkish Online Journal of Design, Art and Communication - TOJDAC
ISSN: 2146-5193, September 2018 Special Edition, p.1538-1544

PRELIMINARY GEOTOURISM STUDY IN ANCIENT KHMER
CIVILIZATION AREA, BURIRAM PROVINCE, NORTHEASTERN

THAILAND

Vimoltip Singtuen
Department of Earth Science. Address: 50 Phahon Yothin Rd. Chatuchak. Bangkok. 10900 POBox

1020. Thailand
,KritWon-In*
Department of Earth Science. Address: 50 Phahon Yothin Rd. Chatuchak. Bangkok. 10900 POBox
1020. Thailand, [email protected]

ABSTRACT
Buriram is a province in lower Northeastern Thailand, and its terrain is at the Khorat plateau, which is
created by volcanic activities. Based on the field observation, inventory, and characterization, this area
comprises four volcanoes and two Khmer sandstone geoheritage sites. These volcanoes are covered by
basaltic rock and volcanic bomb, which created the volcanic shield morphology. The most famous
sandstone geoheritage is Prasat Hin Phanom Rung, which has also been submitted for evaluation as a
UNESCO world heritage site. Sandstone and laterite created both Prasat Hin Phanom Rung and Prasat
Mueang Tam under the influence of the Khmer Culture. This sandstone is classified into subarkose and
is grouped in Phra Wihan Formation of the Khorat Group based on the composition. The aims of this
study are making tourists better understanding of the geologic processes and geoconservation.
Moreover, this study is a powerful tool for sustainable development and can promote the geologic and
volcanic monuments, so, this area needs greater conservation.
Keywords: Geotourism, Volcanic Geoheritage, Sandstone Castle, Ancient Khmer Civilization,
Northeastern Thailand

Introduction
Geotourism is going to become an essential touristic activity all around the world, which focuses on the

geology in both local and national level during two decades (Dowling, 2011; Dowling & Newsome, 2010;
Farsani et al., 2014; Gray, 2013; Lazzari & Aloia, 2014). Recently, many countries have introduced programs
to identify and describe their critical geoheritage sites such as Northeastern Africa, Western Asia, and
Southeast Asia especially Thailand (AbdelMaksoud et. al., 2018; Habibi & Ruban, 2017, 2018; Habibi et. al.,
2017; Sallam et. al., 2017, 2018a, 2018b; Singtuen & Won-In, 2017, 2018).

Thailand has many shield volcanoes, have been erupted in thousands of years ago, but now these
volcanoes are extinct (Carbonel et al., 1972; Barr et al., 1976; Fontaine and Workman, 1978). Nowadays,
they look like general mountains exclude volcanoes in Lampang and Buriram, where have perfectly
morphology of volcanoes. Buriram is located in northeastern Thailand and is at the southern end of between
Thailand and Cambodia, which is located at the Sankamphaeng Range and the Dângrêk Mountains. Based
on many pieces of evidence such as traces of human habitation and ancient pottery suggest that Buriram was
a center of the Khmer civilization in 15th to the 18th Buddhist centuries (Walter, 1999). It is also a city rich
in local wisdom and culture. Buriram also has a rich, interesting Khmer Civilization area such as historical
heritage, cultural and natural sites (Freeman, 1996, 1998). The stone sanctuary is the one of the historical
heritage, which remains as architectural masterpieces, which attract both Thai and Foreign tourists (Denes,
2010).
This research is the first stage to encourage geotourism in volcanic and sandstone heritage sites in Thailand
for promoting to international level. Furthermore, it shows that the Ancient castles and died volcanos, a
world-renowned historical and artistic monument, is also a monument of geology and volcanology,
accordingly, these geosites need greater conservation in term of geoconservation for the next generation.
Materials and Methodology

Submit Date: 10.07.2018, Acceptance Date: 22.08.2018, DOI NO: 10.7456/1080SSE/206
Research Article - This article was checked by Turnitin

Copyright © The Turkish Online Journal of Design, Art and Communication

The Turkish Online Journal of Design, Art and Communication - TOJDAC
ISSN: 2146-5193, September 2018 Special Edition, p.1538-1544

This research has many materials, which are the topographic map, geologic map, photographs, field gears
(magnifying loupe and geologic hammer), and literature related to the topic and the study area. Meanwhile,
the methodology comprises a literature review, a travel map creating, field observation, inventory,
characterization, geotourism planning and SWOT analysis. The inventory consists of identification and
mapping of selected geosites. The characterization of geosites is carried out by observing and describing the
landform and rock occurrence in detail. The geotourism planning is the method to interpret and manage the
geosites in the study area for the effective travel industry. The SWOT analysis is used to evaluate the geosite
and is necessary data to plan the strategy for geotourism development.
General Geology

The studied areas are small hills (height 200-300 meters) of the basaltic rocks such as Khao Kradong,
Khao Phanom Rung, Khao Angkhan, and Prasat Mueang Tam area. It also flows above on the Khorat
sedimentary rocks. The Khorat sedimentary rocks in this area comprise Jurassic to Tertiary ages include Phra
Wihan, Sao Khau, Phu Pha, Khok Kruat, and Maha Sarakham Formations. They mainly consist of sandstone
and siltstone, with a small amount of conglomerate (Fig. 1). The basaltic eruption comprises two episodes
which are 1) the Khorat Plateau uplift beginning stage and 2) the Khorat Plateau uplift finish stage
(Jungyusuk and Sirinavin, 1983). These basaltic rocks have age between 0.6–0.7 million years ago which is
the Early Quaternary period (Carbonel et al., 1972; Barr et al., 1976; Fontaine and Workman, 1978).

