CHAPTER 4. TRIGONOMETRY
= =± N − Åçë Oα = O í~å α =
N + Åçë Oα O
N + í~åO α
O
=
399. Åçí α = Åçë α = ± ÅëÅO α − N = N + Åçë Oα = ëáå Oα =
ëáå α ëáå Oα N − Åçë Oα
= =± N + Åçë Oα = N − í~åO α =
N − Åçë Oα O
O í~å α
O
=
ëÉÅ α = N = ± N + í~åO α
Åçë α O
400. N+ í~å O α = α =
N− í~å O O
=
N N + í~åO α
ëáå α O
401. ÅëÅ α = = ± N + ÅçíO α = O í~å α =
O
=
=
=
4.9 Addition and Subtraction Formulas
=
402. ëáå(α + β) = ëáåαÅçëβ + ëáåβÅçëα =
=
403. ëáå(α − ó) = ëáåαÅçëβ − ëáåβÅçëα =
=
404. Åçë(α + β) = Åçëα Åçëβ − ëáåα ëáåβ =
=
405. Åçë(α − β) = Åçëα Åçëβ + ëáåα ëáåβ =
91
CHAPTER 4. TRIGONOMETRY
406. í~å(α + β) = í~åα + í~åβ =
N− í~åα í~åβ
=
407. í~å(α − β) = í~åα − í~åβ =
N+ í~åα í~åβ
=
408. Åçí(α + β) = N− í~åα í~åβ =
í~åα + í~åβ
=
409. Åçí(α − β) = N+ í~åα í~åβ =
í~åα − í~åβ
=
=
=
4.10 Double Angle Formulas
=
410. ëáå Oα = Oëáå α ⋅ Åçë α =
=
411. Åçë Oα = ÅçëO α − ëáåO α = N− OëáåO α = OÅçëO α −N =
=
412. í~å Oα = Oí~å α = Åçí α O α =
N− í~åO α − í~å
=
413. Åçí Oα = ÅçíO α −N = Åçí α − í~å α =
OÅçí α O
=
=
=
=
=
=
92
CHAPTER 4. TRIGONOMETRY
4.11 Multiple Angle Formulas
=
414. ëáå Pα = Pëáå α − QëáåP α = PÅçëO α ⋅ ëáå α − ëáåP α =
=
415. ëáå Qα = Qëáå α ⋅ Åçë α − UëáåP α ⋅ Åçë α =
=
416. ëáå Rα = Rëáå α − OMëáåP α + NSëáåR α =
=
417. Åçë Pα = QÅçëP α − PÅçë α = ÅçëP α − PÅçë α ⋅ ëáåO α =
=
418. Åçë Qα = UÅçëQ α − UÅçëO α + N=
=
419. Åçë Rα = NSÅçëR α − OMÅçëP α + RÅçë α =
=
420. í~å Pα = Pí~å α − í~åP α =
N− Pí~åO α
=
421. í~å Qα = N Q í~å α − Q í~åP α =
− Sí~åO α + í~åQ α
=
422. í~å Rα = í~åR α −NMí~åP α + Rí~å α =
N−NMí~åO α + Rí~åQ α
=
423. Åçí Pα = ÅçíP α − PÅçí α =
PÅçíO α −N
=
424. Åçí Qα = N− Sí~åO α + í~åQ α ==
Q í~å α − Q í~åP α
=
93
CHAPTER 4. TRIGONOMETRY
425. Åçí Rα = N−NMí~åO α + Rí~åQ α α =
í~åR α −NMí~åP α + Rí~å
=
=
=
4.12 Half Angle Formulas
=
426. ëáå α = ± N− Åçë α =
OO
=
427. Åçë α = ± N+ Åçë α =
O O
=
428. í~å α = ± N− Åçë α = ëáå α = N− Åçë α = ÅëÅ α − Åçí α =
O N+ Åçë α N+ Åçë α ëáå α
=
429. Åçí α = ± N+ Åçë α = ëáå α = N+ Åçë α = ÅëÅ α + Åçí α =
O N− Åçë α N− Åçë α ëáå α
=
=
=
4.13 Half Angle Tangent Identities
=
Oí~å α
430. O
ëáå α = í~åO α =
N + O
=
94
CHAPTER 4. TRIGONOMETRY
N− í~åO α
431. O
Åçë α = α =
N+ í~åO O
=
Oí~å α
432. O
í~å α = í~åO α =
N− O
=
N− í~åO α
433. O
Åçí α = Oí~å α =
O
=
=
=
4.14 Transforming of Trigonometric
Expressions to Product
=
434. ëáå α + ëáå β = Oëáå α + β Åçë α − β =
OO
=
435. ëáå α − ëáå β = OÅçë α + β ëáå α − β =
OO
=
436. Åçë α + Åçë β = OÅçë α + β Åçë α − β =
OO
=
437. Åçë α − Åçë β = −Oëáå α + β ëáå α − β =
OO
=
95
CHAPTER 4. TRIGONOMETRY
438. í~å α + í~å β = ëáå(α + β) =
Åçë α ⋅ Åçë β
= í~å α − í~å β = ëáå(α − β) =
