The words you are searching are inside this book. To get more targeted content, please make full-text search by clicking here.

Eamcet maths book.this is useful to eamcet rank gainer

Discover the best professional documents and content resources in AnyFlip Document Base.
Search
Published by pra4kashbabu, 2016-02-24 03:15:25

Eamcet maths book

Eamcet maths book.this is useful to eamcet rank gainer

Keywords: eamcet ,engineering ,mahts

Jpacademy FUNCTIONS

PREVIOUS EAMCET BITS

1. If f: [2, 3] → IR is defined by f (x ) = x3 + 3x − 2 , then the range f(x) is contained in the interval :

1) [1,12] 2) [12,34] 3) [35,50] [EAMCET 2009]

4) [−12,12]

Ans: 2

Sol. f (2) = 12 and f (3) = 34

∴ Range = [12, 34]

2. ⎧⎨x ∈ IR : x3 2x −1 3x ∈ IR ⎫ = [EAMCET 2009]
⎩ + 4x2 + ⎬


1) IR −{0} 2) IR −{0,1,3} 3) IR −{0, −1, −3} 4) IR − ⎧⎨0, −1, −3, + 1⎫
⎩ ⎬
2 ⎭

Ans: 3

Sol. x ( 2x −1 + 3) = x (x 2x −1 + 3)
x2 + 4x
+ 1) ( x

is not defined if x ( x +1)( x + 3) = 0 ⇒ x = −3, −1, 0

3. Using mathematical induction, the numbers an ‘s are defined by a0 = 1, an+1 = 3n2 + n + an (n ≥ 0)

, then an = [EAMCET 2009]

1) n3 + n2 +1 2) n3 − n2 +1 3) n3 − n2 4) n3 + n2

Ans: 2

Sol. a0 = 1, a1 = 1, a2 = 3 +1+ a1 = 5 and so on. Verify (2) is correct

4. The number of subsets of {1, 2, 3, …….9} containing at least one odd number is[EAMCET 2009]

1) 324 2) 396 3) 496 4) 512

Ans: 3

Sol. Number of subsets = 29 − 24 = 512 −16 = 46

4. If → C is defined by f (x ) = e2ix for x ∈ R , then f is (where C denotes the set of all complex

numbers) [EAMCET 2008]
3) one-one and onto 4) neither one-one nor onto
1) one-one 2) onto

Ans: 4

Sol. f ( x ) = e2ix = cos 2x + i sin 2x

f (0) = f (π) = 1 ⇒ f is not one one

There exists not x ∈ R ∋ f (x) = 2 ⇒ f is not onto.

5. If f : R → R and g : R → R are defined by f ( x) = x and g ( x) = [x − 3]for x ∈ R , then

⎧⎨g (f ( x ) ) : − 8 < x < 8 ⎫⎬ = [EAMCET 2008]
⎩ 5 5 ⎭ 4) {2, 3}

1) [0, 1] 2) [1, 2] 3) {–3, –2}
1

Jpacademy Functions

Ans: 3

Sol. − 8 < x < 8 ⇒ 0 ≤ x < 8 ⇒ −3 ≤ x − 3 < 8 − 3
55 5 5

⇒ −3 ≤ x −3< −7 ⇒ ⎡⎣ x − 3⎤⎦ = −3or − 2
5

⇒ ⎨⎧g ( f ( x )) : − 8 < x < 8 ⎫ = {−3, −2}
⎩ 5 5 ⎬


6. If f :[−6, 6] → R defined by f (x) = x2 − 3 for x ∈ R then

(fofof )(−1) + (fofof )(0) + (fofof )(1) = [EAMCET 2008]

(1) f 4 2 ) (2) f 3 2 ) (3) f 2 2 ) 4) f ( 2)

Ans: 1

Sol. (fofof )(−1) + (fofof )(0) + (fofof )(1) = −2 + 33 − 2 = 29

( )f 4 2 = 32 − 3 = 29

7. If Q denotes the set of all rational numbers and f ⎛ p ⎞ = p2 − q2 for any p ∈ Q, then observe
⎜ q ⎟ q
⎝ ⎠

the following statements [EAMCET 2007]

I) f ⎛ p ⎞ is real for each p ∈Q
⎜ q ⎟ q
⎝ ⎠

II) f ⎛p⎞ is complex number for each p ∈Q
⎜ ⎟ q
⎝ q ⎠

Which of the following is correct ? 2) I is true, II is false
1) Both I and II are true

3) I is false, II is true 4) Both I and II are false

Ans: 3

Sol. f ⎛ 1 ⎞ = 1−4 = −3 is an imaginary ⇒ I is false
⎜⎝ 2 ⎟⎠

f ⎛ p ⎞ = p2 − q2 it is a complex number ⇒ II is true
⎜ q ⎟
⎝ ⎠

8. If f : R → is defined by f (x) = 1 for each x ∈ R , then the range of f is

2 − cos 3x
[EAMCET 2007]

1) ⎛ 1 ,1⎞⎟⎠ 2) ⎡ 1 ,1⎤⎦⎥ 3) (1, 2) 4) [1, 2]
⎜⎝ 3 ⎣⎢ 3

Ans: 2

Sol. Max. and Min. values of 2 – cos3x are 3 and 1

∴ Range = ⎡ 1 ,1⎤⎦⎥
⎢⎣ 3

9. If f : R → and g : → are defined by f(x) = x – [x] and g(x) = [x] for x ∈ , where [x] is

The greatest integer not exceeding x, then for every x ∈ , f (g ( x)) = [EAMCET 2007]

2

Jpacademy Functions

1) x 2) 0 3) f(x) 4) g(x)

Ans: 2

Sol. f (g (x))

= g (x) − ⎣⎡g (x)⎤⎦
=[x]−[x] = 0

10. If f = → is defined by f (x) = x − [x] − 1 for x ∈ , where [x] is the greatest integer not

2

exceeding x, then ⎧⎨x ∈ : f ( x) = 1 ⎫ =…… [EAMCET 2006]
⎩ 2 ⎬


1) Z, the set of all integers 2) IN, the set of all natural number

3) φ, the empty set 4)

Ans: 3

Sol. f (x) = x −[x] − 1 , x ∈

2

f (x) = 1

2

⇒ x −[x]− 1 = 1

22

⇒ x −[x] =1

⇒ {x} = 1 which is not possible, where {x} denotes the fractional part

11. If f = → is defined by f (x) = [2x] − 2[x]for x ∈ . where [x] is the greatest integer not

exceeding x, then the range of f is [EAMCET 2006]

1) {x ∈ : 0 ≤ x ≤ 1} 2) {0, 1}

3) {x ∈ : x > 0} 4) {x ∈ : x ≤ 0}

Ans: 2

Sol. f (x) = [2x] − 2[x], x ∈ = 0

= ∀x ∈ where x = a + f

∋ 0 < f < 0.5
= 1,∀x ∈

x = a + f where 0.5 ≤ a < 1

∴ Range = {0, 1}

12. If f : → ⎧ x + 4 for x < −4

is defined by f (x ) = ⎨⎪3x + 2 for −4 ≤ x < 4 then the correct matching of List I

⎪⎩ x − 4 for x ≥ 4

from List II is [EAMCET 2006]

List – I List – II

A) f (−5) + f (−4) i) 14

B) f ( f (−8) ) ii) 4

C) f (f (−7) + f (3)) iii) – 11

3

Jpacademy Functions

D) f (f (f (f (0)))) + 1 iv) – 1

v) 1
vi) 0

A BC D AB CD
ii v
1) iii vi ii v 2) iii iv v ii

3) iv iii ii i 4) iii vi

Ans: 1

Sol. (A)f (−5) + f (−4) = (−5 + 4) + 3(−4) + 2 = −11

(B)f (−8 + 4) = f (−4) = 3 ⇒ f (4) = 0

(C) f ⎣⎡(−3) +11⎦⎤ = f (8) = 4

(D)f (f (f (2))) = f (f (8)) +1= f (4) +1= 0 +1=1

{ }13. x ∈ : ⎡⎣x − x ⎤⎦ = 5 = [EAMCET 2005]

1) , the set of all real numbers 2) φ, the empty set

3) {x ∈ : x < 0} 4) {x ∈ : x > 0}

Ans: 2

Sol. x− | x |= 2x,∀x < 0

= 0,∀x ≥ 0

∴ x - |x| ≠ 5

14. The function f : c → c defined by f ( x) = ax + b for x ∈ c where bd ≠ 0 reduces to a constant

cx + d

function if [EAMCET 2005]

1) a = c 2) b = d 3) ad = bc 4) ab = cd

Ans: 3

Sol. f (x) = ax + b

cx + d

cx + d) ax + b (a / c

ax + ad / c

bc − ad

c

f (x) = a + bc − ad = constant bc = ad
c
c(cx + d)

2004

15. For any integer n ≥ 1, the number of positive divisors of n is denoted by d(n). Then for a prime P,

d(d(d(P7 )))= [EAMCET 2004]

1) 1 2) 2 3) 3 4) P

Ans: 3

( )Sol. d d(d (p7 )) = d (d (8)) = d (d (23 )) = d (4)

= d(22 ) = 2 +1 = 3

4

Jpacademy Functions

⎧ 2 if n = 3k, k ∈ Z

16. If f : N → Z is defined by f (n) = ⎨⎪10 if n = 3k +1, k ∈ Z then {n ∈ N : f (n) > 2}=

⎪⎩ 0 if n = 3k + 2, k ∈ Z

1) {3, 6, 4} 2) {1, 4, 7} 3) {4, 7} [EAMCET 2004]
4) {7}

Ans: 2

Sol. f (n ) > 2 ⇒ n = 3k +1

⇒ n = 1; n = 4; n = 7

17. The function f : → is defined by f (x ) = 3−x . Observe the following statements of it :

I. f is one-one II) f is onto III) f is a decreasing function [EAMCET 2004]

Out of these, true statements are

1) only I, II 2) only II, III 3) only I, III 4) I, II, III

Ans:

Sol. f : R → R;f ( x) = 3−x

∴ f(x) is one-one and it is decreasing function

⎧ [x] if −3 < x ≤ −1

18. If f (x) = ⎨ x if 1 < x < 1 , then (x : f (x) ≥ 0) = [EAMCET 2004]

⎪⎩⎣⎡[x]⎦⎤ if 1 ≤ x < 3

1) (–1, 3) 2) [–1, 3) 3) (–1, 3] 4) [–1, 3]

Ans: 1

Sol. Verification
19. I f : → and g : → are definite by f(x) = 2x + 3 and g(x) = x2 + 7 then the values of x such

that g(f(x)) = 8 are [EAMCET 2003]
4) 1, –2
1) 1, 2 2) –1, 2 3) –1, –2

Ans: 3

Sol. g (f (x)) = 4x2 +12x +16

⇒ 4x2 +12x +16 = 8

⇒ (x +1)(x + 2) = 0 ⇒ x = −1, −2

20. Suppose f :[−2, 2] → is defined f (x) = ⎧ −1 for − 2 ≤ x ≤ 0
⎨⎩x −1 ,

for 0 ≤ x ≤ 2

{ }then x ∈[−2, 2]: x ≤ 0 and f ( x ) = x = .... [EAMCET 2003]

1) {–1} 2) {0} 3) ⎧⎨− 1⎫ 4) φ
⎩ ⎬
2 ⎭

Ans: 3

Sol. Now take x = − 1
2

∴f ⎛ − 1 ⎞ = f ⎛1⎞ = 1 −1 = − 1
⎜⎝ 2 ⎟⎠ ⎜⎝ 2 ⎠⎟ 2 2

Hence f(|x|) = x

5

Jpacademy Functions

∴ Domain of f (x) = ⎨⎧− 1 ⎬⎫
⎩ 2 ⎭

21. If f : → and g : → are given f(x) = |x| and g(x) = [x] for each

{x ∈ : g (f (x)) ≤ f (g (x))} [EAMCET 2003]

1) z ∪ (−∞, 0) 2) (−∞,0) 3) z 4)

Ans: 4

Sol. f (x) = x ;g (x) = [x]

g(f (x)) ≤ f (g(x))
g (f (x)) = g ( x ) = ⎡⎣ x ⎤⎦ = [x]
f (g(x)) = f [x] = [x]

[x]≤ [x]

