QS015/1
LIST OF MATHEMATICAL FORMULAE
Quadratic equation m2 +bx+c =0:,
*--ut'[* -+*
2a
Arithmetic series: CHOW CHOON WOOI
Tn = o+(n-t)d
s, =llzo+(n-r)dl
Geometric series:
Tn = arn-\
t,=ffl*l
Sum to infinity:
s. =r_",lrl<t
\- Binomial expansion:
(a+b)'=an +(:)"",.(;)"-,uz + ..+(:)"-,. + ..+bn,
where neN and(:)=@+W
*(t + ax), = t + n(m). t*f * n(n -t)(n - z) (*)' * ...
laxf <t where neZ- or n eQ
151
QS015/1
1 [; -" *. dGiven matrice, ,n=
r,*3l , =1" l.l. the values of c, and,e
looz) [o;,)
"such that AB: 14 .I, where .I is the identity matrix. Hence, determine l-r.
16 marksl
2 Consider the function f (*)= I + ln x, x) l. Determine -f-t (x) and state its range. CHOW CHOON WOOI
Hence, evaluate f'(3).
16 marksl
3 Find the value of x which satisfies the equation
logrx=(log, x)2, x>1.
l7 marksl
4 Solve the equation 22x-2 -T*t =2' -23.
17 marksl
5 #,Given g(x) = - * lwhere fr is a constant.
(a) Find the value of /r if (g. S)(r): r.
(b) Find the value of & so that g(x) is not a one-to-one function. 15 marksl
15 marksl
152
QS015/1
6 f(rt:Given e3' + 4, x e "R.
(a) Find /-r(x).
15 m.arksf
O /(r)On the ffurre axes, skctch the graphs of arrd 7-t (x) . State the domain of CHOW CHOON WOOI
"f(x) and ,f-'(;),
16 marlcsl
4-2i 4+2i 2
16 narkd
(b) Given logo2=ril atrd lo&u7=z. Expressr intemsof n and n if
(l4t*txs'*)= z'
16 marksl
153
QS015/1 CHOW CHOON WOOI
8 An osteoporosis patient was advised by a doctor to take enough magnesium,
vitamin D and calcium to improve bone density. In a week, the patient has to take
8 units magnesium, I I units vitamin D and 17 units calcium. The following are three
types of capsule that contains the three essential nutrients for the bone:
Capsule of type P: 2 units magnesium, 1 unit vitamin D and I unit calcium.
Capsule of type Q: I unit magnesium, 2 units vitamin D and 3 units calcium.
Capsule of type R: 4 units magnesium, 6 units vitamin D and l0 units calcium.
yLet x, and z represent the number of capsule oftypes P, Q andR respectively that
the patient has to take in a week.
(a) Obtain a system of linear equation to represent the given information and write
[,]
the system in the form of matrix equation AX = B, where X =ltty l.
lz)
13 marks)
(b) Find the inverse of matrix,4 from part (a) by using the adjoint method. Hence,
findthevalues of x,y and z.
[8 marks]
(c) The cost for each capsule of type P, Q andrR are RMl0, RMl5 and RMlT
respectively. How much will the expenses be for 4 weeks if the patient follows
the doctor's advice?
12 marl<s)
11
154
QS015/1 CHOW CHOON WOOI
9 (a) In an arithmetic progression, the sum of the first four terms is 46 and the
seventh term exceeds twice of the second term by 5. Obtain the first term and
the common difference for the progression. Hence, calculate the sum of the
first ten even terms of the progression.
16 marl<s)
(b) A ball is dropped from a height of 2 m. Each time the ball hits the floor, it
]bounces vertically to a height that is of its previous height.
4
(i) Find the height of the ball at the tenth bounce.
12 marksl
(ii) Find the total distance that the ball will travel before the eleventh
bounce.
15 morksl
10 (a) Find the solution set of lZ -lxl < lx + 31. 18 marlal
(b) If x+1< 0, show that 13 marlcsl
(i) 2x-l<0. 14 marksl
(ii) #,r.