439. Åçë α ⋅ Åçë β
= Åçí α + Åçí β = ëáå(β + α) =
440. ëáå α ⋅ ëáå β
= Åçí α − Åçí β = ëáå(β − α) =
441. ëáå α ⋅ ëáå β
=
442. Åçë α + ëáå α = O Åçë π − α = O ëáå π + α =
Q Q
=
443. Åçë α − ëáå α = O ëáå π − α = O Åçë π + α =
Q Q
= í~å α + Åçí β = Åçë(α − β) =
444. Åçë α ⋅ ëáå β
= í~å α − Åçí β = − Åçë(α + β) =
445. Åçë α ⋅ ëáå β
=
446. N+ Åçë α = OÅçëO α =
O
=
447. N− Åçë α = OëáåO α =
O
=
96
CHAPTER 4. TRIGONOMETRY
448. N + ëáå α = O Åçë O π − α =
Q O
=
449. N − ëáå α = O ëáå O π − α =
Q O
=
=
=
4.15 Transforming of Trigonometric
Expressions to Sum
=
450. ëáå α ⋅ ëáå β = Åçë(α − β)− Åçë(α + β) =
O
=
451. Åçë α ⋅ Åçë β = Åçë(α − β)+ Åçë(α + β) =
O
=
452. ëáå α ⋅ Åçë β = ëáå(α − β)+ ëáå(α + β) =
O
=
453. í~å α ⋅ í~å β = í~å α + í~å β =
Åçí α + Åçí β
=
454. Åçí α ⋅ Åçí β = Åçí α + Åçí β =
í~å α + í~å β
=
455. í~å α ⋅ Åçí β = í~å α + Åçí β =
Åçí α + í~å β
=
=
=
97
CHAPTER 4. TRIGONOMETRY
4.16 Powers of Trigonometric Functions
=
456. ëáåO α = N− ÅçëOα =
O
=
457. ëáåP α = Pëáå α − ëáåPα =
Q
=
458. ëáåQ α = Åçë Qα − Q Åçë Oα + P =
U
=
459. ëáåR α = NM ëáå α − Rëáå Pα + ëáå Rα =
NS
=
460. ëáåS α = NM −NRÅçë Oα + SÅçë Qα − Åçë Sα =
PO
=
461. ÅçëO α = N+ Åçë Oα =
O
=
462. ÅçëP α = PÅçë α + Åçë Pα =
Q
=
463. ÅçëQ α = Åçë Qα + QÅçë Oα + P =
U
=
464. ÅçëR α = NMÅçë α + Rëáå Pα + Åçë Rα =
NS
=
465. ÅçëS α = NM + NRÅçë Oα + SÅçë Qα + Åçë Sα =
PO
=
98
CHAPTER 4. TRIGONOMETRY
4.17 Graphs of Inverse Trigonometric
Functions
=
466. fåîÉêëÉ=páåÉ=cìåÅíáçå==
ó = ~êÅëáå ñ I= −N≤ ñ ≤ N I= − π ≤ ~êÅëáå ñ ≤ π K=
O O
=
= =
Figure 66.
=
467. fåîÉêëÉ=`çëáåÉ=cìåÅíáçå==
ó = ~êÅÅçë ñ I= −N≤ ñ ≤ NI= M ≤ ~êÅÅçë ñ ≤ π K=
=
99
CHAPTER 4. TRIGONOMETRY
=
=
Figure 67.
=
468. fåîÉêëÉ=q~åÖÉåí=cìåÅíáçå==
ó = ~êÅí~å ñ I= − ∞ ≤ ñ ≤ ∞ I= − π < ~êÅí~å ñ < π K=
OO
=
===== =
=
Figure 68.
100
CHAPTER 4. TRIGONOMETRY
469. fåîÉêëÉ=`çí~åÖÉåí=cìåÅíáçå==
ó = ~êÅ Åçí ñ I= − ∞ ≤ ñ ≤ ∞ I= M < ~êÅÅçí ñ < π K=
===== =
Figure 69.
=
470. fåîÉêëÉ=pÉÅ~åí=cìåÅíáçå==
ó = ~êÅëÉÅ=ñI ñ ∈(− ∞I −N]∪ [NI∞)I ~êÅ ëÉÅ ñ ∈ MI π ∪ π I πK
O O
=
Figure 70.
101
CHAPTER 4. TRIGONOMETRY
471. fåîÉêëÉ=`çëÉÅ~åí=cìåÅíáçå==
ó = ~êÅÅëÅ ñI ñ ∈(− ∞I −N]∪ [NI∞)I ~êÅ ÅëÅ ñ ∈ − π I M ∪ MI π K
O O
= =
Figure 71.
=
=
4.18 Principal Values of Inverse
Trigonometric Functions
472. ñ= M= N = O = P N=
O OO
~êÅëáå ñ = M° = PM° = QR° = SM° VM°
~êÅÅçë ñ = VM° SM° = QR° = PM° M° =
ñ= −N − O − P −N= =
O O O
~êÅëáå ñ = − PM° − QR° − SM° − VM° =
= =
~êÅÅçë ñ = NOM° NPR° = NRM° = NUM° =
= =
102
CHAPTER 4. TRIGONOMETRY
473. ñ= M= P N= P = − P −N= − P =
P P
~êÅí~å ñ = M° = PM° QR° SM° − PM° − QR° − SM° =
=
~êÅÅçí ñ = VM° SM° QR° PM° NOM° = NPR° NRM° =
=
=
=
=
