The words you are searching are inside this book. To get more targeted content, please make full-text search by clicking here.

Eamcet maths book.this is useful to eamcet rank gainer

Discover the best professional documents and content resources in AnyFlip Document Base.
Search
Published by pra4kashbabu, 2016-02-24 03:15:25

Eamcet maths book

Eamcet maths book.this is useful to eamcet rank gainer

Keywords: eamcet ,engineering ,mahts

Jpacademy Successive – Differential

y = ex sin x ⇒ yn = 2n/2 ex sin ⎛ x + nπ ⎞
⎝⎜ 4 ⎟⎠

DDD

Jpacademy CIRCLES

PREVIOUS EAMCET BITS

1. Th equation of the circles which passes through the origin and makes intercepts of length 4 and 8

on the x and y-axis respectively, are : [EAMCET 2009]

1) x2 + y2 ± 4x ± 8y = 0 2) x2 + y2 ± 2x ± 4 y = 0

3) x2 + y2 ± 8x ±16 y = 0 4) x2 + y2 ± x ± y = 0

Ans: 1

Sol. Equations of circles passing through (0, 0),(±4, 0),(0, ±8) are x2 + y2 ± 4x ± 8y = 0

2. The locus of centre of a circle which passes through the origin and cuts off a length of 4 units

from the line x = 3 is [EAMCET 2009]

1) y2 + 6x = 0 2) y2 + 6x = 13 3) y2 + 6x = 10 4) x2 + 6 y = 13

Ans: 2

Sol. OP = PM2 + 22

⇒ x2 + y2 = (x − 3)2 + 4

⇒ y2 + 6x = 13

3. The diameters of a circle are along 2x + y – 7 = 0 and x + 3y – 11 = 0. Then the equation of this

circle, which also passes through (5, 7) is [EAMCET 2009]

1) x2 + y2 − 4x − 6 y −16 = 0 2) x2 + y2 − 4x − 6 y − 20 = 0

3) x2 + y2 − 4x − 6 y −12 = 0 4) x2 + y2 + 4x + 6 y −12 = 0

Ans: 3
Sol. Centre of the circle = point of intersection of diameters = (2, 3) radius = distance between (5, 7)

and (2, 3) = 5

4. If the lines 2x – 3y = 5 and 3x – 4y = 7 are two diameters of a circle of radius 7, then the equation

of the circle is [EAMCET 2008]

1) x2 + y2 + 2x − 4y − 47 = 0 2) x2 + y2 = 49

3) x2 + y2 − 2x + 2y − 47 = 0 4) x2 + y2 = 17

Ans: 3

Sol. Centre of the circle = Point of intersection of {2x − 3y = 5,3x − 4y = 7} = (1, −1)

Equation of the circle = ( x −1)2 + ( y −1)2 = 72 ⇒ x2 + y2 − 2x + 2y − 47 = 0

5. The inverse of the point (1, 2) with respect to the circle x2 + y2 − 4x − 6y + 9 = 0 , is

[EAMCET 2008]

1) ⎜⎝⎛1, 1 ⎞ 2) (2, 1) 3) (0, 1) 4) (1, 0)
2 ⎟⎠

Ans: 3

Sol. The polar of (1, 2) is 1x + 2y − 2(x −1) − 3( y + 2) + 9 = 0

⇒ −x − y +1= 0 ⇒ x + y −1= 0

If (h, k) is the foot of the perpendicular then

h −1 = k − 2 = − (1+ 2 −1) = −1 ⇒ h = 0, k = 1⇒ Inverse point = (0, 1)
11 1+1

Jpacademy Circles

6. If θ is the angle between the tangents from (–1, 0) to the circle x2 + y2 − 5x + 4y − 2 = 0 , then θ =

[EAMCET 2008]

1) 2 tan −1 ⎛ 7 ⎞ 2) tan −1 ⎛ 7 ⎞ 3) 2 cot −1 ⎛ 7 ⎞ 4) cot −1 ⎛ 7 ⎞
⎜⎝ 4 ⎠⎟ ⎜⎝ 4 ⎟⎠ ⎜⎝ 4 ⎟⎠ ⎜⎝ 4 ⎠⎟

Ans: 1

Sol. Radius r = 25 + 4 + 2 = 7 S11 = 1+ 0 + 5 + 0 − 2 = 4
42

tan θ = r = 7 = 7 ⇒ θ = tan−1 7 ⇒ θ = 2 tan−1 7
2 S11 2 4 4 2 4 4

7. Th equation of the circle of radius 3 that lies in the fourth quadrant and touching the lines x = 0

and y = 0 is [EAMCET 2007]