!
Fig 1: Geologic map of the selected study case in Buriram Province, Thailand (modified from the

Department of Mineral Resources, Thailand, 2007)
Geotourism

This research creates the travel route (Fig. 2). It allows the tourist to experience the significance of the
volcanos and learn the origin of rocks. The Tourists also trek along natural trails on top of these volcanos
(Fig. 3). Then observe the grateful of sanctuary including Prasat Hin Phanom Rung and Prasat Mueang Tam.
Next, admire the conservation
of community forests and local wisdom in the production of Phu Akkhani, the Fire Mountain textile

!
Fig 2: a) Travel route of the basaltic geosite resources and historical sites in Buriram Province and b) Google

Earth image of Buriram Province, showing the location and morphology of volcanoes
at Ban Charoen Suk. All these geotourism offered on the route tell stories about the origins of the volcanoes,
expansion of the ancient Khmer Empire, the emergence of communities and significant historical sites, and
efficient utilization of natural resources for sustainability. Although the geosites are far from the Buriram city
center, there is excellent accessibility for the travelers. In addition, to emphasize its richness in cultural
heritage, there are crafts like silk and Na Pho Mudmee (woven materials). Currently, Buriram has a famous
football stadium and international motorsport race track, where many tourists already visit.

Submit Date: 10.07.2018, Acceptance Date: 22.08.2018, DOI NO: 10.7456/1080SSE/206
Research Article - This article was checked by Turnitin

Copyright © The Turkish Online Journal of Design, Art and Communication

The Turkish Online Journal of Design, Art and Communication - TOJDAC
ISSN: 2146-5193, September 2018 Special Edition, p.1538-1544

Volcanic Feature
There are four outstanding shield died volcanoes in Buriram Province (Fig. 2b), which are Khao Kradong

(14.9406oN 103.0930oE), Khoa Phanom Rung (14.5528oN 102.9495oE), Khao Akkhani (14.5353oN
102.8343oE), and Khoa Bud Plai (14.4812oN 102.9681oE). They usually built almost entirely of fluid lava
flows and showed their low profile, which is similar to shield lye on the ground (Fig. 3a). The morphology of
shield volcanoes is due to the low viscosity of their mafic lava, and this results in the steady accumulation of
sheets of lava, building up the shield volcanoes distinctive form. The crater of the volcanoes is full of water,
which is accumulated during the rainy season (June-September) in Thailand, so the tourist finds are difficult
to find the crater (Fig. 3b). The mafic volcanic feature comprises basaltic rocks (Fig. 3c), basaltic flow, and
volcanic bomb (Fig. 3d). They show very fine-grained extrusive texture and have black color in the surface.
In Phu Akkhani volcano; the investor creates the basalt quarry for the construction in Northeastern Thailand
(Fig. 3e). In this case, it has a risk of being destroyed by man-destruction more than another factor.
Sandstone Geoheritage
The famous sandstone geoheritage of Buriram Province are the ancient Khmer castles including Prasat Hin
Phanom Rung (Fig. 4a) and Prasat Mueang Tam (Fig. 4b). Both sandstone and laterite are selected for
creating these Ancient Khmer castles (Fig. 5). The field observation suggests that the Prasat Hin Phanom
Rung and Prasat Mueang Tam have a similar pattern of construction and geologic materials selection. The
sandstone blocks are selected to create the door, window, roof, internal wall and decorative engraving.
Meanwhile, the laterites are selected to build the base of the castle and external wall.

!
Fig.3: The volcanic feature of Buriram Provine; a) the volcanic morphology, the crater of Khao Kradong

volcano, c) basaltic lava flow, d) volcanic bomb, and e) basaltic rocks quarry

Submit Date: 10.07.2018, Acceptance Date: 22.08.2018, DOI NO: 10.7456/1080SSE/206
Research Article - This article was checked by Turnitin

Copyright © The Turkish Online Journal of Design, Art and Communication

The Turkish Online Journal of Design, Art and Communication - TOJDAC
ISSN: 2146-5193, September 2018 Special Edition, p.1538-1544

!
Fig.4: Sandstone Geoheritage of Buriram Province; a) Prasat Hin Phanom Rung and b) Prasat Mueang Tam

!!
Fig.5: The Prasat Hin Phanom Rung Castle; a) sandstone for the door creating, b) sandstone for the window

construction, c) sandstone with arch position, and d) laterite in partition part
Prasat Hin Phanom Rung is located on an extinct Phanom Rung volcano, while Prasat Mueang Tam is
located near Khoa Bud Plai volcano. They are a Hindu shrine, built in dedication to Shiva, and symbolizes
Mount Kailash, his heavenly dwelling (Chandler, 2000; Mabbett & Chandler, 1995; Nidhi, 1976). These
days they are open to the public, in the Phanom Rung historical park. Prasat Hin Phanom Rung has also been
submitted for evaluation as a UNESCO world heritage site.
Based on the research of department of Fine Art Thailnad (1996), these sandstone geoheritages are
constructed from sandstone quarried from Ban Kruat District, which is located on the southern flank of this
province on 14.3648oN 103.0852oE (Fig. 6). The sandstone is a part of the Phra Wihan Formation of the
Khorat Group and shows white-pink color, medium-grained size, subangular to sub-round in shape, medium
sorting, and ferrogenous cement (Fig. 7). There are many quartz gravels, which are approximately 2-6
millimeters across and show cross-bedding in the sedimentary structure part. Its sand grains consist mainly
of 80 % quartz, subordinated with 15% feldspar and 5 % rock fragments and with a small amount of mica
and opaque mineral. It is classified to subarkose based on sandstone classification of Pettijohn (1975).

!
Fig.6: The Ancient Sandstone Quarry of Ban Kruat District, Buriram Province
Submit Date: 10.07.2018, Acceptance Date: 22.08.2018, DOI NO: 10.7456/1080SSE/206

Research Article - This article was checked by Turnitin
Copyright © The Turkish Online Journal of Design, Art and Communication

The Turkish Online Journal of Design, Art and Communication - TOJDAC
ISSN: 2146-5193, September 2018 Special Edition, p.1538-1544