4.19 Relations between Inverse
Trigonometric Functions
=
474. ~êÅëáå(− ñ) = −~êÅëáå ñ =
=
475. ~êÅëáå ñ = π − ~êÅÅçë ñ =
O
=
476. ~êÅëáå ñ = ~êÅÅçë N− ñO I= M ≤ ñ ≤ NK=
=
477. ~êÅëáå ñ = −~êÅÅçë N− ñO I= −N≤ ñ ≤ M K=
=
478. ~êÅëáå ñ = ~êÅí~å ñ I= ñO < NK=
N− ñO
=
479. ~êÅëáå ñ = ~êÅ Åçí N− ñO I= M < ñ ≤ NK=
ñ
=
480. ~êÅëáå ñ = ~êÅ Åçí N− ñO − π I= −N≤ ñ < M K=
ñ
=
481. ~êÅÅçë(− ñ) = π − ~êÅÅçë ñ =
103
CHAPTER 4. TRIGONOMETRY
482. ~êÅÅçë ñ = π − ~êÅëáå ñ =
O
=
483. ~êÅÅçë ñ = ~êÅëáå N− ñO I= M ≤ ñ ≤ NK=
=
484. ~êÅÅçë ñ = π − ~êÅëáå N− ñO I= −N≤ ñ ≤ M K=
=
485. ~êÅÅçë ñ = ~êÅí~å N− ñO I= M < ñ ≤ NK=
ñ
=
486. ~êÅÅçë ñ = π + ~êÅí~å N− ñO I= −N≤ ñ < M K=
ñ
=
487. ~êÅÅçë ñ = ~êÅÅçí ñ I= −N≤ ñ ≤ NK=
N− ñO
=
488. ~êÅí~å(− ñ) = −~êÅí~å ñ =
=
489. ~êÅí~å ñ = π − ~êÅÅçí ñ =
O
=
490. ~êÅí~å ñ = ~êÅëáå ñ =
N+ ñO
=
491. ~êÅí~å ñ = ~êÅÅçë N I= ñ ≥ M K=
N+ ñO
=
492. ~êÅí~å ñ = −~êÅÅçë N I= ñ ≤ M K=
N+ ñO
=
104
CHAPTER 4. TRIGONOMETRY
493. ~êÅí~å ñ = π − ~êÅí~å N I= ñ > M K=
Oñ
=
494. ~êÅí~å ñ = − π − ~êÅí~å N I= ñ < M K=
Oñ
=
495. ~êÅí~å ñ = ~êÅÅçí N I= ñ > M K=
ñ
=
496. ~êÅí~å ñ = ~êÅÅçí N − π I= ñ < M K=
ñ
=
497. ~êÅÅçí(− ñ) = π − ~êÅÅçí ñ =
=
498. ~êÅÅçí ñ = π − ~êÅí~å ñ =
O
=
499. ~êÅÅçí ñ = ~êÅëáå N I= ñ > M K=
N+ ñO
=
500. ~êÅÅçí ñ = π − ~êÅëáå N I= ñ < M K=
N+ ñO
=
501. ~êÅÅçí ñ = ~êÅÅçë ñ =
N+ ñO
=
502. ~êÅÅçí ñ = ~êÅí~å N I= ñ > M K=
ñ
=
503. ~êÅÅçí ñ = π + ~êÅí~å N I= ñ < M K=
ñ
=
=
105
CHAPTER 4. TRIGONOMETRY
4.20 Trigonometric Equations
=
tÜçäÉ=åìãÄÉêW=å=
=
=
504. ëáå ñ = ~ I= ñ = (−N)å ~êÅëáå~ + πå =
=
505. Åçë ñ = ~ I= ñ = ± ~êÅÅçë ~ + Oπå =
=
506. í~å ñ = ~ I= ñ = ~êÅí~å~ + πå =
=
507. Åçí ñ = ~ I= ñ = ~êÅ Åçí ~ + πå =
=
=
=
4.21 Relations to Hyperbolic Functions
=
fã~Öáå~êó=ìåáíW=á=
=
=
508. ëáå(áñ) = á ëáåÜ ñ =
=
509. í~å(áñ) = á í~åÜ ñ =
=
510. Åçí(áñ) = −á ÅçíÜ ñ =
=
511. ëÉÅ(áñ) = ëÉÅÜ ñ =
=
512. ÅëÅ(áñ) = −á ÅëÅÜ ñ =
=
=
=
106
Chapter 5
Matrices and Determinants
=
=
=
=
j~íêáÅÉëW=^I=_I=`=
bäÉãÉåíë=çÑ=~=ã~íêáñW= ~á I= Äá I= ~áà I= Äáà I= Åáà =
aÉíÉêãáå~åí=çÑ=~=ã~íêáñW= ÇÉí ^ =
jáåçê=çÑ=~å=ÉäÉãÉåí= ~áà W= jáà =
`çÑ~Åíçê=çÑ=~å=ÉäÉãÉåí= ~áà W= `áà =
qê~åëéçëÉ=çÑ=~=ã~íêáñW= ^q I= ^ú =
^Çàçáåí=çÑ=~=ã~íêáñW= ~Çà ^ =
qê~ÅÉ=çÑ=~=ã~íêáñW= íê ^ =
fåîÉêëÉ=çÑ=~=ã~íêáñW= ^−N =
oÉ~ä=åìãÄÉêW=â=
oÉ~ä=î~êá~ÄäÉëW= ñá =
k~íìê~ä=åìãÄÉêëW=ãI=å===
=
=
5.1 Determinants
=
513. pÉÅçåÇ=lêÇÉê=aÉíÉêãáå~åí=
ÇÉí ^ = ~N ÄN = ~NÄO − ~OÄN =
~O ÄO
=
=
=
=
=
107
CHAPTER 5. MATRICES AND DETERMINANTS
514. qÜáêÇ=lêÇÉê=aÉíÉêãáå~åí=
~NN ~NO ~NP
ÇÉí ^ = ~ON ~OO ~OP = ~NN~ ~OO PP + ~NO~ ~OP PN + ~NP~ ~ON PO − =
~PN ~PO ~PP
− ~NN~ ~OP PO − ~NO~ON~PP − ~NP~OO~PN =
=
515. p~êêìë=oìäÉ=E^êêçï=oìäÉF=
= =
Figure 72.
