QM016'2
Mathematics
Paper 2
ISemester
Session 2006/2007
2 hours
4L QM016/2 CHOW CHOON WOOI
4 Matematik
Kertas 2
Semester I
Sesi 2006/2007
2 jam
'mFs
I.} BAHAGIAN MATRIKI]LASI
\- KEMENTERIAI\ PELAJARAN MALAYSIA
MATNCUU|TION DIWSION
MINISTRY OF EDUCATION MAL,ffSA
PEPERIKSMN SEMESTER PROGRAM MATRIKULASI
}VI,4TNCULATION P ROGMMME EXAMINATION
MATEMATIK
Kertas 2
2 jam
JANGAN BUKA KERTAS SOALAN INISEH]NGGA DIBERITAHU.
DO NOT OPEN THIS BOOKLET UNTILYOU ARETOLD TO DO SO.
Kertas soalan inimengandungi 11 halaman bercetak.
This booklet consrsfs of 11 printed pages.
@ Bahagian Matrikulasi
51
QM01612 CHOW CHOON WOOI
INSTRUCTIONS TO CAI{DIDATE :
This question booklet consists of l0 questions.
Answer all questions.
The full marks allocated for each question or section is shown in the bracket at the end of
each question or section.
All steps must be shown clearly.
Only non-programmable scientific calculator can be used.
Numerical answ€rs can be given in the form of tE, e, surd, fractions or up to three significant
figures, where appropriate, unless stated otherwise in the question.
{
!
\-
3
52
QM016/2
LIST OF MATIIEMATICAL FORMULAE
Differentiation CHOW CHOON WOOI
*"*If y = s(t) and x = .f (t), tnen fi=
d(dv\
dzy _A\A)
d-'--@-
dt
Integration
[uau=uv- lvdv
ra
5
53
QM016/2
1. Evaluate each of the following limits, if it exists. [3 marks] CHOW CHOON WOOI
[3 marks]
(a) lim +
x-+4 .rlx -2
(b) lim atJ:4x +.x
-6.x-++co *2
Giventhat *= | *d =;y 1-tz where / is a non-zero parameter.
t*7 '
Show that
dy zt (lt+tr'))''
d-=
Hence find its value at the point (|, 0). [6 marks]
3. If y=e-I'lnx, showthat .t
o(#.*J*,-'(t+x)=s !
[6 marks]
4. lx , x(l
g(x) = ),*+t , l<x<4
\-.
[-r* , x)4.
Find the values of a and 6 so that g is continuous on the interval (-co, oo).
[7 marks]
ls*'+*, x<Z
(a) Given f (x\=l r, x=2
lr*'-1, x>2.
Findthevalue of msuchthat fif(x) exists. Hencefind thevalueof ksuch that / is
continuous at x=2. [6 marks]
7
54
QM016'2
(b) Given a function f on a closed interval l-2,47 as follows: [5 marks] CHOW CHOON WOOI
/-
[6 marks]
I s,f (x)=jrIt(*-x-l-)z(t1x+3)'- -2<x<4 [6 marks]
x=4.
1
/Find the intervals on [-2,4] where is continuous
[4 marks]
6. Let x2y2+Zxy+4y={. [4 marks]
[4 marks]
(a) Findthevalues of A,.Band C if +d=x x(4x/yQ+B:9)+C'.
(b) Determine the value ,f *dx' at the point (Z,Z).
7. A function / is defined by
rI f @) = lx+ rl-2'
(a) Sketch the graph of f Hence, determine its domain and range.
(b) Is/differentiable in its domain? Justi$ your answer.
(c) Evaluate Il, Xr> *.
8. Let R be aregion bounded by y=,'.f,'tn, , !:0, x:l and x:4. Find
(a) the area of R, [5 marks]
(b) the volume of revolution when R is rotated through 360o about the.r- axis.
[7 marks]
g. Express #""4+4x2+a1s .. fractions. [6 marks]
[7 marks]
partial
Hence, evaluate +4x' +l *.
Jl'Zl xoxt +x
I
55
QM016/2
10. The functions -f, B andh are defined by
f(x)=x' -1, g@)=Ji, *20 and h(g=L, x*0.
x CHOW CHOON WOOI
(a) Show that
Jil'F(x) = @" S.,fXr) = *=L. t2 marksl
[2 marks]
ft) State the domain and range of F. [2 marks]
F.(c) Find the vertical and horizontal asymptotes of [4 marks]
(d) Sketch the graph of F. Determine its points of discontinuity and [5 marks]
hence state the largest interval where F is continuous.
(e) For x) l, find F-t(x) and hence determine real p such that
r'@)=.8 r@).