∴x∈ 3) 1 [EAMCET 2002]
4) – 1
22. If f (x) = ax + a2 , then f (a ) =

ax
1) a 2) 0
Ans: 2

Sol. f ( x) = ax + a2

ax

f′(x) = 2 1 .a + a2 ⎣⎡⎢− 1 (ax )−3/2 a ⎤
ax ⎦⎥
2

f ′(a ) = a − a3.a−3 = 0

2a 2

23. If f (x) = cos2 x + sin4 x for x∈R , then f(2002)= [EAMCET 2002]
sin2 x + cos4 x 4) 4

1) 1 2) 2 3) 3

Ans: 1

Sol. f (x ) = cos2 x + sin4 x
sin 2 x + cos4 x

1− 1 sin2 2x
=4
1− 1 sin2x =1

4

⇒ f (2002) = 1

24. The function f : R → R is defined by f (x) = cos2 x + sin4 x for x ∈ R .Then f(R) =

[EAMCET 2002]

1) ⎛ 3 ,1⎦⎤⎥ 2) ⎡3 ,1⎠⎞⎟ 3) ⎡ 3 ,1⎤⎥⎦ 4) ⎛ 3 ,1⎠⎟⎞
⎜⎝ 4 ⎣⎢ 4 ⎢⎣ 4 ⎝⎜ 4

Ans: 3

6

Jpacademy Functions

Sol. f ( x) = cos2 x + sin4 x

( )= cos2 x + sin2 x 1− cos2 x

= 1− 1 sin2 2x
4

sin2 2x ∈[0,1]

∴ Maximum of f(x) = 1− 1 (0) = 1

4

Minimum of f(x) = 1− 1 (1) = 3

44

∴ Range of f(x) = ⎡3 ,1⎤⎥⎦
⎢⎣ 4

25. If the functions f and g are defined by f (x) = 3x − 4, g ( x) = 2 + 3x for x ∈ respectively, then

( )g−1 f −1 (5) = [EAMCET 2002]

1) 1 2) 1/2 3) 1/3 4) 1/4

Ans: 3 [EAMCET 2001]
4) 2−1
Sol. f −1 ( x ) = x + 4 , g−1 ( x ) = x − 2

33

( )f −1 (5) = 3 g−1 f −1 (5) = g−1 (3) = 1
3

If f ( x ) = 25 − x4 1/4 for 0 < x < ⎣⎢⎡f ⎛ 1 ⎞⎤
( )26. 5 then f ⎜⎝ 2 ⎟⎠⎥⎦ =

1) 2−4 2) 2−3 3) 2−2

Ans: 4

( )Sol. f (x ) = 25 − x4 1/4

( )⇒ f (f ( x)) = ⎡⎣25 − 25 − x4 ⎤⎦1/4 = x

∴ f (f (1/ 2)) = 1 = 2−1

2

27. Let z denote the set of all integers Define f : z →z by f (x) = ⎪⎧x / 2 (x is even)
⎨ ( x is odd) . Then f is =
⎪⎩ 0

[EAMCET 2001]

1) On to but not one-one 2) One –one but not onto

3) One-one and onto 4) Neither one-one nor onto

Ans: 1

Sol. ---

⎧x + 2 (x ≤ −1)

28. Let f :R →R be defined by f ( x ) = ⎨ x2 (−1 ≤ x ≤ 1) . Then the value of f(–1.75)+f(0.5) +

⎪⎩2 − x (x ≥ 1)

f(1.5) is [EAMCET 2001]

1) 0 2) 2 3) 1 4) – 1

Ans: 3

7

Jpacademy Functions

Sol. f (−1.75) + f (0.5) + f (1.5)

= (−1.75 + 2) + (0.5)2 + 2 −1.5 = 1

29. The functions f : → , g : → are defined as follows: [EAMCET 2001]

f ( x ) = ⎧⎪0 (x rational) ; g(x) = ⎧⎪−1 (x rational)
⎨⎪⎩1 (x irrational) ⎨ ( x irrational) . The (f0g) (π) + (gof) (e) =
⎩⎪ 0

1) –1 2) 0 3) 1 4) 2

Ans: 1

Sol. O

= f (0) + g (1) ( ∵ π and e are irrationals)

=0–1=-1

30. If f : R → R is defined by f(x) = 2x + |x|, then f(2x) + f(–x) – f(x) = [EAMCET 2000]

1) 2x 2) 2|x| 3) –2x 4) –2|x|

Ans: 2

Sol. f (x) = 2x + x

∴ f (2x) + f (−x) − f (x)

= 2(2x) + 2x + 2(−x) + −x − (2x + x ) = 2 x

31. If f : R → R and g : R → R are defined by f(x) = 2x + 3 and g(x) = x2+ 7, then the value of x for

which f(g(x)) = 25 are [EAMCET 2000]

1) ±1 2) ±2 3) ±3 4) ±4

Ans: 2

Sol. f (g (x)) = 25 ⇒ f (x2 + 7) = 25

⇒ 2(x2 + 7) + 3 = 25

∴ x = ±2 [EAMCET 2000]

{ }32. x ∈ R : x − 2 = x2 =

1) {–1, 2} 2) {1, 2} 3) {–1, –2} 4) {1, –2}
Ans: 4

Sol. {1, −2} satisfies

™™™

8

Jpacademy MATHEMATICAL INDUCTION

PREVIOUS EAMCET BITS

1. Using mathematical induction, the numbers an ‘s are defined by a0 = 1, an+1 = 3n2 + n + an (n ≥ 0)

, then an = [EAMCET 2009]

1) n3 + n2 +1 2) n3 − n2 +1 3) n3 − n2 4) n3 + n2

Ans: 2

Sol. a0 = 1, a1 = 1, a2 = 3 +1+ a1 = 5 and so on. Verify (2) is correct

n [EAMCET 2008]

2. For any integer n ≥ 1, then sum ∑ k (k + 2) is equal to
k =1
n (n +1)(2n + 7) n (n +1)(2n + 9)
n (n +1)(n + 2) n (n +1)(2n +1)
3) 4)
1) 2) 6 6
66

Ans: 3

Sol. n k (k + 2) = n (k2 + 2k ) = n k2 n k = n (n + 1) ( 2n +1) + 2n (n + 1)

∑ ∑ ∑ +2∑ 6 2
k=1 k=1 k=1 k=1

n (n +1) [2n +1+ 6] = n (n +1)(2n + 7)

66

3. If Sn = 13 + 23 + ...... + n3 and Tn = 1+ 2 + ..... + n then [EAMCET 2007]

1) Sn = Tn3 2) Sn = Tn2 3) Sn = Tn5 4) Sn = Tn4

Ans: 2

n3 = n2 (n +1)2 n 2 = Tn2

4
∑ (∑ )Sol. Sn =

4. For all integers n ≥ 1, which of the following is divisible by 9 [EAMCET 2006]

1) 8n +1 2) 4n − 3n −1 3) 32n + 3n +1 4) 10n +1

Ans: 2

Sol. by verification n = 2 [EAMCET 2005]

5. {n (n +1)(2n +1) : n ∈ Z} ⊂

1) {6k : k ∈ Z} 2) {12k : k ∈ Z} 3) {18k : k ∈ Z} 4) {24k : k ∈ Z}

Ans: 1

Sol. n (n +1)(2n +1)

= 6. n (n +1)(2n +1) = 6k, k ∈ Z ⎡⎣∵∑ n2 is an int eger⎤⎦

6

∑6. 5 13 + 23 + ...... + k3 [EAMCET 2004]
4) 32.5
k=1 1+ 3 + 5 + .... + (2k −1)

1) 22.5 2) 24.5 3) 28.5

Ans: 1

∑5 k2 (k +1)2

Sol.
k=1 4k 2

1

Jpacademy Mathematical Induction

= 22 + 32 + 42 + 52 + 62 = 22.5
4

7. If t1 = 1 ( n + 2) (n + 3) for n = 1, 2, …….then 1+1 +1 + .... + 1 = [EAMCET 2003]
4 t1 t2 t3 t 2003

1) 4006 2) 4003 3) 4006 4) 4006
3006 3007 3008 3009

Ans: 4

Sol. 1 = 4
tn
(n + 2)(n + 3)

= 4 ⎡ n 1 2 − n 1 ⎤
⎢⎣ + + 3 ⎥⎦

∴ 1 + 1 + .... + 1
t1 t2 tn

4 ⎡ 1 − 1 + 1 − 1 + .... + n 1 2 − n 1 3 ⎤
⎣⎢ 3 4 4 5 + + ⎥⎦

= 4n 3) = 4 ( 2003) = 4006
3 ( 2006 ) 3009
3(n +

8. In the sequence {1}, {2, 3}, {4, 5, 6}, {7, 8, 9, 10}…….. of sets the sum of elements in the 50th

set is [EAMCET 2002]

1) 62525 2) 65225 3) 56255 4) 55625

Ans: 1
Sol. The sum of elements in the nth set is

n (n2 +1)

Sn = 2

50(502 +1)

∴ S50 = 2 = 62525

∑9. = 1 ⎛ n ⎞2 =
If ak k ( k+ 1) , for k = 1, 2,3,...n then ⎜⎝ ⎠⎟ [EAMCET 2000]
ak n6

k =1 4) (n +1)6

1) n n2 n4
n +1
2) (n +1)2 3) (n +1)4

Ans: 1

Sol. Given ak = 1 = 1 − 1
k k +1
k (k +1)

= 1 + 1 + 1 + .... ⎡ 1 + 1 + ......⎦⎥⎤
2 3 ⎢⎣ 2 3

1 =1− 1 = n +1−1 = n
k +1 n +1 n +1 n +1

™™™

2

Jpacademy ADDITION OF VECTORS

PREVIOUS EAMCET BITS

1. IJnJJGa quaJdJJrGilatJeJrJaGl ABJJCJGD, thJeJJGpoint P divides DC in the ratio 1 : 2 and Q is the midpoint of AC. If
AB + 2AD + BC − 2DC = kPQ , then k =
[EAMCET 2009]

1) – 6 2) – 4 3) 6 4) 4

Ans: 1

Sol. A = a, B = b, C = c, D = d

∴ P = c + 2d ,Q = a + c
JJJG J3JJG JJJG 2JJJG JJJG

∴ AB + 2AD + BC − 2DC = KPQ

⇒ k = −6 HJJG

2. THJhJeG posHiJtJiGon vectors of P and Q are respectively a and b. If R is a point on PQ such that
P R = 5P Q , then the position vector of R is
[EAMCET 2008]

1) 5b – 4a 2) 5b + 4a 3) 4b – 5a 4) 4b + 5a

( )AJJnJGs: 1 JJJG JJJG JJJG JJJG JJJG JJJG JJJG JJJG GG G

Sol. PR = 5PQ ⇒ OR − OP = 5 OQ − OP ⇒ OR = 5OQ − 4OP = 5b − 4a
GGGGG G
3. If the points whose position vectors are 2i + j + k, 6i − j + 2k and 14i − 5 j + pk are collinear, then

the value of p is [EAMCET 2007]

1) 2 2) 4 3) 6 4) 8

Ans: 2

Sol. ( x1, y1, z1 ) = (2,1,1);

( x2, y2, z2 ) = (6, −1, 2);

( x3, y3, z3 ) = (14, −5, P)

x1 − x2 = z1 − z2 ⇒ P = 4
x2 − x3 z2 − z3

4. TGheGposGition vGecGtor oGf a point lying on the line joining the points whose position vectors are
i + j − k and i − j + k is [EAMCET 2006]

GG G G
1) j 2) i 3) k 4) 0

Ans: 2

Sol. Vector which is collinear with given two vector by verification answer is i.

5. I : Two non-zero, non-collinear vectors are linearly dependent. [EAMCET 2005]

II: Any three coplanar vectors are linearly dependent.

Which of the above statements is true?

1) Only I 2) Only II 3) Both I and II 4) Neither I nor II

Ans: 3

Sol. By conceptual

6. Observe the following statements : [EAMCET 2005]

1

Jpacademy Addition of Vectors

A : Three vectors are coplanar if one of them is expressible as a linear combination of the other
two.
R : Any three coplanar vectors are linearly dependent.
The which of the following is true?
1) Both A and R are true and R is the correct reason for A
2) Both A and R are true but R is not the correct reason for A
3) A is true, R is false
4) A is false, R is true
Ans: 2
Sol. FroGm thGe defGinitGion AG anGd R are true but R is not correct explanation of A
7. If i + 2 j + 3k,3i + 2 j + k are sides of a parallelogram, then a unit vector parallel to one of the

diagGonGals oGf the parallelGogrGam Gis GGG G G[EAGMCET 2004]
1) i + j + k 2) i − j + k 3) i + j − k 4) −i + j − k
33
3 3

Ans: 1 GGG

Sol. diagonal = 4i + 4 j + 4k GGG

∴ unit vector parallel to diagonal = i + j + k
JJ3JG JJJG JJJG
8. If G JiJsJGthe centroid of theJΔJJAG BC, then GA + BGG + GC =
1) 2GB 2) 2GA 3) 0 JJJG [EAMCET 2004]
4) 2BG

AJJnJGs: 4JJJG JJJG
Sol. GAJJ+JGGBJ+JJGGCJ=JJG0 JJJG
⇒ GA + BG + GC = 2BG
JJJG JJJG
9. If D, E and F are respectively the midpoints of AB, AC and BC in ΔABC, then BE + AF = ....