END OF QUESTION PAPER
13
155
QS015/2 QS015,2
Mahematia
Matematik
Papr2
Kertas 2
ISemester
Semester I
Session 201 3/2014
2 hours Sesi 2013/2014
2 jam
BAHAGIAN MATRIKULASI CHOW CHOON WOOI
KEMENTERIAN PENDIDIKAN MALAYSIA
M4TRICWTIONDIVNION
MINNIRY OF EDUCANON MAI-4WA
PEPERIKSMN SEMESTER PROGMM MATRIKULASI
MATNC UIANON PROGMMME FX,4MINANON
MATEMATIK
Kertas 2
2 ja,m
I NJANGAN BUKA KERTAS SOALAN INISEHINGGA DIBERITAHU.
NOT OtrN 7HlS 8UES77ON PAPER UAINLYOU ME TUD IO DO SO.
I
Kertas soalan ini mengandungi 19 halaman bercetak.
This question paper oonsrsfs of 19 pinted pages.
O Bahagian Matrikulasi
156
QS015l2
INSTRUCTIONS TO CANDIDATE:
This question paper consists of 10 questions.
Answer all questions.
All answers must be written in the answer booklet provided. Use a new page for each CHOW CHOON WOOI
question.
The firll marks for each question or section are shown in the bracket at the end of the question
or section.
All steps must be shown clearly. ;
Only non-programmable scientific calculators can be used.
Numerical answers may be given in the form of r, e, surd, fractions or up to three significant
\- figures, where appropriate, unless stated otherwise in the question.
157
QS(lr5/2
LIST OF' MATHEMATICAL tr'ORMULAE
Trigonometry
sin (l t B) = sin,4 cos B + cos,4 sin B
I +cos (; t B) = cos cos .B sin,4 sin.B CHOW CHOON WOOI
tan (A+.8) = tanA + tan8
1 + tanAtanB
sinl + sinB : 2 rinA+ B ro"A-',
sin,{ - sinB : 2 "orA* B *inA- B
cosl * cos B =2 "orA* B "or4- B
cosr4 - cos B : -2 rinA* B "inA- B
sin 2A=2sinA cosl
cas 2A = cos2 A-stnz A
= 2 cosz A-l
= l-2sinz A
tan 2A = 2tanA
l-tanz A
l-cosZA
gin2 A =
2
l+cos2A
cos' A =
2
158
QS015/2
LIST OF MATHEMATICAL FORMULAE
Differentiation
f(.) f'(*)
cot x )
- cosec"x CHOW CHOON WOOI
xsec sec x tan x
cosecx -cosecxcotx
If x= f (t) ana t = s(t), then !dx= 4dt*Ldx
d(dv\
dd2xyz=!,aldAx )
Sphere Y=!n'3 S=4nr2
Right circular cone V =: nr2h $ = nrs
3
S =2nrh
Rightcircularcylinder V = r,r2h
159
QS01s/2
I Expr.r,x,f+3x+2 in partial fractions form.
15 marksl
2 Statethevaluesof Rand a suchthat 3sind+6cosd=r?sin(9+a) where R>0 CHOW CHOON WOOI
and 0" <a<90". Hence, solve 3sind+6cosd=.rE for 0 <0<180".
16 marksl
\- 3 (a) Findthevalue of m if ti* T**?t =1.
r-+0 4x -8X'
(b) E-6. 13 marl*l
Evaluate rr-ir+n0 X 14 marks)
4 (a) LFind if y =cosec{sin[rn(x+r)]].
13 marksl
tive of y = cos3x and express your answer in the
(b) deriva fObtain the second
simplest form.
[4 marks]
160
QS015/2 CHOW CHOON WOOI
5 A cubic polynomial P(x) has remainders 3 and I when divided by (, - 1) and
(x -2), respectively.
(a) Let Q@) be a linear factor such that P(x) = (x - 1)(x -2)Q$) + ax + p,
where a and B are constants. Find the remainder when P(x) is divided by
(x -t)(x -2).
15 marlcsl
(b) Use the values of a and B frompart (a) to determine Q(x) if the coefficient
of x3 for P(x) is l and P(3)=7. Hence,solvefor x if P(x)=7-3x.
16 marlesl
11
161
QS015/2
6 (a) State the definition of the continuity of a function at a point. Hence, find the
value of d such that
f(x\=[,"'*o' x<o
[3x+5, x>0
is continuous at x = 0. [5 marl<s] CHOW CHOON WOOI
(b) /A tunction is defined by
f (x)={;,,_;,, ;:i 13 marksl
14 marksl
/Determine the value(s) of fr if is:
(D continuous for all x e IR.
(ii) differentiable for all x e lR.
13
162
QS015/2
7 (a) *Find the derivative of /(x) = by using the first principle.