1) x2 + y2 − 6x + 6y + 9 = 0 2) x2 + y2 − 6x − 6y + 9 = 0

3) x2 + y2 + 6x − 6y + 9 = 0 4) x2 + y2 + 6x + 6y + 9 = 0

Ans: 1

Sol. Centre = (3, –3) radius = 3

Equation of the circle is x2 + y2 − 6x + 6y + 9 = 0

8. The inverse point of (1, 2) with respect to the circle x2 + y2 – 4x – 6y + 9 = 0 is [EAMCET 2007]

1) (0, 0) 2) (1, 0) 3) (0, 1) 4) (1, 1)

Ans: 3

Sol. Polar of (1, 2) w.r. to given circle is S1 = 0 ⇒ x + y −1 = 0 …….(1)

Foot of the perpendicular from (1, 2) to (1) is (0, 1)

∴ Inverse point is (0, 1)

9. Observe the following statements : [EAMCET 2006]

I) The circle x2 + y2 − 6x − 4y − 7 = 0 touches y-axis

II) The circle x2 + y2 + 6x + 4y − 7 = 0 touches x-axis.

Which of the following is a correct statement?

1) Both I and II are true 2) Neither I nor II is true

3) I is true, II is false 4) I is false, II is true

Ans: 2

Sol. For circle (1) f 2 − c = 4 + 7 = 11 > 0 ; For circle (2) g2 − c = 4 + 7 = 11 > 0

Both circles intersect X and Y axis
10. The length of the tangent drawn to the circle x2 + y2 − 2x + 4y −11 = 0 from the point (1, 3) is

[EAMCET 2006]
1) 1 2) 2 3) 3 4) 4
Ans: 3

Sol. Length of tangent = S11

= 1+ 9 − 2 +12 −11 = 3

11. If x – y + 1 = 0 meets the circle x2 + y2 + y – 1 = 0 at A and B, then the equation of the circle

with AB as diameter is [EAMCET 2005]

( )1) 2 x2 + y2 + 3x − y +1 = 0 ( )2) 2 x2 + y2 + 3x − y + 2 = 0

2

Jpacademy Circles

( )3) 2 x2 + y2 + 3x − y + 3 = 0 4) x2 + y2 + 3x − y +1 = 0

Ans: 1
Sol. S + λ L = 0

x2 + y2 + y −1+ λ (x − y +1)

Centre ⎛ −λ , ⎛ λ −1⎞⎞ lies on x – y + 1 = 0
⎝⎜ 2 ⎝⎜ 2 ⎠⎟ ⎟⎠

( )∴ λ = 3 , Required equation of circle is 2 x2 + y2 + 3x − y +1 = 0
2

12. If y = 3x is a tangent to a circle with centre (1, 1), then the other tangent drawn through (0, 0) to

the circle is : [EAMCET 2005]

1) 3y = x 2) y = –3x 3) y = 2x 4) y = – 2x

Ans: 1

Sol. By verification r = d is true for 3y = x.
13. If P1, P2, P3 are the perimeters of the three circles x2 + y2 + 8x − 6y = 0 .

4x2 + 4y2 − 4x −12y −186 = 0 and x2 + y2 − 6x + 6y − 9 = 0 respectively. Then [EAMCET 2004]

1) P1 < P2 < P3 2) P1 < P3 < P2 3) P3 < P2 < P1 4) P2 < P3 < P1
Ans: 2

Sol. Perimeter of the circle = 2πr

r1 = 5, r2 = 7, r3 = 3 3 ⇒ P1 < P3 < P2

14. If the line 3x –2y + 6 = 0 meets X-axis and Y-axis respectively at A and B, then the equation of

the circle with radius AB and centre at A is [EAMCET 2004]

1) x2 + y2 + 4x + 9 = 0 2) x2 + y2 + 4x − 9 = 0

3) x2 + y2 + 4x + 4 = 0 4) x2 + y2 + 4x − 4 = 0

Ans: 2

Sol. A (−2, 0), B = (0,3)

AB = 3

∴ Equation of the circle is ( x + 2)2 + y2 = 13

15 .If (1, a), (b, 2) are conjugate points with respect to the circle x2 + y2 = 25, then 4a + 2b =
[EAMCET 2004]