JJJG JJJG JJJG JJJG [EAMCET 2003]
1) DC BF 3) 2BF BF
2) 1 4) 3

2 2

Sol. Ans:JJ1JG G JJJG G JJJG = G A
Let OA = a, OB = bGb,+OcGC c DF
G G
JJJG = a + c , JJJG =
OF OE
JJJG JJJG2 JJJG JJJG2 JJJG JJJG
BE + AF = OE − OB + OF − OA
G JJJG B EC
( )=G 1 G b = DC
c − a +
2
10. If GGG are three non-coplanar vectors, then the vector equation G = (1 − p − q ) G + G + G
a, b, c r a pb qc

represents is [EAMCET 2003]

1) Straight line 2) Plane

3) Plane passing through the origin 4) Sphere

Sol. Ans: 2 p − q ) G + G + G is a plane passing through a, b and c where p and q are scalars.
a Pb qc
r = (1−

2

Jpacademy Addition of Vectors

11. If three points A, B and C having position vector is (1, x, 3) (3, 4, 7) and (y, -2, -5) respectively

and if they are collinear, then (x, y) = [EAMCET 2002]

1) (2, –3) 2) (–2, 3) 3) (–2, –3) 4) (2, 3)

Ans: 1

Sol. AB = t AC ⇒ (2, 4 − 4, 4)

= t ( y −1, −2 − x, −8)

2 = 4 − x = 4 ⇒ 2 = −1 ⇒ y = −3
y −1 −2 − x −8 y −1 2

4 − x = −1 ⇒ x = 2
−2 − x 2
G G GG G G GGG
12 If the position vectors of the vertices of a triangle are 2i − j + k, i − 3 j − 5k and 3i − 4 j − 4k then

it is a …….triangle [EAMCET 2002]

1) Equilateral 2) Isosceles 3) Right angled isosceles 4) Right-angled

Ans: 4

Sol. Let A = (2, −1,1), B = (1, −3, −5), C = (3, −4, −4) are the vertical of ΔABC

AB2 = 1+ 4 + 36 = 41

BC2 = 4 +1+1 = 6 ; AC2 = 1+ 9 + 25 = 35

AB2 = AC2 + BC2

∴ GΔAGBC iGs rGight GangleGdGtrianGgle. G
13. If a=i G+ 4 j, b = 2i −3 jaGc+=25bGi +9 j , then C G[EAMCET 2001]
1) G b 2) G G G b
5a + 3) a + 3b 4) 3a +

Ans:G4 G G
Sol. Let C = ta + b

⇒ 5i + 9 j = t (i + 4 j) + (2i − 3j) G
G G b
t=3 ∴ C = 3a + JJJG JJJG

14. ABCJDJJGis a parallelogramJ,JwJG ith AC, BD as diagoJnJaJGls. Then AC − BD =JJJG [EAMCET 2001]

1) 4AB 2) 3AB 3) 2AB 4) AB

AJJnJGs: 3JJJG JJJG JJJG JJJG JJJG

( )Sol. AC − BD = AB + BC − BA + AD
( )JJJG JJJG JJJG JJJG JJJG
JJJG G JJJG G JJJG
= AB + BC − −AB + BC = 2AB

15. If OACB is a parallelogram with OC = a and AB = b then OA [EAMCET 2000]

G G G G 1 GG 1 GG
a b a b b−a a−b
1) + 2) − ( )3) ( )4)
2 2

Ans: 4 JJJG JJJG B
O
Sol. MG id JpJoJGint oJJfJGOC = Mid point of AB C
a= OA + OB A

22 JJJG JJJG
G JJJG JJJG JJJG 2OA G OA GG
G = + b ⇒ = 1 a−b
( )a = 2OA + OB − OA ; a
2
””””

3

Jpacademy SCALAR (DOT) PRODUCT OF TWO VECTORS

PREVIOUS EAMCET BITS

1. If m1, m2 , m3 and m4 are respectively the magnitudes of the vectors [EAMCET 2009]

a1 = 2i − j + k, a2 = 3i − 4 j − 4k , a3 = i − j + k and a4 = − i + 3 j + k

Then the correct order of m1, m2, m3, m4 is

1) m3 < m1 < m4 < m2 2) m3 < m1 < m2 < m4

3) m3 < m4 < m1 < m2 4) m3 < m4 < m2 < m1

Ans: 1

Sol. m1 = 6, m2 = 41, m3 = 3, m4 = 11
∴ m3 < m1 < m4 < m2

2. Suppose a = λ i − 7 j + 3k, b = λ i + j + 2λk . If the angle between a and b is greater than 90°, then

λ satisfies the inequality : [EAMCET 2009]

1) −7 < λ < 1 2) λ > 1 3) 1 < λ < 7 4) −5 < λ < 1

Ans: 1

Sol. a.b < 0

⇒ λ2 + 6λ − 7 < 0

(λ −1)(λ + 7) < 0

−7 < λ < 1

3. If the position vectors of A, B and C are respectively 2i − j + k,i − 3j − 5k and 3i − 4 j − 4k , then

cos2A = [EAMCET 2008]

1) 0 2) 6/41 3) 35/41 4) 1

Ans: 3

Sol. AB = OB − OA = (i − 3j − 5k) − (2i − j + k ) = −i − 2 j − 6k

AC = OC − OA = (3i − 4 j − 4k) − (2i − j + k) = i − 3j − 5k

cos A = AB.AC = (−i − 2 j − 6k)(i − 3j − 5k)

AB AC −i − 2 j − 6k i − 3j − 5k

1

Jpacademy Scalar (dot) Product of Vectors

= −1+ 6 + 30 35 = 35
1+ 4 + 36 1+ 9 + 25 35 41 41

∴ cos2 A = 35
41

( )4. If a = i − j − k and b = λ i − 3 j + k and the orthogonal projection of b on a is 4 i − j − k ,
3

then λ = [EAMCET 2007]

1) 0 2) 2 3) 12 4) –1

Ans: 2

Sol. Orthogonal projection of b on a = (b.a) a

a2

⎛ λ +3 − 1 ⎞ ( i − J − k) = 4 (i − J − k) ⇒ λ = 2
⎝⎜ 3 ⎠⎟ 3

5. If a + b + c = 0 and a = 3, b = 4 and c = 37 , then the angle between a and b is

ππ π [EAMCET 2006]
1) 2) 3) π
4)
42 6 3
Ans: 4
[EAMCET 2006]
Sol. a + b = −c Squaring o.b.s

( )a 2 + b 2 + 2 a b cos a, b = c 2
9 + 16 + 24 cos (a, b) = 37
cos(a, b) = 1 ⇒ (a, b) = π

23

6. a.k = a.(2 i + j ) = a ( i + j + 3k) = 1⇒ a

1) i − k 2) 1 (3i + j − 3k) 3) 1 ( i + j + k) 4) 1 (3i − 3 j + k)
3 3 3

Ans: 4

Sol. Let a = a1i + a2 j + a3k

a.i = 1 ⇒ a1 = 1

a.(2i + j) = 1 ⇒ 2a1 + a2 = 1 ⇒ a2 = 1− 2 = −1

2

Jpacademy Scalar (dot) Product of Vectors

a.(i + j + 3k ) = 1 ⇒ a1 + a2 + 3a3 = 1

⇒ 3a 3 = 1 ⇒ a3 = 1
3

∴ a = 1 [3i − 3j + k]

3

7. If the vector a = 2i + 3 j + 6k and b are collinear and b = 21, then b = [EAMCET 2005]

( ) ( ) ( )1) ± 2i + 3 j + 6k 2) ±3 2i + 3 j + 6k 3) i + j + k ( )4) ±21 2i + 3 j + 6k

Ans: 2

Sol. a = t (b)

a = t b ⇒ t = 7 =1
21 3

t =±1 ∴ b = ±3(a )
3

8. If the vectors i + 3 j + 4k, λ i − 4 j + k are orthogonal to each other, then λ = [EAMCET 2004]

1) 5 2) – 5 3) 8 4) – 8
Ans: 3

Sol. a.b = 0 ⇒ λ −12 + 4 = 0 ⇒ λ = 8

9. If a, b, c are three vectors such that a = b + c and the angle between b and c is π : here
2

a = a ,b = b ,c = c [EAMCET 2003]

1) a2 = b2 + c2 2) b2 = c2 + a2 3) c2 = a2 + b2 4) 2a2 − b2 = c2
Ans: 1

Sol. a2 = (b + c)2

a2 = b2 + c2 + 2(b.c)

⇒ a2 = b2 + c2 (∵(b.c) = π / 2)

( ) ( )10. If a.i = a. i + j = a. i + j + k then a = [EAMCET 2002]

1) i 2) j 3) k 4) i + j + k
Ans: 1
Sol. By verification a = i

3

Jpacademy Scalar (dot) Product of Vectors
11. The orthogonal projection of a on b is [EAMCET 2002]

( a.b ) a ( a.b ) b 3) a 4) b
a a
1) a 2 2) 2
b

Ans: 2

( )Sol.a.bb

2
b

12. If θ is an acute angle and the vector (sin θ) i + (cos θ) j is perpendicular to the vector i − 3 j

then θ = [EAMCET 2000]
4) π
1) π 2) π 3) π
65 4 3

Ans: 4

( )Sol. The given vectors are ⊥ er then (sin θi + cos θj). i − 3j = 0

sin θ − 3 cos θ = 0 ⇒ tan θ = 3 [EAMCET 2000]
sin θ − 3 cos θ = 0 ⇒ tan θ = 3 ⇒ θ = π

3
13. If two out of the three vector a + b + c are unit vectors a + b + c = 0 and

( )2 a.b + b.c + a.c + 3 = 0 , then the third vector is of length

1) 3 2) 2 3) 1 4) 0
Ans: 3

2

( )Sol. a + b + c = 0 ⇒ a + b + c = 0
( )∴ a2 + b2 + c2 + 2 a.b + b.c + c.a = 0

1+1+ c2 − 3 = 0 ⇒ c2 = 1
∴ c =1

“““

4

Jpacademy
TRIPLE PRODUCT AND PRODUCT OF FOUR VECTORS

PREVIOUS EAMG CEG TG BG ITG SG G G G

1. The volume of the tetrahedron having the edges i + 2 j − k, i + j + k, i − j + λk as conterminous, is

2/3 cubic units. Then λ [EAMCET 2009]

1) 1 2) 2 3) 3 4) 4

Ans: 1

Sol. V = 1 ⎣⎡a b c ⎤⎦ = 2 cubc units
6 3

⇒λ =1

2. If a = i + j + k , b = i – j + k, c = i + j + k, d = i – j – k, then observe the following lists

[EAMCET 2008]

List – I List – II

i) a.b A) a.d

ii) b.c B) 3

iii) ⎡⎣a b c ⎦⎤ C) b.d

iv) b × c D) 2 j − 2k

E) 2 j + 2k

F) 4

The correct match of List-I to List – II

i ii iii iv i ii iii iv
C AF E
1) C A B F 2) A CF D
4)
3) A C B F

Ans: 2

Sol. a.b = (i + j + k).(i − j + k) = 1−1+1 = 1

b.c = (i − j + k).(i + j − k) = 1−1−1 = −1

11 1

[abc] = 1 −1 1 = 1(1−1) −1(−1−1) +1(1+1) = 0 + 2 + 2 = 4

1 1 −1

ijk

b × c = 1 −1 1 = i (1−1) − j(−1−1) + k (1+1) = 2 j+ 2k

1 1 −1

a.d = (i + j + k).(i − j − k) = 1−1−1 = −1
b.d = (i − j + k).(i − j − k) = 1+1−1 = −1

3. Let a be a unit vector, b = 2i + j – k and c= i + 3k, the maximum value of [a b c ] is

[EAMCET 2008]

1) – 1 2) 10 + 6 3) 10 − 6 4) 59

Ans: 4

1

Jpacademy Triple product and product of four vectors

ijk

Sol. b × c = 2 1 −1 = i (3 − 0) − j(6 +1) + k (0 −1) = 3i − 7 j− k

10 3

[abc] = a.(b × c) = a.(3i − 7 j − k)
= a 3i − 7 j − k cos θ where θ = (a,3i − 7 j − k)

= 9 + 49 +1.cos θ

= 59 cos θ

∴ Maximum value of ⎣⎡abc ⎤⎦ is 59 G G GG G G G G G

4. The volume (in cubic units) of the tetrahedron with edges i + j + k, i − j + k and i + 2 j − k is

1) 4 2) 2/3 3) 1/6 [EAMCET 2007]
Ans: 2 4) 1/3

11 1
Sol. V = 1 1 −1 1 = 2
63
1 2 −1
G GG G GG
5. i − 2 j,3 j + k and λ i − 3 j are coplanar then = [EAMCET 2006]

1) – 1 2) 1/2 3) –3/2 4) 2

Ans: 3

a1 b1 c1 1 −2 0

Sol. a, b, c are coplanar ⇒ a2 b2 c2 = 0 ⇒ 0 3 1 = 0

a3 b3 c3 λ30

1(0 − 3) + 2(0 − λ) + 0(0 − 3λ) = 0

λ = −3 [EAMCET 2006]
2

6. IfGthe vGoluGmeGof tGhe paraGlleloGpipeGd with coterminous edges
4i + 5 j + k, − j + k and 3i + 9 j + pk is 34 cubic units, then p = ……..