(b) Use implicit differentiation to find: [4 marks) CHOW CHOON WOOI
(i) ! x ykrx=e'-!. 13 marksl
frc 15 marksl
(ii) thevalue $+&ciyf x12- I =3 when r=1.
I A curve is defined by parametric equations
r=ln (l+r), | = e" for / >-1.
(a) #Find Le *o interms of t.
16 marksl
O) Show that the curve has only one relative extremum at (0,1) and determine
the nature of the point.
16 marlal
15
163
QS01s/2
(a) A cylindrical container of volume l28n m3 is to be constructed with the same
material for the top, bottom and lateral side. Find the dimensions of the
container that will minimise the amount of the material needed.
16 morl<sl
(b) Gravel is poured onto a flat ground at the rate of * -' per minute to form a CHOW CHOON WOOI
20
conical-shaped pile with vertex angle 60o as shown in the diagram below.
Compute the rate of change of the height of the conical pile at the instant
/ = l0 minutes.
l7 marksl
17
164
QS015/2 14 marl<sl
ro (a) show,n"ffiffi=*r(ry)
(b) Use trigonometric identities to verify that
(D ztan9 CHOW CHOON WOOI
sind: 2
l+tarr'9'
2
13 marlxl
r-tarf q
(iD cosd =
l+tarr'9'
2
13 marlal
Hence, solvetheequation 3sind+cosd =2 for 0 <e <180'. Giveyour
answers correct to three decimal places.
15 marl<sl
(.*
END OF QUESTION PAPER
19
165
2014/2015
166
CHOW CHOON WOOI
QS015/1 QSo15/1
Mahematix
Paperl Matematik
ISemester Keftas 1
Session 2014/2015 Semester I
2 hours
Sesi 2014/2015
2 iam
KF.ME,NTE,RtAN CHOW CHOON WOOI
PENDIDIKAN
MATAYSIA
BAHAGIAN MATRIKULASI
M4TRICU- TTON DIVBION
PEPERIKSMN SEMESTER PROGMM MATRIKULASI
IT UTNCULAfiON PROGRAIUIME EXAMINATION
MATEMATIK
Kertas L
2 jam
JANGAN BUIG KERTAS SOALAN INISEHINGGA DIBERITAHU.
N NOTOPEN IHISQUESI/ON PAPERUNNLYOU ARETOLD IODOSO.
Kertas soalan ini mengandungi 13 halaman bercetak.
This question papermrsfs of13 pnhfedp4ges.
167@ Bahagian Matrikulasi
QSo15/1 CHOW CHOON WOOI
INSTRUCTIONS TO CANDIDATE:
This question paper consists of 10 questions.
Answer all questions.
All answers must be written in the answer booklet provided. Use a new page for each
question.
The full marks for each question or section are shown in the bracket at the end of the question
or section.
All steps must be shown clearly.
Only non-programmable scientific calculators can be used.
Numerical answers may be given in the form of fi, e, swd, fractions or up to three significant
figures, where appropriate, unless stated otherwise in the question.
163 8
QS01s/1
LIST OF MATHEMATICAL FORMULAE
Quadratic equation ax' + bx + c = 0'. CHOW CHOON WOOI
*--ott[o'-+*
2a
Arithmetie series:
T,=o+(n-a)d
s,=;Ba+@-a)dl
Geometric series:
Tn = arn-l
s,=ff,r*r
Sum to infinity:
S''-=14-r .rl <l
'
Binomial expansion:
(a + b)' = on +(i).".(;)o'u' + .(i)"-'u' + + b' ,
where neN *d [f'r)/ - (n n''
- r)tr
r.
(t + ax)' = ! + n(ax). @?b-y * n(n - D@ - 2)-(*I * . .
laxl<t where neZ-orneQ
165 9
QS01il1
I Solve the equation 3' +3G-*) =12.
16 marl<s)
2 Soive the inequality +6-x . -x]--l CHOW CHOON WOOI
16 marks)
[r o ol [r o ol
l, r-l v3 Givenmatrices a=l + I 0 I and B=l z I 0 I where B istheinverseof A.
b L, rj
Find x, "y and e in terms of a and b.
16 marlrsl
4 Using algebraic method. find the least value of n for which the sum of the first n terms
of a geometric series
0.88 + (0.88)'] - (0.88)3 + (0.88)a +...
is greater than half of its sum to infinity.