1) 25 2) 50 3) 100 4) 150

Ans: 2

Sol. S12 = 0 ⇒ b + 2a = 25
⇒ 4a + 2b = 50

16. If P is a point such that the ratio of the squares of the lengths of the tangents from P to the circles
x2 + y2 + 2x − 4y − 20 = 0 and x2 + y2 − 4x + 2y − 44 = 0 is 2 : 3, then the locus of P is a circle

with centre 2) (−7,8) 3) (7,8) [EAMCET 2003]

1) (7, −8) 4) (−7, −8)

Ans: 2
Sol. S11 : S1′1 = 2 : 3 = 3S = 2S′

⇒ x2 + y2 +14x −16y + 28 = 0

3

Jpacademy Circles

∴ Centre = (–7, 8)

17. If 5x – 2y + 10 = 0 and 12y – 5x + 16 = 0 are two tangents to a circle, then the radius of the circle

is [EAMCET 2003]

1) 1 2) 2 3) 4 4) 6

Ans: 1

Sol. Radius = 1/2 (distance between the given lines)

= 1 ⎛ 10 +16 ⎞ = 1
2 ⎝⎜ 13 ⎠⎟

18. The equation of the circle of radius 5 and touching the coordinate axes in third quadrant is

[EAMCET 2002]

1) ( x − 5)2 + ( y + 5)2 = 25 2) ( x + 5)2 + ( y + 5)2 = 25

3) (x + 4)2 + ( y + 4)2 = 25 4) ( x + 6)2 + ( y + 6)2 = 25

Ans: 2
Sol. Centre (–a, –a) radius = a= 5

∴ ( x + 5)2 + ( y + 5)2 = 25

19. The radius of the larger circle lying in the first quadrant and touching the lines 4x + 3y – 12 = 0

and the coordinate axes is [EAMCET 2002]

1) 5 2) 6 3) 7 4) 8

Ans: 2
Sol. Centre (a, a), radius = a

For distance from centre (a, 0); To line 4x + 3y – 12 = 0

4a + 3a −12 = a ⇒ a = 1to 6
5

∴ Large radius = 6

20. The four distinct points (0, 0), (2, 0), (0, –2) and (k, -2) are concylic if k = [EAMCET 2002]

1) 2 2) – 2 3) 0 4) 1

Ans: 1

Sol. Equation of circle (0, 0), (a, 0), (0, b) is x2 + y2 − 2 + 2y = 0

Substituting (k, -2) in equation ⇒ k = 2

21. A line is at a constant distance C from the origin and meets the coordinate axes in A and B. The

locus of the centre of the circle passing through O, A, B is [EAMCET 2002]

1) x−2 + y−2 = c−2 2) x−2 + y−2 = 2c−2 3) x−2 + y−2 = 3c−2 4) x−2 + y−2 = 4c−2

Ans: 4

Sol. Let the line be x cos α + y sin α = c ∴ A ⎛ c α , 0 ⎞ ; B ⎜⎛⎝ 0, c α ⎞
⎜⎝ cos ⎟⎠ sin ⎟⎠

Midpoint of AB is centre of circle passing through O, A, B i.e ⎛ 2 c α , 2 c α ⎞
⎝⎜ cos sin ⎠⎟

∴ Locus of the centre is x−2 + y−2 = 4c−2

22. The equation of the normal to the circle x2 + y2 + 6x + 4y – 3 = 0 at (1, –2) is [EAMCET 2001]

1) y + 1 = 0 2) y + 2 = 0 3) y + 3 = 0 4) y – 2 = 0

Ans: 2

Sol. Centre of the circle = (–3, –2) ;

4

Jpacademy Circles

Normal passes through centre

∴ The normal at (1, –2) is y+ 2 = 0
23. If the polar of a point on the circle x2 + y2 = p2 with respect to the circle x2 + y2 = q2 touches

the circle x2 + y2 = r2 , then p, q, r are in ………progression [EAMCET 2001]

1) Arithmetic 2) Geometric 3) Harmonic 4) Arithmetico Geometric

Ans: 2
Sol. Let (x1, y1) is a point on x2 + y2 = p2 ⇒ x12 + y12 = P2

The Polar of ( x1, y1 ) w.r.t x2 + y2 = q2 is xx1 + yy1 = q2........(1)

(1) touches x2 + y2 = r2

⇒ q2 = r ⇒ q2 = pr
x12 + y12

24. The centre of the circle touching the y-axis at (0, 3) and making an intercept of 2 units on the

positive x-axis is [EAMCET 2000]

(1) 10, 3) 2) ( )3,10 3) ( )10,3 (4) 3, 10 )

Ans: 3
Sol. The circle touches y-axis at (0, 3)

