The words you are searching are inside this book. To get more targeted content, please make full-text search by clicking here.

Eamcet maths book.this is useful to eamcet rank gainer

Discover the best professional documents and content resources in AnyFlip Document Base.
Search
Published by pra4kashbabu, 2016-02-24 03:15:25

Eamcet maths book

Eamcet maths book.this is useful to eamcet rank gainer

Keywords: eamcet ,engineering ,mahts

Jpacademy Quadratic Expressions

The correct match to List – I from List – Ii is

i ii iii iv i ii iii iv i ii iii iv i ii iii iv
4) E B D A
1) E B D F 2) E B A D 3) E D B F

Ans: 4

Sol : If the roots are in the ratio m : n then b2 = (m + n )2

ac mn

i) α =β ⇒ α = 1 ⇒ b2 = (1 + 1)2 ⇒ b2 = 4ac
β 1 ac
1x1

ii) α = 2β ⇒ α = 2 ⇒ b2 = (2 +1)2 ⇒ 2b2 = 9ac
β 1 ac
2x1

iii) α = 3β ⇒ α = 3 ⇒ b2 = (3 +1)2 ⇒ 3b2 = 16ac
β 1 ac
3x1

iv) α = β2 ⇒ β +β2 = -b/a, β3 = c
a

⇒ ⎛ c ⎞1/ 3 + ⎛ c ⎞2/3 = -b / a
⎝⎜ a ⎠⎟ ⎜⎝ a ⎠⎟

( ) ( )⇒ a2c 1/3 + ac2 1/3 = -b

4. If α + β = -2 and α3 + β3 = -56 then the quadratic equation whose roots are α and β is

1) x2 + 2x - 16 = 0 2) x2 + 2x - 15 = 0 3) x2 + 2x - 12 = 0 4) x2 + 2x - 8 = 0
[EAMCET 2008]
Ans: 4
Sol : α3 + β3 = -56

(α + β)3 - 3αβ (α + β) = -56

(-2)3 + 3αβ (-2) = -56

-8 + 6αβ = -56
αβ = -8
∴ Required equation is

x2 - (α + β) x + αβ = 0

x2 + 2x - 8 = 0

5. If α and β are the roots of the equation ax2 + bx + c = 0 and px2 + qx + r = 0 has roots

1− α and 1− β then r = [EAMCET 2007]
αβ

1) a + 2b 2) a + b + c 3) ab + bc + ca 4) abc

Ans: 2

Sol. The equation heaving roots 1 , 1 is cx2 + bx + a = 0 .
αβ

2

Jpacademy Quadratic Expressions

The equation having roots 1 - 1, 1 -1 is
α α

c(x +1)2 + b(x +1) + a = 0

⇒ cx2 + (2c + b) x + (c + b + a) = 0

px2 + qx + r = 0

∴r=a+b+c

6. The set of values of x for which the inequalities x2 − 3x −10 < 0, 10x − x2 −16 > 0 hold

simultaneously is [EAMCET 2007)

1) (−2,5) 2) (2,8) 3) (−2,8) 4) (2,5)

Ans: 4

Sol. x2 - 3x -10 < 0 ⇒ (x - 5)(x + 2) > 0

⇒ -2 < x < 5(or) x > 3

10x - x2 - 16 > 0 ⇒ x2 - 10x + 16 < 0

⇒ (x- 2) (x-8) < 0

⇒ 2<x<8
∴ common set = (2,5)

7. If 9x2 + 6x + 1 < (2 - x) then [EAMCET 2006]

1) x ∈ ⎛ - 3 , 1 ⎞ 2) x ∈ ⎛ -3 , 1 ⎤ 3) x ∈ ⎡ -3 , 1 ⎞ 4) x < 1/4
⎜⎝ 2 4 ⎠⎟ ⎝⎜ 2 4 ⎦⎥ ⎢⎣ 2 4 ⎠⎟

Ans: 1

Sol : 9x2 + 6x + 1 < (2 - x)

⇒ (3x + 1)2 < (2 - x)

Taking +ve sign

3x + 1 < (2 - x)

⇒ x <1/ 4

Taking –ve sign

-3x - 1 < 2 - x

x > −3
2

x ∈⎜⎛⎝ -3 , 1 ⎞
2 4 ⎠⎟

8. If x is real, then the minimum value of x2 − x +1 is [EAMCET 2005]
x2 + x +1 4)1

1) 1/3 2) 3 3) 1/2

Ans: 1

3

Jpacademy Quadratic Expressions

Sol. Let y = x2 - x +1
x2 + x +1

⇒ (y -1) x2 + (y +1) x + (y -1) = 1

x is real ⇒ (y + 1)2 - 4(y - 1)2 ≥ 0

⇒ 3y2 -10y + 3 ≤ 0

⇒ (3y -1)(y - 3) ≤ 0

⇒ 1 ≤ y ≤ 3
3

∴ Minimum value = 1/3

9. E1: a + b + c = 0 if 1 is a root of ax2 + bx + c = 0

E2: b2-a2=2ac if sin cos are the roots of ax2 + bx + c = 0 [EAMCET 2005]

1) E1 is true, E2 is true 2) E1 is true, E2 is false

3) E1 is false, E2 is true 4) E1 is false, E2 is false

Ans: 1

Sol. E1 : 1 is a root of ax2 + bx + c = 0

⇒ a(1)2 + b(1) + c = 0

⇒ a+b+c = 0

E2 : Sinθ + Cosθ = - b , SinθCosθ = c/a
a

(Sinθ + Cosθ )2 = ⎛ -b ⎞2
⎜⎝ a ⎠⎟

1+ 2SinθCosθ = b2 ⇒ 1+ 2 ⎛ c ⎞ = b2
a2 ⎜⎝ a ⎟⎠ a2

⇒ b2 - a2 = 2ac

∴E 1 is true, E 2 is true.

10. The set of all solutions of the inequation x2 − 2x + 5 ≤ 0 is [EAMCET 2004]

1) R − (−∞, −5) 2) R − (5, ∞) 3) φ 4) R − (−∞, −4)

Ans: 3

Sol. x2 - 2x + 5 = 0 ⇒ x = 2 ± 4 - 20 = 1± 2i
2

⇒ x2 - 2x + 5 > 0∀x ∈ R

∴ x2 - 2x + 5 ≤ 0 has no real solution.

11 If x-2 is a common factor of the expressions x2 + ax + b and x2 + cx + d , then b − d =
c−a
[EAMCET 2004]

1) -2 2) -1 3) 1 4) 2

Ans:4

4

Jpacademy Quadratic Expressions

Sol. x - 2 is a common factor of x2 + ax + b and x2 + cx + d
⇒ 4 + 2a + b = 0, 4 + 2c + d = 0
⇒ 2a + b = 2c + d

⇒ b −d = 2(c-a)

⇒ b-d = 2
c-a

12. The solution set contained in R of the inequation 3x + 31−x − 4 < 0 is [EAMCET 2003]

1) (1, 3) 2) (0, 1) 3) (1, 2) 4) (0, 2)

Ans: 2

Sol. 3x + 3 - 4 < 0
3x

32x + 3 - 4.3x < 0

(3x -1)(3x - 3) < 0

1 < 3x < 3

∴ The solution set is (0,1)

13. The minimum value of 2x2 +x-1 is [EAMCET 2003]

1) 1/4 2) 3/2 3) -9/8 4) 9/4

Ans. 3

Sol. Minimum value of ax2 + bx + c is 4ac - b2
4a

∴ Minimum value of 2x2 + x - 1 is 4 ( 2 ) ( -1) - 1 = - 9
4(2) 8

14. If the equations x2 + ax + b = 0 and x2 + bx + a = 0 (a ≠ b) have a common root then a+b=

[EAMCET 2002]

1) -1 2) 2 3) 3 4) 4

Ans: 1

Sol. Let 'α' be a common root of x2 + ax + b = 0 and x2 + bx + a = 0

⇒ α2 + aα + b = 0 -(1)

α2 + bα + a = 0 - (2) -(1)

Solve (1) & (2)

(1) – (2) ⇒ (a - b)α + (b - a) = 0

⇒α =1 [EAMCET 2002]
1+a+b =0 4) x2 − 5x + k = 0
∴ a + b = -1

15. If ‘3’ is a root of x2 + kx − 24 = 0 it is also root of
1) x2 + 5x + k = 0 2) x2 + kx + 24 = 0 3) x2 − kx + 6 = 0
Ans: 2

5

Jpacademy Quadratic Expressions

Sol. Put x = 3

9 + 3k - 24 = 0 ⇒ K = 5

Put K=5 in options.

∴ 3 is also a root of x2 - kx + 6 = 0

x2 - 5x + 6 = 0

16. If α , β are the roots of x2 + bx + c = 0 and α + h, β + h are the roots of x2 + qx + r = 0 then
h = [EAMCET 2001]

1) b+q 2) b-q 3) ½ (b + q) 4) ½ (b − q)

Ans: 4
Sol. α,β are the roots of x2 + bx + c = 0

⇒ α + β = -b

α + h,β + h are the roots of x2 + qx + r = 0

⇒ (α + h) + (β + h) = -q

α + β + 2h = -q

-b + 2h = -q

⇒ h = 1 (b - q)
2

( )17. If 203−2x2 = 40 5 3x2 −2 then x = [EAMCET 2001]

1) ± 13 2) ± 12 3) ± 4 4) ± 5
2 13 5 4

Ans: 2

( )Sol. 20 3-2x2 = ⎣⎡20x2 5 ⎦⎤3x2-2

= ⎣⎡20 20 ⎦⎤3x2 -2

( )=⎡ 20 ⎤3/2 3x2 -2
⎣ ⎦

( ) ( )20 3-2x2 = 9x2 -6

20 2

3 - 2x2 = 9x2 - 6
2

6 - 4x2 = 9x2 - 6
13x2 = 12

x=± 12
13

18. If α , β are the roots of 9x2 + 6x +1 = 0 then the equation with the roots 1/α , 1/ β is

[EAMCET 2000]

1) 2x2 + 3x +18 = 0 2) x2 + 6x − 9 = 0 3) x2 + 6x + 9 = 0 4) x2 − 6x + 9 = 0

6

Jpacademy Quadratic Expressions

Ans: 3

Sol f ⎛ 1 ⎞ = 0
⎝⎜ x ⎠⎟

⇒ 9 ⎛ 1 ⎞2 + 6 ⎛ 1 ⎞ +1 = 0
⎝⎜ x ⎟⎠ ⎜⎝ x ⎠⎟

x2 + 6x + 9 = 0

19. The equation formed by decreasing each root of ax2 + bx + c = 0 by 1 2x2 + 8x + 2 = 0 is then

[EAMCET 2000]

1) a = -b 2) b = -c 3) c = -a 4) b=a+c

Ans: 2

Sol. The equation formed by decreasing each root of ax2 + bx + c = 0 by 1 is 2x2 + 8x + 2 = 0

⇒ The equation formed by increasing each root of 2x2 + 8x + 2 = 0 is ax2 + bx + c = 0

∴ax2 + bx + c = 2(x - 1)2 + 8(x - 1) + 2

ax2 + bx + c = 2x2 + 4x - 4

∴ a = b = c ⇒ 2a = b = -c
2 4 -4

20. If (3 + i ) is a root of the equation x2 + ax + b = 0 then a = [EAMCET 2000]

1) 3 2) -3 3) 6 4) -6

Ans: 4

Sol. If 3 + i is one root of the given equation then the other root be 3 – i

Sum of the roots of x2 + ax + b = 0 is –a

⇒ 3 + i + 3 - i = -a

∴a = -6

7

Jpacademy 2. THEORY OF EQUATIONS

PREVIOUS EAMCET Bits

EAMCET-2001

1. Each of the roots of the equation x3 −6x2 + 6x −5 = 0 are increased by k so that the new
transformed equation does not contain term. Then k =

−1 −1 3. -1 4. -2
1. 3 2. 2

Ans: 4

Sol. The transformed equation is (x − k )3 − 6(x − k )2 + 6(x − k )− 5 = 0

Coefficient of x2 is 0 ⇒ − 3k − 6 = 0 ⇒ k = −2

2. The roots of the equation x3 −14x2 + 56x − 64 = 0 are in ......... progression.

1. Arithmetico-geometric 2. Harmonic 3. Arithmetic 4. Geometric

Ans : 4

Sol. By verification x = 2 is a factor of given equation.