=
516. k-íÜ=lêÇÉê=aÉíÉêãáå~åí=
~NN ~NO K ~Nà K ~Nå
~ON ~OO K ~Oà K ~Oå
ÇÉí ^ = K K KKK K =
~ áN ~áO K ~áà K ~ áå
K KKKKK
~åN ~åO K ~åà K ~åå
=
517. jáåçê=
qÜÉ=ãáåçê= jáà =~ëëçÅá~íÉÇ=ïáíÜ=íÜÉ=ÉäÉãÉåí= ~áà =çÑ=å-íÜ=çêÇÉê=
ã~íêáñ= ^= áë= íÜÉ= (å −N) -íÜ= çêÇÉê= ÇÉíÉêãáå~åí= ÇÉêáîÉÇ= Ñêçã=
íÜÉ=ã~íêáñ=^=Äó=ÇÉäÉíáçå=çÑ=áíë=á-íÜ=êçï=~åÇ=à-íÜ=ÅçäìãåK===
=
108
CHAPTER 5. MATRICES AND DETERMINANTS
518. `çÑ~Åíçê=
( )`áà = − N á +à jáà =
=
519. i~éä~ÅÉ=bñé~åëáçå=çÑ=å-íÜ=lêÇÉê=aÉíÉêãáå~åí=
i~éä~ÅÉ=Éñé~åëáçå=Äó=ÉäÉãÉåíë=çÑ=íÜÉ=á-íÜ=êçï=
å
∑ÇÉí ^ = ~ `áà áà I= á = NI OIKIå K=
à=N
i~éä~ÅÉ=Éñé~åëáçå=Äó=ÉäÉãÉåíë=çÑ=íÜÉ=à-íÜ=Åçäìãå=
å
∑ÇÉí ^ = ~ `áà áà I= à = NI OIKIå K==
á=N
=
=
=
5.2 Properties of Determinants
=
520. qÜÉ==î~äìÉ==çÑ=~=ÇÉíÉêãáå~åí=êÉã~áåë==ìåÅÜ~åÖÉÇ=áÑ=êçïë=~êÉ=
ÅÜ~åÖÉÇ=íç=Åçäìãåë=~åÇ=Åçäìãåë=íç=êçïëK=
= ~N ~O = ~N ÄN ==
ÄN ÄO ~O ÄO
=
521. fÑ=íïç==êçïë==Eçê=íïç=ÅçäìãåëF=~êÉ==áåíÉêÅÜ~åÖÉÇI=íÜÉ=ëáÖå=çÑ=
íÜÉ=ÇÉíÉêãáå~åí=áë=ÅÜ~åÖÉÇK=
~N ÄN = − ~O ÄO =
~O ÄO ~N ÄN
=
522. fÑ=íïç=êçïë==Eçê=íïç=ÅçäìãåëF=~êÉ==áÇÉåíáÅ~äI=íÜÉ=î~äìÉ=çÑ=íÜÉ=
ÇÉíÉêãáå~åí=áë=òÉêçK=
~N ~N = M =
~O ~O
=
109
CHAPTER 5. MATRICES AND DETERMINANTS
523. fÑ==íÜÉ===ÉäÉãÉåíë==çÑ==~åó=êçï==Eçê=ÅçäìãåF=~êÉ=ãìäíáéäáÉÇ=Äó=====
~==Åçããçå==Ñ~ÅíçêI==íÜÉ==ÇÉíÉêãáå~åí==áë==ãìäíáéäáÉÇ==Äó==íÜ~í=
Ñ~ÅíçêK=
â~N âÄN = â ~N ÄN =
~O ÄO ~O ÄO
=
524. fÑ==íÜÉ==ÉäÉãÉåíë==çÑ==~åó==êçï==Eçê==ÅçäìãåF=~êÉ=áåÅêÉ~ëÉÇ=Eçê=
ÇÉÅêÉ~ëÉÇFÄó=Éèì~ä=ãìäíáéäÉë=çÑ=íÜÉ=ÅçêêÉëéçåÇáåÖ=ÉäÉãÉåíë=
çÑ=~åó=çíÜÉê=êçï==Eçê=ÅçäìãåFI==íÜÉ=î~äìÉ=çÑ=íÜÉ=ÇÉíÉêãáå~åí=
áë=ìåÅÜ~åÖÉÇK=
~N + âÄN ÄN = ~N ÄN =
~O + âÄO ÄO ~O ÄO
=
=
=
5.3 Matrices
=
525. aÉÑáåáíáçå=
^å= ã × å =ã~íêáñ=^=áë=~=êÉÅí~åÖìä~ê=~êê~ó=çÑ=ÉäÉãÉåíë=Eåìã-
ÄÉêë=çê=ÑìåÅíáçåëF=ïáíÜ=ã=êçïë=~åÇ=å=ÅçäìãåëK==
~NN ~NO K ~Nå
[ ]^ =~ áà= ~ ON ~ OO K ~ Oå ==
M
M M
~ ãN
~ãO K ~ ãå
=
526. pèì~êÉ=ã~íêáñ=áë=~=ã~íêáñ=çÑ=çêÇÉê= å × å K==
=
[ ]527. ^=ëèì~êÉ=ã~íêáñ== ~áà ==áë==ëóããÉíêáÅ==áÑ== ~áà = ~àá I==áKÉK==áí==áë=
ëóããÉíêáÅ=~Äçìí=íÜÉ=äÉ~ÇáåÖ=Çá~Öçå~äK==
=
[ ]528. ^=ëèì~êÉ=ã~íêáñ= ~áà =áë=ëâÉï-ëóããÉíêáÅ=áÑ= ~áà = −~àá K==
=
110
CHAPTER 5. MATRICES AND DETERMINANTS
529. aá~Öçå~ä=ã~íêáñ==áë==~=ëèì~êÉ==ã~íêáñ=ïáíÜ=~ää==ÉäÉãÉåíë==òÉêç=
ÉñÅÉéí=íÜçëÉ=çå=íÜÉ=äÉ~ÇáåÖ=Çá~Öçå~äK==
=