∴ f = –3; c = 9

The length of intercept made by the circle on x-axis = 2 g2 − c = 2 ⇒ g = ± 10

( )∴ centre = 10,3

(∵ lies in the first Quadrant)
25. The slope m of a tangent through the point (7, 1) to the circle x2 +y2 = 25 satisfies the equation

[EAMCET 2000]

1) 12m2 + 7m −12 = 0 2)16m2 − 24m + 9 = 0

3) 12m2 − 7m −12 = 0 4) 9m2 + 24m +16 = 0

Ans: 3

Sol. The equation of the tangents is ( y −1) = m ( x − 7)

⇒ mx − y + (1− 7m) = 0.....(1)

(1) touches the circles x2 + y2 = 25

1− 7m = 5 ⇒ 12m2 − 7m −12 = 0
m2 +1

26. The number of common tangent that can be drawn to the circles x2 + y2 = 1 and

x2 + y2 − 2x − 6y + 6 = 0 is [EAMCET 2000]

1) 1 2) 2 3) 3 4) 4
Ans: 4

Sol. C1′ (0, 0) C2 (1,3) , r1 = 1; r2 = 2

C1C2 = 10 > r1 + r2

@@@@

5

Jpacademy ELLIPSE

PREVIOUS EAMCET BITS

1. If the distance between the foci of an ellipse is 6 and the length of the minor axis is 8, then the

eccentricity is [EAMCET 2009]

1) 1 2) 1 3) 3 4) 4
5 2 5 5
2b = 8 ⇒ b = 4
Ans: 3
Sol: 2ae = 6 ⇒ ae = 3

( )∴ b2 = a2 1− e2

⇒ 16 = a2 − 9 ⇒ a = 5

∴ e=3
5

2. For an ellipse with eccentricity ½ the centre is at the origin. If one directrix is x = 4, then the

equation of the ellipse is [EAMCET2008]

1) 3x2 + 4y2 = 1 2) 3x2 + 4y2 = 12 3) 4x2 + 3y2 = 1 4) 4x2 + 3y2 = 12

Ans: 2

Sol. a = 4 ⇒ a = 4 ⇒ 2a = 4
e 1/ 2

⇒a=2 ( )b2 = a2 1− e2 = 4 ⎝⎛⎜1 − 1 ⎞ = 3
4 ⎟⎠

Equation of the ellipse is x2 + y2 = 1 ⇒ 3x2 + 4y2 = 12
43

3. The value of k if (1, 2), (k, –1) are conjugate points with respect to the ellipse 2x2 + 3y2 = 6 is

[EAMCET 2007]
1) 2 2) 4 3) 6 4) 8

Ans: 3

Sol. S12 = 0 ⇒ k = 6 [EAMCET 2006]
4. Equation of the latus recta of the ellipse 9x2 + 4y2 −18x − 8y − 23 = 0 are

1) y = ± 5 2) x = ± 5 3) y = 1± 5 4) x = −1± 5

Ans: 3

(x −1)2 ( y −1)2

Sol. Equation can be written as + = 1
49

Equation of latus recta of (x − α)2 + (y −β)2 =1 are

b2 a2

y = b ± ae y = 1± 5

5. The sides of the rectangle of greatest area that can be inscribed in the ellipse x2 + 4y2 = 64 are

( ) ( )1) 6 2,4 2 ( )3) 8 2,8 2 [EAMCET 2006]
2) 8 2, 4 2
( )4) 16 2, 4 2

1

Jpacademy Ellipse

Ans: 2

Sol. The sides of a rectangle of greatest area that can be inscribed in a ellipse x2 + y2 = 1 are given
a2 b2

equation x2 + y2 = 1
64 16

1=a 2 breadth = b 2

=8 2 42

6. The eccentricity of the conic 36x2 +144y2 − 36x − 96y −119 = 0 is [EAMCET 2004]

1) 3 2) 1 3) 3 4) 1
2 2 4 3

Ans: 1

Sol. e = 144 − 36 = 3 [EAMCET 2003]
144 2

7. The eccentricity of the ellipse 9x2 + 5y2 −18x − 20y −16 = 0 is

1) 1 2) 2 3) 3 4) 2
23 2

Ans: 2
Sol. 9x2 + 5y2 −18x − 20y −16 = 0

( x −1)2 ( y − 2)2
⇒+ =1
59

e= b2 − a2 = 2
b2 3

8. The pole of the straight line x + 4y = 4 with respect to the ellipse x2 + 4 y2 = 4is [EAMCET 2002]

1) (1, 4) 2) (4, 1) 3) (4, 4) 4) (1, 1)