2 1 −14 56 −64
0 2 −24 64

1 −12 32 0

(x-2) (x2-12x+32) = 0
x2-12x+32=0

x = 4,8
∴Roots are 2,4,8
∴ These are in G.P.
3. If there is a multiple root of order 3 for the equation x4 − 2x3 + 2x −1= 0 , then the other root is

1. -1 2. 0 3. 1 4. 2

Ans: 1

Let f(x) = x4-2x3+2x-1 ⇒ f (1) = 0

⇒ f ′(x ) = 4x3 − 6x2 + 2 ⇒ f ′(1) = 0

⇒ f11(x) = 12x2-12x ⇒ f 11(1) = 0

Roots of given equation are 1,1,1
Let the other root be α

S1 = 2
1+1+1+ α
α = -1
∴ Other root is -1

4. The equation whose roots are the negatives of the roots of the equation
x7 +3x5 + x3 − x2 + 7x + 2 = 0

1. x7 + 3x5 + x3 + x2 − 7x + 2 = 0 2. x7 + 3x5 + x3 + x2 + 7x − 2 = 0

1

Jpacademy Theory of Equations

3. x7 + 3x5 + x3 − x2 − 7x − 2 = 0 4. x7 + 3x5 + x3 − x2 + 7x − 2 = 0

Ans: 2

Sol. f(-x) = 0
(-x)7 + 3(-x)5 +(-x)3 -(-x)2 + 7(-x) + 2 = 0
-x7-3x5-x3-x2-7x+2=0
x7+3x5+x3+x2+7x-2=0

5. The biquadratic equation, two of whose roots are 1 + i, 1− 2 is

1. x4 − 4x3 + 5x2 − 2x − 2 = 0 2. x4 − 4x3 −5x2 + 2x + 2 = 0
3. x4 + 4x3 −5x2 + 2x − 2 = 0 4. x4 + 4x3 + 5x2 − 2x + 2 = 0

Ans: 1

Sol. The roots of required equation are

1+i, 1-i, 1− 2 , 1+ 2

Here S1 = 1+i+1-i+1− 2 +1+ 2 =4 (sum of the roots)

S4 = (1+i) (1-i) (1− 2 )(1+ 2 ) (product of the roots)
= (1-i2) (1- 2)

= -2

Now verify options.

6. To remove the 2nd term of the equation x4 −8x3 + x2 − x + 3 = 0 diminished the root of the

equation by [ EAMCET-2002 ]

1. 1 2. 2 3. 3 4. 4

Ans: 2

Sol. h = − a1 = − (− 8) = 2
na0 4(1)

7. The maximum possible number of real roots of the equation x5 −6x2 − 4x + 5 = 0 is

1. 3 2. 4 3. 5 4. 0

Ans: 1
Sol. Let f(x) = x5 – 6 x2 – 4x + 5 = 0, f(–x) = –x5 – 6x2 + 4x + 5 = 0

Number of positive real roots = Number of changes of signs in f(x)

=2

No. of negative roots = No. of changes of signs in f(-x)

=1

∴ No. of real roots = No. of positive roots + No. of negative roots =

= 2 +1 = 3

8. If α, β, γ are the roots of the equation x3 + ax2 + bx + c = 0 then α−1 + β−1 + γ−1 =

a −b c b

1. c 2. c 3. a 4. a

Ans: 2

Sol. α −1 + β −1 + γ −1 = 1 + 1 + 1
αβγ

2

Jpacademy Theory of Equations

= βγ + αγ + αβ = S2 = b
αβγ S3 − c

1+ 3i

9. If 2 is a root of the equation x4 − x3 + x −1= 0 then its real roots are

1. 1,1 2. -1, -1 3. 1, 2 4. 1, -1

Ans: 4

1+ 3i

Sol. If 2 is a roots of the given equation then the other root be roots are 1− 3i
2

Let the remaining roots be α , β

Now sum of the roots of given equation = S1 = 1

1+ 3i +1− 3i +α + β =1
22

1+α + β =1
α+β =0

By verification roots are 1,-1

10. If α, β, γ are the roots of 2x3 − 2x −1= 0 then

1. -1 2. 1 3. 2 4. 3

Ans: 2

Sol. (Σαβ )2 = (S2 )2

= ⎜⎛ − 2 ⎟⎞2 = 1
⎝2⎠

11. If α,β, γ are the roots of the equation x3 + 4x +1 = 0 then (α + β)−1 + (β + γ )−1 + (γ + α)−1 =

EAMCET - 2003

1) 2 2) 3 3) 4 4) 5

Ans: 3
Sol. α + β + γ = 0

(α + β )−1 + (β + γ )−1 + (γ + α )−1 = (− γ )−1 + (−α )−1 + (− β )−1

= −1−1−1
γαβ

= − ⎜⎜⎝⎛ 1 + 1 + 1 ⎠⎞⎟⎟
α β γ

= − ⎜⎜⎛⎝ αβ + βγ + γα ⎠⎟⎟⎞ = − ⎛⎜ 4 ⎞⎟ = 4
αβγ ⎝ −1⎠

12. Let α ≠ 0 and P(x) be a polynomial of degree greater than 2. If P(x) leaves remainders
α and − α when divided respectively by x + α and x − α then the remainder when P(x) is divided by

x2 − α2 is

3

Jpacademy Theory of Equations

1) 2x 2) -2x 3) x 4) –x

Ans: 4 and R(a) = -a
pa+q = -a------(2)
Sol. Let the remainder be R(x), then

R(x) = p(x)+q

Given R(-a) = a

- pa + q = a -------(1)

Solving (1) & (2), we get

p = -1, q = 0

∴R(x) = −x

13. If the sum of two of the roots of x3 + px2 + qx + r = 0 is zero then pq =

1) -r 2) r 3) 2r 4) -2r

Ans: 2
Sol. Let the roots be α , β ,γ

Given α + β = 0

α +β +γ =−p⇒γ =−p

γ = − p is a root of x3 + px2 + qx + r = 0

⇒ (− p)3 + p(− p)2 + q(− p)+ r = 0

∴ pq = r

14. If the roots of the equation 4x3 −12x2 +11x + k = 0 are in A.P. Then K = [EAMCET-2004]

1) -3 2) 1 3) 2 4) 3

Ans: 1

Sol. Let the roots be a-d, a, a+d

(a-d) + a + (a+d) = − ⎜⎛ −12 ⎞⎟
⎝4⎠

3a = 3 ⇒ a = 1
a = 1 is a root of 4x3-12x2+11x+k = 0

⇒ 4(1)3-12(1)2+11(1)+k=0

⇒ 3+k = 0 ∴ k = -3

15. α,β, γ are the roots of the equation x3 −10x2 + 7x + 8 = 0 Match the following

1) α + β + γ − 43

a) 4

2) α2 + β2 + γ2 −7

b) 8

1 +1+1 c) 86
d) 0
3) α β γ

α+β + γ

4) βγ γα αβ

e) 10

1) e, c, a, b 2) d, c, a, b 3) e, c, b, a 4) e, b, c, a

4

Jpacademy Theory of Equations

Ans: 3
Sol. x3 −10x2 + 7x + 8 = 0

Now α + β + γ = 10

α 2 + β 2 + γ 2 = (α + β + γ )2 − 2(αβ + βγ + γα )

= (10)2 – 2(7)
= 86
1 + 1 + 1 = βγ + γα + αβ = 7
α β γ αβγ −8

α + β + α = α2 + β2 + γ2 = 86 = −43
βγ γα αβ αβγ −8 4

16. If f(x) is a polynomial of degree n with rational coefficients and 1 + 2i, 2 − 3 and 5 are three
roots of f(x)=0, then the least value of n is

1) 5 2) 4 3) 3 4) 6

Ans: 1

Sol. Since 1+2i, 2 − 3 and 5 are the some roots of polynomial f(x) of degree n. As we know this

conjugate are also the roots of the polynomial is 1-2i, 2 + 3

∴ The least value of n is 5. [EAMCET-2005]
17. The roots of the equation x3 − 3x − 2 = 0 are

1) -1, -1, 2 2) -1, 1, -2 3) -1, 2, -3 4) -1, -1, -2

Ans 1

Sol. Verify S1
Here S1 = 0
By verification the roots are -1,-1,2

18. If α,β, γ are the roots of x3 + 2x2 − 3x −1 = 0 then α−2 + β−2 + γ−2 =

1) 12 2) 13 3) 14 4) 15

Ans: 2

α−2 + β−2 + γ−2 = 1 + 1 + 1
Sol. α2 β2 γ2

α 2β 2 + β 2γ 2 + γ 2α 2
= α 2β 2γ 2

αβγ = −2

αβ + βγ + γα = −3

αβγ = 1

(αβ + βγ + γα )2 = α 2β 2 + β 2γ 2 + γ 2α 2 + 2αβγ (α + β + γ )

9 = α 2β 2 + β 2γ 2 + γ 2α 2 + 2(1)(− 2)

α 2β 2 + β 2γ 2 + γ 2α 2 = 13

5

Jpacademy Theory of Equations

α −2 + β −2 + γ 2 = 13 = 13
1

19 The difference between two roots of the equation x3-13x2+15x+189=0 is 2. Then the roots of the

equation are [EAMCET : 2006]

1) -3,5,9 2) -3,-7,-9 3) 3,-5,7 4) -3,7, 9

Ans: 4

Sol. Verify S1
20. If α, β ,γ are the roots of the equation x3 − 6x2 +11x + 6 = 0 then Σα 2β + Σαβ 2 is equal to

1) 80 2) 84 3) 90 4) -84

Ans: 2

Sol. Σα 2β + Σαβ 2 = S1S2 − 3S3

= (6) (11) – 3(-6)

= 84

21. If 1, 2, 3 and 4 are the roots of the equation x4 + ax3 + bx2 + cx + d = 0, then a + 2b + c = (E-2007)

1) -25 2) 0 3) 10 4) 24

Ans: 3

Sol. (x-1)(x-2)(x-3)(x-4) = x4+ax3+bx2+cx+d

( )( )⇒ x2 − 3x + 2 x2 − 7x +12 = x4 + ax3 + bx2 + cx + d

⇒ x4 −10x3 + 35x2 − 50x + 24 = x4 + ax3 + bx2 + cx + d
Now a = -10, b = 35, c = -50, d = 24
a +2b+c=-10+2(35)-50

= 10
22. If α , β ,γ are the roots of x3 − 2x2 + 3x − 4 = 0 then the value of α 2β 2 + β 2γ 2 + γ 2α 2 is