END OF QUESTION BOOKLET
11
56
2007/2008
57
CHOW CHOON WOOI
QM016/1 4L QMo16/1
lvlathematics Matematik
Paper 1 :-
Kertas 1
ISemester :r_i:
Semester I
2A07/2008
2 hours 2007/2008
2 iam CHOW CHOON WOOI
BAHAGIAN MATRIKULASI
KEMENTERIAN PELAJARAN MALAYSIA
IVATR]C ULATION DTVISIOI{
MINISTRY OF EDUCATION ALALAYSIA
PEPERIKSAAN SEMESTER PROGRAM MATRIKULASI
MATNC ULATION P ROGKAMME EX4MINATIO|V
MATEMATIK
Kertas L
2 jam
JANGAN BUKA KERTAS SOALAN INI SEHINGGA DIBERITAHU.
DO NOI OPEN IHIS BOAKLET UNTIL YOU ARE TOLD IO DO SO.
Kertas soalan ini mengandungi 11 halaman bercetak.
This baoklet consrsts of 11 printed pages.
@ Bahaoian Matrikulasi
58
QM016rl CHOW CHOON WOOI
INSTRUCTIONS TO CAI\IDIDATE:
This question booklet consists of 10 questions.
Answer all questions.
The full marks allocated for each question or section is shown in the bracket at the end of
each question or section.
All steps must be shown clearlY.
Only non-programmable scientific calculator can be used.
Numerical answers can be given in the form of rc, e, surd, fractions or correct to three
significant figures, where appropriate, unless stated otherwise in the question.
Y
v
3
59
QMo16/1
LIST OF MATHEMATICAL FORMULAE
Arithmetic Series: CHOW CHOON WOOI
Tn=a+(n-t)d
s,=lDo+(n-fia]
Geometric Series:
T' = arn-l
s,=4:-Ll for r<1
I-r
Binomial Expansions:
+ b)' a' +('\n-' n(')o'- o' .. ( n)o'-' u' +'.. b', n e N
[r] 12)(a= u +. + + where and
(,J
u lfr.),J_-;Gnt:4
(t+x)' =7+nx.fuP.'+....MI*dx' +.,. for lxl <1
5
60
QM016/1
1. Given that g1r _ 3(zr_:), and 7t8v+6x = 64'y Find the values of x and y.
[6 marks]
) Express 2x +l in partial fractions. [6 marks]
(x+2)(x2 -2x+4)
CHOW CHOON WOOI
3. If z, : 4- i and Zz : | -2i, find rr-1z2. Expressthe answer inpolarform.
[6 marksl
t7 4. The sum of the first n terms of an arithmetic series is !2Q' "-S). If the second and
fourth terms of the arithmetic series are the second and the third terms of a geometric
series respectively, find the sum of the first eleven terms of this geometric series.
[7 marks]
f,. The quadratic equation x' + k(x +Z) - (* +6)= 0 has roots a and p, where ft is a
constant.
I(a)
1Find a quadratic equation u,ith roots una p in terms of t.
t4
[5 marks]
(b) Find a2 + p2 rnterms of k. Hence, determine the minimum value of a2+p2.
v [4 marks]
6. (a) Find a cubic polynomiat A(*)= (x + o)(, + b[x + c) satisffing the
following conditions:
thecoefficientsof x'is 1, }eD=0,Q(2)=0, and QQ)=-5.
[4 marks]
(b) A polynomial P(x)=qv' -4x' +bx+18 has a factor (x + 2) and a remainder
(2x + 18) when divided by (x + 1). Find the values of a and b. Hence,
factorize P(x) completely.
[8 marks]
7
61
QM01611 [6 marks]
[7 marks]
7. Solve the foliowing inequalities:
x+4 2x-l
(b) l--l CHOW CHOON WOOI
l-:-l<2.
lx+41
8. A sy'stem of linear equations is given as
ax -2y -3:: b
l.r-.y -42: 2
3 4x * 3,- -22 : 14
where a and & are constants. [9 marks]
(a) F-ind.r and z in terms of a and b using Cramer's rule.
(b) Determine the conditions of a and b for rvhich the above system
(i) has a unique solution.
(ii) has no sciution.
[4 marks]
[t a 2'i
!' g. tGiven thar. A =1,2 ,1, where aandb are constants.
ii -2 2 b)
[+,rl(a) If of u 2l
l;l = -l:. evaluate the determinant matrix 12 2 using
14 b)
determinant properties.
[4 marks]
(h) Giventhat A) -4A:51,wherelisa3 x 3 identitymatrix. Showthat a=2
andb=1.Hence.findA-1.
[9 marks]
62
QMo16/1
10. Given that /(x)' = .l+L, x*-1 ancl g(x) 1-, x+2 .
= -2-x
(a) Expand /(x) and g(x) as a series of ascending powers of x up to the term CHOW CHOON WOOI
containing -r'. Hence, estimate the value of (t.O)-' using the first four terms
of g(.x).