[7 marlu]
5 (a) State the interval for r such that the expansion for (4 + 3r)i 1, valid.
[2 marksl
(b) *lt1iExpand {+ in ascending power ofx up to the term in 13.
14 marlul
(c) Hence, by substifuting an appropriate value ofx, evaluat. 1S;i correct to three
decimal places.
14 marlcsl
1770
QSo15/1
6 (a) Given f(*)=2x+l and g(r) =x'+2x-1.
(i) Find (/ - g)(x). [2 marksl CHOW CHOON WOOI
14 marksl
(ii) Evaluate (3s -zf)(t).
(b) EGiven .f (*) = state the domain and range of /(r).
Hence, on the same ixes, sketch the graph of /(x) and f-t(x).
16 marlal
7 lr;t z = a+bi be a nonzero complex number.
ft(a) !show that =
14 marks)
O) Show that if i = -2, then z is a complex number with only an imaginary part.
13 marlal
(c) Find the value of a and b if z(2-i) =(i+1)(t+;).
15 marksl
1I 71
QSo15/1
8 (a) Solve the following equation le*, +x_l tl= +.
(b) Find the solution set for the inequality 16 marlu)
l7 marlesl
( x+2\ _ CHOW CHOON WOOI
2-l
\x-t-<4)).
9 Two companies P and Q decided to award prizes to their employees for three work
ethical values, namely punctuality (x), creativity (y)and efficiency (e). Company p
decided to award a total of RM3850 for the three values to 6, 2 and3 employees
respectively, while compary Q decided to award RM3200 for the three values to
4' I and 5 employees respectively. The total amount for all the three prizes is
RMl000.
(a) Construct a system of linear equations to represent the above situation.
13 marksl
(b) By forming a matrix equation, solve this equation system using the elimination
method.
[7 marks\
(c) with the same total amount of money spent by company p and e, is it possible
for company P to award 15 employees for their creativity instead of 2
employees? Give your reason.
13 marla)
11172
QSo15/1
l0 (a) Determinewhether f(x)=* *O g(x)= T areinversefrurctionof
each other by computing their composite functions.
[5 marks)
(b) Given .{(x)=ln(l-3r). CHOW CHOON WOOI
(1) Determine the domain and range of f (x). Then sketch the graph of
f (x).
[6 marks]
(ii) Find /-r(x), if it exists. Hence, state the domain and range of f-t(x).
[4 marks]
END OF QUESTION PAPER
113 73
QS015/2 QS015/2
Mathematia Matematik
Papr2 Kertas 2
ISemester Semester I
Session 2014/2015 Sesi 2014/2015
2 hours
2 jam
KEN,IENTERIAN CHOW CHOON WOOI
PENDIDiKAN
MALAYSIA
BAHAGIAN MATRIKULASI
M4TRICUATION DIVNION
PEPERIKSMN SEMESTER PROGRAM MATRIKULASI
II,IATNC UIATTON PRrcMMME EXAMINATION
MATEMATIK
Kertas 2
2 jam
JANGAN BUKA KERTAS SOALAN INISEHINGGA DIBERITAHU.
DONOTOPEN THIS QUESflON PAPERUNNLYOU ARE IOLD IODOSO.
Kertas soalan ini mengandungi 15 halaman bercetak.
This quxlbn paperconsisfs of 15 pinted pages.
@ Bahagian Matrikulasi
174
QS015/2 CHOW CHOON WOOI
INSTRUCTIONS TO CANDIDATE:
This question paper consists of 10 questions.
Answer all questions.
All answers must be written in the answer booklet provided. Use a new page for each
question.
The full marks for each question or section are shown in the bracket at the end of the question
or section.
All steps must be shown clearly.
Only non-programmable scientific calculators can be used.
Numerical answers may be given in the form of tr, e, stJrd, fractions or up to three significant
figures, where appropriate, unless stated otherwise in the question.