530. råáí=ã~íêáñ==áë==~=Çá~Öçå~ä==ã~íêáñ==áå=ïÜáÅÜ=íÜÉ=ÉäÉãÉåíë=çå=
íÜÉ=äÉ~ÇáåÖ=Çá~Öçå~ä=~êÉ=~ää=ìåáíóK=qÜÉ=ìåáí=ã~íêáñ=áë===========
ÇÉåçíÉÇ=Äó=fK==
=
531. ^=åìää=ã~íêáñ=áë=çåÉ=ïÜçëÉ=ÉäÉãÉåíë=~êÉ=~ää=òÉêçK=
=
=
=
5.4 Operations with Matrices
=
532. qïç=ã~íêáÅÉë=^=~åÇ=_=~êÉ=Éèì~ä=áÑI=~åÇ=çåäó=áÑI=íÜÉó=~êÉ=ÄçíÜ=
çÑ==íÜÉ==ë~ãÉ==ëÜ~éÉ== ã × å ==~åÇ=ÅçêêÉëéçåÇáåÖ=ÉäÉãÉåíë=~êÉ=
Éèì~äK=
=
533. qïç=ã~íêáÅÉë==^=~åÇ=_==Å~å=ÄÉ=~ÇÇÉÇ=Eçê=ëìÄíê~ÅíÉÇF=çÑI=~åÇ=
çåäó=áÑI=íÜÉó=Ü~îÉ=íÜÉ=ë~ãÉ=ëÜ~éÉ= ã × å K=fÑ==
~NN ~NO K ~Nå
[ ]^ =~ áà= ~ ON ~ OO K ~ Oå I==
M
M M
~ ãN
~ãO K ~ ãå
ÄNN ÄNO K ÄNå
[ ]_ =Äáà= ÄON ÄOO K ÄOå I==
M
M M
ÄãN
ÄãO K Äãå
=
=
=
=
=
111
CHAPTER 5. MATRICES AND DETERMINANTS
íÜÉå==
~NN + ÄNN ~NO + ÄNO K ~Nå + ÄNå
^ + _ = ~ ON + ÄON ~OO + ÄOO K ~Oå + ÄOå K=
M M M
~ãN + ÄãN
~ãO + ÄãO K ~ ãå + Äãå
=
[ ]534. fÑ=â=áë=~=ëÅ~ä~êI=~åÇ= ^ = ~áà =áë=~=ã~íêáñI=íÜÉå=
â~NN â~NO K â~Nå
[ ]â^ = â~ ON â~ OO K â~ Oå
â~ áà = M K=
M M
â~ ãN
â~ ã O K â~ ãå
=
535. jìäíáéäáÅ~íáçå=çÑ=qïç=j~íêáÅÉë=
qïç= ã~íêáÅÉë= Å~å= ÄÉ= ãìäíáéäáÉÇ= íçÖÉíÜÉê= çåäó= ïÜÉå= íÜÉ=
åìãÄÉê= çÑ= Åçäìãåë= áå= íÜÉ= Ñáêëí= áë= Éèì~ä= íç= íÜÉ= åìãÄÉê= çÑ=
êçïë=áå=íÜÉ=ëÉÅçåÇK==
=
fÑ=
~NN ~NO K ~Nå
[ ]^ =~ áà = ~ ON ~ OO K ~ Oå I==
M
M M
~ ãN
~ãO K ~ ãå
ÄNN ÄNO K ÄNâ
[ ]_ =Äáà = ÄON ÄOO K ÄOâ I=
M
M M
ÄåN
ÄåO K Äåâ
=
=
=
=
=
112
CHAPTER 5. MATRICES AND DETERMINANTS
íÜÉå==
ÅNN ÅNO K ÅNâ
^_ = ` = Å ON Å OO K Å Oâ I==
M M M
ÄãN
ÅãO K Å ãâ
ïÜÉêÉ==
å
∑Åáà = ~ ÄáN Nà + ~áOÄOà + K + ~áåÄåà = ~á λÄλ à =
λ =N
E á = NI OIKI ã X à = NI OIKI â FK==
=
qÜìë=áÑ=
[ ] [ ]^ = ~NN ~NO ~ ÄN
~ ON ~ OO ~ ÄO
~ áà = NP I= _ = Äá = I==
OP
ÄP
íÜÉå==
^_ = ~NN ~NO ~NP ⋅ ÄN = ~NNÄN ~NOÄO ~NPÄP K==
~ ON ~ OO ~ OP ÄO ~ ONÄN ~ OO ÄO ~ OP ÄP
ÄP
=
536. qê~åëéçëÉ=çÑ=~=j~íêáñ=
fÑ=íÜÉ=êçïë=~åÇ=Åçäìãåë=çÑ=~=ã~íêáñ=~êÉ=áåíÉêÅÜ~åÖÉÇI=íÜÉå=
íÜÉ=åÉï=ã~íêáñ=áë=Å~ääÉÇ=íÜÉ=íê~åëéçëÉ=çÑ=íÜÉ=çêáÖáå~ä=ã~íêáñK===
fÑ= ^= áë= íÜÉ= çêáÖáå~ä= ã~íêáñI= áíë= íê~åëéçëÉ= áë= ÇÉåçíÉÇ= ^q = çê=
^ú K==
=
537. qÜÉ=ã~íêáñ=^=áë=çêíÜçÖçå~ä=áÑ= ^^q = f K==
=
538. fÑ=íÜÉ=ã~íêáñ=éêçÇìÅí=^_=áë=ÇÉÑáåÉÇI=íÜÉå==
(^_)q = _q^q K=
=
=
113
CHAPTER 5. MATRICES AND DETERMINANTS
539. ^Çàçáåí=çÑ=j~íêáñ=
fÑ=^=áë=~=ëèì~êÉ= å × å ã~íêáñI=áíë=~ÇàçáåíI=ÇÉåçíÉÇ=Äó= ~Çà ^ I=