Ans: 4

Sol. Pole = ⎛ −a 2A , −b2m ⎞
⎜ n n ⎟
⎝ ⎠

Ax + my + n = x + 4y − 4 = 0

x2 + y2 =1 [EAMCET 2001]
41
Pole = (1, 1)
9. The eccentricity of the ellipse x2 + y2 = 1 is

9 16

1) 7 2) 5 3) 7 4) 7
16 4 4 2

Ans: 3

Sol. e= b2 − a2 = 7
b2 4

10. The eccentricity of the ellipse 5x2 + 9y2 = 1 is [EAMCET 2000]

1) 2/3 2) 3/4 3) 4/5 4) 1/2

Ans: 1

3

Jpacademy Ellipse

Sol. e = 9 − 5 = 2
93

11. The product of the perpendicular from the foci on any tangent to the ellipse x2 + y2 = 1 is
a2 b2

[EAMCET 2000]

1) a 2) a2b2 3) b2 4) a2 + b2

Ans: 3
Sol. The product of ⊥ ers from foci to any tangent = b2

777

3

Jpacademy HYPERBOLA

PREVIOUS EAMCET BITS

1. If the circle x2 + y2 = a2 intersects the hyperbola xy = c2 in four points ( xi , yi ) , for i =1, 2, 3 and

4, then y1 + y2 + y3 + y4 = [EAMCET 2009]

1) 0 2) c 3) a 4) c4

Ans: 1

Sol. x = c2 ⇒ c4 + y2 = a2
y y2

⇒ y4 − a2y2 + c4 = 0

⇒ y1 + y2 + y3 + y4 = 0 [EAMCET 2009]
2. The midpoint of the chord 4x – 3y = 5 of the hyperbola 2x2 – y3 = 12 is

1) ⎛ 0, − 5⎞ 2) (2, 1) 3) ⎛ 5 , 0 ⎞ 4) ⎛ 11 , 2 ⎞
⎜⎝ 3 ⎠⎟ ⎝⎜ 4 ⎟⎠ ⎜⎝ 4 ⎟⎠

Ans: 2

Sol. Write S1 = S11 and Compare [EAMCET 2008]
3. The distance between the foci of the hyperbola x2 − 3y2 − 4x − 6y −11 = 0

1) 4 2) 6 3) 8 4) 10
Ans: 3

Sol. x2 − 3y2 − 4x − 6y −11 = 0

( ) ( )⇒ x3 − 4x + 4 − 3 y2 + 2y +1 −12 ⇒ (x − 2)2 − 3( y +1)2 = 12

⇒ ( x − 2)2 − ( y +1)2 = 1 ⇒ a2 = 12, b2 = 4 ⇒ e = a2 + b2 = 12 + 4 = 4 = 1
12 4 a 44

( ) ( )b2 = a2 e1 −1 ⇒ 4 = 12 e2 −1 ⇒ e2 −1 = 1 ⇒ e2 = 4 ⇒ e = 2
33 3

( )Distance between the foci = 2ae = 2 12 2 / 3 = 8

4. If the line Ax + my = 1 is a normal to the hyperbola x2 − y2 = 1, then a2 − b2 = [EAMCET 2007]
a2 b2 A2 m2

1) a2 − b2 2) a2 + b2 ( )3) a2 + b2 2 ( )4) a2 − b2 2

Ans: 3

a2 + b2 2
n2
( )Sol.
a2 − b2 =
A2 m2

1

Jpacademy Hyperbola

( )⇒a2 − b2 2
A2 m2 = a2 + b2

5. If the eccentricity of a hyperbola is 3 , then the eccentricity of its conjugate hyperbola is
[EAMCET 2006]

1) 2 2) 3 3) 3 4) 2 3
2

Ans: 3

Sol. 1 + 1 =1
e2
(e′)2

1+ 1 =1⇒ 1 =1− 1 = 2
3 3 3
(e′)2 ( e′)2

e1 = 3
2

6. The product of the lengths of perpendicular drawn from any point on the hyperbola

x2 − 2y2 − 2 = 0 to its asymptotes is [EAMCET 2003]

1) 1 2) 2 3) 3 4) 2
23 2

Ans: 2

Sol. x2 −y2 = 1
21

Product of the length of perpendiculars from any point on the hyperbola to its asymptotes

a2b2 = 2
a2 + b2 3

7. If e and e′ are the eccentricities of the ellipse 5x2 + 9y2 = 45 and the hyperbola 5x2 − 4y2 = 45

respectively, then ee′ = [EAMCET 20002]

1) 9 2) 5 3) 4 4) 1

Ans: 4

Sol. Ellipse x2 + y2 = 1
95

⇒e= a2 − b2 = 9−5 = 2
a2 93

Hyperbola x2 − y2 = 1
9 45 / 4

⇒ e1 = a2 + b2 = 9 + 45 = 3
a2 4

92

3

Jpacademy Hyperbola

e.e1 = 2 . 3 = 1
32

8. [EAMCET 2002]
[EAMCET 2001]
1) 2) 3) 4)

Ans:

Sol.