Fig.7: Sandstone of the Phra Wihan Formation of the Khorat Group
In the case of laterite, no one has data of the origin, but this material is taken from Prachin Buri Province
in the southern part of the study area for restoration in recent. The laterites in the study area show light-
brown color and have many pores. They contain fine-grained sediments and no large-sized gravels.
Provision for Tourism
The Phanom Rung historical park is an international historical attraction, advertised as a famous site and
comfortable access. Other sites also easy to reach by graded field road and have good management by local
and national government. However, there is not the interpretation of landform diversity and origin of rocks in
the study area. Due to its large size and the development of the national park, the outdoor recreation ground
is frequently visited. There are many facilities such as a small hall, viewing point, and accommodation
including tent and room. The tourist information center and map always provide the data and location of the
sites in the park. The park can be visited through year-round, but the phenomena of sunray through15 doors
in the Phanom Rung historical park occur four times each a year. The tourists can see the sunrise pass
through 15 doors on 3-5 April and 8-10 September. From 5-7 March and 6-8 October, they also can see the
sunset. The tourist can see the morphology and perfect shape of the shield volcanoes when driving on the
road. In addition, these geosites and historical sites are managed to mix with the natural sites. Local people
manage the external accommodation and restaurants present in many places near these studied sites.
SWOT Analysis
The SWOT analysis is used to evaluate the geosite in this research. In addition, it is a useful tool for
management planning, which takes into consideration many factors. The SWOT analysis is the methodology,
which focuses on the strength, weakness, opportunity, and threat of the selected study area. Table 1 lists the
SWOT analysis of the geosite for conservation and development. The data from this method can make the
geosite stand out in the strength and opportunity. Whereas, it can also control and decrease the factor of the
weakness and threat. Consequently, Buriram has high potential in both geological and historical sites for
research and public education. Moreover, it has a high aesthetic and cultural value, which makes the area
more attractive. If the government can protect the threat and promote this geosite, Buriram will establish
itself and be of great benefit to Thailand. We also apply this data to sustainable development and
management to conserve the geosite for the future generations. The government should support the financial
for practicing the local people cooperating with the local authority in term of the geoscientific knowledge,
guide training, local business management (accommodation and restaurant), and souvenir shop development.
Moreover, the local authority should solve two issues that are Lack of promotion of the area and Lack of the
public transportation. Public transportation needs to increase the number of bus, van, or car for facilitating
tourists to reach the attractions and geosites. They should also improve the advertisement chance to promote
the area such as social media, advertising panels in Buriram city center and billboards on the public
transportation. This research will motivate Thai and foreign geologists, volcanologists, geoheritage
researchers, and geotourists traveling to northeartern Thailand to include Buriram city in their itinerary.
Table 1: SWOT analysis to evaluate the study area for conservation and development

S: Strength
• Good management and protection from National Park
• A high aesthetic value such as viewscape, nature, and Khmer civilization
• Many information panels to serve visitors
• High cultural value of aboriginal people
• Some sites have historical and economic values
• Good accessibility

Submit Date: 10.07.2018, Acceptance Date: 22.08.2018, DOI NO: 10.7456/1080SSE/206
Research Article - This article was checked by Turnitin

Copyright © The Turkish Online Journal of Design, Art and Communication

The Turkish Online Journal of Design, Art and Communication - TOJDAC
ISSN: 2146-5193, September 2018 Special Edition, p.1538-1544

W: Weakness
• Lack of promotion of the area
• Lack of the public transportation

O: Opportunity
• The study area is suitable for research and educational activities
• Promotion can increase the attractiveness of this area and bring the possibility of
development of the local community
• Cooperation between the local authority, university, and community

T: Threat
• Encroachment on the public land for industry

Conclusion
The study area is a land of volcanoes and ancient Khmer civilization sites, which make it valuable as

historical and geological attractions. The study area consists of four shield volcanoes, which are Khao
Kradong, Khoa Phanom Rung, Khao Akkhani, and Khoa Bud Plai. The volcanic feature in this area
comprises basaltic rocks, basaltic flow, and volcanic bomb. There are two Ancient Khmer castles including
Prasat Hin Phanom Rung and Prasat Mueang Tam. The subarkosic sandstone and laterite are selected to
create in both castles. The subarkosic sandstone is a part of the stratigraphy of Phra Wihan Formation,
Khorat Group and took from the Ban Kruat District, the southern flank of Buriram Province. The travel route
is created for geotourism promoting and sustainable developments in Buriram Province. In addition, this
research will help tourists understand the geological processes and realize the important of the
geomorphological heritage conservation.
Acknowledgment

The authors would like to thank Alan Leslie Welburn for his reviewing the manuscript for English
language clarity. The authorities of the National Park is thanked for their consideration. The Science
Achievement Scholarship of Thailand (SAST) supported partial funding for this research.

References
AbdelMaksoud K. M., Al-Metwaly W.M., Ruban D.A. and Yashalova N.N. (2018) Geological heritage under

strong urbanization pressure: El-Mokattam and Abu Roash as examples from Cairo, Egypt. Journal of
African Earth Sciences, 141, 86-93.
Asama K. (1973). Some younger Mesozoic plants from the Lom Sak Formation, Thailand. In T. Kobayashi
and R. Toriyama (eds.), Geology and Palaeontology of Southeast Asia, Tokyo University Press, Japan.
39-46.
Barr S.M. and MacDonald A.S., Haile N.S., and Reynolds P.H. (1976) Palaeomagnetism and age of the
Lampang basalt (Northern Thailand) and age of the underlying pebble tools: J. Geol. Soc. Thailand, v. 2;
no. 1 and 2; p. 1-10.
Carbonel J.P., Duplaix S. and Selo M. (1972) La methode desse traces de fission de l’uranium appliquee a la
geochronologie, datation du magmatisme recent de l’Asie du Sudest. Reuu De Geographic Physique Et
De Geologic Dynamique, 14; 29-46.
Chandler D. (2000) A History of Cambodia. Third edition. Boulder: Westview Press.
Denes A. (2010) Mapping Living Heritage at the Phanom Rung Historical Park Journal of the Siam Society,
100; 225-255.
Dowling R. and Newsome D. (2010) Geotourism: A global activity. In R. Dowling, & D. Newsome (Eds.),
Global geotourism perspectives. 1–17.
Farsani N.T., Coelho C.O.A., and Costa C.M.M. (2014) Analysis of network activities in geoparks as
geotourism destinations. International Journal of Tourism Research, 16; 1–10.
Fontaine H., Workman D.R. (1978). Review of the geology and mineral resources of Kampuchea, Laos and
Vietnam. In: Nutalaya, P. (Ed.), Proceedings of the Third Regional Conference on Geology and Mineral
Resources of Southeast Asia. Asian Institute of Technology, Bangkok. 541–603.
Freeman M. (1996) Khmer Temples in Thailand and Laos. Bangkok: River Books.
Freeman M. (1998) Prasat Panom Rung and Muang Tam. Bangkok: River Books.
Gray M. (2013). Geodiversity. Valuing and conserving abiotic nature. Chichester: Wiley-Blackwell, 495 pp.
Habibi T. and Ruban D.A. (2017) Outstanding diversity of heritage features in large geological bodies: The
Gachsaran Formation in southwest Iran. Journal of African Earth Sciences, 133, 1-6.