1) -7 2) -5 3) -3 4) 0

Ans: 1
Sol. α + β + γ = 2 , αβ + βγ + γα = 3 , αβγ = −4

α 2β 2 + β 2γ 2 + γ 2α 2 = (αβ + βγ + γα )2 − 2αβγ (α + β + γ )

= (3)2 − 2(4)(2) = -7

EAMCET 2008
23. The cubic equation whose roots are thrice to each of the roots of x3-2x2-4x+1=0 is

1) x3-6x2+36x+27=0 2) x3+6x2+36x+27=0 3) x3-6x2-36x+27=0 4) x3+6x2-36x+27=0
Ans: 4

Sol. x = 3α ⇒ x ⇒ f ⎜⎛ x ⎟⎞ = 0
3 ⎝3⎠

⎜⎛ x ⎞⎟3 + 2⎛⎜ x ⎞⎟2 − 4⎜⎛ x ⎞⎟ +1 = 0
⎝3⎠ ⎝3⎠ ⎝3⎠
⇒ x3 + 6x2 − 36x + 27 = 0
24. The sum of fourth powers of the roots of the equation x3 + x +1 = 0 is

6

Jpacademy Theory of Equations

1) -2 2) -1 3) 1 4) 2

Ans: 4

Sol. Let roots be α , β ,γ we have to find α 4 + β 4 + γ 4

Let f(x) = x3+x+1

f1(x) = 3x2+1

( )Now 1(x)
− f (x) = − 3x2 +1
f x3 + x +1

301

10 0 3 1

10 3 3 1
3 3 12

∴ α4 +β4 +γ4 = 2

25. If α , β ,γ are the roots of x3+4x+1=0 then the equation whose roots are α2 β2 , γ2 is
,
β +γ γ +α α +β

1) x3-4x-1=0 2) x3-4x+1=0 3) x3+4x-1=0 4) x3+4x+1=0

[EAMCET 2009]

Ans: 3

Sol. Let y = α 2 = α 2 = −α = −x [∵α + β + γ = 0]

β +γ α

∴ Required equation is (-x)3+4(-x)+1=0

⇒ x3 + 4x −1= 0
26. If f(x)=2x4-13x2+ax+b is divisible by x2-3x+2, then (a,b) =

1) (-a,-2) 2) (6,4) 3) (9,2) 4) (2,9)

Ans: 3
Sol. x2-3x+2 = (x-1)(x-2)

f(1)=0, f(2)=0

2-13+a+b=0 32-52+2a+b=0

a+b=11 2a+b=20

Solving (1) & (2) we get

(a,b) = (9,2)

7

Jpacademy NUMERICAL INTEGRATION

PREVIOUS EAMCET BITS

1. The lines x = π divides the area of the region bounded by y = sinx, y = cosx and x-axis
4

⎛ 0 ≤ x ≤ π⎞ into two regions of area A1 and A2. The A1 : A2: [EAMCET 2009]
⎜⎝ 2 ⎟⎠

1) 4 : 1 2) 3 : 1 3) 2 : 1 4) 1 : 1

Ans: 4

π/4

Sol. A1 = ∫ (cos x − sin x) dx
0

π/2

A2 = ∫ (sin x − cos x) dx
π/4

∴ A1 : A2 = 1:1

2. The velocity of a particle which starts from rest is given by the following table

t (in seconds) : 0 2 4 6 8 10

v (in m/sec) : 0 12 16 20 35 60

The total distance travelled (in meters) by the particle in 10 seconds, using Trapezoidal rule is

given by [EAMCET 2009]

1) 113 2) 226 3) 143 4) 246

Ans: 2

Sol. Distance travelled = h ⎣⎡( y0 + yn ) + 2( y1 + y2 + ...... + y n −1 )⎤⎦
2

3. The area (in square units) of the region bounded by the curve 2x = y2 – 1 and x = 0 is

[EAMCET 2008]

1) 1 2) 2 3) 1 4) 2
33
1
Ans: 2

1 y2 −1 dy 1
∫ ∫ ( )Sol.
Area of the region = − = − y2 −1 dy -1/2 0
−1 2
0

⎡ y3 ⎤1 2 -1
⎢ 3 y⎥ 3
= − ⎣ − = sq.units
⎦0

4. The area (in square units) of the region enclosed by the curves y = x2 and y = x3 is

[EAMCET 2007]

1) 1 2) 1 3) 1 4) 1
12 6 3

Ans: 1

Sol. x2 = x3

x2 − x3 = 0 ⇒ x2 ( x −1) = 0 ⇒ x = 0,1

Jpacademy Numerical Integration

∫ ( )∴ Area = 1 ⎡ x3 x4 ⎤1 1
0 x2 − x3 dx = ⎢ 3 − 4 ⎥ = 12 sq.units
⎣ ⎦0

6

5. Dividing the interval [0, 6] into 6 equal parts and by using trapezoidal rule the value of ∫ x3dx is
0

approximately. [EAMCET 2006]

1) 330 2) 331 3) 332 4) 333

Ans: 4

Sol. a = 0, b = 6; n = 6; yn = a+ (r – 1) h

h = b−a =1
n

∫6 x3dx = h ⎡⎣( y0 + y6 ) + 2( y1 + y2 + y3 + y4 +5 )⎤⎦ = 333
2
0

6. The area (in square units) bounded by the curves y2 = 4x and x2 = 4y in the plane is

[EAMCET 2005]

1) 8 2) 16 3) 32 4) 64
33 3 3

Ans: 2 Y
Sol. Area bounded by the curves y2 = 4ax and x2 = 4by is 16ab OX

3
where a = 1, b = 1

∴ Area = 16 sq.units [EAMCET 2004]
3

7. The area bounded by y = x2 + 2, x-axis, x = 1 an x = 2 is

1) 16 2) 17 3) 13 4) 20
3 3 3 3

Ans: 3

( )∫Sol. 2 x2 + 2 dx = 13
13

6 1
8. ∫2 x2 − x dx
If [2, 6] is divided into four intervals of equal length, then the approximate value of

by using Simpson’s rule is [EAMCET 2003]

1) 0.3222 2) 0.2333 3) 0.5222 4) 0.2555

Ans: 3

∫6 1

Sol. dx
2 x2 − x

(6 − 2) ⎡⎣( y0 + y4 ) + 4( y1 + y3 ) + 2y2 ⎤⎦ = 0.5222

3.4

9

∫9. The approximate value of x2dx by using trapezoidal rule with equal, intervals is[EAMCET 2002]
1

1) 248 2) 242.5 3) 242.8 4) 243

Jpacademy Numerical Integration

Ans: 1

Sol. h = b − a = 9 −1 = 2
n4

x 1 3579
y = x2 1 9 25 49 81

9 x 2dx = 2 ⎣⎡(1 + 81) + 2(9 + 25 + 49)⎦⎤ = (82 + 166) = 248
2


1

10.

X1 2 3 4

Y 0.7111 0.7222 0.7333 0.7444

4

∫Using the above table and trapezoidal rule, the approximately value of ydx is [EAMCET 2001]
1

1) 0.1833 2) 1.1833 3) 2.1833 4) 3.1833

Ans:3

∫Sol. b h ⎣⎡( + ) + ( + + + )⎤⎦
Trapezoidal rule = 2 y0 yn 2 y1 y2 ..... y n −1
f (x)dx =

a

Where h = b − a
n

∴ 4 ydx = 1 (0.7111 + 0.7444) + 2 ( 0.7222 + 0.7333) = 2.1833

∫ 2

1

11. The area (in square units ) of the region bounded by the curve x2 = 4y, the line x = 2 and the X-

axis is [EAMCET 2000]

1) 1 2) 2 y
3 → x2= 4y

3) 4 4) 8 Ox
3 3

Ans: 2

∫ ∫Sol. 2 ydx = 2 x2 dx = 2 →x=0
0 04 3

12. The area (in square units) bounded by the curves y = x3, y = x2 and the ordinates x = 1, x = 2 is

[EAMCET 2000]

1) 17 2) 12 3) 2 4) 7
12 17 7 2

Ans: 1

∫ ( )Sol. 2 x3 − x2 dx = 17
1 12

UUUU

Jpacademy DEFINITE INTEGRATION

PREVIOUS EAMCET BITS

∫π 1 [EAMCET 2009]
[EAMCET 2008]
1. dx = [EAMCET 2008]
0 1+ sin x

1) 1 2) 2 3) – 1 4) – 2
4) π
Ans: 2
16
∫π 1 × 1− sin x dx 4) π

Sol: 0 1+ sin x 1− sin x

∫ ∫ ( )= π 1− sin x dx ⇒ π sec2 x − sec x tan x dx
0 cos2 x 0

= ( tan x − sex)π
0

= [tan π − sec π] − [tan 0° − sec 0°]

= (0 +1) − (0 −1) = 2

1 3) π
12
∫2. x3/2 1− xdx =
0

1) π 2) π
69

Ans: 4
Sol: Put x = sin2 θ then dx = 2sin θ cos θdθ

Also x = 0, 1 ⇒ 0, π/2

1 π/2

∫ ∫x3/2 1− xdx = sin3 θ 1− sin2 θ.2sin θ cos θdθ

00

π/ 2 1 3 1 π π

2 sin 4 s2
∫= θ co θdθ = 2 × × × × =
0 6 4 2 2 16

π/2

3. ∫ sin x dx =
−π/2

1) 0 2) 1 3) 2

Ans:3

π/2 0 π/2

Sol: ∫ sin x dx = ∫ sin (−x) dx + ∫ sin xdx
−π/2 −π/2 0

[ ] [ ]= cos x 0 + − cos x π/2
−π/2 0

=1−0−0+1= 2

Jpacademy Definite Integration
∫4. If f (x ) = t e− x dx then Lt f ( t ) is [EAMCET 2007]
−t 2 t→∞ 4) – 1

1) 1 2) 1/2 3) 0 [EAMCET 2007]
4) – π
Ans:1
[EAMCET 2006]
∫ ∫Sol: f ( t ) = 0 ex dx + t e−x dx 4) 3π
−t 2 02
2
= 1 ⎡⎣ex ⎤⎦ 0 t + 1 ⎡⎣−e−x ⎤⎦ t
2 − 2 0

= 1 ⎣⎡1 − e−t ⎦⎤ − 1 ⎣⎡e−t −1⎦⎤ = 1 − 1 e−t − 1 e−t + 1
2 2 2 2 2 2

f(t) = 1− e−t

Lt f (t) = Lt ⎡⎣1− e−t ⎦⎤ =1− e−∞ =1− 0 =1

t→∞ x→∞



∫5. sin6 x cos5 xdx =
0

1) 2π 2) π 3) 0
2

Ans: 3



∫Sol: I = sin6 x cos5 xdx
0

Let f (x) = sin6 x cos5 x

f (2π − x) = f (x)

π

∫I = 2 sin6 x cos5 xdx
0

f (π − x) = sin6 (π − x) cos5 (π − x)

= − sin6 x cos5 x = −f (x)

∴I = 0

∫6. π/2 dx = 2) π 3) π
0 1+ tan3 x 2 4
1) π

Ans: 3

Let∫Sol:I= π/ 2 dx x
0 1+ tan3

Jpacademy∫π/ 2 cos3 x dx ……….(1) Definite Integration

= 0 sin3 x + cos3 x [EAMCET 2006]
4) e2 + 2
∫π/ 2 cos3 ⎛ π − x ⎞
⎝⎜ 2 ⎟⎠ 2e
= dx
⎛ π ⎞ ⎛ π ⎞ [EAMCET 2005]
0 sin 3 ⎜⎝ 2 − x ⎟⎠ + cos3 ⎝⎜ 2 − x ⎠⎟ 4) 150π