[7 marks]
(b) If /rt.r1 = l'(.r) * g(..r), show tliat the coefficient of xn for h(r) is
r-l r - 1 i-l.n.e. ot^tain the coefficienl of .rl flo. h(x\
.i
Y [5 marks]
[3 marks]
(c) Find the coefficient of .xr lbr l't
8('{)
END OF QUESTION BOOKLET
-7
1613
QMo16/2 QMo16/2
Mathematics
Paper 2 Matematik
ISemester Kertas 2
Session 2007/2008 Semester I
2 hours
Sesi 2007/2008
4L CHOW CHOON WOOI
2 iam
+!}==
'mffi.,
BAHAGIAN MATRIKULASI
KEMENTERIAN PELAJARAN MALAYSIA
MATRIC ULATI ON D IVIS ION
MINISTRY OF EDUCATION MALAYSIA
PEPERIKSAAN SEMESTER PROGRAM MATRIKULASI
MATRIC ULATION P ROGRAMME EXAMINATION
MATEMATIK
Kertas 2
2 jam
JANGAN BUKA KERTAS SOALAN INI SEHINGGA DIBERITAHU.
DO NOI OPEN IHIS BOOKLET UNTIL YOU ARE TOLD IO DO SO
Kertas soalan ini mengandungi 11 halaman bercetak,
This booklet conslsfs of 11 printed pages.
@ Bahagian Matrikulasi
64
QM016/2 CHOW CHOON WOOI
INSTRUCTIONS TO CANDIDATE:
This question booklet consists of 10 questions.
Answer all questions.
The full marks allocated for each question or section is shown in the bracket at the end of
each question or section.
All steps must be shown clearly.
Only non-programmable scientific calculator can be used.
Numerical answers can be given in the form of n, e, surd, fractions or correct to three
significant figures, where appropriate, unless stated otherwise in the question.
V
-,
3
65
QM016/2
LIST OF MATHEMATICAL FORMULAE
Differentiation
If y =g(r) and x = .fQ),then !/=4"* CHOW CHOON WOOI
dx dt dx
d(dv.]
d2y AIA)
dx2 dx
dt
v
[udv =uv - lvdu
\t
5
66
QM016/2
1. A tunction/is detlned by "/(r) = x2 -2x-3 for 0 < -r < 5. State the range of .l'and
one.determine whether /is one to
[6 marks]
2. If y3 =ln(r3y2)for.x>0,y>0,then frnaffwheny:i. [6marksl
3. Let 1 = .r ( In x )r. r > 0. Show that CHOW CHOON WOOI
r-.d-d-rlr'v-. -.r a-l'yl + t = ],v. [6 marks]
dx
1. Gir'en h(x) :+ Detining ht (.x) - (tt " ft\x\ determine the function ll: (.r) anci
)f-J
hence deduce the inverse of /u (.r). Evaluate h" (9).
[7 marksl
5. C.iven 2x'+9rr*4x-7 'g' ("r)-2:-xA:+1* B Detcrmine the frrnctiongt;.) and
2r-+9.r-4 =
.r+-l
find the r elues ot' .r and B. l-lencc.find .;l lxl - 9'i': + 4'r - 7 ,.-
r.r.- -9.r-J .
- [10 marks]
6. /The iunctit-.n is det-ined as
v
\' - '--Y-t rl /
rlr'-31-l x=3
.f(x) = A, 3<x <4
2x-8,
.r > 4.
(-,
(a) Find lim f (x) and lim /(x). [5 marks]
x+3- x+3*
(b) fUse the definition of continuity to determine the values of A and B if is
continuous at x - 3. [3 marks]
(c) For what values of C is/discontinuous at x : 4? [4 marks]
7
67
QM016/2 [6 marks] CHOW CHOON WOOI
[3 marks]
7. Grren .l'(.r)= 2x) +1. x>0 and g(r)=x-3,tjnd [3 marks]
(a) the inverse of .f andg and verify that (g "./')-' = .f -' o g-t .
(b) the functio n h if (S. /)-' o /r(.r) = I " [1 mark]
[2 marks]
.x [2 marks]
(c) the values of x for rvhich J-o g = g. .f . [4 marks]
[4 raarks]
8. Given "f (*): 2x -3 Find
(x-1)(x+3)
(a) the domain of l,
V (b) the x-intercept and y-intercept of /,
(c) the vertical asymptote(s) ofl
(d) ,[g,f (r) "nd ,tt]]./(x) . Hence, state the horizontal
asymptote of /.