Submit Date: 10.07.2018, Acceptance Date: 22.08.2018, DOI NO: 10.7456/1080SSE/206
Research Article - This article was checked by Turnitin

Copyright © The Turkish Online Journal of Design, Art and Communication

The Turkish Online Journal of Design, Art and Communication - TOJDAC
ISSN: 2146-5193, September 2018 Special Edition, p.1538-1544

Habibi T. and Ruban D.A. (2018) Geoheritage of the Neyriz ophiolite-related radiolarite sequence
(Cretaceous; southwest Iran): First report and evaluation in regional and global contexts. Journal of
African Earth Sciences, 145, 227-233.

Habibi T., Golubova N.V. and Ruban D.A. (2018) New evidence of highly-complex geological heritage in
Iran: Miocene sections in the Zagros Fold-Thrust Belt. GeoResJ, 13, 96-102.

Jungyusuk N., and Sirinavin T. (1983). Cenozoic Basalts of Thailand. Conference on Geology and Mineral
Resources of Thailand, Bangkok, 19-28 November.

Lazzari M. and Aloia A. (2014). Geoparks, geoheritage, and geotourism: Opportunities and tools in
sustainable development of the territory. Geojournal of Tourism and Geosites, 13; 8–9.

Mabbett I. and David Ch. (1995) The Khmers. Oxford and Cambridge: Blackwell.
Nidhi A. (1976) “The Devaraja Cult and Khmer Kingship at Angkor” In Explorations in Early Southeast

Asian History: The Origins of Southeast Asian Statecraft, edited by Kenneth R. Hall and John K.
Whitmore, 107-148.
Pettijohn F.J. (1975) Sedimentary rocks, third edition: New York, Harper & Row, 628 p.
Sallam E.S., Abd El-Aal A.K., Fedorov Y.A., Bobrysheva O.R. and Ruban D.A. (2018b) Geological heritage
as a new kind of natural resource in the Siwa Oasis, Egypt: The first assessment, comparison to the
Russian South, and sustainable development issues. Journal of African Earth Sciences, 144, 151-160.
Sallam E.S., Fathy E.E., Ruban D.A., Ponedelnik A.A. and Yashalova N.N. (2018a) Geological heritage
diversity in the Faiyum Oasis (Egypt): A comprehensive assessment. Journal of African Earth Sciences,
140, 212-224.
Sallam E.S., Ponedelnik A.A., Tiess G., Yashalova N.N. and Ruban D.A. (2017) The geological heritage of
the KurkureDungul area in southern Egypt. Journal of African Earth Sciences, 137, 103-115.
Siever R., and Scott R. A. (1963). Organic geochemistry of silica: In Breger, I. A. (Editor): Organic
Geochemistry. Oxford, London, New York, Paris, 579-595.
Singtuen M. and Won-In K. (2017) Geotourism and Sustainable Development Perspectives of the Khao Phra
Wihan National Park on the Southern Edge of the Khorat Plateau, Thailand. Proceedings of the 8th
International Conference on Environment, Agriculture, Biology and Natural Sciences (EABNS-2017),
Bangkok. 35-41.
Singtuen V. and won-in K. (2018) An Assessment of the Potential Island for Geotourism Value in Ko Kham
Undersea Park, Chonburi, Gulf of Thailand. Proceedings of the “Regional Geoheritage Conference
2018” with the theme “Geoheritages for People”, Bangkok. 11-18.
Walter E.J. (1999) Khmer Heritage in Thailand. Bangkok: White Lotus.

Submit Date: 10.07.2018, Acceptance Date: 22.08.2018, DOI NO: 10.7456/1080SSE/206
Research Article - This article was checked by Turnitin

Copyright © The Turkish Online Journal of Design, Art and Communication

The Turkish Online Journal of Design, Art and Communication - TOJDAC
ISSN: 2146-5193, September 2018 Special Edition, p.1532-1537

GEOHERITAGE CONSERVATION FOR SUSTAINABLE GEOTOURISM IN
PETRIFIED WOOD FOREST PARK, TAK PROVINCE, THAILAND

KritWon-In *
Department of Earth Science. Address: 50 Phahon Yothin Rd. Chatuchak. Bangkok. 10900 POBox 1020.

Thailand; [email protected]
Vimoltip Singtuen

Department of Earth Science. Address: 50 Phahon Yothin Rd. Chatuchak. Bangkok. 10900 POBox 1020.
Thailand

ABSTRACT
The Ban Tak Petrified Wood Forest Park is the most extensive Petrified Wood Park of Thailand, where is
discovered the most significant ancient tree fossil of Asia. The aim of this study for determining the age and
interpretation in paleoenvironment of both sediments and the petrified wood. The stratigraphic column
suggests they have six sediment layers and these fossils were found in gravel layer. The layer of gravel
graded to fine sediments depends on the water flow in the river at humid paleo-environment. The
Thermoluminescence age dating data suggest that these ancient trees grew for a long time (120,000-130,000
years ago) before subversion and deposited during 20,000-53,000 years ago. These fossils are rare geologic
materials and have high value for appropriate conservation. Geotourism is the best tool for promoting this
geoheritage and other geosites near this park include Lan Sang Waterfall, Ping River, Pha Sam Ngao, and
Bhumibol Dam. This study is educating people to realize and obey and to follow the rule of park
headquarters for geoconservation by understanding the geologic process of the petrified wood and geosite in
Tak. Also, both the economy and society in this town can develop by effectively geotourism management.