∫= π/2 sin3 x 3 x dx …………(2)
0 cos3 x + sin

(1) + (2)

π/2

2I = ∫ 1.dx
0

2I = π ⇒ I = π
24

∫7.1 cosh x dx =
−1 1+ e2x

1) 0 2) 1 3) e2 −1
2e

Ans: 3

∫ ( )1 ex + e−x ⎡⎢∵ cosh x = ex + e−x ⎤
⎣ 2 ⎥
Sol: dx ⎦
−1 2 1 + e2x

e2x +1 dx ⇒ 1 1 e−xdx
∫ ( ) ∫1

=
−1 2ex 1+ e2x 2 −1

∫= 1 1 ⇒ 1 ⎣⎡−e−x ⎤⎦1−1
2 2
e− x dx

−1

= − 1 ⎣⎡e−1 − e1 ⎦⎤ ⇒ e2 −1
2 2e

∫8. π/2 200sin x +100 cos x dx =

0 sin x + cos x

1) 50π 2) 25π 3) 75π

Ans: 3

∫Sol: π/2 a sin x + b cos x dx = (a + b) π
0 sin x + cox 4

∫π/2 200sin x +100 cos x dx = (200 +100) π = 75π
0 sin x + cos x 4

Jpacademy Definite Integration

∫9. π 1 θ sin θ θ dθ = [EAMCET 2005]
0 + cos2 [EAMCET 2004]

π2 π3 3) π2 π2
1) 2) 4)

2 3 4

Ans: 4

π θsin θ

Let I =
∫Sol: 0 1+ cos2 θ dθ

= π (π − θ)sin (π − θ) dθ ⇒ π (π − θ)sin θ dθ
1+ cos2 (π − θ)
∫ ∫ 1+ cos2 θ

0 0

π sin θ π/2 sin θ
0 + cos2 + cos2
∫ ∫I= π 1 θ dθ − I = 2I = π.2 1 θ dθ let cosθ = 5 , - sinθdθ = dt

0

0 −dt 1 1
1+ t2 1+ t2
∫ ∫I= π ⇒ π dt

1 0

= π ⎡⎣ tan −1 t ⎦⎤10 ⇒ I = π ⎡ π − 0⎦⎥⎤ ⇒ I = π2
⎣⎢ 4 4

∫10. π/2 log ⎛ 2 − sin θ ⎞ dθ =
−π/2 ⎝⎜ 2 + sin θ ⎟⎠

1) 0 2) 1 3) 2 4) – 1

Ans: 1

Sol: Let f (θ) = log ⎛ 2 − sin θ ⎞
⎜⎝ 2 + sin θ ⎠⎟

f (−θ) = log ⎛ 2 + sin θ ⎞ = − log ⎛ 2 − sin θ ⎞
⎜⎝ 2 − sin θ ⎠⎟ ⎜⎝ 2 + sin θ ⎠⎟

f (−θ) = −f (θ)

∴ It is an odd function

∫∴ I = π/2 log ⎛ 2 − sin θ ⎞ dθ = 0
−π/2 ⎜⎝ 2 + sin θ ⎟⎠

∫11. 2 2x − 2 dx = [EAMCET 2004]
0 2x − x2 4) 4

1) 0 2) 2 3) 3

Ans: 1

∫2 2x − 2

Sol: Let I = 0 2x − x2 dx

Jpacademy Definite Integration

Put 2x − x2 = t ⇒ (2 − 2x) dx = dt

∫0 dt = 0

− 0t

2 [EAMCET 2003]
4) 4
12. ∫ [x] dx =
−2

1) 1 2) 2 3) 3

Ans: 4

−1 0 1 2

Sol: ∫ [x] dx + ∫ [x] dx + ∫ [x] dx + ∫ [x] dx
−2 −1 0 1

=2+1+0+1=4

∫13.1 sin ⎛ 2 tan −1 1+ x ⎞ = [EAMCET 2003]
0 ⎜⎜⎝ 1− x ⎠⎟⎟dx

ππ π 4) π
1) 2) 3)
2
64

Ans: 2

Sol: Put x = cosθ L.L : 0 = cosθ ⇒ θ = π / 2
dx = - sinθdθ U.L : 1 = cosθ ⇒ θ = 0°

0 ⎡ 1+ cos θ ⎤
⎢2 1− cos θ ⎥
∫= sin tan −1 ⎦ ( − sin θ)dθ

π/2 ⎣

π/2 π/2

= ∫ sin (π − θ)sin θdθ = ∫ sin2 θdθ
00

= 1×π = π
22 4

∫14.3 3x +1 = [EAMCET 2003]
0 dx
x 2 + 9 ( )4) Log 2 2 + π
3
( ) ( )1) Log 2 2 + π 2) Log 2 2 + π ( )3) Log 2 2 + π
12 2 6

Ans: 1

=∫ ∫Sol:33 2x 9 dx + 3 x 1 9 dx
20 x2 + 0 2+

( )= 3 3 1 ⎡ −1 x ⎤3
2 ⎡⎣Log x2 +9 ⎤⎦ 0 + 3 ⎢⎣ tan 3 ⎥⎦0

= 3 [Log18 − Log9] + 1 ⎣⎡ tan −1 (1) − tan −1 (0)⎦⎤
2 3

Jpacademy Definite Integration
= 3 Log2 + π = Log23/2 + π
2 12 12 [EAMCET 2002]
4) log 1
( )= Log 2 2 + π
12 4

∫15. 3 dx =
2 x2 − x

1) log 2 2) log 4 3) log 8
3 3 3

Ans: 2 3) 3π
572
3 dx 3 dx
2 x2 − x 2 3) 5π
∫ ∫Sol: = x (x −1) 512

∫= 3 ⎛ 1 − 1 ⎞ dx = ⎡ ⎛ x −1⎞⎤3
2 ⎜⎝ x −1 x ⎟⎠ ⎣⎢log ⎜⎝ x ⎟⎠⎦⎥x=2

= log 2 − log 1 = log 4
32 3

π/2 [EAMCET 2002]

∫16. sin4 x cos6 xdx =
−π/2

1) 3π 2) 3π 4) 3π
128 256 64

Ans: 2

π/2 π/2

∫ ∫Sol: sin4 x cos6 xdx = 2 sin4 x cos6 xdx
−π/2 0

= 2 ⎡3 . 1 . 5 . 3 . 1 . π ⎤ = 3π
⎣⎢10 8 6 4 2 2 ⎦⎥ 256

π/2 [EAMCET 2001]
4) 7π
∫17. sin8 x cos2 xdx =
0 512

1) π 2) 3π [EAMCET 2001]
512 512

Ans: 4

π/2

∫Sol: sin8 x cos2 xdx
0

= 7 .5. 3. 1 . 1 . π = 7π
10 8 6 4 2 2 512

1

18. ∫ (ax3 + bx) dx = 0 for ;
−1

Jpacademy 2) a > 0 and b > 0 only Definite Integration
1) any values of a and b [EAMCET 2000]
[EAMCET 2000]
3) a > 0 and b < 0 only 4) a < 0 and b < 0 only
[EAMCET 2000]
Ans: 1

Sol: ax3 + bx is odd function

1

∴ ∫ (ax3 + bx) dx = 0
−1

for any values of ‘a’ and ‘b’

⎛ 10 −2n ⎞⎛ 10 2 n +1 ⎞
⎜ xdx ⎟ + ⎜ ⎟
∑ ∫ ∑ ∫19. sin 27
sin 27 xdx

⎝ n=1 2n−1 ⎠ ⎝ n=1 2n ⎠

1) 272 2) – 54 3) 54 4) 0

Ans: 4
Sol: sin27x is odd function

∫20. 1 x dx =
0
(1− x )5/4

1) 16 2) 3 3) −3 4) −16
3 16 16 3

Ans: 4

1 x 1 1− x 1 1− x
0 0 0 x5/4
(1− x )5/4
∫ ∫ ∫Sol: dx = )5 / 4 dx ⇒ dx
⎡⎣(1 ⎤
− 1 − x ⎦

∫= 1 ⎛ 1 − 1 ⎞ dx = −16
0 ⎜⎝ x5/4 x1/ 4 ⎟⎠ 3

21. If f(x) is integrable on [0, a] then ∫a f (x) =
(a − x) dx
0 f (x)+f

1) 0 2) 1 3) a 4) a/2

Ans: 4

Sol: I = a f f (x) − x) dx ………………(1)
(x)+f (a


0

⇒ I = a f ( f( a − x) ( x ) dx …………..(2)
x )+f
∫ a−

0

(1) + (2)

∫⇒ 2I = a I dx ⇒ I = a
02

Jpacademy Definite Integration

22. lim ⎡ 1 + 1 2 + ..... + 1 n ⎤ [EAMCET 2000]
⎢⎣ 2n +1 2n + 2n + ⎦⎥
n→∞

1) loge ⎛1⎞ 2) loge ⎛ 2⎞ 3) loge ⎛ 3⎞ 4) log e ⎛ 4 ⎞
⎝⎜ 3 ⎟⎠ ⎜⎝ 3 ⎟⎠ ⎜⎝ 2 ⎟⎠ ⎝⎜ 3 ⎟⎠

Ans: 3

Sol: lim ⎡ 1 + 1 2 + ..... + 1 n ⎤
⎣⎢ 2n +1 2n + 2n + ⎦⎥
n→∞

∑= n ⎛ 1 ⎞
lim r =1 ⎝⎜ 2n + r ⎠⎟

n→∞

∑n 1

= lim ⎛ r ⎞
n→∞ r =1 ⎜⎝ n ⎟⎠
n 2 +

∫= 1 dx = ⎡⎣log (2 + x )⎦⎤10 = loge ⎛ 3 ⎞
0 2+x ⎜⎝ 2 ⎟⎠

DDD

Jpacademy DIFFERENTIAL EQUATIONS

PREVIOUS EAMCET BITS

1. The solution of the differential equation dy = sin (x + y) tan ( x + y) −1 is [EAMCET 2009]

dx

1) cos ec( x + y) + tan (x + y) = x + c 2) x + cos ec (x + y) = c

3) x + tan (x + y) = c 4) x + sec (x + y) = c

Ans: 2

Sol: Let x + y = v

1+ dy = dv
dx dx

we have, dv −1 = sin v tan v −1
dx

dv = sin v tan v
dx

∫ ∫dv = sin2 v ⇒ cos v dt = dx
sin 2 v
dx cos2 v

− 1 =x+c
sin v

∴ cosec(x + y) + x = c

2. The differential equation of the family y = aex + bxex + cx2ex of curves, where a, b, c arbitrary

constants, is [EAMCET 2009]

1) y′′′ + 3y′′ + 3y′ = 0 2) y′′ + 3y′′ − 3y′ = 0

3) y′′′ − 3y′′ − 3y′ + y = 0 4) y′′′ − 3y′′ + 3y′ − y = 0

Ans: 4
Sol: y = aex + bxex + cx2ex

( )y = a + bx + cx2 ex

d.b.s.w.r.t ‘x’

( )y′ = a + bx + cx2 ex + ex (b + 2cx)

y′ = y + ex (b + 2cx)
y′′ = y′ + ex (2cx) + (b + 2cx) ex

y′′ = y′ + y′ − y + 2cxex

84

Jpacademy Differential Equations
y′′ = 2y′ − y + 2cxex [EAMCET 2008]
y′′′ = 2y′′ − y′ + 2cex

y′′′ = 2y′′ − y′ + [y′′ − 2y′ + y]

∴ y′′′ − 3y′′ + 3y′ − y = 0

3. The solution of the differential equation dy = x − 2y +1 is
dx 2x − 4y

1) (x − 2y)2 + 2x = c 2) (x − 2y)2 + x = c

3) x−y = log ⎛ cx ⎞ 4) (x − 2y) + x2 = c
⎜ y ⎟
⎝ ⎠

Ans: 1

Sol: Put x − 2y = z .