áë=íÜÉ=íê~åëéçëÉ=çÑ=íÜÉ=ã~íêáñ=çÑ=ÅçÑ~Åíçêë= `áà =çÑ=^W=
[ ]~Çà ^ = `áà q K==
=
540. qê~ÅÉ=çÑ=~=j~íêáñ=
fÑ= ^= áë= ~= ëèì~êÉ= å × å ã~íêáñI= áíë= íê~ÅÉI= ÇÉåçíÉÇ= Äó= íê ^ I= áë=
ÇÉÑáåÉÇ=íç=ÄÉ==íÜÉ=ëìã=çÑ==íÜÉ=íÉêãë=çå=íÜÉ=äÉ~ÇáåÖ=Çá~Öçå~äW=
íê ^ = ~NN + ~OO + K + ~åå K=
=
541. fåîÉêëÉ=çÑ=~=j~íêáñ=
fÑ=^=áë=~=ëèì~êÉ= å × å ã~íêáñ=ïáíÜ=~=åçåëáåÖìä~ê=ÇÉíÉêãáå~åí=
ÇÉí ^ I=íÜÉå=áíë=áåîÉêëÉ= ^−N =áë=ÖáîÉå=Äó=
^−N = ~Çà ^ K=
ÇÉí ^
=
542. fÑ=íÜÉ=ã~íêáñ=éêçÇìÅí=^_=áë=ÇÉÑáåÉÇI=íÜÉå==
(^_)−N = _−N^−N K=
=
543. fÑ==^==áë=~=ëèì~êÉ=== å × å ==ã~íêáñI==íÜÉ==ÉáÖÉåîÉÅíçêë==u===ë~íáëÑó=
íÜÉ=Éèì~íáçå=
^u = λu I==
ïÜáäÉ=íÜÉ=ÉáÖÉåî~äìÉë= λ =ë~íáëÑó=íÜÉ=ÅÜ~ê~ÅíÉêáëíáÅ=Éèì~íáçå=
^ − λf = M K===
=
=
=
5.5 Systems of Linear Equations
=
=
s~êá~ÄäÉëW=ñI=óI=òI= ñN I= ñO IK=
oÉ~ä=åìãÄÉêëW= ~N I ~ O I ~P I ÄN I ~NN I ~NO IK=
114
CHAPTER 5. MATRICES AND DETERMINANTS
aÉíÉêãáå~åíëW=aI= añ I= aó I= aò ==
j~íêáÅÉëW=^I=_I=u=
=
=
544. ~~NOññ + ÄNó = ÇN I==
+ ÄOó = ÇO
ñ = añ I= ó = aó =E`ê~ãÉê∞ë=êìäÉFI==
aa
ïÜÉêÉ==
a = ~N ÄN = ~NÄO − ~OÄN I==
~O ÄO
añ = ÇN ÄN = ÇNÄO − ÇOÄN I==
ÇO ÄO
aó = ~N ÇN = ~NÇO − ~OÇN K==
~O ÇO
=
545. fÑ= a ≠ M I=íÜÉå=íÜÉ=ëóëíÉã=Ü~ë=~=ëáåÖäÉ=ëçäìíáçåW==
ñ = añ I= ó = aó K=
aa
fÑ= a = M = ~åÇ= añ ≠ M Eçê= aó ≠ M FI= íÜÉå= íÜÉ= ëóëíÉã= Ü~ë= = åç==
ëçäìíáçåK=
fÑ= a = añ = aó = M I= íÜÉå= íÜÉ= ëóëíÉã= Ü~ë= = áåÑáåáíÉäó= = ã~åó==
ëçäìíáçåëK=
=
546. ~~NOññ + ÄNó + ÅNò = ÇN= I==
+ ÄOó + ÅOò = ÇO
~Pñ + ÄPó + ÅPò = ÇP
ñ = añ I= ó = aó I= ò = aò =E`ê~ãÉê∞ë=êìäÉFI==
a aa
=
115
CHAPTER 5. MATRICES AND DETERMINANTS
ïÜÉêÉ==
~N ÄN ÅN ÇN ÄN ÅN
a = ~O ÄO ÅO I= añ = ÇO ÄO ÅO I=
~P ÄP ÅP ÇP ÄP ÅP
~N ÇN ÅN ~N ÄN ÇN
aó = ~O ÇO ÅO I= aò = ~O ÄO ÇO K==
~P ÇP ÅP ~P ÄP ÇP
=
547. fÑ= a ≠ M I=íÜÉå=íÜÉ=ëóëíÉã=Ü~ë=~=ëáåÖäÉ=ëçäìíáçåW==
ñ = añ I= ó = aó I= ò = aò K=
a aa
fÑ= a = M =~åÇ= añ ≠ M Eçê= aó ≠ M =çê= aò ≠ M FI=íÜÉå=íÜÉ=ëóëíÉã=
Ü~ë=åç=ëçäìíáçåK=
fÑ= a = añ = aó = aò = M I= íÜÉå= íÜÉ= ëóëíÉã= Ü~ë= áåÑáåáíÉäó=
ã~åó=ëçäìíáçåëK=
=
548. j~íêáñ=cçêã=çÑ=~=póëíÉã=çÑ=å=iáåÉ~ê=bèì~íáçåë=áå=================
å=råâåçïåë=
qÜÉ=ëÉí=çÑ=äáåÉ~ê=Éèì~íáçåë==
~NNñN + ~NOñ O + K + ~Nåñ å = ÄN
K~ONKñNK+K~OOKñOK+KKK+K~OåKñKå =KÄO =
~åNñN + ~åOñ O + K + ~ååñ å = Äå
Å~å=ÄÉ=ïêáííÉå=áå=ã~íêáñ=Ñçêã=
~NN ~NO K ~Nå ñN ÄN
~ ON ~ OO K ~ Oå ñO ÄO