Keywords: Petrified Wood, Geoheritage, Geotourism, Tak Province, Thailand

Introduction
Petrified wood is the type of fossil of terrestrial plants, which is the result of permineralization in

petrification process. The elements in the water make these trees to completely transitioned to stone
underground when they buried under sediments (Murata, 1940; Siever and Scott 1963). There are many
reports about the petrified wood in Thailand. The oldest petrified wood in Thailand is Triassic age and
discovered in Kuchinarai district, Kalasin Province. It is defined that pine in Araucarioxylon sp. by Asama
(1973) and scattered in Sedimentary rocks of Mesozoic Era in Northeast Thailand. A local museum has been
constructed because of the petrified wood discovery in Nakhon Ratchasima; after that, it is managed by the
Northeastern Research Institute and Museum of Petrified Wood and Mineral Resources (In Honour of His
Majesty of King), Nakhon Ratchasima Rajabhat University (Jintasakul et al., 2014).

The largest petrified wood of Thailand is cover approximately 30 square kilometers that are found in the
Ban Tak Petrified Forest Park, Ban Tak District, Tak Province. Based on field observations that suggest this
fossil is deposited in Quaternary sediments layer, which is gravel of the Ping River (Kyriazi et al., 2015). In
addition, there are many petrified kinds of wood protruded in the surface; eight ancient trees are found form
7 sites for exhibition and tourism development. Songtham et al. (2011) studied and described these petrified
wood that is 6 Koompassioxylon elegans and 2 Pahudioxylon species. All data of these petrified woods and
the one biggest ancient tree make this park the most significant petrified wood resources of Thailand.

The tourist in Thailand is not interested Geotourism during it is very rapid development all over the
world. Geotourism is the new type of tourism industry, which manage the geosite for exhibition and
attraction without add human-made objects. The geosite should be harmonious interweave with nature and
culture. This research is promoting the data of these fossils in geoscientific and geotourism to make people
understand the geologic processes and care of the conservation.
General Geology

The geology of the study area is the result of the present field observations and the previous works
(Piyasin, 1974). Tak Province consists of many rock features such as Permo-Triassic volcanic rocks (PTrv),
Triassic granitoid rocks (gr), Leucogranite (Igr), Pre-Cambrian metamorphic rocks (p∈sch), Triassic clastic
sedimentary rocks (Trl), Quaternary terrace sediments (Qt), and Quaternary river sediments (Q). However,

Submit Date: 10.07.2018, Acceptance Date: 22.08.2018, DOI NO: 10.7456/1080SSE/205
Research Article - This article was checked by Turnitin

Copyright © The Turkish Online Journal of Design, Art and Communication

The Turkish Online Journal of Design, Art and Communication - TOJDAC
ISSN: 2146-5193, September 2018 Special Edition, p.1532-1537

the Petrified Wood Forest Park comprises two rock units; Quaternary River and terrace sediments (Fig.1). It
is at the eastern flank of the Ping River that flows in NW to SE direction that is controlled by Mae Ping
Fault. The Quaternary sediments are interesting for a geologist, who suggest that these sediments transported
the petrified wood to deposit here.

!
Fig.1: Geologic map of the Petrified Wood Forest Park, Ban Tak District, Tak Province, Thailand (Modified

from Piyasin, 1974).
Paleoenvironment

Paleoenvironment of the Petrified Wood Forest Park can interpret from a stratigraphic column of the
study area. This study selected to logging in 7 sites include Pha Sam Ngao Cliff, Sub Maidaeng Reservoir,
first, fourth, fifth, sixth, and seventh petrified woods. The study area is covered by river and terrace
sediments from the Ping River. It mostly consists of gravel, subordinate to sand, and with a small amount of
clay (Department of Mineral Resources, 2017). These grain size of sediments can interpret the energy
stream, which transported them in the past. The big grained size is flowed by high energy current, on the
other hand, low energy flows the small size. The Ban Tak area has six layers of gravel when counting the
elevation in both the park and cliff, but the Petrified Wood Park present 1-2 layers (Fig.2). The petrified
wood deposited in the gravel layer suggesting both gravel and the petrified wood transported by the high
velocity of stream current. Each layer of gravel graded to fine sediments suggests that this area was the
humid environment, where had alternating low and high energy current.
Age

This research selected Thermoluminescence dating for the age of sediment and petrified wood. There are
five samples of sediment in petrified wood sites (A0948, A0949, A0950, A0951, and A0952), two samples of
outside the park (A0953 Pha Sam Ngao Cliff and A0954 Sub Maidaeng reservoir), and two samples of
petrified wood (A0955 and A0956).

!
Fig.2: The stratigraphic column of the study area (modified from the Department of Mineral Resources,

2017)
The samples are prepared and experimental in the Thermoluminescence Lab, Department of Earth
Sciences, Kasetsart University.
Based on the thermoluminescence dating can interpret their age of sample followed by Table 1. The
petrified wood, which is the ancient tree aged approximately 120,000-130,000 years ago, and older than the
sediment samples. The sediment in the first, fourth, and fifth petrified wood site has an age of about

Submit Date: 10.07.2018, Acceptance Date: 22.08.2018, DOI NO: 10.7456/1080SSE/205
Research Article - This article was checked by Turnitin

Copyright © The Turkish Online Journal of Design, Art and Communication

The Turkish Online Journal of Design, Art and Communication - TOJDAC
ISSN: 2146-5193, September 2018 Special Edition, p.1532-1537

50,000-53,000 years ago. On the other hand, the 6th, 7th, and sediment in outside have age in 20,000-23,000
years ago. The age dating data suggest that these ancient trees grew for a long time before subversion and
deposited during 20,000-53,000 years ago.

Table 1: Age dating of petrified wood and gravel in the study area by Thermoluminescence, TL

Sample AD(mGy/a) rPD TL age(a)
(Gy)

A0948 3.990 215 53,882 + 5,523

A0949 3.374 180 53,355 + 5,469

A0950 5.248 265 50,497 + 5,176

A0951 4.507 107 23,741 + 2,433

A0952 3.903 89 22,801 + 2,337

A0953 4.212 93 22,079 + 2,263

A0954 3.375 66.7 19,763 + 2,026

A0955 3.990 515 129,067 + 13,229

A0956 3.903 470 120,410 + 12,342

Geoheritage Conservation
Ban Tak Petrified Forest Park is the most extensive petrified wood in Asia. It is a local geosite attraction,

advertised as a site of interest and easy to reach by route 1 Highway. The park covers an area of 30 square
kilometers and presents the five outdoor exhibitions of the petrified woods that the tourist can follow by trail
map in Fig. 3.