Then 1− 2 dy = dz ⇒ 2 dy =1− dz ⇒ dy = 1 ⎝⎛⎜1 − dz ⎞
dx dx dx dx dx 2 dx ⎠⎟

dy = x − 2y +1 ⇒ 1 ⎝⎛⎜1 − dz ⎞ = z +1 ⇒1− dz = 1+ 1
dx 2x − 4y 2 dx ⎠⎟ 2z dx z

⇒ dz = −1 ⇒ zdz = −dx ⇒ z2 = −x + c / 2 ⇒ z2 = −2x + c ⇒ (x − 2y)2 + 2x = c
dx z 2

4. The solution of the differential equation dy − y tan x = ex sec x is [EAMCET 2008]
dx

1) yex cos x + c 2) y cos x = ex + c 3) y = ex sin x + c 4) y sin x = ex + c

Ans: 2

Sol: I.F = e∫Pdx = e∫−tan xdx = cos x

∫ ∫The solution is y cos x = ex sec x cos xdx = exdx = ex + c ⇒ y cos x = ex + c

( )5. The solution of the differential equation xy2dy − x3 + y3 dx = 0 is [EAMCET 2008]

1) y3 = 3x3 + c 2) y3 = 3x3 log (cx ) 3) y3 = 3x3 + log (cx ) 4) y3 + 3x3 = log (cx)

Ans: 2

Sol: Put y = vx. Then dy = ν + dν
dx dx

( )xy2dy − x3 + y3 dx = 0 ⇒ dy = x3 + y3 ⇒ ν + x dv = x3 + x3v3 ⇒ v + x dv = 1 + v
dx xy2 dx x3ν2 dx v2

⇒ x dν = 1 ⇒ ν2dν ⇒ dx = ν3 = log x + log c
dx ν2 x3

85

Jpacademy Differential Equations

⇒ ν3 = 3log (cx) ⇒ y3 = 3log (cx)
x3

∴ y3 = 3x3 log (cx)

6. The differential equation obtained by eliminating the arbitrary constants a and b from

xy = aex + be−x is [EAMCET 2007]

1) x d2y + 2 dy − xy = 0 2) d2y + 2y dy − xy = 0
dx2 dx dx2 dx

3) x d2y + 2 dy − y = 0 4) d2y + dy − xy = 0
dx2 dx dx2 dx

Ans: 1
Sol: xy = aex + be−x

⇒ xy1 + y = aex − be−x [EAMCET 2007]
xy2 + y1 + y1 = aex + be−x
∴ xy2 + 2y1 − xy = 0

7. The solutions of ( x + y +1) dy = 1 is

dx

1) y = ( x + 2) + cex 2) y = − ( x + 2) + cex 3) x = − ( y + 2) + cey 4) x = ( y + 2)2 + cey

Ans: 3

Sol: Put x + y + 1 = z ⇒ dy = dz −1
dx dx

(x + y + 1) dy = 1⇒ z ⎛ dz −1⎞⎠⎟ =1
dx ⎜⎝ dx

⇒ dz =1+ 1 ⇒ ∫ z z dz = ∫ dx
dx z +1

⇒ z − log (z +1) = x + c

x + y +1 = x + log ( x + y + 2) + c

y = log (x + y + 2) + log c

⇒ x + y + 2 = cey

8. The solution of dy = y2 is [EAMCET 2007]
dx xy − x2 4) e−y/ x = ky

1) ey/ x = kx 2) ey/ x = ky 3) e−y/ x = kx

Ans: 2

86

Jpacademy Differential Equations

Sol: Put y = vx

dy = y2 ⇒ V + x dV = V2
dx xy − x2 dx V −1

⇒ ∫ V −1 dV = ∫ 1 dx
V x

⇒ V − log V = log x + log c

⇒ V = log (cVx)

∴ cy = ey/ x 3) ex+y + x + c = 0 [EAMCET 2007]
4) ex+y − x + c = 0
9. The solution of dy +1 = ex+y is
dx [EAMCET 2006]

1) e−(x+y) + x + c = 0 2) e−(x+y) − x + c = 0
Ans: 1
Sol: Put x + y = z ⇒ 1+ dy = dz

dx dx

∫ ∫dz = ez ⇒ e−zdz = dx

dx
−e−z = x + c ⇒ e−(x+y) + x + c = 0

( )10. The solution of x2 + y2 dx = 2xy dy is

( ) ( )1) c x2 − y2 = x 2) c x2 + y2 = x ( )3) c x2 − y2 = y ( )4) c x2 + y2 = y

Ans: 1

Sol: Homogeneous differential equation

Put y = V ⇒ V + V′x = 1+ V2
x 2V

⇒ ∫ 2V dV = ∫ dx ⇒ − log 1 − v2 = log x + log c
1− V2 x

( )Solving c x2 − y2 = x

( )11. The solution of 1+ x2 dy + 2xy − 4x2 = 0 is [EAMCET 2006]
dx

( )1) 3x 1+ x2 = 4x3 + c ( )2) 3y 1+ x2 = 4x3 + c

( )3) 3x 1− x2 = 4x3 + c ( )4) 3y 1− x2 = 4x3 + c

Ans: 2

Sol: dy + ⎛ 2x ⎞ y = 4x2
dx ⎝⎜ 1+ x2 ⎟⎠ 1+ x2

87

Jpacademy Differential Equations
Linear differential equation dy + P ( x) y = Q ( x)
[EAMCET 2006]
dx 4) 1 = cx − y log x

= e∫ pdx = 2x dx =1+ x2 y
[EAMCET 2005]
I.F e ∫ 1+ x 2
4) 2x + y + c
4x2
1+ x2 [EAMCET 2005]
( ) ( )∫y. 1+ x2 4) 3co s x + c
= 1+ x2 dx

( )y. 1+ x2 = 4x3 + c
3

( )3y 1+ x2 = 4x3 + c

12. The solution of dx + x = x2 is
dy y

1) 1 = cx − x log x 2) 1 = cy − y log y 3) 1 = cx + x log y
yx x

Ans: 2

Sol: ------

13. dx + dy = (x + y)(dx − dy) ⇒ log (x + y) =

1) x + y + c 2) x + 2y + c 3) x − y + c

Ans: 3
Sol: dx + dy = dx − dy

x+y

∫ d(x + y) = ∫ dx −∫ dy
(x + y)

log (x + y) = x − y + C

14. x2y − x3 dy = y4 cos x ⇒ x3y−3 =
dx

1) sinx 2) 2sin x + c 3) 3sin x + c

Ans: 3

Sol: x2y − x3 dy = y4 cos x
dx

x2ydx − x3dy = cos x
y4dx

= x2 dx − x3 dx = cos xdx
y3 y4

∫⇒ d ⎛ x3 ⎞ = 3sin x + C
⎜ y3 ⎟
⎝ ⎠

88

Jpacademy3x3 3x3 Differential Equations
∫ ∫⎛y3 dx − y4 dy ⎞ = 3cos xdx [EAMCET 2005]
⎜ ⎟
⎝ ⎠

⇒ x3 = 3sin x +C
y3

15. Observer the following statements :
I. dy + 2xydx = 2e−x2 ⇒ yex2 = 2x + C

II. ye2 2x = c ⇒ dx = 2e−x2 − 2xy dy

Which of the following is a correct statements

1) Both I and II are true 2) Neither I nor II is true

3) I is true , II is false 4) I is false, II is true

Ans: 3

Sol: dy + 2x.y = 2e−x2
dx

which is linear differential equation

I.F = e∫ 2xdx = ex2

∫y.ex2 = 2.e−x2 ex2 dx = 2x + C True. ∴ I is true, II is false

16. dy = y + x tan y / x ⇒ sin y = [EAMCET 2005]
dx x x [EAMCET 2004]

1) cx2 2) cx 3) cx3 4) cx4

Ans: 2

Sol: Put y = V ⇒ dy = V + x dv
x dx dx

V + x. dv = V + TanV
dx

∫ dv =∫ dv
tan V x

log sin V = log Cx

sin ⎛ y ⎞ = Cx
⎜⎝ x ⎠⎟

( )17. Integrating factor of x + 2y3 dy = y2 is
dx

⎛1⎞ −⎛⎜ 1 ⎞ 4) −1
⎜⎟ ⎟ y
2) e ⎝ y ⎠
1) e⎝ y ⎠ 3) y

Ans: 1

89

Jpacademy Differential Equations

Sol: dx = x + 2y
dy y2

dx + x ⎛ − 1 ⎞ = 2y
dy ⎜ y2 ⎟
⎝ ⎠

e∫− 1 dy 1
y2
I.F = = ey

18. y = Aex + Be2x + Ce3x satisfies the differential equation [EAMCET 2004]

1) y′′′ − 6y′′ + 11y′ − 6y = 0 2) y′′′ + 6y′′ + 11y′ − 6y = 0

3) y′′′ − 6y′′ −11y′ − 6y = 0 4) y′′′ − 6y′′ −11y′ + 6y = 0

Ans: 1

Sol: y′′′ − (1+ 2 + 3) y′′

+ (1.2 + 2.3 + 3.1) y′ −1.2.3y = 0

19. Observe the following statements : [EAMCET 2004]

A : Integrating factor of dy + y = x2 is ex
dx

R : Integrating factor of dy + P ( x) y = Q ( x ) is e∫P(x)dx

dx

Then the true statement among the following is

1) A is true, R false 2) A is false, R is true
3) A is true, R is true, R ⇒ A 4) A is false, R is false

Ans: 3

Sol: I.F of dy + y = x2 is e∫1dx = ex
dx

20. The differential equation of the family of parabola with focus at the origin and the X-axis as axis
is [EAMCET 2003]

1) y ⎛ dy ⎞2 + 4x ⎛ dy ⎞ = 4y 2) − y ⎛ dy ⎞2 = 2x dy −y
⎜⎝ dx ⎠⎟ ⎜⎝ dx ⎟⎠ ⎜⎝ dx ⎟⎠ dx

3) y ⎛ dy ⎞2 + y = 2xy dy 4) y ⎛ dy ⎞2 + 2xy ⎛ dy ⎞ + y = 0
⎝⎜ dx ⎟⎠ dx ⎜⎝ dx ⎠⎟ ⎜⎝ dx ⎟⎠

Ans: 2

Sol: Focus = (0, 0); directrix is x+ a = 0
Equation of the parabola is y2 = a(2x + a)

90

Jpacademy2ydy=2a ⇒ a = yy1 Differential Equations
dx [EAMCET 2003]
[EAMCET 2003]
y2 = 2xyy1 + y2y12