9. The equation 16x2 + y2 + 8xy − 74x − 78y + 212 = 0 represents

1) A circle 2) A parabola 3) An ellipse 4) A hyperbola

Ans: 2

Sol. h2 − ab = 16 −16 = 0

10. The curve represented by x = 2(cost + sint) and y = 5 (cost – sint) is [EAMCET 2000]

1) a circle 2) a parabola 3) an ellipse 4) a hyperbola

Ans: 3

Sol. x = (cos t + sin t) = y = cos t = sin t

25

x2 + y2 = 2
4 25

VVV

3

Jpacademy PARABOLA

PREVIOUS EAMCET BITS

1. The number of normals drawn to the parobola y2 = 4x from the point (1, 0) is [EAMCET 2009]

1) 0 2) 1 3) 2 4) 3

Ans: 2

Sol. Given point is the focus, then no. of normals =1

2. If 2x + 3y + 12 = 0 and x – y + 4λ = 0 are conjugate with respect to the parabola y2 = 8x, then λ =
[EAMCET 2008]

1) 2 2) – 2 3) 3 4) – 3

Ans: 4

Sol. 2x + 3y + 12 = 0, x – y + 4λ = 0 are conjugate w.r.t the parabola y2 = 8x, then

⇒ 2(4λ) +1(12) = 2(2)(3)(−1) [ ]∵ 1n2 + 2n1 = 2am1m2

⇒ 8λ +12 = −12 ⇒ 8λ = −24

⇒ λ = −3
3. For the parabola y2 + 6y – 2x + 5 = 0 (I) The vertex is (–2, –3) (II) The directrix is y + 3 = 0

Which of the following is correct? [EAMCET 2007]

1) Both I and II are true 2) I is true, II is false

3) I is false, II is true 4) Both I and II are false

Ans: 2

Sol. ( y + 3)2 = 2(x + 2)

Vertex = (–2, –3); directrix = x = –3/2

4. If the lines 2x + 3y + 12 = 0 and x – y + 4k = 0 are conjugate with respect to the parabola y2 =8x,

then the value of k is [EAMCET 2006]

1) – 3 2) 3 3) 2 4) – 2

Ans: 1

Sol. Condition for lines to be conjugate is 1n2 + 2n1 = 2am1m2

a=2

2(4k) + 12 = 4(3) (–1)

k=-3

5. The parabola with directrix x + 2y – 1 = 0 and focus (1, 0) is [EAMCET 2005]

1) 4x2 − 4xy + y2 − 8x + 4y + 4 = 0 2) 4x2 + 4xy + y2 − 8x + 4y + 4 = 0

3) 4x2 + 4xy + y2 − 8x − 4y + 4 = 0 4) 4x2 − 4xy + y2 − 8x − 4y + 4 = 0

Ans: 1
Sol. SP2 = PM2

( x −1)2 + y2 = x + 2y −1 2

5

⇒ 4x2 − 4xy + y2 − 8x + 4y + 4 = 0

Jpacademy Parabola

6. The line, among the following, that touches the parabola y2 = 4ax is [EAMCET 2005]

1) x + my + am3 = 0 2) x − my + am2 = 0 3) x + my − am2 = 0 4) y + mx + am2 = 0

Ans: 2

Sol. Equation of tangent to the parabola y2 = 4ax is y = mx + a or y = 1 x + am
mm

7. The equation of the parabola with focus (0, 0) and directrix x + y = 4 is [EAMCET 2003]

1) x2 + y2 − 2xy + 8x + 8y −16 = 0 2) x2 + y2 − 2xy + 8x + 8y = 0

3) x2 + y2 + 8x + 8y −16 = 0 4) x2 − y2 + 8x + 8y −16 = 0

Ans: 1
Sol. SP = PM ⇒ SP2 = PM2

x2 + y2 = ⎛ x + y− 4 ⎞2 ⇒ x2 − 2xy + y2 + 8x + 8y − 16 = 0
⎝⎜ 2 ⎠⎟

8. A variable circle passes through the fixed point (2, 0) and touches the y-axis. Then locus of its

centre is [EAMCET 2002]

1) A parabola 2) A circle 3) An ellipse 4) A hyperbola

Ans: 1

Sol. The distance between the centre and pt(2, 0) is equal to the for distance from centre to y-axis.