!
Fig.3: Trail map of the Ban Tak Petrified Wood Forest Park
The longest petrified wood measures 2 meters in diameter and 72.22 meters long that is the famous
geoheritage in Thailand (Fig.4). It is the most massive petrified wood ever discovered in Asia and the most
extended worldwide (Kyriazi et al., 2015). Petrified wood is buried in layers of sediments probably
accumulated during the Quaternary Period. From the circulation of alluviums, as appeared, the petrification
likely occurred around the alluvial fan area of the ancient Ping River. Tens of petrified wood were found
during geological explorations and displayed at the tourist attractions. These fossils are rare geologic
materials and have high value for appropriate conservation. The announcement of this geosite for geotourism

Submit Date: 10.07.2018, Acceptance Date: 22.08.2018, DOI NO: 10.7456/1080SSE/205
Research Article - This article was checked by Turnitin

Copyright © The Turkish Online Journal of Design, Art and Communication

The Turkish Online Journal of Design, Art and Communication - TOJDAC
ISSN: 2146-5193, September 2018 Special Edition, p.1532-1537

for tourists to understand the geological processes of petrified wood. In addition, it can make people realize
the conservation of these fossils.

This area has data on the petrified wood occurrence and paleoenvironment for scientific information
value such as scientific name, species, length, possible nearest living related, and age of petrified wood (Fig.
5). It also lacks promote and announces to tourist for sustainable geotourism development. This geosite is
near the local community, ideal for accommodation and restaurants present in many places, which are
managed by local people.
Geotourism Management

Tak province is the city of geology education; many geologists are interested in this region in both rock
occurrence and structural geology. There are many kinds of rocks to present for tourist easily understand
geologic process such as plutonic igneous, volcanic, sedimentary, and metamorphic rocks. The plutonic
igneous rocks in Tak province are very famous in Thailand; granitoid rocks are selected to be dimension
stone for architecture decorate, gabbroic rocks are selected to make the mortar for Thai kitchen. Many
feldspar minings are distributed in Tak province because of Granite intrusion phenomena.

Fig.4: The petrified wood

!!
Fig.5: The scientific information panel in Ban Tak Petrified Forest Park

If there is planning for geotourism in this petrified wood forest park, the tourist can follow the route in
Fig.4 at the same time. This route is recommended when visiting the geosite near this park and easily
accessible in 3 districts including Mueang Tak, Ban Tak, and Sam Ngao districts.

Lan Sang Waterfall is located in Lan Sang National Park (Fig.5). It consists mainly of high-grade
metamorphic rocks such as gneiss and Augen gneiss (Piyasin, 1974). The effect of Mae Ping fault movement
is caused to waterfall origins, it controls the degree of slope and flows direction of the water.

The Ping River is the great river, which forms in Doi Luang Chiang Dao, Chiang Mai province and flows
in the southward direction to joins with the Nan River and forms the Chao Phraya River in Nakhon Sawan
province. The direction of Ping River from Tak to Nakhon Sawan Provinces is controlled by Mae Ping fault,
which occurs during the Cenozoic period (Morley et al., 2007). In the center of Tak city, the tourist can look
a view of the Ping River from Kittikachorn Bridge (Fig.5). This town has an ancient Chinese village, which
has culture, architecture, food, and ancient things in the exhibition.

Submit Date: 10.07.2018, Acceptance Date: 22.08.2018, DOI NO: 10.7456/1080SSE/205
Research Article - This article was checked by Turnitin

Copyright © The Turkish Online Journal of Design, Art and Communication

The Turkish Online Journal of Design, Art and Communication - TOJDAC
ISSN: 2146-5193, September 2018 Special Edition, p.1532-1537

Fig.4: geotourism route in Mueang Tak, Ban Tak, and Sam Ngao districts (modified from Google Map®
data)

!!
Fig.5: Lan Sang Waterfall (top) and view of Ping River from Kittikachorn Bridge (bottom).

Pha Sam Ngao or Phra Sam Ngao is located in Sam Ngao District. It is the cliff, which shows the
sediment layers and gilded Buddha image. Wooden stairs are leading the tourists up the mountain to pay
respect to the Buddha images (Fig.6).

The Bhumibol Dam is a concrete dam on the Ping River, which is a tributary of the Chao Phraya River
(EGAT, 2013). It is at Sam Ngao district of Tak Province (Fig.6). It has many benefits such as hydroelectric
power production, fisheries, and water storage for agriculture and consumption. The name of this dam was
named after King Bhumibol Adulyadej and was the first multi-purpose project in this region. The tourist can
see the very nice outcrop along the road that reaches the tourist to a destination such as gneiss, Augen gneiss,
schist, calc-silicate, and some minor structures (fault and fold).

The geotourism is the new tourism announcement in Thailand. This research focuses on the middle and
eastern parts of Tak province, for the tourist interested in geology and realize of the geoconservation, also, its
effects to effectively economy of Tak Province.

!!
Fig.6: Pha Sam Ngao (top) and Bhumibol Dam (bottom)

Conclusion
The biggest ancient tree fossil of Asia found in this study area. All of these fossils are found in river

sediments, which have six sediment layers suggest that both gravel and the petrified wood transported by the
high velocity of stream current. Each layer of gravel generally graded to fine sediments suggests that this
area was the humid environment, where had alternating low and high energy current. The
Thermoluminescence age dating data indicate that these ancient trees grew for a long time (120,000-130,000
years ago) before subversion and deposited during 20,000-53,000 years ago assume by sediment ages. These
fossils are rare geologic materials and have high value for appropriate conservation. Nearly the petrified
wood forest park, the tourist can visit other geosite such as Lan Sang Waterfall, Ping River, Pha Sam Ngao,
and Bhumibol Dam. Geotourism in this area is educating people to understand geologic process about the

Submit Date: 10.07.2018, Acceptance Date: 22.08.2018, DOI NO: 10.7456/1080SSE/205
Research Article - This article was checked by Turnitin

Copyright © The Turkish Online Journal of Design, Art and Communication

The Turkish Online Journal of Design, Art and Communication - TOJDAC
ISSN: 2146-5193, September 2018 Special Edition, p.1532-1537

petrified wood and interested in visiting geosite in Tak Province and all over Thailand. In addition,
efficiently geotourism management can develop this town in both the economy and society.
Acknowledgment