⇒ y2 = y ⎣⎡2xy1 + yy12 ⎦⎤

⇒ y = 2xy1 + yy12

⇒ −yy12 = 2xy1 − y

⇒ − y ⎛ dy ⎞2 = 2x ⎛ dy ⎞ − y
⎜⎝ dx ⎟⎠ ⎝⎜ dx ⎟⎠

21. Solution of dy = x log x2 + x is
dx sin y + y cos y

1) y sin y = x2 log x + c 2) y sin y = x2 + c

3) y sin y = x2 + log x + c 4) y sin y = x log x + c

Ans: 1

Sol: dy = x log x2 + x
dx sin y + y cos y

⇒ sin ydy + y cos ydy = x log x2dx + xdx

Integrating on both sides y sin y = x2 log x2 + C

( )22. The general solution of y2dx + x2 − xy + y2 dy = 0 is

1) tan −1 ⎛ x ⎞ + log y + c = 0 2) 2 tan−1 ⎛ x ⎞ + log y + c = 0
⎜ y ⎟ ⎜ y ⎟
⎝ ⎠ ⎝ ⎠

( )3) log y + x2 + y2 + log y + c = 0 4) 2 sinh−1 ⎛ x⎞ + log y + c = 0
⎜ ⎟
⎝ y ⎠

Ans: 1
Sol: dy = −y2

dx x2 − xy + y2
Put y = vx

91

Jpacademy Differential Equations

v + x dv = x2 −v2x2 = −v2
dx − vx2 + v2 x2 1− v + v2

( )dx = − 1 − v + v2 dv

x v 1+ v2

log xv = tan−1 v + c

log y = tan −1 ⎛ y ⎞ + c
⎜⎝ x ⎟⎠

⇒ log y + tan −1 ⎛ x ⎞ + c = 0
⎜ y ⎟
⎝ ⎠

23. Order of the differential equation of the family of all concentric circles centered at (h, k) is
[EAMCET 2002]

1) 1 2) 2 3) 3 4) 4

Ans: 1

Sol: ( x − h )2 + ( y − k)2 = r2

Centre (h, k) is fixed

Radius = r is a variable

Hence order is 1

24. The solution of dy + y = 1 is [EAMCET 2002]
dx 3 4) 3y = c + c−x / 3

1) y = 3 + cex / 3 2) y = 3 + ce−x / 3 3) 3y = c + ex / 3

Ans: 2

Sol: dy + y = 1 ⇒
dx 3

Integrating factor : I.F = e∫ 1 dx = ex /3
3

∫Solution yex / 3 = ex / 3dx

yex / 3 = 3ex / 3 + C
y = 3 + Ce−x / 3

25. y + x2 = dy has the solution [EAMCET 2002]
dx
2) y + x + 2x2 + 2 = cex
1) y + x2 + 2x + 2 = cex

3) y + x + x2 + 2 = ce2x 4) y2 + x + x2 + 2 = ce2x

Ans: 1
Sol: y + x2 = dy

dx

92

Jpacademy Differential Equations
dy − y = x2
dx [EAMCET 2002]
I.F = e∫ −1dx = e−x 4) y1/ 3 − x1/ 3 = c

∫Solution ye−x = x2e−xdx [EAMCET 2001]
( )ye−x = −e−x x2 + 2x + 2 + C

y + x2 + 2x + 2 = Cex

dy ⎛ y ⎞1/ 3
dx ⎜⎝ x ⎟⎠
26. The solution of = is

1) x2 / 3 + y2 / 3 = c 2) y2 / 3 − x2 / 3 = c 3) x1/ 3 + y1/ 3 = c

Ans: 2

Sol: dy = y1/ 3 ⇒ y −1/ 3dy = x −1/ 3dx
dx x1/ 3

∫ ∫y−1/ 3dy = x−1/ 3dx

3 ⎡⎣y2 / 3 − x2/3 ⎦⎤ = C1
2

⇒ y2/3 − x2/3 = C

27. The solution of xdx + ydy = x2 ydy − xy2dx is

( )1) x2 −1 = c 1 + y2 ( )2) x2 + 1 = c 1 − y2

( )3) x3 −1 = c 1+ y3 ( )4) x3 +1 = c 1− y3

Ans: 1
Sol: xdx + ydy = x2ydy − xy2dx

x (1+ y2 ) dx = −y(1− x2 ) dy

−x dx = y dy
1− x2 1+ y2

∫ x = ∫ 1 y dy
dx + y2

x2 −1

⇒ log (x2 −1) = log (1 + y2 ) + log c

( )∴x2 −1 = c 1 + y2

28. The solution of x2 + y2 dy = 4 is 3) x3 + y3 = 3x + c [EAMCET 2001]
dx 4) x3 + y3 = 12x + c

1) x2 + y2 = 12x + c 2) x2 + y2 = 3x + c
Ans: 4

93

Jpacademy Differential Equations

Sol: x2 + y2 dy = 4
dx

( )4 − x2 dx = y2dy
∫ (4 − x2 )dx = ∫ y2dy

x3 + y3 = 12x + c

29. The solution of dy + y = ex is [EAMCET 2001]
dx 4) 2ye2x = 2ex + c

1) 2y = e2x + c 2) 2yex + ex + c 3) 2yex = e2x + c

Ans: 3
Sol: dy + y = ex

dx
P = 1; Q = x
I.F is e∫pdx = ex

∫y.ex = ex .ex + c ⇒ 2yex = e2x + c

30. If c is a parameter, then the differential equation whose solution is y = c2 + c [EAMCET 2000]
x

1) y = x4 ⎛ dy ⎞ − x ⎛ dy ⎞2 2) y = x 4 ⎛ dy ⎞2 + x ⎛ dy ⎞
⎜⎝ dx ⎟⎠ ⎝⎜ dx ⎟⎠ ⎝⎜ dx ⎠⎟ ⎝⎜ dx ⎠⎟

3) y = x4 ⎛ dy ⎞2 − x ⎛ dy ⎞ 4) y = x 4 ⎛ d2y ⎞ − x ⎛ dy ⎞
⎝⎜ dx ⎠⎟ ⎝⎜ dx ⎠⎟ ⎜ dx 2 ⎟ ⎜⎝ dx ⎟⎠
⎝ ⎠

Ans: 3

Sol: y = c2 + C ⇒ dy = −C
x dx x2

⇒ C = −x2 dy
dx

y = ⎛ −x 2 dy ⎞2 + 1 ⎛ − x 2 dy ⎞
⎝⎜ dx ⎟⎠ x ⎜⎝ dx ⎟⎠

⇒∴ y = x4 ⎛ dy ⎞2 − x ⎛ dy ⎞
⎜⎝ dx ⎠⎟ ⎜⎝ dx ⎠⎟

31. The equation of curve passing through the origin and satisfying the differential equation

dy = ( x − y)2 is [EAMCET 2000]

dx

1) e2x (1 − x + y) = (1 + x − y) 2) e2x (1 + x − y) = (1 − x + y)

3) e2x (1 − x + y) = − (1 + x + y) 4) e2x (1 + x + y) = (1 − x + y)

94

Jpacademy Differential Equations

Ans: 1

Sol: dy = (x − y)2 Let x − y = t

dx

⇒ dy = 1 − dt
dx dx

1− dt = t2 ⇒ dx = dt
dx 1− t2

⇒ ∫ dx =∫ (1 dt )
− t2

x = 1 loge ⎛1+ t ⎞ ⇒ 2x = log ⎛1+ t ⎞
2 ⎝⎜ 1 − t ⎠⎟ ⎝⎜ 1 − t ⎠⎟

⇒ e2x = 1+ t
1− t

∴ e2x (1 − x + y) = (1 + x − y)

777

95

Jpacademy INDEFINITE INTEGRATION
PREVIOUS EAMCET BITS

1. ∫ ( x dx + 3 [EAMCET 2009]

+1) 4x

1) tan−1 4x + 3 + c 2) 3 tan−1 4x + 3 + c 3) 2 tan−1 4x + 3 + c 4) 4 tan−1 4x + 3 + c

Ans:

x = t2 −3 1 tdt
4 2
Sol: 4x + 3 = t2 = ∫ ⎛ t 2 − 3 ⎞
⎜ 1⎟
⎝ 4 + t


∫ ( )= 2
4dx = 2tdt t2 + dt = 2 tan−1 t + c = 2 tan −1 4x + 3 + c
t

dx = 1 tdt
2

2. ∫ ⎛ 2 − sin 2x ⎞ ex dx [EAMCET 2009]
⎜⎝ 1− cos 2x ⎟⎠

1) −ex cot x + c 2) ex cot x + c 3) 2ex cot x + c 4) −2ex cot x + c

Ans: 1

⎛ 2 − 2sin x cos x ⎞
⎝⎜ 2 sin 2 x ⎟⎠
( )∫ ∫Sol:
e x dx = cos ec2x − cot x exdx

= ∫ ex ⎣⎡(− cot x) + cos ec2x⎦⎤ dx

ex (− cot x) + c ⎡⎣∵ ∫ ex ⎣⎡f ( x) + f ′(x)⎦⎤ dx = exf (x) + c⎤⎦

∫3. If In = sinn xdx then nIn − (n −1) In−2 = [EAMCET 2009]

1) sinn−1 x cos x 2) cosn−1 x sin x 3) – sinn−1 x cos x 4) − cosn−1 x sin x

Ans: 1

∫Sol: sinn−1 x sin x
In = dx

uv

In = sinn−1 x (− cos x) − ∫ (n −1)(sin )x n−2 (cos x)(− cos x) dx

∫ ( )In = − sinn−1 x cos x + (n −1) (sin x )n−2 1− sin2 x dx

∫ ∫In = − sinn−1 x cos x + (n −1) sinn−2 xdx − (n −1) sinn xdx

In = − sinn−1 x cos x + (n )−1 In−2 − (n −1) In ⇒ nIn − (n )−1 In−2 = sinn−1 x cos x

Jpacademy Indefinite Integration

4. If ∫ ex ⎛ 1− sin x ⎞ dx = f (x)+c then f (x) = [EAMCET 2008]
⎜⎝ 1− cos x ⎠⎟

1) ex cot ⎛ x⎞ 2) e−x cot ⎛ x ⎞ 3) −ex cot ⎛ x⎞ 4) −e−x cot ⎛ x⎞
⎝⎜ 2 ⎠⎟ ⎝⎜ 2 ⎠⎟ ⎝⎜ 2 ⎟⎠ ⎝⎜ 2 ⎟⎠

Ans:3

⎛ 1− 2sin x cos x ⎞ ⎡1 x x ⎤
⎜ 2 x 2 ⎟ ⎣⎢ 2 2 2 ⎥⎦
ex ⎜ ⎟dx ex cos ec2
⎜ 2 sin 2 ⎟
∫ ∫Sol: = − cot dx

⎝ 2⎠

= ex ⎛ − cot x ⎞ + c ⎡⎣∵∫ ex ⎡⎣f ( x) + f ′(x)⎤⎦dx = exf (x) + c⎦⎤
⎜⎝ 2 ⎠⎟

∴f ( x) = −ex cot x

2

∫5. If In = xnecxdx for n ≥ 1 then c.In + n.In−1 = [EAMCET 2008]
4) xn + ecx
1) xnecx 2) xn 3) ecx
Ans: 1 [EAMCET 2008]

∫Sol: xn ecx 4) tan (xex )
In = . dx

uv

∫ ∫xn n −1. ⎛ ecx ⎞
ecxdx − n.x ⎜ c ⎟dx



In = xn ⎛ ecx ⎞ − n I n −1 ⇒ CIn = x n ecx − nIn−1
⎜ ⎟ c
⎝ c ⎠

C.In + nIn−1 = xnecx

6. If ∫ ex (1+ x).sec2 (xex ) dx = f (x) + c then f (x) =

1) (cos xex ) 2) sin (xex ) 3) 2 tan−1 x

Ans: ( )∫ ∫ex (x +1)sec2 xex dx = sec2 tan
Sol: Let xex = t ( )= tan t + c ⇒ tan xex + c