1735
QSo15/2
LIST OF MATHEMATICAL FORMULAE
Trigonometry
Isln (e+ A)= sin,4 cos .B + cos sin.B CHOW CHOON WOOI
(exA)=cos AcosB + sinl sinB
tan (A+ B) = tanA * tan B
1 + tanAtanB
sin I + sin B: 2 ,inA+2B2 "orA- B
sinl - sinB: 2 B rinA- B
"orA*22
cosA* cos B:2 B B
"o"A*22 "rrA-
cosA- cos B : -2 rinA+ B ,inA- B
sin2A=2sinAcosA
cos 2A= cos2 A-sin2 A
= 2 cos2 A-l
= l-Zsin2 I
tan 2A= 2tan 4
l-tar," A
sinz A = l-cosZA
2
cos' A = l+cos2A
175 6
QS015/2
LIST OF MATHEMATICAL FORMULAE
Limit
li* si'ft = I CHOW CHOON WOOI
h-+0 h
hlm+0l-cohs fr =0
Differentiation
f(*) "f'(*)
cot x - cosec2,
xsec
sec x tan x
cosecr -cosec xcotx
*"*rf y =g(r) and * = fk), tnen ff=
d(dv\
dd'xv2-AldAx )
dr
Sphere V A nr3 S = 4nr2
=1 =g rE rs
J -,S 2 nrh
Right circular cone Y =! nr2h
3
Right circular cylinder V = nrzh
1777
QSo15/2
Given that (x-2) is afactot of thepolynomial "f(*)= axt -l}x' +bx-2 where
a and b arc real numbers. lt f (x)is divided by (x + 1) the remainder is -24,
find the values of aand D. Hence, find the remainder when /(x) is divided
by(2x+1).
16 marksl
2 Solve the equation 2cos2 x -l =sinx for0 I x 12n. Give your answer in terms of a. CHOW CHOON WOOI
16 marksl
3 Find the relative extremum of the curve ! = x3 -4x2 +4x.
16 marksl
Car X is travelling east at a speed of 80 km/h and car Y is travelling north at 100 km/h
as shown in the diagram below. Obtain an equation that describes the rate of change
of the distance betlr,een the two cars.
Hence, evaluate the rate of change of the distance between the two cars when
car X is 0.15 km and car Y is 0.08 km from P.
Car X
[7 marks)
1789
QSo15/2
Expand (x+a)(x+ b)' , o and b are real numbers with b > 0. Hence, find the
values of a and b if (x+ a)(x+b)'=*t -3x-2.
-Express #xo -4x'+5x-l in the form of partial fractions.
x'-3x-2
ll2 marksl CHOW CHOON WOOI
(a) Express sin 6x - sin 2x in a product form. Hence, show that [6 marlcsl
l7 marksl
sin 6x - sin2x + sin 4x = 4 cos 3r sin 2x cos x .
(b) Use the result in (a) to solve
sin 6x - sin 2x + sin 4x = sin 2x cos x
for 0<x<180".
7 Find the limit of the following, if it exists.
-.(a) lx[--f>l-.3-_vrx+q)3J
(b) l.l.m--Z--:x.-l 13 marksl
x+-* *z -g 13 marks)
r ^f 14 marksl
l,
(c) l,xl.m+4x',-l/3X- x_2-4 .
17911
QSo15t2 x<0
0<x<4
lt+r-,
x>4
8 lr-,Given rhat /(,r)= ]-
lc,
u'here C isaconstant.
(a) Determine whether /(x) is continuous at x = 0. CHOW CHOON WOOI
15 marksl
(b) fGiven that (x) is discontinuous at x = 4, determine the values of c.
13 marksl
(c) fFind the vertical asymptote of (x).
14 marksl
18103
I
QS015/2
9 Consider the parametric equations of the curve
.tr=cos30 and y=sin30, 0<0<2r.
(a) Find 4L and express your answer in terms ofd.
dx
(b) Find the value ot Ldxf4f x =O 14 marksl CHOW CHOON WOOI
14 marksl
- 44dxz(c) Show ,,nur 3 cosa 0 sin?' [5 marksl
15 marksl
*iHence, calculate " 0 =L
ll0 marksf
(a) J;.10 Use the first principle to find the derivative ofg(x) =
(b) Given that ev + xy +ln{l+Zx) =1, x > 0.
lff ffishow that (ev *
*,' (U*)' . rff- =o
#Hence, find the value "f at the point (0,0).