Sketch the graph of f
9. (a) :Find dy u'hen x 0 for each of the foilowing:
dx
(i) .,, = in(t * i;' * 1), [3 marksl
[4 marksl
-
[6 marks]
(ii) v - G-.1
(b) Given-r=3/-)t1it . )'=2t+"-. t+0. Show that
dy _?_1r i3_)
dx 3 :[:i'+z]
Hence trnd drl l' '
dr)
o
68
QMo'16/2
10.
y = 3- r, +1t-_ CHOW CHOON WOOI
by the line t' -' -----
"Y 1+x
In the figure above, R is the region bounded the curve
and the y-axis. Find
(a) the area of R. [7 marks]
(b) therolumeofsoiidobtainediihenRisrotatedthrough 3600aboutthex-axis.
Give your answer in term of n. [8 marks]
END OF QUESTTON BOOKLET
Y
1619
2008/2009
70
CHOW CHOON WOOI
QMo1611 QM()16/1
Mathematics Matematik
Paper 1 Kertas 1
ISemester Semester I
2008/2009 2008t2009
2 hours 2 jam
& CHOW CHOON WOOI
-Y:
-r=-
BAHAGIAN MATRIKULASI
KEMENTERIAN PELAJARAN MALAYSIA
MATRIC ULATION DII/ISION
MINISTRY OF EDUCATION MALAYSIA
PEPERIKSAAN SEMESTER PROGMM MATRIKULASI
IATRICULATION P ROGRAMME EXAMINATION
MATEMATIK
Kertas 1
2 jam
JANGAN BUKA KERTAS SOALAN INISEHINGGA DIBERITAHU.
DO NOT OPEN IHIS BOOKLET UN'flLYOU ARE TOLD IO DO SO.
t
Kertas soalan ini mengandungi 13 halaman bercetak. r
This booklet consrsfs of 13 printed pages.
O Bahagian Matrikulasi
71
QM(}16/1 CHOW CHOON WOOI
INSTRUCTIONS TO CANDIDATE:
This question booklet consists of 10 questions.
Answer all questions.
The full marks allocated for each question or section is shown in the bracket at the end of
each question or section.
' All steps must be shown clearly.
Only non-programmable scientific calculator can be used.
Numerical answers can be given in the form of n, e, surd, fractions or correct to three
significant figures, where appropriate, unless stated otherwise in the question.
3
72
QMo16/1
LIST OF MATHEMATICAL FORMULAE
Arithmetic Series: CHOW CHOON WOOI
T,=o+(n-t)a
s,=|lzr+(n_lal
Geometric Series:
T, = ar'-l
'.=+! ror r<l
Binomial Expansions:
(a + b)' = o' +(i)"".(;)"-u' +-. -.(:)"' u' +. . + b', where,e e N and
(I[",\Jt- -;Gvlt-4
(t+x)' =r+nx*"fu2:!') *, +...*n(n-l)":(n-r+l) x, +... for lxl<1
rt
573
QMo16/1
1. (-2 r2* rQ
Ex'press /(!t_-x;f'f-l{+x) in partial fractions.
[5 marks]
2. The fifth term and the tenth term of a geometric series are 3125 and,243respectively. CHOW CHOON WOOI
(a) Find the value of cornmon ratio, r of the series.
[3 marks]
(b) Determine the smallest value of n such that S-; S' < 0.02, where S, is',
s_
the sum of the first r term and S* is the sum to infinity of the geometric
series.
[3 marks]
3. +Solve the equation 3log, 3 + 1og, V; =
J
[7 marks]
4. Determine the interval of x satis$ing the inequality lx+Zl>tO-x2 . [7 marks]
, - 5. The roots of the quadratic equation 2x2 =4x-1 are a and p.
(a) Find the values of az + p2 and. a3 p + aB3 .
[5 marks]
(b) Form a new quadratic equation whose roots are (o -Z) ana (p -Z).
[5 marks]
7
74
QMo16/1 CHOW CHOON WOOI
,2
(a)
zl-zz
a l-1-lbwhere and arereal numbers. Hence, determine
' lzr-zzl
[5 marks]
(b) Giventhat z=x + ry, where x and y aretherealnumbers and Z isthe
complex conjugate of z. Find the positive values of x and y so that
12
-Z+z -=5-t.
[6 marks]
of1 (a) The rth term of an arithmetic progression is (1+ 6r). Find in terms n, the
sum of the first n terms of the progression.
[4 marks]
(b) (D Showthat I"lg-x=3!(\r-I9))-'
[3 marksl
I
I(ii) Find the first three terms in the binomial expansion of (t- +e)i -' t,
ascending powers of x and state the range of values of x for which
this expansion is valid.
[3 marks]
'(iii) Find the first three terms in the expansion o, :( + x) in ascending
"lg-x
powers of x.