( )x.ex + ex.1 dx = dt

ex ( x +1) dx = dt ∴f (x) = tan (xex )

7. I∫ ex −1 dx =f (x)+c then f(x) is equal to [EAMCET 2007]
ex +1

Jpacademy Indefinite Integration
( ) ( )1) 2log ex +1 3) (2 log ex +1) − x
2) log e2x −1 ( )4) log e2x +1

Ans: 3

∫ ∫ ( )Sol:
= ex + ex − ex −1 dx ⇒ 2ex − ex +1
ex +1 ex +1 dx

2ex ex +1 dx ex
ex + ex +1 ex +
∫ ∫ ∫ ∫= 1 dx − = 2 1 dx − 1dx

= 2 log ex +1 − x + c

∴f (x) = 2log (ex +1) − x

∫8. tan −1 ⎛ 1− x ⎞ = [EAMCET 2007]
⎜⎝⎜ 1+ x ⎠⎟⎟ dx

( )1) 1 x cos−1 x − 1− x2 + c ( )2) 1 x cos−1 x + 1− x2 + c
2 2

( )3) 1 x sin−1 x − 1− x2 + c ( )4) 1 x sin−1 x + 1− x2 + c
2 2
Ans:
Sol: Put x = cos2θ

∫= −1 ⎛ 1 − cos 2θ ⎞ 1 ⎢⎡cos−1 −1 ⎤
⎝⎜⎜ 1 + cos 2θ ⎟⎠⎟ 2 ⎣ 1− x2 .xdx ⎥
tan dx ∫= x.x −


( )∫= tan−1 tan 2 θ dx 1 ⎡⎢cos−1 1 −2x ⎤
2 ⎣ 2
∫= x.x − 1− x2 dx ⎥


= ∫ θdx = ∫ 1 cos−1 xdx = 1 ⎢⎣⎡cos−1 x.x − 1 × 2 1 − x 2 ⎤ + c
2 2 ⎦⎥
2

∫= 1 c os−1 x.1.dx = 1 ⎡⎣cos−1 x.x − 1 − x 2 ⎤ + c
2 2 ⎦

9. ∫ sin x + 8cos x dx [EAMCET 2007]
4sin x + 6 cos x

1) x + 1 log 4sin x + 6 cos x + c 2) 2x + log 2sin x + 3cos x + c
2 4) 1 log 4sin x + 6 cos x + c

3) x + 2 log 2sin x + 3cos x + c 2
Ans: 1

∫Sol: a cos x + b sin x dx = ⎛ ac + bd ⎞ x + ⎛ ad − bc ⎞ log (cos x + d sin x) + c
c cos x + d sin x ⎜⎝ c2 + d2 ⎟⎠ ⎜⎝ c2 + d2 ⎠⎟

Jpacademy Indefinite Integration

∫ 8cos x +1.sin x dx = ⎛ 48 + 4 ⎞ x + ⎛ 32 − 6 ⎞ log 6 cos x + 4sin x +c
6 cos x + 4sin x ⎝⎜ 36 +16 ⎟⎠ ⎝⎜ 36 +16 ⎟⎠

= x + 1 log 6 cos x + 4sin x + c
2

10. If ∫ x dx = g(x)+c then g(x) is equal to [EAMCET 2006]
a3 − x3

1) 2 cos−1 x 2) 2 sin −1 ⎛ x3 ⎞ 3) 2 sin −1 ⎛ x3 ⎞ 4) 2 co s−1 ⎛ x ⎞
3 3 ⎜ a3 ⎟ 3 ⎜⎝⎜ a3 ⎟⎠⎟ 3 ⎜⎝ a ⎠⎟
⎝ ⎠

Ans:

∫ ∫Sol: x dx = 1 x / a dx Let x = sin2/3 θ
a3 ⎛⎜1 − x3 ⎞ a ⎛ x ⎞3 a
⎝ a3 ⎟ − ⎝⎜ a ⎠⎟
⎠ 1

∫= 1 (sin θ)1/ 3 × 2a × cos θ dθ dx = a. 2 (sin 2 −1 cos θdθ
3
a 1− sin2 θ (sin θ)1/ 3 3 θ)3

= 2 ∫1.dθ ⇒ 2 θ + c dx = 2a × cos θ dθ
3 3 3
(sin )θ 1/3

= 2 sin −1 ⎛ x3 ⎞ + c
3 ⎝⎜⎜ a3 ⎟⎠⎟

∴g (x) = 2 sin −1 ⎛ x3 ⎞ + c
3 ⎜⎝⎜ a3 ⎟⎠⎟

11. If ∫ x2 dx =f (x)+c then f(x) is equal to [EAMCET 2006]
+ 2x + 2
4) 3 tan−1 ( x +1)
1) tan−1 ( x +1) 2) 2 tan−1 ( x +1) 3) − tan−1 ( x +1)

Ans: 1

Sol: ∫ dx = tan −1 ( x + 1) c

( x + 1)2 + 1

∴f (x) = tan−1 (x +1)

12. Observe the following statements : [EAMCET 2006]

∫A : ⎛ x2 +1⎞ x2 −1 = x2 −1 + c
⎜ ⎟
⎝ x2 ⎠ e x dx ex

∫R : f 1 (x ).ef (x)dx = f ( x) + c , then which of the following is true ?

1) Both A and R are true and R is the correct reason of A

Jpacademy Indefinite Integration

2) Both A and R are true and R is the correct reason of A

3) A is true, R is false 4) A is false, R is true

Ans: 3

∫Sol: R : f 1 ( x ).ef (x)dx ∫A : ⎜⎝⎛1 + 1 ⎞ ⎛ x − 1 ⎞
x2 ⎠⎟ x
e⎝⎜ ⎠⎟dx

Let f(x) = t Let x − 1 = t
x

∫ f 1 (x) dn = dt ⎝⎜⎛1 + 1 ⎞ dx = dt
x2 ⎠⎟

∫ etdt = et + c ∫ etdt = et +c = x−1 +c

ex

= ef (x) + c x2 −1

= e x +c

Here A is true and R is false

13. If ∫ sin x x) dx = f (x) + c [EAMCET 2005]

cos x (1+ cos

1) log 1+ cos x 2) log c os x 3) log sinx 4) log 1+ sinx
cos x 1+ cos x 1+ sin x sin x

Ans: 1

Sol: Let cosx = t

– sinxdx = dt

∫ t −dt ) = ∫ ⎛ −1 + t 1 ⎞ dt
⎝⎜ t + 1 ⎟⎠
(1+ t

= − log t + log | t +1| +c

= log t +1 + c = log 1+ cos x + c
t cos x

∴ f ( x) = log 1+ cos x + c

cos x

∫ ( ) ( )14.
x49 tan−1 x50 dx = K ⎣⎡tan−1 x50 ⎦⎤2 + c , then K = [EAMCET 2005]
1 + x100 4) − 1

1) 1 2) − 1 3) 1 100
50 50 100

Ans:

( )Sol: Let tan−1 x50 = t

Jpacademy 1 2 × 50.x49dx = dt Indefinite Integration
( )1+ x 50 [EAMCET 2005]

∫= x49dx = dt = t dt = 1 × t2 +c ⇒ 1 ⎡⎣ tan −1 50⎤⎦ 2 +c 4) – x tan−1 x
1+ x100 50 50 50 2 100
[EAMCET 2004]
∫15. If sin −1 ⎛ 2x ⎞ dx = f ( x ) − log 1+ x2 +c then f(x) =
⎝⎜ 1+ x2 ⎠⎟ ( )4) 2 tan−1 x +100

1) 2x tan−1 x 2) −2x tan−1 x 3) x tan−1 x [EAMCET 2004]
4) x −1
Ans: 1
1+ x
sin −1 ⎛ 2x ⎞ 2 tan−1 xdx
⎝⎜ 1+ x2 ⎠⎟
∫ ∫Sol: dx =

∫= 2 tan−1 x.1.dx

⎡ −1 1 ⎤
∫ ∫= ⎢⎣ 1+ x2 ⎥⎦
2 tan x. 1.dx − .xdx

= 2x tan−1 x − log 1+ x2 + c

∴f ( x ) = 2x tan−1 x

16. ∫ ( x + dx x + 99 = f (x)+c⇒ f (x) =

100)

1) 2 ( x +100)1/2 2) 3( x +100)1/2 ( )3) 2 tan−1 x + 99

Ans: 3
Sol: Let x + 99 = t2

dx = 2t dt

x +100 = (x + 99) +1 ⇒ t2 +1

dx x + 99 = ∫ 2tdt = 2 tan−1 ( t ) + c
t2 +1
100) t
( )∫( x +

( )= 2 tan−1 x + 99 + c

( )∴f (x) = 2 tan−1 x + 99

17. ∫ 1 3− x2 x2 .exdx = exf ( x ) + c ⇒ f ( x ) =
− 2x +

1) 1+ x 2) 1− x 3) 1+ x
1− x 1+ x x −1

Ans:1

Jpacademy Indefinite Integration
( )∫ ∫Sol:
=− x2 −3 .e x dx ⇒ − x2 −1 − 2 [EAMCET 2004]
4) 2 cot x
( x −1)2 ( x −1)2 exdx
[EAMCET 2003]
= −∫ ⎡ ( x +1)(x − 1) − 2 ⎤ ex dx 4
⎢ ( x −1)2 ⎥ 4) 2 (1+ x)3/2 + c
⎣⎢ ( x −1)2 ⎦⎥
[EAMCET 2003]
∫= ⎡ x +1 − ( 2 ⎤ .ex .dx ⇒ −ex ⎡ x +1⎤ + c 4) xex+x−1 + c
⎢ x −1 ⎥ ⎢⎣ x −1⎦⎥
⎣⎢ x + 1)2 ⎦⎥

= e x ⎛ x +1 ⎞ + c ⇒ f ( x ) = 1 + x
⎜⎝ 1− x ⎠⎟ 1 − x

18. ∫ sin cot x x dx = −f ( x ) + c ⇒ f ( x ) =
x cos

1) 2 tan x 2) – 2 tan x 3) – 2 cot x

Ans: 4

cot x cos ec2 x cot x.cos ec2x dx
x cos cos ec 2 x cot x
∫ ∫Sol: x × dx =
sin

= −∫ cos ec2x dx = −2 cot x + c
cot x

∴f (x) = 2 cot x

∫19. 1+ x + x + x2 dx =
x + 1+ x

1) 1 1+ x + c 2) 2 (1+ x )3/2 + c 3) 1+ x + c
2 3) −xex+x−1 + c
3

Ans:

Sol: = ∫ ( )2 dx
1+ x + x. 1+ x

x + 1+ x

=∫ 1+ x ⎡⎣ 1+ x + x ⎦⎤dx
x + 1+ x

∫= 1+ x dx = 2(1+ )x 3/2 + c
3

∫ ( )20. 1+ x − x−1 ex+x−1dx =

1) (1+ )x ex+x−1 + c 2) ( x )−1 ex+x−1 + c

Ans:

Jpacademy Indefinite Integration

⎝⎜⎛1 − 1 ⎟⎞⎠e x + 1 ⎡⎢⎣⎛⎜⎝1 − 1 ⎞ x + 1 x+ 1 ⎤
∫ ∫Sol: x + x x dx = x ⎠⎟ e x + ⎥dx
xe x ⎦

x+1

Let xe x = t

⎡ x+1 ⎜⎝⎛1 − 1 ⎞ + x+1 ⎤ dx = dt
⎢x.e x x2 ⎟⎠ ⎥
⎣ ex ⎦

x+ 1 ⎛ x − 1 + 1⎟⎠⎞ dx = dt
⎝⎜ x
ex

= ∫1.dt = t + c

x+1

xe x + c

21. ∫ 1− dx sin x = [EAMCET 2002]
cos x −

1) log 1+ cot x + c 2) log 1− tan x + c 3) log 1− cot x + c 4) log 1+ tan x + c
22 2 2

Ans: 3

Sol: ∫ 1 − dx sin x
cos x −

= ∫ 2sin2 dx =∫ dx
x / 2 − 2sin x / 2 cos x / 2
2 sin 2 x ⎣⎢⎡1 − cot x⎤
2 2 ⎥⎦

= ∫ 1 cos ec2 x dx = log 1− cot x +c
2 2 2
x
1− cot
2

22. ∫ 7 + dx x = [EAMCET 2002]
5 cos

1) 1 tan −1 ⎛ 1 tan x ⎞ + c 2) 1 tan −1 ⎛ 1 tan x ⎞ + c
3 ⎜⎝ 3 2 ⎠⎟ 6 ⎜⎝ 6 2 ⎟⎠

3) 1 tan −1 ⎛ tan x ⎞ + c 4) 1 tan −1 ⎛ tan x ⎞ + c
7 ⎝⎜ 2 ⎟⎠ 4 ⎝⎜ 2 ⎠⎟

Ans: 2

Sol: ∫ 7 + dx x
5 cos

Jpacademy 1− tan2 x Indefinite Integration
2 [EAMCET 2002]
use cos x = [EAMCET 2001]
1+ tan2 x
2

∫ ( )sec2 . x dx2 x = 1 ∫ sec2 x dx
tan 2 2 2
12 + 2
6 2 + tan2 x
22

Put tanx/2 = t

= 1 tan −1 ⎛ 1 tan x ⎞ + C
6 ⎜⎝ 6 2 ⎠⎟

∫23. 3x dx =

9x −1

1) 1 log 3x + 9x −1 + c 2) 1 log 3x − 9x −1 + c
log3 log3

3) 1 log 3x − 9x −1 + c 4) 1 log 9x + 9x −1 + c
log9 log3

Ans: 1

∫Sol: 3x dx
9x −1

3x = t ⇒ 3x log 3dx = dt

∫1 dt = 1 3) log 3x + 9x −1 + C
t2 −1
log 3 (log

24. ∫ dx =

x (x +9)

( )1) 2 tan−1 x +C 2) 2 tan −1 ⎛ x ⎞ + C ( )3) tan−1 x + C 4) tan −1 ⎛ x ⎞ + C
3 3 ⎝⎜⎜ 3 ⎟⎠⎟ ⎜⎜⎝ 3 ⎟⎠⎟

Ans: 2

Sol: ∫ dx

x (x +9)

Let x = t2 , dx = 2tdt

⇒ ∫ t ( 2tdt

)t2 + 9

∫= 2 dt = 2 tan −1 ⎛ t ⎞ + C
t2 + 32 3 ⎜⎝ 3 ⎟⎠

Jpacademy Indefinite Integration

= 2 tan −1 ⎛ x ⎞ + C
3 ⎜⎝⎜ 3 ⎟⎠⎟

25. ∫ ( x +1)2 exdx = [EAMCET 2001]

1) xex + c 2) x2ex + c 3) ( x +1) ex + c ( )4) x2 +1 ex + c

Ans: 4

Sol: ∫ ( x +1)2 exdx
∫ (x2 +1+ 2x).exdx

Let f (x) = x2 +1 ⇒ f ′(x) = 2x

∫ ⎣⎡f (x) + f ′(x)⎤⎦ exdx = f (x).ex + c
( )= x2 +1 ex + c

∫26. dx = [EAMCET 2001]
a2 sin2 x + b2 cos2 x

1) 1 tan −1 ⎛ a tan x ⎞ + c 2) tan −1 ⎛ a tan x ⎞ + c
ab ⎝⎜ b ⎟⎠ ⎝⎜ b ⎟⎠

3) 1 tan −1 ⎛ b tan x ⎞ + c 4) tan −1 ⎛ b tan x ⎞ + c
ab ⎝⎜ a ⎟⎠ ⎜⎝ a ⎠⎟

Ans: 1

dx = sec2 xdx sec2 x
a2 sin2 x + b2 cos2 x a2 tan2 x + b2 dx
∫ ∫ ∫Sol: ⇒
a2 sin2 x sec2 x + b2 cos2 x sec2 x

= 1 tan −1 ⎛ a tan x ⎞ + C
ab ⎝⎜ b ⎠⎟

( )∫27. ex 1− cot x + cot2 x dx = [EAMCET 2000]

1) ex cot x + c 2) −ex cot x + c 3) ex cos ec + c 4) −ex cos ec + c

Ans: 2

( )∫Sol: ex 1− cot x + cot2 x dx

( )∫= ex − cot x + cos ecx2 dx

Let f (x) = − cot x ⇒ f ′(x) = cos ec2x

⇒ ∫ ex ⎣⎡f (x) + f ′(x)⎦⎤ dx = exf (x) + c

= −ex cot x + c

Jpacademy Indefinite Integration

∫28. sin 6 x dx = [EAMCET 2000]
cos8 x

1) tan 7x + c 2) tan7 x + c 3) tan 7x + c 4) sec7 x + c
7 7

Ans: 2

sin 6 x tan 6 x sec2 tan7 x ⎡ (x)n ′(x) dx ⎣⎡f ( x )⎦⎤n+1 ⎤
cos8 x ⎢∵ ⎥
∫ ∫ ∫Sol: dx = = + c f f =
xdx 7 ⎣⎢ n +1 ⎦⎥

777

Jpacademy SUCCESSIVE – DIFFERENTIAL

PREVIOUS EAMCET BITS

( ) ( )1. y = easin−1 x ⇒ 1− x2 yn+2 − 2n +1 xyn+1 = [EAMCET 2009]

( )1) n2 + n2 yn ( )2) n2 − a2 yn ( )3) n2 + a2 yn ( )4) − n2 − a2 yn

Ans: 3

Sol: y = ea sin −1 ,⇒ y1 = y x a
x 1− x2

( )⇒ 1− x2 y12 = a2y2

( )⇒ 2 1− x2 y1y2 − 2xy12 = 2a2yy1

( )1− x2 y2 − xy1 = a2y ………….(1)

( ) ( )Diff. (1) ‘n’ times using Leibnitz theorem 1− x2 yn+2 − (2n +1) xyn+1 = n2 + a2 yn

2. If y = sin (logc x ) then x2 d2y + x dy = [EAMCET 2008]
dx 2 dx

1) sin (loge x) 2) cos (loge x) 3) y2 4) −y

Ans: 4

Sol: y = sin (log x) ⇒ dy = cos (log x) 1 ⇒ x dy = cos (log x)

dx x dx

⇒ x d2y + dy = − sin (log x) 1
dx 2 dx x

⇒ x2 d2y + x dy = −y
dx 2 dx

( )3. x = cos θ, y = sin 5θ ⇒ 1− x2 d2y − x dy = [EAMCET 2007]
dx2 dx 4) –25 y

1) −5y 2) 5y 3) 25 y

Ans: 4

Sol: dy = −5cos 5θ = −5 1− sin2 5θ
dx sin θ 1− cos2 θ

= −5 1− y2 = y1
1− x2

( ) ( ) ( )1− x2 y12 = 25 1− y2 ⇒ 1− x2 y2 − xy1 = −25y

49

Jpacademy Successive – Differential
4. f (x ) = ex sin x ⇒ f (6) ( x) = [EAMCET 2006]

1) e6x sin 6x 2) −8ex cos x 3) 8ex sin x 4) 8ex cos x
Ans: 2

Sol: f ( x ) = eax sin bx

( ) ( )f n ( x ) = a2 + b2 n/2 .eax sin bx + n tan−1 b / a

a = 1, b = 1, n = 6

6

ex sin
( ) ( )f 6 (x) =
(1 + 1) x + 6 tan−1 (1)

= 8ex sin ⎛ 3π + x ⎞ = −8ex cos x
⎜⎝ 2 ⎟⎠

( )5. d2y =
y = sin−1 x ⇒ 1− x2 dx 2 [EAMCET 2004]

1) −x dy 2) 0 3) x dy 4) x ⎛ dy ⎞2
dx dx ⎜⎝ dx ⎟⎠

Ans: 3

Sol: y = sin−1 x ⇒ y1 = 1
1− x2

( )⇒ 1− x2 y12 = 1

( )⇒ 1− x2 2y1y2 − 2xy12 = 0

( )∴ 1− x2 y2 = xy1

( )6. dn
If In = dx n xn log x , then In − nIn−1 = .... [EAMCET 2003]
4) (n –1)!
1) n 2) n – 1 3) n!

Ans: 4

( )Sol: dn
In = dx n xn log x

y = xn log x ⇒ y1 = xn ⎛ 1 ⎞ + nx n −1 log x
⎝⎜ x ⎟⎠

( y1 )n−1 = nIn−1 + (n −1)!
⇒ In − nIn−1 = (n −1)!

7. If y = aex + be−x + c , where a, b, c are parameters, then y′′′ = [EAMCET 2002]

1) y 2) y′ 3) 0 4) y′′

Jpacademy Successive – Differential

Ans: 2
Sol. y = aex + be−x + c

y′ = aex − be−x ;
y′′ = aex + be−x
y′′′ = aex − be−x
y′′′ = y′

8. If y = a cos (log x) + b sin (log x) , where a, b are parameters, then x2y′′ + xy′ = [EAMCET 2002]

1) y 2) – y 3) 2y 4) –2y
Ans: 2

Sol: y = a cos (log x) + b sin (log x)

xy′ = −a sin (log x) + b cos (log x)

xy′′ + y′ = −aco s (log x) − b sin (log x)

x

⇒ x2y′′ + xy′ = −y

9. If yk is the kth derivative of y with respect to x, y = cos(sinx) then y1 sin x + y2 cos x =
[EAMCET 2001]

1) y sin3 x 2) −y sin3 x 3) y cos3 x 4) −y cos3 x

Ans: 4
Sol: Given y = cos(sinx)

⇒ y1 = − sin (sin x ).cos x

y2 = sin (sin x).sin x − cos2 x.cos (sin x)

∴ y1 sin x + y2 cos x = − sin (sin x ).sin x cos x
+ sin (sin x )sin x.cos x − cos3 x.cos (sin x) = −y cos3 x

( )10.dn
dx n ex sin x = [EAMCET 2000]

1) 2n /2.ex cos ( x + nπ / 4) 2) 2n /2.ex cos ( x − nπ / 4)

3) 2n /2.ex sin ( x + nπ / 4) 4) 2n /2.ex sin ( x − nπ / 4)

Ans: 3

( )Sol: y = eax sin (bx) ⇒ yn = n ⎛ tan −1 b ⎞
a2 + b2 .eax ⎝⎜ a ⎟⎠
sin bx + n

where a = 1, b = 1


Click to View FlipBook Version