END OF QUESTION PAPER
18115
2015/2016
182
CHOW CHOON WOOI
QS()I5I1 QS015/1
Mathendix Matematik
Paprl Kertas 1
ISemester Semester I
Session 201 5/2016 Sesi 2015/2016
2 hours
2 jam
I
KEMEI{TE,RIAI{ CHOW CHOON WOOI
PEI{DIDIKAI\J
MALAYSIA
BAHAGIAN MATRIKI]LASI
&vI,4TNCUI-ATIONDIVNION
PEPERIKSMN SEMESTER PROGRAM MATRIKULASI
I,L4TRICU-,IffiON PROGMMME FXAMINAITON
MATEMATIK
Kertas 1
2 jam
JANGAN BUI(A KERTAS SOALAN INI SEHINGGA DIBERITAHU.
DO NOIOPEN IHIS QUESI/ON PAPERUMILYOU /RE IOLO IO DO SO,
Kertas soalan ini mengandungi 13 halaman bercetak.
This question paper consisfs of 13 prhfedpryes.
183@ Bahagian Matrikulasi
QS015r1 CHOW CHOON WOOI
ARAHAN KEPADA CALON:
Kertas soalan ini mengandungi 10 soalan.
Jawab semua soalan.
Semua jawapan hendaklah ditulis pada buku jawapan yang disediakan. Gunakan muka surat
baru bagi nombor soalan yang berbeza.
Markah penuh yang diperuntukkan bagi setiap soalan atau bahagian soalan ditunjukkan
dalam kurungan pada penghujung soalan atau bahagian soalan.
Semua langkah kerja hendaklah ditunjukkan dengan jelas.
Kalkulator saintifik yang tidak boleh diprogramkan sahaja yang boleh digunakan.
Jawapan berangka boleh diberi dalam bentuk rr, e, surd, pecahan atau sehingga tiga angka
bererti, di mana-mana yang sesuai, kecuali jika dinyatakan dalam soalan.
1284
QSo1$1 CHOW CHOON WOOI
INSTRUCTIONS TO CANDIDATE:
This question paper consists of 10 questions.
Answer all questions.
All answers must be written in the answff booklet provided. Use a new page for each
question.
The full marks for each question or section are shown in the bracket at the end of the question
or section.
All steps must be shown clearly.
Only non-programmable scientific calculators can be used.
Numerical answers may be given in the form of E, e, stmd, fractions or up to three significant
figures, where appropriate, ucless stated otherwise in the question.
1385
QS015/1
SENARAI RUMUS MATEMATIK
Persamaan kuadratik m2 +bx+c=0: CHOW CHOON WOOI
_u*ly
2a -aac
Siri aritmetik:
To = Q+(n-l)d
s, =Lrlzo+(n*I)d)
Siri geometri:
To: arn-l
t,=ffl+t
Hasil tambah infiniti:
s*=fi,lrl<t
Kembangan Binomial:
(a+b)' =an +(i).-'r.(;)o-,u,. .[, an-'/b'i +...+bn,
dengan neN.*fi =@+i-il
rP(t + ax)n = r + n (ax). t*12 * n (n - \{n - z) (*), * ...
lo*l.l dengan neZ- atau n eQ
1486
QSo1s/1
LIST OF MATIIEMATICAL FORMULAE
Quadratic equation mz +bx+c=O:, CHOW CHOON WOOI
-b + "[b' 4a;
2a
Arithmetic series:
Tn = a+(n-l)d
S, = !12.a + (n _t)d1
Geometric series:
T' = or'-1
J.,=Jraf+(ll- r')
I-r
Sum to infinity:
s." =fr, lrl<r
Binomial expansion:
(a+b). =,. .(l o.u.(;)on-z6z+...+ (",)o-u, +...+b.,
, ,where
ne'N' "*.d'- fl,"l)= n! r !.
(n-r)!
(t + ax)n = t + n(ax).$ r*)' * n(n-t)(n-z) (*)' *...
3!
laxl<t where rceZ- orreQ
1587
QS(l15/1
1 Nilaikan penyelesaian bagi 4v-2 =5|. ,.ninega tiga tempat perpuluhan.
[6 markahl
2 Tiga sebutan pertama bagi suatu jujukan geometri adalah[i- - z), {z*-t) dan tz. CHOW CHOON WOOI
Tentukan rulai rn. Seterusnya, cari sebutan yang keenam bagi jujukan ini.
16 markahf
3 Selesaikan persamaan
2+log, x =!51o9,2.
17 markah)
lt x -11
4 (a) Tentukannilaixrrrurul, 0 I ladalahsingular.
[, 3 -r.]
(b) rikar=L[:l 2]l Jo*.8='L[r; 4'rll'tuti c aPabila A=BCB-|'
17 markahl
5 (a) Kembangk an (2+ x)- 1 dalam kuasa menaik x, sehingga sebutan .r3.