⋅ = I==
M M M M M
~ åN ~ åO K ~ åå ñå Äå
áKÉK==
^ ⋅ u = _ I==
116
CHAPTER 5. MATRICES AND DETERMINANTS
ïÜÉêÉ==
~NN ~NO K ~Nå ñN ÄN
~ ON ~ OO K ~ Oå ñO ÄO
^ = K I= u = I= _ = K==
M M M M M
~ åN ~åO ~ åå ñå Äå
=
549. pçäìíáçå=çÑ=~=pÉí=çÑ=iáåÉ~ê=bèì~íáçåë= å × å =
u = ^−N ⋅ _ I==
ïÜÉêÉ= ^−N =áë=íÜÉ=áåîÉêëÉ=çÑ=^K=
=
=
117
Chapter 6
Vectors
=
=
=
=
sÉÅíçêëW= ìr I= îr I= ìrïr I= rêîr → I=£=
sÉÅíçê=äÉåÖíÜW= I=
I= ^_
I=£=
kråìáääí==îîÉÉÅÅííççêêWë=WMr= rá= I= rà I= âr =
`ççêÇáå~íÉë=çÑ=îÉÅíçê= ìîrr W= uN I vNI wN =
W= uO I vO I wO =
`ççêÇáå~íÉë=çÑ=îÉÅíçê=
pÅ~ä~êëW= λ I µ =
aáêÉÅíáçå=ÅçëáåÉëW= Åçë α I= Åçëβ I= Åçë γ =
^åÖäÉ=ÄÉíïÉÉå=íïç=îÉÅíçêëW= θ =
=
=
6.1 Vector Coordinates
=
550. rârrráà ==å=á(((íNMM=IsIIMNMÉIIIÅMMNí))ç)IIIê===ë=
rá = rà = âr = NK=
= rá rà âr
551. rê = → = (ñ N − ñ M ) + (ó N − ó M ) + (òN − òM ) =
^_
=
118
CHAPTER 6. VECTORS
======= =
=
= Figure 73.
552. rê = → = (ñN − )ñM O + (óN − )óM O + (òN − òM )O =
^_
=
553. fÑ= → = rê I=íÜÉå= → = − rê K=
^_ _^
=
= =
554. u = rê Åçëα I=
Figure 74.
v = rê Åçëβ I=
w = rê Åçë γ K= =
119
CHAPTER 6. VECTORS
===== =
=
Figure 75.
555. = rê (uI v I w) = rêN (uN I vN I wN ) I=íÜÉå==
fÑ=
u = uNI= v = vN I= w = wN K==
==
=
6.2 Vector Addition
556. =ïr = ìr + îr =
=
== =
=
Figure 76.
120
CHAPTER 6. VECTORS
== =
=
Figure 77.
557. =ïr = ìrN + ìr O + ìrP +K + ìr å =
=
== =
=
Figure 78.
=
558. `ìr ç+ãîrã=ìîrí+~íìárî=É=i~ï=
=
559. ^(ìrëë+çîrÅá)~+íáïîrÉ==iìr~ï+=(îr + ïr )=
560. =ìr + îr = (uN + uO I vN + vO I wN + wO )=
=
=
=
=
=
=
121
CHAPTER 6. VECTORS
6.3 Vector Subtraction
561. =ïr = ìr − îr =áÑ= îr + ïr = ìr K=
=
=
=
Figure 79.
=
== =
=
Figure 80.
562. =ìr − îr = ìr + (− îr )=
563. =ìr − ìr = Mr = (MI MI M)=
564. = Mr = M =
565. =ìr − îr = (uN − uO I vN − vO I wN − wO )I==
=
=
=
6.4 Scaling Vectors
566. =ïr = λìr =
122
CHAPTER 6. VECTORS
= =
567. = ïr = λ ⋅ ìr =
Figure 81.
568. =λìr = (λuI λvI λw) =
569. =λìr = ìrλ =
570. = + µ) ìr = λìr + µìr =
(λ
571. =λ(µìr ) = µ(λìr ) = (λµ)ìr =
572. =λ(ìr + îr ) = λìr + λîr =
=
=
=
6.5 Scalar Product
573. = ìr =~åÇ îr =
pìrÅ⋅~îrä~=ê=ìmrê⋅çîrÇì⋅ ÅÅçí=ëçθÑ=sI==ÉÅíçêë=
ïÜÉêÉ= θ =áë=íÜÉ=~åÖäÉ=ÄÉíïÉÉå=îÉÅíçêë= ìr =~åÇ îr K====
=
123
CHAPTER 6. VECTORS
= ==
Figure 82.