1) 4 2) –13 3) 13 4) 6
Ans: 1 or 3

451

Sol. Volume = |[a b c ]|= 0 −1 1 = 34

39p

⇒ 4p +18 = 34 ⇒ p = −13 or 4

7. Observe the following lists [EAMCET 2005]

LAi)st⎡⎣–aG IG cG⎤⎦ G ( )ListG–GII GG
b
)×b 1) a b cos ab
( cG G GG G GG G
B) ×a ( ) ( )2) a.b b− ab c

( )G G G GG G
3) a.b × c
C) a × b × b

2

Jpacademy Triple product and product of four vectors

GG GG
D) a.b 4) a b

GG G GG G
b.c a a.b c
( ) ( )5) −

A BC D A B CD
2) 3 5 21
1) 1 2 3 4 4) 2 3 41

3) 3 2 5 1 [EAMCET 2004]
Ans: 2 GG G
4) a.c × b
Sol. ⎣⎡a b c⎤⎦ = a.( b × c )
( c × a )× b = (b.c ) a − (a.b) c

a ×(b × c ) = (a.c ) b − (a.b) c

a.b = a b cos( a.b)
G G G G G G
( ) ( )8.c.b + c × a + b + c =
GG G G G
1) c.b × a 2) 0 3) GG × b
c.a

Ans: 1

Sol. ( c.b + c.c )× (a + b + c ) = c.( b × a ) = ⎣⎡c b a ⎤⎦

G G GG G G G G [EAMCET 2004]
9. If 3i + 3 j + 3k, i + k, 3i + 3 j + λk are coplanar, then λ = 4) 4

1) 1 2) 2 3) 3

Ans: 1

33 3
Sol. 1 0 1 = 0 ⇒ λ = 1

3 3λ
G G G GG G G G GG G G G
( )10. If a = i + j + k, b = i + j, c = i and a × b × c = λa + μb , then λ + μ.... [EAMCET 2003]

1) 0 2) 1 3) 2 4) 3

AGns:G1 G ( aG.cG ) G GG G G G
a×b c b b.c a = b − a
( ) ( )Sol. × = −

11. IλfG=⎣⎡−aGG1bG;μcG⎤⎦==13⇒, thλe+nμth=e0volume (in cubic units) of the parallelopiped with GGGG and
2a + b, 2b + c

2c + a as coterminous edges is [EAMCET 2002]

1) 15 2) 22 3) 25 4) 27

Ans: 4

Sol. = ⎣⎡2aG + G G + G G + aG ⎦⎤ = 2 1 0
b 2b c 2c 0 2 1 ⎣⎡abc ⎦⎤ = 9.3 = 27

102 [EAMCET 2002]
GG GG GGG
G G
( ) ( ) ( )12. a + b . b + c × a + b + c = b b
⎣⎡aG G G 2 ⎡⎣aG G ⎡⎣aG cG ⎦⎤
1) 0 2) − b c ⎦⎤ 3) c ⎤⎦ 4)

Ans:

3

Jpacademy 1 Triple product and product of four vectors
GG GG GGG 1 1 0 [EAMCET 2001]
a+b . b+c × a+b+c = 0 1 ⎡⎣a b c ⎤⎦
( ) ( ) ( )Sol.

111

= ⎣⎡0 −1(−1) + 0⎤⎦ ⎣⎡a b c ⎦⎤ = ⎡⎣a b c ⎤⎦

13. ⎡⎣ i − j j − k k − i ⎦⎤ =

1) 0 2) 1 3) 3 4) 2
Ans: 1

1 −1 0

Sol. 0 1 −1 = 0

−1 0 1
GGGG G G
If a, b, c, d are coplanar vectors then G b G d
( ) ( )14. a × × c × = [EAMCET 2001]
GG G [EAMCET 2000]
1) 1 2) a 3) b 4) O

AG nGs:G4 G

( ) ( )Sol. ∴aaG,×baGbG,×c,abGdnd×arcGecG×c×dGodGpalra=enOapGrarallel
G G G GG G G G G G G G G GG
( )15. If a = 2i + 3 j − 4k, b = i + j + k and c = 4i + 2 j + 3k and a × b × c =

1) 10 2) 1 3) 2 4) 5

Ans: G4 G aG.cG ) G GG G
G b× c b a.b c
a( ) ( )Sol.× = ( −

= −2i − k = 4 +1 = 5
G
( )16.b×G × ( G × G ) = [EAMCET 2000]
c c a

1) ⎣⎡aG G cG ⎤⎦ G 2) ⎡⎣aG G cG ⎤⎦ G 3) ⎣⎡aG G cG ⎤⎦ G ( )4)G×G × G
b c b b b a a b c

AGns:G1 G G G G G G G G G G
b×c c a b c a c b c c a
( ) ( )( ) ( ) ( )Sol.×(× ) = × − ×

⇒ ⎡⎣aG G cG ⎦⎤ G − 0 = ⎣⎡aG G cG ⎤⎦ G
b c b c

””””

4

Jpacademy VECTOR PRODUCT OF TWO VECTORS

PREVIOUS EAMCET BITS

1. Let a1i + a2 j + a3k [EAMCET 2007]

Assertion (A) : The identify a × i 2 + a × j 2 + a × k 2 = 2 a 2 holds for a

Reason (R) : a × i = a3 j − a2k, a × j = a1k − a3 i , a × k = a2 i − a1 j

Which of the following is correct

1) Both A and R are true and R is the correct reason for A

2) Both A and R are true but R is not the correct reason for A

3) A is true, R is false

4) A is false, R is true

Ans: 1

Sol. axi = a3J − a2k; axJ = a1k − a3i; axk = a2i − a1J

∴ R is true

a = a12 + a 2 + a 2
2 3

( )axi 2 + axJ 2 +
axk 2 = 2 a12 + a 2 + a 2 =2a2
2 3

( ) ( )2. If a and b are unit vectors, then the vector a + b × a × b is parallel to the vector

1) a − b 2) a + b 3) 2a − b [EAMCET 2005]
4) 2a + b

Ans: 2

Sol. By verification

( ) ( ) ( )a + b × a × b . a + b = ⎡⎣a + b a × b a + b⎦⎤ = 0

(∵ [a b a] = 0)

3. Let a, b, c be the position vectors of the vertices, A, B, C respectively of ΔABC. The vector area

of ΔABC is [EAMCET 2003]

{ }( ) ( ) { }1) 1 a × b× c + b×(c× a) + c× a × b
2) 1 a × b + b × c + c × a
22

1

Jpacademy Vector product of two vectors

{ }3) 1 a + b + c { }4) 1 (b.c)a + (c.a) b + (a.b) c
2 2
Ans: 2

( )Sol. Δ = 1 a × b + b× c + c × a
2

4. If θ is the angle between a and b and a × b = a.b , then θ = [EAMCET 2001]

1) 0 2) π 3) π 4) π
Ans: 4 22

Sol. Given a × b = a.b

⇒ a b sin θ = a b cos θ

tan θ = 1 ⇒ θ = π
4

5. If θ is the angle between the vectors 2i − 2 j + 4k and 3 j + j + 2k, then sin θ = [EAMCET 2000]

1) 2 2) 2 3) 2 4) 2
7 7 7 7

Ans: 2

Sol. sin θ = a × b = 2
ab 7

””””

2

Jpacademy COMPLEX NUMBERS

PREVIOUS EAMCET BITS

1. The locus of z satisfying the inequality z + 2i < 1 , where z = x + iy, is [EAMCET 2009]
2z + i

1) x2 + y2 < 1 2) x2 − y2 < 1 3) x2 + y2 > 1 4) 2x2 + 3y2 < 1

Ans: 3

Sol. x + i ( y + 2) 2 < 2x + i (2y +1) 2

⇒ x2 + y2 >1

2. The points in the set ⎨⎧z ∈ C : Arg ⎛ z−2 ⎞ = π⎫ lie on the curve which is a (where C denotes the
⎩ ⎝⎜ z − 6i ⎟⎠ ⎬
2 ⎭

set of all complex numbers) [EAMCET 2008]
4) hyperbola
1) circle 2) pair of lines 3) parabola

Ans: 1

Sol. z−2 = (x − 2) + iy = ⎣⎡( x − 2) + iy⎦⎤ ⎣⎡x −i(y − 6)⎤⎦
z − 6i x + i(y − 6)2
6) x2 −(y−

x (x − 2) + y ( y − 6) xy − (x − 2)( y − 6)
= x2 + (y − 6)2 + x2 + (y − 6)2 i

Arg ⎛ z−2 ⎞ = π ⇒ tan −1 xy − (x − 2)( y − 6) = π
⎝⎜ z − 6i ⎟⎠ 2 ⎡⎣x (x − 2) + y ( y − 6)⎦⎤ 2

⇒ xy − ( x − 2)(y −6) = 1
x(x − 2)+ y(y −6) 0

⇒ x ( x − 2) + y ( y − 6) = 0 ⇒ x2 + y2 − 2x − 6y = 0 ⇒ ( x, y) lies on a circle.