The authors sincerely thank the authorities of the Forest Park and National Park for their help and
consideration. Alan Leslie Welburn is thanked for his comments and reviewing the manuscript for English
language clarity. The Science Achievement Scholarship of Thailand (SAST) supported funding for this
research.
References
Asama K. (1973). Some younger Mesozoic plants from the Lom Sak Formation, Thailand. In T. Kobayashi

and R. Toriyama (eds.), Geology and Palaeontology of Southeast Asia, Tokyo University Press, Japan.
39-46,
Kyriazi E., Boonchai N., Gray R.J., Gawee S., and Zacharias N. (2015). The Petrified Forest of Tak,
Thailand – New Challenges for the Science of Conservation. Conservation of Cultural Heritage -
Challenges and Reviews, At Athens, Greece. See also URL https://www.researchgate.net.
Morley C. K., Smith M., Carter A., Charusiri P., and Chantraprasert S. (2007). Evolution of deformation
styles at a major restraining bend, constraints from cooling histories, Mae Ping fault zone, western
Thailand. Geological Society, London, Special Publications 2007; v. 290; 325-349.
Murata K.J. (1940). Volcanic ash as a source of silica for the silicification of wood. American Journal of
Science, 238; 586-596.
Piyasin S. (1974). Geologic map of Changwat Uttaradit sheet NE47-11, 1st Edition, Department of Mineral
Resources, Thailand.
Siever R., and Scott R. A. (1963). Organic geochemistry of silica: In Breger, I. A. (Editor): Organic
Geochemistry. Oxford, London, New York, Paris, 579-595.
Songtham W., Mildenhall D.C., and Ratanasthien B. (2011) Petrified Tree Trunks from a Gravel Deposit,
Ban Tak Petrified Forest Park, Ban Tak–Sam Ngao Basin, Tak Province, Northern Thailand. See also
URL http://research.msu.ac.th/journal.
Tech. report, EGAT (2013). Bhumibol Dam. report title. Electricity Generating Authority of Thailand. See
also URL https://www.egat.co.th.
Tech. report, Jintasakul P., Phetprayoon Th., Naksri W., Chokchaloemwong D. (2014). Petrified Wood
Museum. Northeastern Research Institute of Petrified Wood & Mineral Resources (In Honor of His
Majesty the King) Nakhon Ratchasima Rajabhat University. See also URL http://www.khoratfossil.org.
Unpublished, Department of Mineral Resources. (2017). The stratigraphic column in Ban Tak Petrified
Forest Park, Thailand (in Thai version).


Submit Date: 10.07.2018, Acceptance Date: 22.08.2018, DOI NO: 10.7456/1080SSE/205
Research Article - This article was checked by Turnitin

Copyright © The Turkish Online Journal of Design, Art and Communication

















Original Research

Geoheritage Sites and Geoconservation at Pha Chan - Sam Phan
Bok Geopark, Ubon Ratchathani Province, Thailand

Vimoltip Singtuen1 and Krit Won-In1*

Department of Earth Sciences, Faculty of Science, Kasetsart University, Thailand

Corresponding Author: Abstract

Krit Won-In* The Pha Chan - Sam Phan Bok Geopark is at the easternmost part of
Department of Earth Sciences, Faculty of Thailand and has the border with Laos. Furthermore, it is the most famous
Mekong River Civilization area and dominated by sedimentary rocks of
Science, Kasetsart University, Thailand the Khorat Plateau. Different erosion rate produces spectacular landforms
E-mail: [email protected] such as potholes, rapids, stacks, cliffs, and cascades. According to inventory,
characterization, classification and evaluation, these landforms are highly
valuable elements to the regional heritage especially in the Pha Taem Cliff,
which has outstanding prehistoric rock art. This research is demonstrating in
different approaches to manage and present the geoheritage sites to tourists
so that geological processes can be understood and geomorphological heritage
preserved by the general public.

Keywords: Keywords: Geoheritage, Geoconservation, Pha Chan - Sam Phan
Bok Geopark, Ubon Ratchathani, Thailand.

Introduction cliff in Thailand. The life style of local people also linked with
Geotourism is referred to as a form of tourism that focuses Mekong and Mun Rivers which are the causes of many geosites
on the geosystem in a natural area (Gray 2011; Newsome & including rapid, pothole, river beach and also a cascade.
Dowling 2010). An early definition of geotourism as strictly
‘geological tourism’ was published by Hose (1995, 2000)
and has subsequently been refined as a form of tourism that
specifically focuses on geology and landscape. Nowadays,
geotourism is developing at a very rapid rate around the world
and will become an essential touristic activity in Thailand
(Singtuen & Won-In 2017, 2018a, b). The Satun Geopark of
Thailand is certified as the first UNESCO Global Geopark of
Thailand and the fifth Global Geopark of Southeast Asia by
the UNESCO in 2018. Thailand Geopark (http://www.dmr.
go.th/ThailandGeopark) focuses to impel this Pha Chan – Sam
Phan Bok Geopark as the UNESCO Global Geopark in the
future (Fig. 1). This geopark has many geoheritage sites that
were linked with history, nature, and culture of Thai people,
so it deserves to be an aspiring global geopark. For example,
the prehistoric painting in Pha Taem Cliff is the most famous