[3 marks]
9
75
QMo16/1
' '1 I z 2 -:l
n=| o l. ttnu Pe and
(a)t, , , -r,l8.
, ['Given the matrice, = and 3.1
Ll
2 2) L-3 0
hence, determine P-t . r
[4 marks] CHOW CHOON WOOI
(b) The following table shows the quantities (kg) and the amount paid (RM) for
the three types of items bought by three housewives in a supermarket.
Housewives Sugar (kg) Flour (kg) Rice (kg) Amount Paid (RM)
Aminah 3 6 a 16.s0
J
Malini 6 3 6 21.30
Swee Lan J 6 6 2l.00
The prices in RM per kilogram (kg) of sugar, flour and rice are x, y and z
respectively.
(i) F'orm a system of iinear equations from the above information and
write the system of linear equations in the form of matrix equation
AX=8.
[3 rnarks]
(ii) Rewrite AX = B above in the form kPX: B, where A: kP
( P is the matrix in (a) ) and, k is a constant. Determine the value of
k and hence find the values of x, y and z.
[6 marks]
9. Polynomial PG) = mxt -8xz +nx+6 can be divided exactly by *' -2x-3. Find
the values of m and n. Using these values of m and n, factorize the polynomial
completely. Hence, solve the equation
3x4 -14x3 +llx2 + l6x-lz = a
" using the polynomial P(.r).
[13 marks]
11
76
QM016/1
I [:10. ,Matrix is given by = I ]'l CHOW CHOON WOOI
lz -3 -rl
(a) Find
(i) the determinant of l,
(it) the minor of ,4 and
(iir) the adjoint of A.
[9 marls]
(b) l-tBased on part (a) above, f,ind . Hence, solve the simultaneous equations
Y+ z=1
2
5x+y - z =9
2x -3y -1, =i.
2
[6 marks]
END OF BOOKLET
13
77
QMo16/2 QMo16/2
Mathematics
Paper 2 Matematik
ISemester Kertas 2
Session 2008/2009 Semester I
2 hours
Sesi 2008/2009
2 jam
+ CHOW CHOON WOOI
a€. I -_-s
----
BAHAGIAN MATRIKULASI
KEMBNTERIAN PELAJARAN MALAYSIA
MATRIC ULATION DIVISION
I MINISTRY OF EDUCATION MALAYSIA
PEPERIKSAAN SEMESTER PROGRAM MATRIKULASI
MATNC ULATION P ROGRAMME EXAMINATION
}IATEN{ATIK
Kertas 2
2 jam
JANGAN BUKA KERTAS SOALAN INI SEHINGGA DIBERITAHU.
DO NOI OPEN IHIS BOOKLET UNTIL YOU ARE TOLD IO DO SO,
Kertas soalan inimengandungi 11 halaman bercetak.
This booklet consrsfs of 11 printed pages.
78O Bahagian Matrikulasi
QM016/2 CHOW CHOON WOOI
INSTRUCTIONS TO CANDIDATE:
This question booklet consists of 10 questions.
Answer all questions.
The full marks allocated for each question or section is shown in the bracket at the end of
each question or section.
All steps must be shown clearly.
Only non-programmable scientific calculator can be used.
Numerical answers can be given in the form of ru, e, surd, fractions or up to three significant
figures, where appropriate, unless stated otherwise in the question.
Y/
3
79
QMo16/2
LIST OF MATHEMATICAL FORryIULAE
Differentiation
lf y =g(r) and * = f(t).tt',rn lL=*"*
i ,,c,-i'.!2= 4dt\(dqx)) CHOW CHOON WOOI
l|u'e dx
Integration
y [rd, = uv - tvclu
!7
E
80
QMo16/2 dv
dx
1. Given Iny = sx! ,
[5 marks]
) lf y=Jzx\Sxl , determine the domain of dy and find the respective intervals CHOW CHOON WOOI
dx
in which Q, o und Q.o.
I dx dx
[6 marks]
3. Given that f {x}: 10 - 2.r Find the value of ,t so that
,
[7 marks]
,[;)t7
f-, (*z)= Hence, find
4. Let f (x) =l+x -11 and g(x) = x +2.
(a) Find the interval of x for which "f (x) < s@). [4 marks]
[3 marks]
If(b) h(x)= f (x)+29(x), express h(x) as a piecewise function.
v
Let J Gx).lr=a a' x- + a- x + -la g'here a is non-zero.
(a) Find a if l-(0) : 6 [2 marks]
[3 marks]
(b) Determine f (x) .
[5 marks]
(c) Determine the domain and range of f (x). Hence, state the
interval in which f is one to one.