( )3. ⎧ π⎫
If ω is a complex cube root of unity, then sin ⎨ ω10 + ω23 π− ⎬ = [EAMCET 2008]
⎩ 4 ⎭

1) 1 2) 1 3) 1 4) 3
22 2

Ans: 1

( ) ( )Sol.⎡ π⎤ ⎡ π ⎤ ⎛ π ⎞ π 1
sin ⎢⎣ ω10 + ω23 π− 4 ⎦⎥ = sin ⎣⎢ ω + ω2 π − 4 ⎥⎦ = sin ⎝⎜ −π − 4 ⎠⎟ = sin 4 = 2

4. If m1, m2, m3 and m4 respectively denote the moduli of the complex numbers 1 + 4i, 3+i, 1-i and

2-3i, then the correct one, among the following is [EAMCET 2008]

1) m1 < m2 < m3 < m4 2) m4 < m3 < m2 < m1

3) m3 < m2 < m4 < m1 4) m3 < m1 < m2 < m4

Ans: 3

Sol. m1 = 1+ 4i = * +16 = 17 , m2 = 3 + i = 9 +1 = 10

m3 = 1− i = 1+1 = 2, m4 = 2 − 3i = 4 + 9 = 13

1

Jpacademy Complex Numbers
∴ m3 < m2 < m4 < m1 [EAMCET 2007]

5. If a = 1− i 3 then the correct matching of List – I from List – II is
2

List – I List – II

i) aa A) 2π
3

ii) arg ⎛ 1⎞ B) −i 3
⎝⎜ a ⎟⎠

iii) a − a C) 2i / 3

iv) Im ⎛ 4 ⎞ D) 1
⎜⎝ 3a ⎠⎟

E) π/3
F) 2

3

i ii iii iv i ii iii iv
2) D A BF
1) D E C B 4) D A BC

3) F E B C

Ans: 2

Sol. i) a.a = ⎛ 1− i 3 ⎞⎛1+i 3 ⎞ = 1 = D
⎜⎝⎜ 2 ⎟⎟⎠⎜⎝⎜ 2 ⎠⎟⎟

ii) Arg ⎛ 1 ⎞ = Arg ⎛ 1−i 3 ⎞ = 2π = A
⎝⎜ a ⎠⎟ ⎜⎝⎜ 2 ⎟⎟⎠ 3

iii) a − a = −i 3 = B

⎛ 4 ⎞ ⎛ 8 ⎞ 2 =F
⎝⎜ 3a ⎟⎠ ⎜ 1− ⎟= 3
( )iv)Im = Im ⎜ ⎟
⎝ ⎠
3 3i

6. The locus of the point z = x + iy satisfying z − 2i = 1 is [EAMCET 2007]
z + 2i 4) x = 2

1) x-axis 2) y-axis 3) y = 2

Ans: 1

Sol. Z − 2i = Z + 2i

x2 + (y − 2)2 = x2 + (y + 2)2 ⇒ y = 0

∴ Locus is x-axis

7. The locus of the point z = x + iy satisfying the equation z −1 = 1 is given by [EAMCET 2006]
z +1

1) x = 0 2) y = 0 3) x = y 4) x + y = 0

Ans: 1

Sol. z −1 2 = z +1 2

( x −1)2 + y2 = ( x +1)2 + y2

2

Jpacademy Complex Numbers

⇒ 4x = 0 ⇒ x = 0 [EAMCET 2006]
8. The product of the distinct (2n)th roots of 1+ i 3 is equal to

1) 0 2) −1− i 3 3) 1+ i 3 4) −1+ i 3

Ans: 2

Sol. by substitution method put n = 1

( )Then 1 ⎛ ⎛ 1 3 ⎞ ⎞1/ 2 = 1 ⎛ π 1
1+ i 3 2 = ⎜⎜⎝ 2 ⎜⎝⎜ 2 + i 2 ⎠⎟⎟ ⎟⎟⎠ ⎝⎜ cis 3
22 ⎞2
⎠⎟

1 1

= 22 cis ⎛ 2kπ + π ⎞ 2
⎜⎝ 3 ⎟⎠

1 cis π

If k = 0, α1 = 22 6

k = 0, α2 = 21/ 2 cis ⎛ π + π ⎞ = 21/2 cis 7π
⎜⎝ 6 ⎟⎠ 6

Product of roots α1α2 = 21/ 221/ 2 cis π .cis ⎛ 7π ⎞
6 ⎝⎜ 6 ⎠⎟

= 2cis ⎛ π + 7π ⎞
⎜⎝ 6 6 ⎠⎟

= 2cis 8π = 2cis ⎛ 4π ⎞
6 ⎝⎜ 3 ⎠⎟

= −1− i 3

9. If α1, α2 , α3 respectively denote the moduli of the complex number – i, 1 (1+ i) and –1 + i, then

3

their increasing order is [EAMCET 2005]

1) α1, α2 , α3 2) α3, α2 , α1 3) α2 , α1, α3 4) α3, α1, α2

Ans: 3

Sol. α1 = −i = 1, 1 1 + i = 2 = α2 , −1 + i = 2 = α3
3 3

α2 , α1, α3

10. If z1, z2 are two complex numbers satisfying z1 − 3z2 = 1, z1 ≠ 3, then |z2| = [EAMCET 2004]
3 − z1z2

1) 1 2) 2 3) 3 4) 4

Ans: 1

Sol. z1 − 3z2 = 3 − z1z2 ⇒ (z1 − 3z2 )

( z1 − 3z2 ) = (3 − z1z2 ) (3 − z1z2 )

⇒ z1z1 + 9z2 z2 = 9 + z1 2 z2 2

⇒ z1 2 + 9 z2 2 − 9 − z1 2 z2 2 = 0

( )( )⇒ 9 − z1 2 1− z2 2 = 0 ⇒ z2 = 1

3

Jpacademy Complex Numbers

∑11. n ⎛ 2i ⎞n [EAMCET 2004]
n=0 ⎝⎜ 3 ⎟⎠ 4) 9 − 6i

1) 9 + 6i 2) 9 − 6i 3) 9 + 6i [EAMCET 2003]
13 13 4) x – y + 1 =0

Ans: 1

∑Sol.n ⎛ 2i ⎞n =1 = 3 = 9 + 6i
n=0 ⎜⎝ 3 ⎠⎟ 1− 2i 3 − 2i 13

3

12. If the amplitude of z − 2 − 3i is π , then the locus of Z = x + iy is
4

1) x + y – 1 = 0 2) x – y – 1 = 0 3) x + y + 1= 0

Ans: 4

Sol. z − 2 − 3i = (x − 2) + ( y − 3)i

tan −1 ⎛ y − 3 ⎞ = π ⇒ x − y +1 = 0
⎝⎜ x − 2 ⎠⎟ 4

( ) ( )13. If ω is a complex cube root of unity, then 225 + 3ω + 8ω2 2 + 3ω2 + 8ω 2 = ... [EAMCET 2003]

1) 72 2) 192 3) 200 4) 248

Ans: 4

( ) ( )Sol. 225 + 3ω + 8ω2 2 + 3ω2 + 8ω 2

= 225 + 73ω4 + 96ω3 + 73ω2 = 248

14. If z = x + iy is a complex number satisfying z+ i 2 z− i 2

= , then the locus of z is
22

[EAMCET 2002]

1) x-axis 2) y-axis 3) y = x 4) 2y = x

Ans: 1

Sol. Z = x + iy;

x + iy + i 2 = x + iy − i 2
22

x2 + ⎛ y + 1 ⎞2 = x2 + ⎛ y − 1 ⎞2
⎝⎜ 2 ⎠⎟ ⎝⎜ 2 ⎠⎟

⇒ y = 0 ∴ x-axis

15. If z = 3 + 5i, then z3 + z +198 = [EAMCET 2002]
4) 3 + 5i
1) –3-5i 2) – 3 + 5i 3) 3 –5i
Ans: 4

Sol. (3 + 5i)3 + (3 − 5i) +198 = 3 + 5i

16. If 3 + 2i sin θ is a real number and 0 < θ < 2π, then θ = [EAMCET 2002]
1− 2i sin θ

1) π 2) π/2 3) π/3 4) π/6

Ans: 1

Sol. 3 + 2i sin θ × 1+ 2i sin θ
1− 2i sin θ 1+ 2i sin θ

4

Jpacademy Complex Numbers

Purely real ⇒ Imag. Part = 0
ima . part = 8i sin θ = 0

1+ 4sin2 θ
sin θ = 0

∴θ = π

17. If α is a complex number and b is real number then the equation : az + az + b = 0 represents a

[EAMCET 2001]

1) Straight line 2) Parabola 3) Circle 4) Hyperbola

Ans: 1

Sol. Let a = p + iq and z = x + iy

az + az + b = 0

⇒ (p − iq)(x + iy) + (p + iq)(x − iy) + b = 0

equating real parts (or) imaginary parts on both sides then the locus of ‘z’ is straight line.

18. If 1−i i = x + iy , then x = [EAMCET 2001]

1+ 2i −1

1) 1 2) – 1 3) 2 4) –2
Ans: 1

1−i i = x + iy
Sol .
1+ 2i −1

−1(1− i) − i (1+ 2i) = x + iy

−1+ i − i + 2 = x + iy

∴x =1 [EAMCET 2000]
19. The locus of the point Z in the Argand plane for which z +1 2 + z −1 2 = 4 is a

1) Straight line 2) Pair of straight line 3) Circle 4) Parabola
Ans: 3
Sol. z +1 2 + z −1 2 = 4

( x +1)2 + y2 + ( x −1)2 + y2 = 4
∴ x2 + y2 = 1(circle)

20. If θ is real, then the modulus of 1 is [EAMCET 2000]
4) sec −θ
(1+ cos θ) + i sin θ
2
1) 1 sec θ 2) 1 cos θ 3) sec θ
22 22 2

Ans: 1

Sol. 1

(1+ cos θ) + i sin θ

= 1 =1

(1+ cos θ)2 + sin2 θ 2 + 2 cos θ

= 2 = 1 sec θ
2 cos θ / 2 2 2

5

Jpacademy Complex Numbers

3 aω2 + bω 3 =
( ) ( )21.
If 1, ω, ω2 are the cube roots of unity, then (a + b)2 + aω + bω2 +

1) a3 + b3 ( )2) 3 a3 + b3 3) a3 − b3 [EAMCET 2000]
4) a3 + b3 + 3ab

Ans: 2

( ) ( )Sol. (a + b)3 + aω + bω2 3 + aω2 + bω 3

= 3(a + b)(aω + bω2 )(aω2 + bω)

( )= 3 a3 + b3

22. In the Argand plane the area in square units of the triangle formed by the points 1+ i,1− i, 2i is

[EAMCET 2000]

1) 1/2 2) 1 3) 2 4) 2

Ans: 2

Sol. A(1,1) B(1, –1) C(0, 2)

Area ΔABC = 1 1−1 1− 0 = 1 (2) = 1sq.unit

2 1+1 1−2 2

23. If 3 + i is a root of x2 + ax + b = 0, then a = [EAMCET 2000]

1) 3 2) – 3 3) 6 4) –6

Ans: 4

Sol. One root is 3 + i then other roots is 3 – i sum of roots = 6 = – a

⇒ a = −6

””””

6

Jpacademy COMPOUND ANGLES

PREVIOUS EAMCET BITS

1. 2 cos ec20°sec 20° = [EAMCET 2008]
1) 2 2) 2sin20° cosec40° 3) 4 4) 4sin45° cosec40°
Ans: 4

Sol. 2 cos ec20°sec 20° = 2 = 22 =22
sin 20° cos 20° 2sin 20°cos 20° sin 40°

= 2 2 cos ec40° = 4sin 45° cos ec40°

2. If cos (A − B) = 3 and tanA tanB=2, then which one of the following is true? [EAMCET 2007]

5

1) sin (A + B) = 1 2) sin (A + B) = − 1 3) cos (A − B) = 1 4) cos (A + B) = − 1

5 55 5

Ans: 4

Sol. tan A tan B = 2 ⇒ sin A sin B = 2
cos A cos B 1

By using compounds and dividends cos (A − B) = −3 ⇒ cos (A + B) = −1
cos (A + B) 5

3. tan 80° − tan10° = [EAMCET 2007]
tan 70°

1) 0 2) 1 3) 2 4) 3

Ans: 3

Sol. tan 70° = tan (80° −10°)

tan 70° = tan 80° − tan10° [EAMCET 2006]
1+ tan 80° tan10° 4) 6 + 2

⇒ tan 80° − tan10° = 2
tan 70°

4. cos ec15° + sec15° =

1) 2 2 2) 6 3) 2 6

Ans: 3

Sol. sin15 = 3 −1 ; cos15 = 3 +1
22 22

cos ec15° + sec15° = 2 2 + 2 2
3 −1 3 +1

( )2 2 3 +1+ 3 −1 = 2 2 × 2 3 = 2 6
( )( )3 +1 3 −1 2

5. cos12° + cos84° + cos132° + cos156° = 3) – 1 [EAMCET 2004]
1) 1 2) 1 4 4) − 1
24
Ans: 4 2

Jpacademy Compounds Angles

Sol. cos132° + cos12° + cos156° + cos84° = 2 cos 72° cos 60° + 2 cos120°cos36° = − 1
2

6. If cos (α + β) = 4 sin (α − β) = 5 and α, β lie between 0 and π , then tan2α= [EAMCET 2002]
5 13 4

1) 56 2) 33 3) 16 4) 60
33 56 65 61

Ans: 1

Sol. 2α = (α + β) + (α − β)

tan 2α = tan (α + β) + tan (α − β)
1− tan (α + β) tan (α − β)