15 markahl
(b) ^ E.Guna kembangan di (a) untuk menganggark
15 markahl
1688
QSo1$1
1 +Evaluate the solution of 4v-2 = )' up to three decimal places.
[6 marl<s]
z The first three terms of a geometric *"sequence (1*-Z), tZ*-1) and 12. CHOW CHOON WOOI
Determine the value of m . Hence, find the sixth term for this sequence.
[6 marks]
3 Solve the equation
2 +1og, x = 15 1og,2.
17 marks)
4 (a) [l ;*",Determine the values of x so ]'-l ,, singeular.
[r 3 -r]
[i [l(b) ,r , = ;] *. , = 1], *u c when A= BCB-,
17 marksl
5 (a) Expand (2+ x)_12 in ascending powers of x, up to the term x3.
15 marksl
O) EUse the expansion in (a) to approximat "
15 marksl
187 9
QSo15/1
6 Diberi zt=3-3f dan zz=3*2i.
(a) Tuliskan ,, a*at rbentuk polar.
(b) ' @1.3fZlUngkapkanl-r, ) dalam bentuk a+bi, a,6 e IR. 14 markah| CHOW CHOON WOOI
l8 markahl
7 Suatulengkung !=axz+bx+c yangmana a,b danc adalahpemalar,melalui
titik-titik (2,11), (-1,-16) dan (3,28).
(a) Dengan menggunakan maklumat di atas, bina satu sistem yang mengandungi
tiga persamaan linear.
13 markah)
(b) ungkapkan sistem di atas sebagai satu persamaan matriks AX = B,
ll markah)
(c) ICari songsangan bagi matriks dengan menggunakan kaedah matriks adjoin.
Seterusnya, dapatkan nilu a, b dan e.
l8 markah)
8
190
QS()15r1
6 Given Zr=3-3i and zz=3*2i.
(a) Write z, in polar form.
(b) 'Express yl;"?*\{I-1l " \ in.t. form a+bi, a,beF.. 14 narksl CHOW CHOON WOOI
13 \-r, ) l8 marlcsl
1 Acurve !=axz +bx+c where a, b and c areconstants,passesthrough
thepoints (2,11), (-1,-16) and (3,28).
(a) By using the above information, construct a system containing three linear
equations.
13 marksl
(b) Express the above system as a matrix equation AX = B.
lT mark]
{c} Find the inverse of matrix .4 by using the adjoint matrix method.
Hence, obtain the values of a, b and c.
18 marltsf
9
191
QSo15/1
8 Diberi tungsi f (*) : Ji 1x.
(a) fTunjukkan bahawa adalah fungsi satu ke satu.
12 markahl
(b) Cari domain dan julat bagi f . CHOW CHOON WOOI
f3 markahl
(c) /Tentukan fungsi songsangan bagi dan nyatakan domain dan julafrrya.
f4 markalz)
(d) f-tLakarkan graf bagi .f dw padapaksi yang sama.
[3 markah]
9 (a) Fungsi / diberi sebagai -f (x) =93!x:-24, ' * t1,
3
Jika (f . "f)(x) = x, cari nilai a.
16 markah)
(b) Katakan -f (x) = hl3x + 2l dan g(x) = e-' +2 adalah dua tungsi.
Nilaikan (g.,f)-'(3).
{7 markahl
11092
--r
QS()15/1
8 Given a tunction f (*)=,13-2l-.
(a) fShow that is a one to one function.
[2 marks]
(b) /.Find the domain and range of CHOW CHOON WOOI
[3 marksl
(c) /Determine the inverse function of and state its domain and range.
14 marlcsl
(d) / f-tSketch the graphs of and orthe same axis.
13 marksl
9 (a) /The tunction is given as f(x)=#, -*:. 16 marlul
[7 marlxl
If ("f . "f)(x) = x, find the value of a.
(b) Let f (x) = hl3x +21 md g(x) = e-* +2 be two functions.
Evaluate (8 " ,f)-'(3).
1191 3
QSo15'1
10 (a) * l4lSelesaikan ketaksama r r.
lx+31
16 markahl
(b) Tunjukkan U1=2". CHOW CHOON WOOI
Seterusnya, cari seellaanngg bbaaggi x ssru.pa,ya !:{-13(2-)+36>0.
g,
19 markah)
KERTAS SOALAN TAMAT
11294
QSo1s/1
10 (a) l+lSolve the inequal* , r.