7
81
QMo16/2
6. (a) By using the partiai fraction method, shor,v that
l---:--- rr 1 r)
*2-4 4\.r-2 x+?-)
I{ence. find n:-:l'; +]^ dr . CHOW CHOON WOOI
JiZ1 -+
[6 marks]
(b) : ''Sketch the region boundeci br the cuil-es l' .re J' = .vr . .l ) 0
and the line r: 2. Iind its area.
[6 marks]
(r 7. Given
fe'+A, x<o
f(x)=Jr'-2x+3, 0<x<1
[x+8, x>1.
(a) Determine the values of A and B for f tobe continuous.
[4 marks]
(b) Find the minimum value of f
[3 marks]
(c) Is 7 differentiable? Justify your answer by using the first principle of
differentiation.
fHint: e* =71; n x2- 1...1
Y
[5 marks]
8. Given that
!=e'+e-' and x=e-'
ta) Find the point (x,l,) on the curve vrhere ! = O . [6 marks]
u_! [7 marks]
(b) Solve for r if
it/-a-t)-v1t|2 +a7'v-I=U.
\d*' ) dx
I
82
QM01612 [7 marks] CHOW CHOON WOOI
[5 marks]
9. Er aluate
(a)I1a,
'l+e-'
(b) Ji" 1r'; a, .
10. Civen f(x):oxl_x -f1fl i
Y
(a) Show that f is equivalent to
g(x) = Il.xx+>2'r
I
iI- x+' 2'
x<l
[3 marks]
(b) Determine the asymptotes and the points of discontinuit5, of g.
[6 marks]
(c) Sketch the graph of g.
[3 ma"rks]
Y (d) Find the points of intersection of g(x) u,ith the straight line
.|, --..,\ -Tl Z. -
[3 marks]
BND OF BOOKLET
11
83
2009/2010
84
CHOW CHOON WOOI
t QM016tl QMo16t1
Mathematics
Matematik
Paper 1
Kertas 1
ISemester
Semester I
2009/201a
2009t20fi
2 hours 2 jam
& CHOW CHOON WOOI
:E:=J-:-:--
BAIIAGIAIY MATRIKULASI
KEMENTERIAN PELAJARAN MALAYSIA
MATNCULATION DIVISION
MINISTRY OF EDUCATION MAIAYSIA
PEPERIKSMN SEMESTER PROGMM MATRIKULASI
MATNC ULATION P ROGRA MME EXA MINATIO N
MATEMATIK
Kertas 1
2 jam
JANGAN BUKA KERTAS SOALAN lNISEHINGGA DIBERITAHU.
D0 NOIOPE,V IHIS BOOKLET UNTIL YOU ARE TALD IO DO S0.
Kertas soalan ini mengandungi 11 halaman bercetak,
This booklet consrsfs of 11 printed pages.
85@ Bahagian Matrikulasi
r QMo1611 CHOW CHOON WOOI
I INSTRUCTI.\S To CANDIDATE:
This question booklet consists of l0 questions.
Ansu-er all questions.
The fuil marks lbr each question or section are shown in the bracket at the end of the question
or section.
Al1 steps must be shown clearly.
Only non-programmable scientific calculators can be used.
Numericai answers may be given in the form of a. e . surd, fractions or up to three
significant figures, where appropriate, unless stated otherw.ise in the question.
=
3
86
QM016/1
LIST OF MATHEMATICAL FOR\{LLAE
For the quadratic equation ax) + bx* c = 0: CHOW CHOON WOOI
, = *!:!b'_1!,
2a
For an arithmetic series:
T,=a+in-l)ri
Sn=nfT.a+(n_l)dl
y
For a geometrie series:
Tn = Gr"-l
s, = -{t!i !., *i
Binomial expansion:
.y where neN una l[',jJ=- nl. rl
(n- r)t
'fu:!:#1:!-,'(\r!(r + x)' =t + nx
r' + .. . {- x' +... for ixi < r
5
87
QMo16/1
I Solr.e the equation 32, - l0 ( 3,-,; + 1 = 0^
16 marlrsl
2 Determine the solution set for 2, * 1 < S. CHOW CHOON WOOI
x
l7 narksl
3 'Express -(x-- 2+["=' ++ -2-x.+r2) in r'part'-ia-'l- f--ractions.
[6 marksf
v 4 The first term and common difference of an arithmetic progression are a and -2.
respectively. The sumof the first n terms is equaltothe sumof the first 3r terms.
ifExpress a in terms of ru. Hence, shovl, that n = 7 a = 27 "
16 marksl
5 (a) Solve 25+r>.r.
14 narksl
(b) If ct and p are the roots of the quadratic equation 2x2 + x * 4 = 0, form an
17 equation whose roots are a + 2p and 2a + B.
l7 marksl
6 Given a complex number z = a +6i which satisfy the equation z2 = B+ 6i.
(a) Find all the possible values of z.
16 marl<s)
(b) Hence, express z in polar form.