= 3+5 = 56
42 33
1− 3. 5
4 12

7. cos2 ⎛ π + θ ⎞ − sin 2 ⎛ π − θ ⎞ = [EAMCET 2001]
⎝⎜ 6 ⎟⎠ ⎜⎝ 6 ⎟⎠ 4) 1

1) 1 cos 2θ 2) 0 3) −1 cos2 θ 2
2 2

Ans: 1

Sol. cos2 ⎛ π + θ ⎞ − sin 2 ⎛ π − θ ⎞
⎜⎝ 6 ⎟⎠ ⎜⎝ 6 ⎟⎠

= cos ⎛ π + θ + π − θ ⎠⎟⎞.cos ⎛ π + θ − π + θ ⎞
⎜⎝ 6 6 ⎜⎝ 6 6 ⎟⎠

= 1 cos 2θ
2

DDDD

Jpacademy DEMOVIRE’S THEOREM AND

TRIGONOMETRIC EXPANSION

PREVIOUS EAMCET BITS

1. A value of a such that ⎛ 3 + i ⎞n =1 is [EAMCET 2007]
⎝⎜⎜ 2 2 ⎟⎟⎠ 4) 1

1) 12 2) 3 3) 2 [EAMCET 2005]
4) α
Ans: 1
[EAMCET 2004]
Sol. ⎛ 3 + i ⎞n = 1 ⇒ cis nπ = 1 4) i
⎝⎜⎜ 2 2 ⎟⎠⎟ 6
2
∴ n = 12
[EAMCET 2003]
2. If α is a non-real root of x6 = 1, then α5 + α3 + α +1 = 4) sin 2 θ
α2 +1

1) α2 2) 0 3) – α2

Ans: 3

Sol. x6 = 1 ⇒ let α = ω

α5 + α3 + α +1 = ω5 + ω3 + ω +1
α2 +1 ω2 +1

= −ω2 = −α2

∏3. If = π + π ∞ =
xn cos 2n i sin 2n , then
xn

n =1

1) – 1 2) 1 3) 1
2

Ans: 1

Sol. xn = cis π ⇒ x1x 2 x 3 .....
2n

= cis (π/ 2) = cisπ = −1

1− 1

2

4. If sin 6θ = 32 cos2 θsin θ − 32 cos3 θsin θ + 3x, then x = .........

1) cos θ 2) cos 2θ 3) sin θ

Ans: 4
Sol. sin 6θ = 2sin 3θ cos 3θ

( )( )= 2 3sin θ − 4sin3 θ 4 cos3 θ − 3cos θ

= 32 cos5 θsin θ − 32 cos3 θsin θ + 3sin 2θ
∴ x = sin2θ

5. If xn = cos ⎛ π ⎞ + i sin ⎛ π ⎞ , x1x2x3…….. ∞ = [EAMCET 2002]
⎝⎜ 4n ⎠⎟ ⎝⎜ 4n ⎠⎟

1

Jpacademy Demovire’s Theorem and Trigonometric Expansions

1) 1+ i 3 2) −1+ i 3 3) 1− i 3 4) −1− i 3
2 2 2 2

Ans: 1

Sol. x1x2.............∞
= cis π .cis π .cis π ......∞
4 42 43

= cis ⎛ π + π + ......∞ ⎞ = cis ⎛ 1 π/4 ⎞
⎜⎝ 4 42 ⎟⎠ ⎜⎝ −1/ 4 ⎠⎟

= cis π = 1+ i 3
32

6 If θ = π/6, then the tenth term of 1+ (cos θ + i sin θ) + (cos θ + i sin θ)2 + ... is [EAMCET 2001]

1) i 2) – 1 3) 1 4) –1

Ans: 4

1+ c i s θ + (ci s θ)2 + ......,10th term = cis9θ

Sol.
= cos 9θ + i sin 9θ

at θ = π ⇒ 10th term = −i
6

7 sin 5θ = [EAMCET 2001]
sin θ

1) 16 cos4 θ −12 cos2 θ +1 2) 16 cos4 θ +12 cos2 θ +1

3) 16 cos4 θ −12 cos2 θ −1 4) 16 cos4 θ +12 cos2 θ −1

Ans: 1

Sol. sin 5θ = 16 cos4 θ.sin θ −12 cos2 θ.sin θ + sin θ

∴ sin 5θ = 16 cos4 θ −12 cos2 θ +1
sin θ

UUUU

2

Jpacademy HEIGHTS AND DISTANCES

PREVIOUS EAMCET BITS

1. P is a point on the segment joining the feet of two vertical poles of heights a and b. The angles of

elevation of the tops of the poles from P are 45° each. Then the square of the distance between

the tops of the poles is [EAMCET 2009]

1) a2 + b2 2) a2 + b2 ( )3) 2 a2 + b2 ( )4) 4 a2 + b2
2

Ans: 3 A

2 2 a 2a
a
2a + 2b
( ) ( )Sol. AC2 = B C

( )2 a2 + b2 b
2b
bD

2. From the top of the hill h meters high the angles of depressions of the top and the bottom of a

pillar are α and β respectively. The height (in metres) of the pillar is [EAMCET 2008]

h (tan β − tan α) h (tan α − tan β) h (tan β + tan α) h (tan β + tan α)

1) 2) 3) 4)
tan β tan α tan β tan α

Ans: 1 βα

Sol. x = h cot β, x = (h − d) cot α

⇒ h cot β = (h − d) cot α

⇒ h tan α = (h − d) tan β h α
⇒ d tan β = h (tan β − tan α) h
⇒ d = h (tan β − tan α)
d
tan β
β

x

3. The angle of elevation of an object from a point P on the level ground is α. Moving d metres on

the ground towards the object, the angle of elevation is found to be β. Then the height (in metres)

of the object is [EAMCET 2007]

1) d tan α 2) d tan β 3) d 4) d
cot α + cot β cot α − cot β

Ans: 4

Sol. h cot α = d + x h
h cot β = x αβ

d = h (cot α + cot β)

∴ h= d

cot α − cot β dx

4. The locus of the point z = x + iy satisfying the equation z −1 = 1 is given by [EAMCET 2006]
z +1

1

Jpacademy Heights and Distances

1) x = 0 2) y = 0 3) x = y 4) x + y = 0
Ans: 1
Sol. z −1 2 = z +1 2

( x −1)2 + y2 = ( x +1)2 + y2

⇒ 4x = 0 ⇒ x = 0 [EAMCET 2006]
5. The product of the distinct (2n)th roots of 1+ i 3 is equal to

1) 0 2) −1− i 3 3) 1+ i 3 4) −1+ i 3

Ans: 2

Sol. by substitution method put n = 1

( )Then 1 = ⎛ ⎛ 1 3 ⎞ ⎞1/ 2 = 1 ⎛ π 1
1+ i 3 2 ⎜⎜⎝ 2 ⎜⎝⎜ 2 + i 2 ⎟⎟⎠ ⎟⎠⎟ ⎜⎝ cis 3
22 ⎞2
⎟⎠

1 1

= 22 cis ⎛ 2kπ + π ⎞ 2
⎜⎝ 3 ⎠⎟

1 cis π

If k = 0, α1 = 22 6

k = 0, α2 = 21/ 2 cis ⎛ π + π ⎞ = 21/ 2 cis 7π
⎜⎝ 6 ⎟⎠ 6

Product of roots α1α2 = 21/ 221/ 2 cis π .cis ⎛ 7π ⎞
6 ⎜⎝ 6 ⎟⎠

= 2cis ⎛ π + 7π ⎞
⎜⎝ 6 6 ⎟⎠

= 2cis 8π = 2cis ⎛ 4π ⎞
6 ⎝⎜ 3 ⎟⎠

= −1− i 3

6. A tower, of x meters high, has a Flagstaff at its top. The tower and the Flagstaff subtend equal

angle at a point distant y metres from the foot of the tower. Then the length of the Flagstaff in

metres is ( )x y2 + x2 ( )x x2 + y2 [EAMCET 2005]
( )2) ( )3)
( )y x2 − y2 ( )x x2 − y2
( )1) y2 − x2 x2 − y2 ( )4)

x2 + y2 x2 + y2

Ans: 2 D
Sol. tan 2α = x + h , tan α = x h

yy B

Use tan(2α) formula x 2α α
α
( )x y2 + x2
( )Then h = Ay C

y2 − x2

7. An aeroplane flying with uniform speed horizontally one kilometer above the ground is observed

at an elevation of 60°. After 10 seconds if the elevation is observed to be 30°, then the speed of

the plane (in km/hr) is [EAMCET 2004]

1) 240 2) 200 3 3) 240 3 4) 120
3 3

2

Jpacademy Heights and Distances
Ans: 3 BD
Sol. In ΔAPD ⇒ tan 60° = 1 ⇒ AP = 1 E
60°
AP 3 30° 1km
d
⇒ AP + PQ = 3 AP
PQ = 3 − 1 = 2 km Q

33
10sec− 2 km

3
1hr − 2 × 3600 = 240 3km / hr

3 10

8. A tower subtends angles, α, 2α and 3α respectively at points A, B and C, all lying on a

horizontal line through the foot of the tower. Then AB =……. [EAMCET 2003]
BC

1) sin 3α 2) 1+ 2 cos 2α 3) 2 cos 2α 4) sin 2α
sin 2α sin α

Ans: 2 P
Sol. Let height of the tower OP = h

AB = OA – OB = h(cotα - cot2α)

BC = OB – OC = h(cot2α - cot3α) h

AB = cot α − cot 2α α 2α 3α
BC cot 2α − cot 3α A BC O

= cos α sin 2α − cos 2α sin α × sin 2α.sin 3α

sin α sin 2α cos 2α sin 3α − cos 3α sin 2α

= sin 3α = 1+ 2 cos 2α
sin α

9. From a point on the level ground, the angle of elevation of the top of a pole is 30°. On moving 20

mts nearer, the angle of elevation is 45°. Then the height of the pole in mts is

[EAMCET 2002]

( )1) 10 3 −1 ( )2) 10 3 +1 3) 15 4) 20

Ans: 2

Sol. tan 30° = h
h + 20

( )⇒ h = 10 3 +1

10. The shadow of the two standing on a level ground is found to be 60 metres longer when the sun’s

altitude is 30° then when it is 45°. The height of the tower is [EAMCET 2001]

1) 60 m 2) 30 m 3) 60 3 m ( )4) 30 3 +1 m

Ans: 4

Sol. h = 60

cot 30° − cot 45° 45° 30°
h
( )h = 60 = 30 3 +1
3 −1

30°3 45°

60mt

Jpacademy Heights and Distances

11. If two towers of height h1 and h2 subtend angles 60° and 30° respectively at the midpoint of the

line joining their feet, then h1: h2 = [EAMCET 2000]

1) 1 : 2 2) 1 : 3 3) 2 : 1 4) 3 : 1

Ans: 4

Sol. h1 : h2 = tan α : tan β
= tan 60° : tan 30°

= 3:1

DDD

4

Jpacademy HYPERBOLIC FUNCTIONS

PREVIOUS EAMCET BITS

1. sinh−1 2 + sinh−1 3 = x ⇒ cosh x = [EAMCET 2009]

3) 1 12 + 2 50 ( )4) 1 12 − 2 50
( ) ( ) ( )1) 1 3 5 + 2 10 2) 1 3 5 − 2 10 2
22 2

Ans: 3

( )Sol. cosh x = cosh sinh−1 2 + sinh−1 3

( )= 1 12 + 2 50 [EAMCET 2008]
2

1+ tanh (x / 2)
2. 1− tanh (x / 2)

1) e−x 2) ex 3) 2ex / 2 4) 2e−x / 2

Ans: 2

1+ tanh ⎛ x ⎞ cosh ⎛ x ⎞ + sinh ⎛ x ⎞ ⎣⎢⎡cosh ⎛ x ⎞ + sinh ⎛ x ⎞⎤2
⎜⎝ 2 ⎠⎟ ⎜⎝ 2 ⎟⎠ ⎝⎜ 2 ⎟⎠ ⎜⎝ 2 ⎟⎠ ⎜⎝ 2 ⎟⎠⎦⎥
Sol. = =
⎛ x ⎞ ⎛ x ⎞ ⎛ x ⎞ ⎛ x ⎞ ⎛ x ⎞
1 − tanh ⎝⎜ 2 ⎠⎟ cosh ⎝⎜ 2 ⎠⎟ − sinh ⎜⎝ 2 ⎟⎠ cosh 2 ⎜⎝ 2 ⎠⎟ − sinh 2 ⎝⎜ 2 ⎟⎠

= cosh 2 ⎛ x ⎞ + sinh 2 ⎛ x ⎞ + 2 cosh ⎛ x ⎞ sinh ⎛ x ⎞ = cosh x + sinh x = ex
⎝⎜ 2 ⎠⎟ ⎜⎝ 2 ⎠⎟ ⎝⎜ 2 ⎟⎠ ⎜⎝ 2 ⎠⎟

3. sec h−1 (sin θ) = [EAMCET 2007]