16 marks)
(b) Show sr6L!1=2". CHOW CHOON WOOI
l!'-Hence, find the interval for x so tt ut 2' -13(2')+ 36 > 0.
8',
19 marksl
END OF QUESTION PAPER
11395
QS015/2 QSo15i2
It*:runatix Matematik
PWr2
Kertas 2
ISemester
Semester I
Session 2015/2016
Sesi 2015/2016
2 hours
2 jam
I KEMENTERIAN CHOW CHOON WOOI
PENDIDIKAN
MALAYSIA
BAHAGIAN MATRIKULASI
A,TATRICULATTON DIVNION
PEPERIKSMN SEMESTER PROGMM MATRIKULASI
M4TRICUfuLNON PROGRAMME EXAMINATION
MATEMATIK
Kertas 2
2 jam
JANGAN BUKA KERTAS SOALAN INI SEHINGGA DIBERITAHU.
DO NOTOPEN IHISQUESI/ON PAFERUMILYOU ARETOLDTO DO SO,
Kertas soalan ini mengandungi 15 halaman bercetak.
Iha gueston paper mnsbfs of 15 pinted pryes.
@ Bahagian Matrikulasi
196
QS015l2 CHOW CHOON WOOI
ARAHAN KEPADA CALON:
Kertas soalan ini mengandungi 10 soalan.
Jawab semua soalan.
Semua jawapan hendaklah ditulis pada buku jawapan yang disediakan. Gunakan muka surat
baru bagi nombor soalan yang berbeza.
Markah penuh yang diperuntukkan bagi setiap soalan atau bahagian soalan ditunjukkan
dalam kurungan pada penglrujung soalan atau bahagian soalan.
Semua langkah kerja hendaklah ditunjukkan dengan jelas.
Kalkulator saintifik yang tidak boleh diprogramkan sahaja yang boleh digunakan.
Jawapan berangka boleh diberi dalam bentuk ?E, e, st)rd, pecahan atau sehingga tiga angka
bererti, di mana-mana yang sesuai, kecuali jika dinyatakan dalam soalan.
2
197
QSo15/2 CHOW CHOON WOOI
INSTRUCTIONS TO CANDIDATE:
This question paper consists of I0 questions.
Answer all questions.
All answers must be written in the answer booklet provided. Use a new page for each
question.
The fuII marks for each question or section are shown in the bracket at the end of the question
or section.
All steps must be shown clearly.
Only non-programmable scientific calculators can be used.
Numerical answers may be given in the form of tT, e, surd, fractions or up to three significant
figures, where appropriate, unless stated otherwise in the question.
3
198
QSo15/2
SENARAI RUMUS MATEMATIK
Trigonometri
I I+Sln (Z* A)= sin cos .B cos sin B
(ex a) = cos A cos B + sinl sin B CHOW CHOON WOOI
tan (A* B) = tanA + tanB
1 + tanAtanB
sinA+sin,B: 2rioA+ B B
"orA*
sinA -sin.B : 2 "r"A* B *inA- B
Icos * cos B:2 "orA* u "orA- B
lcos - cos.B : -2 rioA* B "inA- I
sin2A=2sinAcosA
cos 2A = cos2l -sinz A
= 2 coszA-l
= l-Zsin2 A
tan2A = 2 tanA
l-lrrfi A
sinz A = l-cos2A
2
cos'A = l+cos2A
2
1499
QS01sl2
LIST OF MATHEMATICAL FORN{ULAE
Trigonometry
IB +sin (l +,8) = sin ,{ cos
cos sin .B
cos (,atB)= cosAcosB + sinl sinB CHOW CHOON WOOI
tan (A* B)= tanA + tanB
1 + tanAtanB
sinA +sin B : z B B
"inA+22 "orA-
sinl - sinB: z B B
"orA*22 "inA-
cosl * cos.B :2 "orA*2.F2 "orA-,8
cosl -cos B = -2 rioA+ B rroA- B
sin2A=2sinAcosA
cos 2A = cos2 A-sin2 A
= 2 cos2 A-l
=l-2sin2 A
tan 2A = 2tanA
-l---t-a--n---'-A--
s.tn1'A. 1-cos2A
2
CO1S-I= l+cos2A
2
-
2500