[6 marla]
7
88
8M016/1
[: x ir.l
07 l'4atrix .4 is given as j O x 4 | and .11: -75. Find
L0 .r-10.1
(a) the value cf x.
[4 rnctrks] CHOW CHOON WOOI
(b) the cofactor and the adjoint matrix of ,{. i{ence, detemrine the interse of, l.
l8 mark)
8 Given a poly'nttmial P(x)= 1.'ir' * ,,.-r * o.r - -r0 has iactors (x + 2) and (x-5).
\r 16 morksl
l3 marksj
(a) Find the value of the consrants a and b. 13 marksl
(b) Factorize P(x) completeil'.
(c) Obrtain the solution sei for P(x) < 0.
!, g (a.r i xExpand 1+ - ,)1 and (1 + 3x)- i,, ur.rncling powers of up ro
the term .tr.
15 marksl
(b) Find the expansion cl (a - i1 I up to the term .rt and determine
I)r (1 + 3x)-
the range ol- .r such that this expansion is valid. Hence. by substituting
j
x = ;iJ . approximate the vaiue of J51 .oo..t to four significant tigures.
l8 marksl
I
89
QM016/1
10 The following table shows the quantities in kilogram (kg) and the amount paid (RM)
for three types of fruits bought from three stalls at a night market.
\ Fruit Mango Durian Rambutan Amount paid CHOW CHOON WOOI
(ke) (ke) (ke) (RM)
S,N 34.00
5 J 2 37.00
P J 4 4 29.00
2 3 aA
a
R
.Y -" yThe price in RM per kilogram (kg) for mango, dwian and rambutan are x, and z
respectively.
(a) Form a system of linear equations which represent the total expenditure per
stall calculated based on the weight bought and price per kilograrn. Hence,
write the system in the form of a matrix equation AX = B.
[3 marks]
(b) Find the determinant, minor and adjoint of matrix l.
16 marl<s)
y (c) Based on part (b) above, find l-1. Hence, solve the rnatrix equation.
14 marl<s)
(d) Suppose the price per kilogram for mango, durian and rambutan has increased
by RM2. RM2 and LVI1. respectiveiy. Obtainanewmatrixrepresenting
the amount spent on each tvpe of fruit to be bought.
12 marlcs]
END OF QUESTION BOOKLET
9101
QM016/2 QM(}16/2 tr
Mathematics
Matematik
I IFaoer2
Semester Kertas 2
2009/2010
2 hours Semester I
2009t2010
2 jam
s CHOW CHOON WOOI
Em- JF: '
BAHAGIAN MATRIKULASI
KEMENTERIAN PELAJARAN MALAYSIA
MATRIC UL,ATI ON D IVISI O N
MINISTRY OF EDUCATION MALAYSU
PEPERIKSMN SEMESTER PROGRAM MATRIKULASI
MATNC ULATION P ROGRAMME EXAMINATION
MATEMATIK
Kertas 2
2 jam
JANGAN BUKA KERTAS SOALAN TNISEHINGGA DIBERITAHU.
DO NOT OPEN IHIS BAOKLET UNTIL YOU ARE TOLD IO DO SO,
Kertas soalan ini mengandungi 11 halaman bercetak,
This booklet consrsfs of 11 printed pages.
91@ Bahagian Matrikulasi
0M016/2
I I\STRL-CTIO\S To CANDIDATE: I
I This question booklet consists of l0 questions.
Answer all questions.
T'he full marks for each question or section are shown in the bracket at the end of the question CHOW CHOON WOOI
or section.
All steps must be shown clearly.
Only non-programmable scientific calculators can be used.
Numerical answers may be given in the form of fr , € , surd, fractions or up to three
significant figures, where appropriate, unless stated otherwise in the question.
Y/
3
92
QMo16/2
LIST OF MATIIEMATICAL FORMULAE
Difrerentiation CHOW CHOON WOOI
tf y=s(/) *d *=fft],*"n !&=c4d"t 4dx
d(dv\
d'y _Ald. )
dx2 dx
dt
Integration
\7
Iutu:uv-lvdu
-y
5
93
QMo16/2
1 A function g is defined by
g(x)=-L x>1.
../x - 1
Find g-1(x) and state its domain and range.
15 marl<sl CHOW CHOON WOOI
2 /A function is given as
Ilx+t]. x<0
f(x)=I j 2" x=0
|. .'.. x>0.
Find lim /ix;. xl-i-m+0/*(x) and lim /(x).
!7 x-+0- :-+0
/Hence, deterrnine whether is continuous at x = 0. Give a reason to your answer.