1) log tan θ 2) log sin θ 3) log cos θ 4) log cot θ
2 2 2 2

Ans: 4

Sol. sec h −1 ( sin θ ) = log ⎛ 1 + 1− sin 2 θ ⎞
⎜⎜⎝ sin θ ⎠⎟⎟

= log ⎛ 1+ cos θ ⎞ = log ( cot θ / 2)
⎜⎝ sin θ ⎟⎠

4. ( )e =log cosh−1 2 ( )2) log 3 − 2 ( )3) log 2 + 3 [EAMCET 2006]

( )1) log 2 − 3 4) log (2 + 5)

Ans: 3

( )Sol. eloge f (x) = f x

( )e = cosh 2logecosh−1(2) −1

{ }= log 2 + 22 −1

( )= log 2 + 3

1

Jpacademy Hyperbolic Functions
5. 2 tanh−1 1 = [EAMCET 2005]
2 3) log 3 4) log 4

1) 0 2) log 2 [EAMCET 2004]
Ans: 3 4) –cot2θ
Sol. tanh−1 x = 1 log 1+ x
[EAMCET 2003]
2 1− x
( )4) log 8 + 27
1+ 1
∴ 2 tanh−1 x = log 2 = log 3 [EAMCET 2002]
4) i sin(ix)
1− 1
2 [EAMCET 2001]
4) 20
6. x = log ⎡ ⎛ π + θ ⎞⎤ ⇒ sinh x =
⎣⎢cot ⎜⎝ 4 ⎠⎟⎦⎥ [EAMCET 2000]
4) e2
1) tan2θ 2) – tan2θ 3) cot 2θ
Ans: 2 [EAMCET 2000]
4) 5
cot ⎛ π + θ ⎞ − tan ⎛ π + θ ⎟⎞⎠
⎝⎜ 4 ⎟⎠ ⎜⎝ 4
Sol. sinh x = = − tan 2θ
2

( )7. sinh−1 23/2 = ……

( ) ( )1) log 2 + 18 2) log 3 + 8 ( )3) log 3 − 8

Ans: 2

( ) ( )( )Sol. sinh−1 23/2 = log 8 + 1+ 8 = log 3 + 8

8. sin h ix =

1) i sinx 2) sin (ix) 3) – sinx

Ans: 1

Sol. sinh (ix) = eix − e−ix = (cos x + i sin x ) − (cos x − i sin x) = i sin x

22

( ) ( )9. sec2 tan−1 2 + cos ec2 cot−1 3 =

1) 5 2) 10 3) 15
Ans: 3

Sol. Let tan−1 (2) = α and cot−1 (3) = β

tan α = 2; cot β = 3

⇒ sec α = 5;cos ecβ = 10

∴ sec2 α + cos ec2β = 5 +10 = 15

10. cosh 2 + sinh 2 =

1) 1/e 2) e 3) 1/e2
3) 3
Ans: 4

Sol. cosh 2 + sinh 2 = e2 + e−2 + e2 − e−2 = e2
22

( )11. If cosh−1 x = loge 2 + 3 ,then x =

1) 2 2) 1

2

Jpacademy Hyperbolic Functions

Ans: 1

( )Sol. log ⎡⎣x + x2 −1⎦⎤ = log 2 + 3

log ⎡⎣x + x2 −1⎦⎤ = log ⎣⎡⎢2 + ( 2)2 − 1 ⎤
⎦⎥

∴x=2

””””

3

Jpacademy INVERSE TRIGONOMETRIC FUNCTIONS

PREVIOUS EAMCET BITS

1. cos−1 ⎛ −1 ⎞ − 2 sin −1 ⎛ 1 ⎞ + 3 cos−1 ⎛ −1 ⎞ − 4 tan −1 ( −1) = [EAMCET 2009]
⎜⎝ 2 ⎟⎠ ⎝⎜ 2 ⎟⎠ ⎜⎝ 2 ⎟⎠ 4) 43π

1) 19π 2) 35π 3) 47π 12
12 12 12 [EAMCET 2008]

Ans: 4 4) 11

Sol. 2π − 2× π + 3× 3π + 4× π = 43π [EAMCET 2007]
3 6 4 4 12 4) 2

2. If sin −1 ⎛ 3 ⎞ + sin −1 ⎛ 4 ⎞ = π then x = 3
⎜⎝ x ⎟⎠ ⎝⎜ x ⎠⎟ 2
[EAMCET 2005]
1) 3 2) 5 3) 7 4) 0

Ans: 2 [EAMCET 2004]

Sol. sin −1 ⎛ 3 ⎞ + sin −1 ⎛ 4 ⎞ = π ⇒ sin −1 3 = cos−1 4
⎝⎜ x ⎟⎠ ⎝⎜ x ⎠⎟ 2 x x

⇒ sin−1 3 = sin−1 1 − 16 ⇒ 9 = 1 − 16 ⇒ x2 = 25
x x2 x2 x2

( )3. ⎛ ⎛ 1 ⎞ ⎞
The value of x where x > 0 and tan ⎝⎜ sec−1 ⎜⎝ x ⎟⎠ ⎟⎠ = sin tan−1 2 is

1) 5 2) 5 3) 1
3

Ans: 2

( )Sol. ⎛ 1 ⎞
tan ⎜⎝ sec−1 x ⎠⎟ = sin tan−1 2

⎛ 1− x2 ⎞ = sin ⎛ sin −1 2⎞
tan ⎜⎜⎝ tan−1 x ⎟⎟⎠ ⎜ ⎟
⎝ 5 ⎠

⇒ 1− x2 = 2 ⇒ x = 5
x5 3

4. sin−1 4 + 2 tan−1 1 =
53

1) π 2) π 3) π
34 2

Ans: 3

Sol. sin−1 4 + 2 tan−1 1 = sin−1 4 + tan−1 3
5 354

= sin−1 4 + cos−1 4 = π
5 52

5. sin−1 x + sin−1 (1− x ) = cos−1 x ⇒ x ∈

1

Jpacademy ⎧⎨0, 1 ⎫ Inverse Trigonometric Functions
1) {1, 0} 2) {−1,1} 3) ⎩ 2 ⎬
⎭ 4) {2,0}

Ans: 3 [EAMCET 2003]
4) 4
Sol. sin−1 (1− x ) = π − 2sin−1 ( x)
9
2
[EAMCET 2002]
1− x = 1− 2x2 ⇒ x = 0, 1 4) − 3
2
2
6. cos ⎢⎡⎣cos−1 ⎛ 1 ⎞ + sin −1 ⎛ − 1 ⎞⎤ = …….. [EAMCET 2001]
⎝⎜ 7 ⎟⎠ ⎝⎜ 7 ⎠⎟⎥⎦
4) 20
1) − 1 2) 0 3) 1
3 3 [EAMCET 2000]
4) 14/5
Ans: 2

Sol. cos ⎣⎢⎡cos−1 ⎛ − 1 ⎞ + sin −1 ⎛ − 1 ⎞⎤
⎝⎜ 7 ⎟⎠ ⎝⎜ 7 ⎟⎠⎦⎥

= cos π = 0 ⎣⎡⎢∵ sin −1 x + cos−1 x = π⎤
2 2 ⎦⎥

7. If sin−1 x − cos−1 x = π , then x =
6

1) 1 2) 3 3) −1
2 2 2

Ans: 2 3) 15

Sol. By verification x = 3 / 2 3) 5/14

( ) ( )8. sec2 tan−1 2 + cos ec2 cot−1 3 =

1) 5 2) 10
Ans: 3

Sol. Let tan−1 (2) = α and cot−1 (3) = β

tan α = 2; cot β = 3

⇒ sec α = 5;cos ecβ = 10

∴ sec2 α + cos ec2β = 5 +10 = 15

9. If tan−1 3 + tan−1 x = tan− 8 , then x =

1) 5 2) 1/5

Ans: 2
Sol. tan−1 3 + tan−1 x = tan−1 8

3+x =8⇒ x = 1
1− 3x 5

\\[[

2

Jpacademy MULTIPLE AND SUBMULTIPLE ANGLES

PREVIOUS EAMET BITS

1. If A = 35°, B = 15° and C = 40°, then tanAtanB+tanBtancC + tanC tanA [EAMCET 2008]

1) 0 2) 1 3) 2 4) 3

Ans: 2

Sol. A + B + C = 35° +15° + 40° = 90°

⇒ tan A tan B + tan B tan C + tan C tan A = 1

2. If tan θ + tan ⎛ θ + π ⎞ + tan ⎛ θ + 2π ⎞ = 3, then which of the following is equal to 1? [EAMCET 2008]
⎝⎜ 3 ⎠⎟ ⎝⎜ 3 ⎟⎠

1) tan2θ 2) tan3θ 3) tan2θ 4) tan3θ

Ans: 2

Sol. tan θ + tan ⎛ θ + π ⎞ + tan ⎛ θ + 2π ⎞ = 3
⎝⎜ 3 ⎠⎟ ⎝⎜ 3 ⎟⎠

tan θ + tan ⎛ π ⎞ tan θ + tan ⎛ 2π ⎞
⎜⎝ 3 ⎟⎠ ⎝⎜ 3 ⎟⎠
⇒ tan θ + + =3
⎛ π ⎞ ⎛ 2π ⎞
1− tan θ tan ⎝⎜ 3 ⎟⎠ 1− tan θ tan ⎝⎜ 3 ⎟⎠

⇒ tan θ + tan θ + 3 + tan θ − 3 = 3
1− 3 tan θ 1− 3 tan θ

⇒ tan θ + tan θ + 3 tan2 θ + 3 + 3 tan θ + tan θ − 3 tan2 θ + 3 tan

( )( )1− 3 tan θ 1+ 3 tan θ

⇒ tan θ + 8 tan θ = 3⇒ tan θ − 3 tan3 θ + 8sin θ = 3
− 3 tan2 1− 3 tan2 θ
1 θ

⇒ 3 ⎡ 3 tan θ − tan3 θ ⎤ = 3 ⇒ tan 3θ = 1
⎢ 1− 3 tan2 θ ⎥
⎣ ⎦

3. If x = tan15°, y = cosec 75° and z = 4sin18°, then [EAMCET 2006]
4) x < z < y
1) x. > y > z 2) y < z < x 3) z < x < y
[EAMCET 2005]
Ans: 1 4) a

Sol. x = tan15° = 2 − 3 = 0.3 a −1

y = cos ec75° = 1 = 2 2
sin 75° 3 +1

= 6 − 2 ≅ 0.9

z = 4sin18° = 5 −1 = 1.05

x<y<z

4. tan 3A = α ⇒ sin 3A =
tan A sin A

1) 2a 2) 2a 3) a
a +1 a −1 a +1

1

Jpacademy Multiple and Submultiple Angles

Ans: 2

Sol. a = tan 3A , putA = 45° ⇒ a = −1
tan A

Verification sin 3A = 1 = 2a
sin A a −1

5. tan 9° − tan 27° − tan 63° + tan 81° = [EAMCET 2004]

1) 4 2) 3 3) 2 4) 1

Ans: 1

Sol. tan 9° − tan 27° − cot 27° + cos 9° = ⎛ sin 9° + cos 9° ⎞ − ⎛ sin 27° + cos 27° ⎞
⎜⎝ cos 9° sin 9° ⎠⎟ ⎜⎝ cos 27° sin 27° ⎠⎟

⇒ 2 − 2 = 2×4 − 2×4 = 4
sin18° sin 54° 5 −1 5 +1

6 cos 6°sin 24° cos 72° = [EAMCET 2000]
4) 1/4
1) –1/8 2) –1/4 3) 1/8
777
Ans: 3

Sol. 1 (2 cos 6°sin 24°) cos 72°

2

= 1 (sin 30° + sin18°) cos 72°

2

= 1⎛1 + 5 −1⎞⎛ 5− 1⎞ = 1
2 ⎜⎝⎜ 2 4 ⎠⎟⎟⎜⎝⎜ 4 ⎟⎠⎟ 8

2

Jpacademy PERIODICITY AND EXTREME VALUES
PREVIOUS EAMCET BITS

1. The period of sin4 x + cos4 x is [EAMCET 2009]

π4 π2 3) π 4) π
1) 2) 4 2

2 2

Ans: 4

Sol. f ⎛ π + x ⎞ = cos4 x + sin4 x = f (x)
⎝⎜ 2 ⎠⎟

∴ Period = π/2

2. For all values of θ, the values of 3 − cos θ + cos ⎛ θ + π⎞ lie in the interval [EAMCET 2006]
⎜⎝ 3 ⎟⎠

1) [−2,3] 2) [−2,1] 3) [2, 4] 4) [1,5]