∴ Locus of centre is parabola.

9. The equation of the parabola with the focus (3, 0) and the directrix x + 3 = 0 is [EAMCET 2002]

1) y2 = 3x 2) y2 = 6x 3) y2 = 12x 4) y2 = 2x

Ans: 3

Sol. Focus (a, 0) = (3, 0) a = 3

Directrix x + a = 0 ⇒ x + 3 = 0

∴ Equation of parabola is y2 = 4ax = 12x

10. Locus of the poles of focal chords of a parabola is………. of the parabola [EAMCET 2002]

1) the axis 2) a focal chord 3) the directrix 4) the tangent at the vertex

Ans: 3

Sol. Locus of poles of focal chords of Parabola is its directrix.

11. The length of the latus rectum of the parabola y2 + 8x − 2y +17 = 0 is [EAMCET 2001]

1) 2 2) 4 3) 8 4) 16
Ans: 3

Sol. Length of the L.R = 8 = 8
1

⎛ Coefficient of ' x ' ⎞
⎜ ⎟
⎝ Coefficient of ' y2 ' ⎠

12. If the normal to the parabola y2 = 4x at P(1, 2) meets the parabola again in Q, then Q =
[EAMCET 2001]

1) (–6, 9) 2) (9, –6) 3) (–9, –6) 4) (–6, –9)

Ans: 2

2

Jpacademy Parabola

( )Sol. Normal at at12, 2at1 meet the parabola y2 = 4ax

( )At at 2 , then t2 = −t1 − 2
2 2at 2 t1

Let 2at1 = 2t1 = 2(∵ a = 1) ⇒ t1 = 1

t2 = −1 − 2 = −3
1

( )∴ at 2 , = (9, −6)
2 2at 2

13. A variable circle passes through the fixed point (2, 0) and touches the y-axis. Then the locus of its

centre is [EAMCET 2000]

1) A parabola 2) A circle 3) An ellipse 4) A hyperbola

Ans: 1

Sol. Let the centre of the circle be (x1, y1) equation of the circle is S = x2 + y2 − 2x1x − 2y1y + c = 0
S = 0− , touches y-axis

∴ C = y12

∴ S = x2 + y2 − 2x1x − 2y1y + y12 = 0 it passes through (2, 0)4 – 4x1 + y12 = 0

∴ Locus of (x1, y1) is y2 = 4(x – 1) (parabola)

14. The vertex of the parabola x2 + 8x +12y + 4 = 0 [EAMCET 2000]

1) (–4, 1) 2) (4, –1) 3) (–4, –1) 4) (4, 1)

Ans: 1

Sol. x2 + 8x +12y + 4 = 0

⇒ (x + 4) 2 = −12( y −1)

∴ Vertex = (–4, 1) [EAMCET 200]
15. The line 4x + 6y + 9 = 0 touches the parabola y2 = 4x at the point.

1) ⎛ −3, 9 ⎞ 2) ⎛ 3, − 9 ⎞ 3) ⎛ 9 , −3⎟⎠⎞ 4) − ⎛ 9 , −3 ⎞
⎝⎜ 4 ⎠⎟ ⎝⎜ 4 ⎟⎠ ⎜⎝ 4 ⎝⎜ 4 ⎟⎠

Ans: 3

Sol. y = ⎛ −2 ⎞ x − 3 …………….(1)
⎝⎜ 3 ⎟⎠ 2

1 tangent to y2 = 4x

∴ Point of contact = ⎛ a ; 2a ⎞ = ⎛ 9 − 3 ⎞
⎝⎜ m2 m ⎠⎟ ⎜⎝ 4 ⎠⎟

DDD

3

Jpacademy POLAR COORDINATES

PREVIOUS EAMCET BITS

1. The eccentricity of the conic 5 = 2 + 3cos θ + 4sin θ is [EAMCET 2009]
r

1) 1 2) 1 3) 3 4) 5
2 22

Ans: 4

Sol. 5 = 1+ 5 cos (θ + α) ⇒ e = 5
2r 2 2

( )2. The radius of the circle with the polar equation r2 − 8r 3 cos θ + sin θ +15 = 0 is [EAMCET 2008]