16 marksl
3 I;.f.If :.]. .y + e'. sho\\- rhar , =,
4 Eraluare r: r-l ar. 16 marks]
[7 marl<s]
.|, .rr_,
14 marl<sl
l7
18 marlal
5 A parametric curve is givenby *=, -:, r- =t+!, t +0.
(a) Find * in terms of r and evaluate it at r = -2.
(bl +Find the r alue of ut r = 1. and evaluate r1-ia^451[Y4) .
dr-
7
94
QMo16/2
6 (a) Show that y - ^[7i .O for all real values of y.
[2 marl<s)
(b) eJ -X
Let _f be a function defined by -f f x ) - Find .f-t (*).
16 marksil CHOW CHOON WOOI
tinft(c) Evaluate -lx 2r
[3 morks]
7 /A function is defined by
34, x=-4
= 0. x=2
"f (x) = 17, x=4
xJ'f)--+3xx-'6--4 , x*-4,x+-3,x+2,x+4
(a) Evaluate !y; f (x).
14 marlcsl
(b) Find the interval(s) where / is continuous on the interval l-4,41.
[8 marl<s]
8 (a) Given a function g defined by
_ | *," , x(1
t,s(x) = j lrnr), , x>1.
e3
Er aluate J , g\x) dx.
[6 marks)
O) Use inte$ation b1'parts to showthat
'i\-eig-' *-l dr = (.r- thp, * i - i-:]- a,
+l
"le" 17 marlal
I
95
QMo16/2
9 (a) Let f and g beiunctionssuchthat f(x)=xtg(x') with g(1)=Z and
8'(1) = l. Find f 'tt1.
14 markl CHOW CHOON WOOI
(b) Givenacurve y=r+1.
Y
(i) Determine the gradient ofthe cun'e ] =, * I at ..r = b in terms of b.
,r
(ii) Find the value of b rf a straight line rijth the gradient in (i) passes
(iii) through the points t U.U +!) and ( 0 1)
t)
Hence. find the equation of a line perpendicular to the line in (ii) at
(0,4)
19 marl<sl
10 Aregion R isboundedbythecurve y:x(x-2) andline !=x. 12 markl
(a) Sketch the graphs and shade the region R.
(b) Find the area of R.
13 marks)
(c) Find the volume of the solid obtained when the part of R above the x-axis is
rotated through 360o about the x-axis.
15 mqrksl
v (d) Let R forms the surface of water in a pond where the depth of the water at
any point (x, y) in R is given by x + 5. Find the volume of the water in the
pond.
15 marl<sl
END OF QUESTION BOOKLET
9116
2010/2011
97
CHOW CHOON WOOI
0s016/1 QS()16/1 I
Mathematics Matematik
Paper 1 Kertas 1
ISemester Semester I
Session 2010/201 I
2iamSesi 2010/2011
Ir 2 hours
4L:!,: CHOW CHOON WOOI
a'-eI::.{ffIf:,:fs"
BAIIAGIAI{ MATRIKULASI
KEMENTERIAN PELAJARAN MALAYSIA
MATNCULATION DIVISION
MINISTRY OF EDUCATION MAI- YSIA
PEPERIKSAAN SEMESTER PROGRAM MATRIKULASI
MATRIC UL,ATION P ROGMMME EXAMINATION
MATEMATIK
Kertas 1
2 jam
JANGAN BUKA KERTAS SOALAN INI SEHINGGA DIBERITAHU.
DO NOI OPEN IHIS BOOKLET UNTIL YOU ARE TOLD IO DO SO,
Kertas soalan ini mengandungi 15 halaman bercetak.
This booklet conslsfs of 15 printed pages.
@ Bahagian Matrikulasi
98
QS()16/1 CHOW CHOON WOOI
INSTRUCTIONS TO CANDIDATE:
This question booklet consists of 10 questions.
Answer all questions.
The full marks for each question or section are shown in the bracket at the end of the question
or section.
Al1 steps must be shown ciearly.
Only non-programmable scientific calculators can be used.
Numerical answers may be given in the form of fi, e, surd, fractions or up to three significant
figures, where appropriate, unless stated otherwise in the question.
Y
Y
3
99
QSo1611
LIST OF MATHEMATICAL FORMULAE
For the quadratic equation ax) + bx * c = 0 : CHOW CHOON WOOI
.--bi'lT;*4ac
2a
For an arithmetic series:
Tn=o+(n-l)d
S, =!f2.a+(n-t)dl
v
For a geometric series:
T' = ar'-l
t.=ff 'r*1
Binomial erpansion:
(n\ +(l2n\y'-'^b'^+ ...+/rl,lr\f' 'u' + ...+ b' ,
ta - b)" = a" -1,
)o'-'u
- where neN *df')=-n!,
\'J (n - r)r. v1
-+.z(t + x)" =r+ nx *... *n(n -t)":(n - r +l) x' +... for lxl < r
5
100