Ans: 3

Sol. cos ⎛ θ + π ⎞ = cos θ cos π − sin θ.sin π
⎜⎝ 3 ⎟⎠ 3 3

= 1 cos θ − 3 sin θ
22

3− cos θ + cos ⎛ θ + p ⎞ = 3− 1 cos θ − 3 sin θ
⎜⎝ 3 ⎟⎠ 2 2

Min. value = C − a2 + b2 = 3 − 1 + 3 = 2
44

Max. value = C + a2 + b2 = 3 +1 = 4

( )3. x2 ⎛ π + x2 ⎞ ⎛ π − x2 ⎞ \ [EAMCET 2005]
The extreme value of 4 cos cos ⎜⎝ 3 ⎠⎟ cos ⎜⎝ 3 ⎟⎠ over are

1) – 1, 1 2) –2, 2 3) –3, 3 4) –4, 4

Ans: 1

Sol. cos A cos (60 − A) cos (60 + A) = 1 cos 3A

4

∴ 4 cos x2 cos ⎛ π + x2 ⎞ cos ⎛ π − x2 ⎞ = cos 3x2 = [−1 1]
⎝⎜ 3 ⎠⎟ ⎝⎜ 3 ⎟⎠

4. If n ∈ N , and the period of cos nx is 4π, then n = [EAMCET 2004]
⎛ x ⎞
sin ⎝⎜ n ⎠⎟

1) 4 2) 3 3) 2 4) 1

Ans: 3

Sol. Period of cos nx = 2π
n

1

Jpacademy ⎛ x ⎞ = 2nπ Periodicity and Extreme values
Period of sin ⎝⎜ n ⎠⎟
[EAMCET 2004]
2nπ = 4π ⇒ n = 2
4) [2,7]
5. For x ∈ \,3cos (4x − 5) + 4 lies in the interval
[EAMCET 2003]
1) [1,7] 2) [4,7] 3) [0,7] 4) 12π

Ans: 1 [EAMCET 2002]
4) 2π
Sol. Maximum and Minimum values of cosθ are 1 an – 1

∴ [−3 + 4,3 + 4] = [1, 7]

6. The period of the function f (θ) = sin θ + cos θ is

32

1) 3π 2) 6π 3) 9π

Ans: 4

Sol. The period of sin ⎛ θ ⎞ is 2π = 6π
⎜⎝ 3 ⎟⎠ 1/ 3

The period of θ 2π = 4π
cos is
2 1/ 2

The period of sin ⎛ θ ⎞ + cos ⎛ θ ⎞ is L.C.M of 6π, 4π = 12π
⎜⎝ 3 ⎠⎟ ⎜⎝ 2 ⎠⎟

7. If f (x) = sin 2 ⎛ π + π ⎞ − sin 2 ⎛ π − π ⎞ , then the period of f is
⎜⎝ 8 2 ⎟⎠ ⎜⎝ 8 2 ⎠⎟

1) π 2) π/2 3) π/3

Ans: 4

Sol. Sin2A − sin2 B = sin (A + B)Sin (A − B)

∴ sin 2 ⎛ π + x ⎞ − sin 2 ⎛ π − x ⎞ = sin π sin x
⎜⎝ 8 2 ⎟⎠ ⎜⎝ 8 2 ⎟⎠ 4

∴ period = 2π

777

2

Jpacademy PROPERTIES OF TRIANGLES

PREVIOUS EAMCET BITS [EAMCET 2009]

1. In any ΔABC, a (b cos C − c cos B) =

1) b2 + c2 2) b2 − c2 3) 1 + 1 4) 1 −1
bc b2 c2

Ans: 2

Sol. 1 (2ab cos C − 2ca cos B)

2

1 ⎣⎡a 2 + b2 − c2 − c2 − a2 + b2 ⎦⎤
2

= b2 − c2

2. In a ΔABC (a + b+ c)(b + c−a)(c+ a − b)(a + b−c) [EAMCET 2009]
4) sin2B
4b2c2

1) cos2A 2) cos2B 3) sin2A

Ans: 3

2s (2s − 2a )(2s − 2b)(2s − 2c)

Sol.
4b2c2

= 4Δ2 = ⎛ 2Δ ⎞2 = sin2 A
b2c2 ⎝⎜ bc ⎟⎠

3. In ΔΑBC if 1 + 1 = 3 then C = [EAMCET 2008]
b+c c+a a+b+c

1) 90° 2) 60° 3) 45° 4) 30°

Ans: 2

Sol. Given 1 + 1 = 3
b+c c+a a+b+c

⇒1+ b +1+ a = 3
a+c a+c

⇒ b(b + c)+ a(a + c) = (a + c)(b+ c)

⇒ b2 + bc + a2 + ac = ab + ac + bc + c2

⇒ a2 + b2 − c2 = ab [EAMCET 2008]
Now, cos C = a2 + b2 − c2 = ab = 1

2ab 2ab 2
⇒ C = 60°

4. Observe the following statements :
I) In ΔABC b cos2 C + c cos2 B = s
22
II) In ΔABC, cot A = b + c ⇒ B = 90°
22

1

Jpacademy Properties of Triangles

Which of the following is correct?

1) Both I and II are true 2) I is true, II is false

3) I is false , II is true 4) Both I and II are false

Ans: 2

Sol. I) b cos2 C + c cos2 B = b s (s − c) + c s (s − b) = s (s − c + s − b) = s

2 2 ab ac a

II) If A = 45°, B = 90°, C = 45°, then a = 2R, b = 2R, c = 2R

( )But b + c = 2R + 2R = 2 +1 R = R cot 22 1 ° ≠ cot A
22 22 2 2

5. In a triangle, if r1 = 2r2 = 3r3 , then a+b+c = [EAMCET 2008]
bca

1) 75 2) 155 3) 176 4) 191
60 60 60 60

Ans: 4

Sol. r1 = 2r2 = 3r3 ⇒ s Δ = 2Δ = 3Δ = Δ (say)
−a s−b s−c k

⇒ s − a = k,s − b = 2k,s − c = 3k ⇒ s − a + s − b + s − c = 6k

⇒ s = 6k ⇒ a = 5k, b = 4k, c = 3k

∴ a + b + c = 5k + 3k = 5 + 4 + 3 = 75 + 80 − 36 = 191
b c a 4k 5k 4 3 5 60 60

(or)

If xr1 = yr2 = zr3 , then
a:b:c=y+z:z+x:x+y

∴a:b:c=5:4:3
6. If two angles of ΔABC are 45° and 60°, then the ratio of the smallest and the greatest sides are

( )1) 3 −1 :1 2) 3 : 2 3) 1: 3 [EAMCET 2007]
4) 3 :1

Ans: 1
Sol. Angles are 45°, 60° and 75°.

The ratio of smallest and greatest sides = sin45°; sin75°= 3 −1:1

7. In ΔABC, (a + b + c) ⎛ tan A + tan B ⎞ = [EAMCET 2007]
⎜⎝ 2 2 ⎟⎠

1) 2c cot C 2) 2a cot A 3) 2b cot B 4) tan C
2 2 2 2

Ans: 1

Sol. ( a + b + c) ⎛ tan A + tan B ⎞ = 2s ⎛ s Δ a ) + s Δ b ) ⎞
⎝⎜ 2 2 ⎠⎟ ⎜⎜⎝ ⎟⎟⎠
(s − (s −

= 2Δc = 2c s(s −a)(s − b)(s −c)
(s −a)(s − b)
(s − a)(s − b)

= 2c cot c
2

2

Jpacademy Properties of Triangles

8. In ΔABC, with usual notation, observe the two statements given below [EAMCET 2007]

I) rr1r2r3 = Δ2

II) r1r2 + r2r3 + r3r1 = s2

Which of the following is correct

1) Both I and II are true 2) I is true, II is false

3) I is false, II is true 4) Both I and II are false

Ans: 1

Sol. i) rr1r2r3 = Δ . s Δ . Δ . Δ = Δ2
s −a s −b s −c

ii) r1r2 + r2 r3 + r3 r1 = s Δ . Δ + s Δ. Δ + s Δ. Δ
−a s −b −b s −c −c s −a

= s(s − c) + s(s − a) + s(s − b) = s2

9. If, in a ΔABC, tan A = 5 and tan C = 2 then a, b, c are such that : [EAMCET 2006]
26 25

1) b2 + ac 2) 2b = a + c 3) 2ac = b(a + c) 4) a + b = c

Ans: 2

Sol. tan A .tan C = 5 . 2 = 1
2 2 65 3

(s − b)(s −c) (s −a)(s − b) = 1
s(s −a) s(s −c) 3

⇒ s − b = 1 ⇒ 3s − 3b = s
s3

2s = 3b
a + b + c = 3b
⇒ a + c = 2b

10. The angles of a triangle are in the ratio 3 : 5 : 10. Then the ratio of the smallest side to the

greatest side is [EAMCET 2006]

1) 1: sin 10° 2) 1 : 2 sin 10° 3) 1 : cos 10° 4) 1 : 2 cos10°

Ans: 4

Sol. Let angles as 3x, 5x, 10x

∴ 18x = 180° ⇒ x = 10°

∴ angle aer 30°, 50°, 100°

a : c = sinA : sinC = sin30 : sin100

1 : sin (90 +10) = 1: 2 cos10°

2

11. In a triangle ABC, s − a = 1 , s − b = 1 , s − c = 1 then b = [EAMCET 2006]
Δ 8 Δ 12 Δ 24

1) 16 2) 20 3) 24 4) 28

Ans: 1

Sol. 1 = s − a = 1 ; 1 = s−b = 1 ; 1 = s−c = 1
r1 Δ 8 r2 Δ 12 r3 Δ 24

1=1+1+1 = 6 =1
r r1 r2 r3 24 4

3

Jpacademy Properties of Triangles
(r2 − r )(r1 + r3 ) = b2
(12 − 4)(24 + 8) = b2 ⇒ 16×16, b = 16 [EAMCET 2005]
4) a + b +c
( )12. In a ΔABC, a cos2 B + cos2 C + cos A (c cos C + b cos B) =

1) a 2) b 3) c

Ans: 1

Sol. = a ⎡⎢⎜⎛ a2 + c2 − b2 ⎞2 + ⎛ a2 + b2 − c2 ⎞2 ⎤
⎣⎢⎝ 2ac ⎟ ⎜ 2ab ⎟ ⎥
⎠ ⎝ ⎠ ⎦⎥

+ ⎛ b2 + c2 − a2 ⎞⎡ ⎛ b2 + a2 − c2 ⎞ + ⎛ a2 + c2 − b2 ⎞⎤
⎜ 2bc ⎟ ⎢c⎜ 2ab ⎟ b⎜ 2ac ⎟⎥
⎝ ⎠⎣ ⎝ ⎠ ⎠⎦


a2 + c2 − b2 + a2 + b2 − c2 = 2a2 = a
2a 2a 2a

13. In a ΔABC, ∑(b + c) tan A tan ⎛ B − C ⎞ = [EAMCET 2005]
2 ⎝⎜ 2 ⎠⎟

1) a 2) b 3) c 4) 0

Ans: 4

Sol. From Napier’s formula tan ⎛ B − C ⎞ = b − c cot A
⎜⎝ 2 ⎟⎠ b+c 2

∑ (b + c) tan A tan ⎛ B − C ⎞ = ∑ ( b + c ) tan A . b − c cot A
2 ⎜⎝ 2 ⎠⎟ 2 b + c 2

∑(b−c) = 0

14. Two sides of a triangle are given by the roots of the equation x2 – 5x + 6 = 0 and the angle

between the sides is π/3. Then the perimeter of the triangle is [EAMCET 2005]

1) 5 + 2 2) 5 + 3 3) 5 + 5 4) 5 + 7

Ans: 4

Sol. c2 = a2 + b2 − 2ab cos C A

= 9 + 4 −12× 1 = 7 2
2 π/3

=c= 7 C3 B

2S = a + b + c = 5 + 7

15. If , in a ΔABC, r3 = r1 + r2 + r , then A + B = [EAMCET 2004]

1) 120° 2) 100° 3) 90° 4) 80°

Ans: 3

Sol. r3 − r = 4R sin 2 c
2

r1 + r2 = 4R cos2 c
2

r1 + r2 + r − r3 = 0

4


Click to View FlipBook Version