1) 8 2) 7 3) 6 4) 5

Ans: 2

( )Sol. Given equation r2 − 8r 3 cos θ + sin θ +15 = 0

⇒ r 2 − 2r ( 8) ⎛ 3 cos θ + 1 sin θ ⎞ = −15
⎜⎜⎝ 2 2 ⎠⎟⎟

∴ a2 − c2 = −15 ⇒ a2 − 64 = −15 ⇒ a2 = 49 ⇒ a = 7

3. The area (in square units) of the triangle formed by the points with polar coordinates (1, 0),

(2, π/3) and (3, 2π/3) [EAMCET 2007]

1) 11 3 2) 5 3 3) 5 4) 11
4 4 4 4

Ans: 2

∑Sol. 1 r1r2 sin (θ1 − θ2 ) = 53
2 4

4. The polar equation of the circle with centre ⎛ 2, π⎞ and radius 3 units is [EAMCET 2006]
⎜⎝ 2 ⎟⎠

1) r2 + 4r cos θ = 5 2) r2 + 4r sin θ = 5 3) r2 − 4r sin θ = 5 4) r2 − 4rco s θ = 5

Ans: 3

1

Jpacademy
Polar Coordinates

Sol. Polar equation of circle with centre( c, α) and r is r2 + c2 − 2rc cos (θ − α) = a2

c ⎛ 2, π ⎞ , a = 3
⎜⎝ 2 ⎟⎠

r 2 + 4 − 4r cos ⎛ θ − π ⎞ = 9
⎜⎝ 2 ⎟⎠

r2 − 4r sin θ = 5

5. The cartesian form of the polar equation θ = tan−1 2 is [EAMCET 2005]

1) x = 2y 2) y = 2x 3) x = 4y 4) y = 4x

Ans: 2

Sol. θ = tan−1 2 ⇒ tan θ = 2 ⇒ y = 2 ⇒ y = 2x
x

6. Which of the following equations gives a circle? [EAMCET 2005]

1) r = 2sinθ 2) r2 cos 2θ = 1 ( )3) r (4 cos θ + 5sin θ) = 3 4) 5 = r 1+ 2 cos θ

Ans: 1
Sol. r2 = 2r sin θ

x2 + y2 = 2y which is a circle equation.

7. The polar equation cos θ + 7 sin θ = 1 represents a [EAMCET 2004]
r

1) Circle 2) Parabola 3) Straight line 4) Hyperbola

Ans: 3

Sol. ----

8. The centre of the circle r2 − 4r (cos θ + sin θ) − 4 = 0 in cartesian coordinates is [EAMCET 2004]

1) (1, 1) 2) (–1, –1) 3) (2, 2) 4) (–2, –2)

Ans: 3

Sol. Cartesian equation of the circle is x2 + y2 − 4x − 4y − 4 = 0

∴ Centre = (2, 2)

Jpacademy Polar Coordinates
9. The radius of the circle r = 3 sin θ + cos θ is [EAMCET 2004]
4) 4
1) 1 2) 2 3) 3

Ans: 1

Sol. radius = 3 + 1 = 1
44

10. The line passing through ⎛ −1, π ⎞ and perpendicular to 3 sin θ + 2 cos θ = 4 is [EAMCET 2003]
⎝⎜ 2 ⎠⎟ r

1) 2 = 3r cos θ − 2r sin θ 2) 5 = −2 3r cos θ + 4r sin θ

3) 2 = 3r cos θ + 2r sin θ 4) 5 = 2 3r sin θ + 4rcosθ

Ans: 1

Sol. equation of the line passing through ⎛ −1, π ⎞ and ⊥ er to 3 sin θ + 2 cos θ = 4 is
⎜⎝ 2 ⎟⎠ r

3 cos θ − 2sin θ = K
r

It passes through ⎛ −1, π ⎞ ⇒ 0 − 2 = k ⇒ k = 2
⎝⎜ 2 ⎟⎠ −1

∴ 3 cos θ − 2sin θ = 2
r

11. The equation 1 = 1 + 3 cos θ represents [EAMCET 2002]
r 88

1) A parabola 2) An ellipse 3) A hyperbola 4) A rectangular hyperbola

Ans: 3
Sol. A = 1+ e cos θ ⇒ 8 = 1+ 3cos θ

rr

e = 3 > 1 represents Hyperbola.
12. The equation of curve in polar coordinates is A = 2sin2 θ . Then it represents: [EAMCET 2001]

rr

1) A straight line 2) A circle 3) A parabola 4) An ellipse














































Click to View FlipBook Version