Access this article online

Website: http://gcr.khuisf.ac.ir/

Received: 24 September 2018 Accepted: 6 November 2018

Figure 1 Geopark distribution in Thailand

12 Volume 2 / Issue 1 / January-June 2019 e-ISSN:2588-7343 p-ISSN: 2645-4661 12

Geoconservation Research Singtuen: Geoheritage Sites and Geoconservation…

Moreover, geological heritage or geoheritage was defined as the Pha Chan - Sam Phan Bok Geopark is at Ubon Ratchathani
feature of a geological nature, it emphasizes on geodiversity Province, which is located at the northeastern part on the border
including landform, rock, mineral, fossil, structure, sedimentary between Laos and Thailand. It is a rural province of rice paddies,
sequences, and other resources. Furthermore, it contained a small villages and Mekong River populations made of Laotian
high scientific value and combined with educational, cultural, and Thai-Lao ethnicities. At Khong Chiam District of Ubon
and aesthetic value that also justify their necessary use by Ratchathani Province, the Mun River is the most important
society (GSA 2012; Santos et al. 2016; Brilha 2016; Nemeth river for agriculture and electricity producing of the Khorat
et al. 2017; Moufti & Nemeth 2017). In addition, the excellent Plateau and joins with the Mekong. It is called Maenam Song Si
management of geotourism can be a useful tool for sustainable (two-color river) or the Mun River alluvium as the brown water
development in both the local and national community from Mekong River is mixed with blue water from Mun River.
(Newsome et al. 2012). Migoń et al. (2017) described There are features cascades and ancient cliff paintings in the
the conservation and geotourism perspectives at Granite Pha Taem National Park, which is located close to the border.
Geoheritage Sites of Waldviertel, Austria, which inspired This area is dominated by outcrops of sedimentary rocks that
geoconservation promoting in the current study. It described are parts of the Khorat Group. The Khorat Group is made up
the selected sites of significant geoheritage value, reviewing of various Upper Mesozoic sedimentary rocks such as massive
their appearance, geological background, and the provisions sandstone, siltstone, claystone, conglomerate, etc. (Fig. 2).
for tourism.

Figure 2 Location and a Geologic map of selected study case in the upper part of Ubon Ratchathani
Province, Thailand (modified from DMR 2007)

The richness of sedimentary structures (i.e., cross-bedding) diversity and accessibility. While spectacular landforms occur
and geomorphological features of the Khorat Group in Ubon in various places in the Khorat Plateau, those in Northeastern
Ratchathani Province provide (Fig. 2) very scenic traits to the Thailand (i.e., Ubon Ratchathani) stand out in many ways and
local landscape such as Mekong River panoramic view along deserve more publicity. Most impressive and interesting among
the 3 kilometers trail in Pha Taem Cliff. Moreover, it have been the features of these sedimentary rock landscapes are potholes,
promoted by the tourism industry as the major natural asset to rapids, stacks, cliffs, and cascades, which are reasons to establish
the region. The outstanding and diverse geoheritage sites related the Pha Chan - Sam Phan Bok Geopark in this area. Nevertheless,
to the Khorat Plateau including the rocks themselves but also the the local network including local administrations, community
unusual landforms and theAustro-Asiatic human use is appreciated representatives, schools, local businesses, and NGOs is the most
locally since 4,000 years ago (Kijngam 1994). However, these powerful to engage in geoconservation (Brilha & Reynard 2017).
geoheritage sites are poorly known internationally, despite their

Volume 2 / Issue 1 / January-June 2019 e-ISSN:2588-7343 p-ISSN: 2645-4661 13

Singtuen: Geoheritage Sites and Geoconservation… Geoconservation Research

Therefore, this research landscapes, aimed to provide the first al. 1998). The Mekong River flows to the southeast and marks
description of geotourism in this geopark and its development the border between Thailand and the Lao People’s Democratic
for the travel industry. Each location selected in this study may Republic. The sites can be divided into three principal localities;
be considered as a potential geoheritage site as they differ in the Kaeng Tana National Park (Mun River watershed), Pha Taem
degree of development for geotourism. The scientific data of the National Park (Thai Mekong downstream), and Pha Chan
geoheritage site are also valuable for the tourist industry, as they Area (Thai Mekong upstream). The studied region covers five
help to promote travel plans and lead to good economy of this formations of the Khorat Group including Phra Wihan Fm., Sao
region. As geotourism is part of a recent announcement of targeting Khua Fm., Phu Phan Fm., Khok Kruat Fm. and Maha Sarakham
by the Thai government, additional revenue can be obtained. Fm. (Fig. 3). These formations are described from older to
younger as follows:
General Geology The Phra Wihan Formation comprises of well sorted, rounded,
The Pha Chan - Sam Phan Bok Geopark lies in the easternmost fine-coarse grained, pale yellow sandstone, thin-bedded
margin of the Khorat Plateau in Ubon Ratchathani Province, siltstone, mudstone, and conglomerate. Thick sandstone beds
Thailand. These sites are located along the Mekong River and of the high cliff in this formation were deposited in a braided
the Thai-Lao border. The Mekong River flows in a north-south stream environment, whereas thinner sandstone beds were
direction through China and Myanmar and is offset by the Nam deposited in meandering rivers (Meesook 2000). Intercalations
Ma Fault in Cenozoic (Lacassin et al. 1998). It leads the river of siltstone and mudstone are normally found in the sandstone
to flow in a SSW direction into the Mae Sai basin until it changes beds, which show little resistance and is reduced to small
direction to the east, possibly caused by the left-lateral, strike-slip Mae hills. Palynomorphs include Cyathidites sp., Classopollis
Chan Fault (Bait et al. 1997; Fenton et al. 1997; Kosuwan et sp., Ballosporites hians, Lycopodiacidites sp., Calamospora

Figure 3 The upper part of a composite stratigraphic column of the Mesozoic rocks of the Khorat
Plateau, NE Thailand that are distributed in the study area) Modified from Morley et al. 2011)

sp., Monosuleites sp., Ballosporites sp., Cyclotriletes the river bank in semi-arid paleoclimate (Meesook 2000). In
subgranulatus MADL, Minutosaccus sp., Chasmatosporites addition, Kon’no and Asama (1973) found plant remains of
sp., and Anulatizonites, which are indicating a Late Triassic to Sphenoptheris goeppati, which is dated from Late Jurassic to
Early Jurassic age which is as old as pollen in the Phu Kradung Early Cretaceous.
Formation (Hahn 1982).
The Phu Phan Formation consists of medium to coarse-grained
The Sao Khua Formation consists of cyclic sequences of light grey sandstone. Some sandstones grade into thick beds
reddish-brown sandy mudstone with interbedded siltstone, of a conglomerate with large planar and trough cross-bedding.
fine to medium grained sandstone and conglomerate. Sand and Pebbles consist of white quartz, grey and green volcanic rocks,
gravels were deposited in meandering rivers and swamps on and grey, dark grey, reddish brown, black light grey and green

14 Volume 2 / Issue 1 / January-June 2019 e-ISSN:2588-7343 p-ISSN: 2645-4661


Click to View FlipBook Version