=
574. pfìrÑÅ=⋅~ìîrrä~==ê=(umuNêNuçIÇOvì+NIÅvwí=NNávå)OI==`+îrçw=çNê(wÇuOáOåK=I~víÉO I=cwçOê)ãI=í=ÜÉå==
=
575. f^Ñå= ìrÖä=É=(_uÉNíIïvÉNÉIåw=Nq)ïI=çîr=s=É(uÅíOçIêvë=O=I wO ) I=íÜÉå==
Åçëθ = uNuO + vNvO + wNwO K=
uNO + vNO + wNO u O + vOO + wOO
O
=
576. `ìr ç⋅ îrã=ãîrì⋅íìr~í=áîÉ=mêçéÉêíó=
=
577. ^(λëìrëç)⋅Å(áµ~îírá)î=É=mλµêçìré⋅Éîrêí=ó=
=
578. aìr ⋅áë(îírê+áÄïìrí)á=îÉìr=m⋅êîrç+éÉìrê⋅íïór= =
=
579. ìr ⋅ îr = M =áÑ= ìr I îr =~êÉ=çêíÜçÖçå~ä=E θ = π FK=
O
=
580. ìr ⋅ îr > M =áÑ= M < θ < π K=
O
=
124
CHAPTER 6. VECTORS
581. ìr ⋅ îr < M =áÑ= π < θ < π K=
O
582. =ìr ⋅ îr ≤ ìr ⋅ îr =
583. =ìr ⋅ îr = ìr ⋅ îr =áÑ= ìr I îr =~êÉ=é~ê~ääÉä=E θ = M FK=
584. = ìr = (uN I vN I wN ) I=íÜÉå==
fÑ=
ìr ⋅ ìr = ìr O = ìr O = uNO + vNO + wNO K=
585. =rá ⋅ rá = rà ⋅ rà = âr ⋅ âr = N=
586. =rá ⋅ rà = rà ⋅ âr = âr ⋅ rá = M =
=
=
=
6.6 Vector Product
587. = ìr =~åÇ îr =
sìr ×ÉÅîríç=ê=ïmr êIç=ïÇÜìÉÅêíÉ=ç==Ñ=sÉÅíçêë=
• ïr = ìr ⋅ îr ⋅I=ëîrá~ååI=θÇïr=I=ïïr=ÑçÜ⊥êÉãêîrÉ=X=~=M=ê≤áÖθÜ≤í-ÜπO~Xå= ÇÉÇ=ëÅêÉïK=
• ïr ⊥ ìr = ìr
• =sÉÅíçêë=
=
125
CHAPTER 6. VECTORS
======= =
=
Figure 83.
= rá rà âr
588. ïr = ìr × îr = uN vN wN =
uO vO wO
=
589. ïr = ìr × îr = vN wN I − uN wN I uN vN =
vO wO uO wO uO vO
590. = = ìr × îr = ìr ⋅ îr ⋅ ëáå θ =EcáÖKUPF=
p
=
591. ^ëáååÖθäÉ==_ììrrÉí×⋅ïîîrrÉÉ=å=qïç=sÉÅíçêë=EcáÖKUPF=
=
592. kìr ×çåîrÅ=çã−(ãîr ×ìíìr~)íá==îÉ=mêçéÉêíó=
=
593. ^(λëìrëç)×Åá(~µíîárî)É==mλêµçìérÉ×êîíró==
=
=
126
CHAPTER 6. VECTORS
594. aìr ×áë(íîrêá+Äìïríá)î=É=ìrm×êçîré+Éêìríó×= ïr =
595. =ìr × îr = Mr =áÑ= ìr =~åÇ= îr =~êÉ=é~ê~ääÉä=E θ = M FK=
596. =rá × rá = rà × rà = âr × âr = Mr =
597. =rá × rà = âr I= rà × âr = rá I= âr × rá = rà =
=
=
=
6.7 Triple Product
=
598. [pìrÅîr~ïär~]ê==qìrêá⋅é(äîrÉ×=mïêrç)Ç=ìîrÅí⋅=(ïr × ìr ) = ïr ⋅ (ìr × îr ) =
599. =[ìrîrïr ]= [ïr ìrîr]= [îrïr ìr]= −[îrìrïr ]= −[ïr îrìr]= −[ìrïr îr]=
600. =âìr ⋅(îr × ïr ) = â[ìrîrïr ]=
=
601. pÅ~ä~ê=qêáéäÉ=mêçÇìÅí=áå=`ççêÇáå~íÉ=cçêã=
ìr ⋅ (îr × ïr ) = uN vN wN
uO vO wO I==
uP vP wP
ïìr Ü=É(êuÉ=N=I vNI wN)I= îr = (uO I vO I wO ) I= ïr = (uP I vP I wP ) K==
=
602. ssç=äììrã⋅É(îr=ç×Ñ=ïmr~)ê=~ääÉäÉéáéÉÇ=
=
127
CHAPTER 6. VECTORS
============ =
=
Figure 84.
=
603. sçäìãÉ=çÑ=móê~ãáÇ=
s = N ìr ⋅(îr × ïr ) =
S
=
=
=
Figure 85.
604. =fÇÑÉ==éìrÉ⋅å(ÇîrÉ×åïír=I)=ë=çM= ïrI=í=ÜÉλåìr=í+Üɵ=îrîÉ=ÑÅçíçê=êëëç==ãìrÉI==ëîrÅ~I=ä~~åêÇë==λïr=~=~åêÇÉ==äµáåK=É= ~êäó=
605. = ìr ⋅ (îr × ïr ) ≠ M I=íÜÉå=íÜÉ=îÉÅíçêë== ìr I= îr I=~åÇ= ïr =~êÉ=äáåÉ~êäó=
fÑ==
áåÇÉéÉåÇÉåíK=
=
128
CHAPTER 6. VECTORS
606. sìr ×ÉÅ(íîrç×ê=qïrê)á=éä(Éìr=m⋅êïrç)Çîrì−Åí(=ìr ⋅ îr )ïr ==
=
=
=
=
=
=
=
=
129
Chapter 7
Analytic Geometry
=
=
=
=
7.1 One-Dimensional Coordinate System
=
mçáåí=ÅççêÇáå~íÉëW= ñM I= ñN I= ñO I= óM I= óN I= óO =
oÉ~ä=åìãÄÉêW= λ ==
aáëí~åÅÉ=ÄÉíïÉÉå=íïç=éçáåíëW=Ç=
=
=
607. aáëí~åÅÉ=_ÉíïÉÉå=qïç=mçáåíë=
Ç = ^_ = ñO − ñN = ñN − ñO =
=
=
=
Figure 86.
=
608. aáîáÇáåÖ=~=iáåÉ=pÉÖãÉåí=áå=íÜÉ=o~íáç= λ =
ñM = ñN + λñO I= λ = ^` I= λ ≠ −NK=
N+ λ `_
=
======== =
=
Figure 87.
130
CHAPTER 7. ANALYTIC GEOMETRY
609. jáÇéçáåí=çÑ=~=iáåÉ=pÉÖãÉåí=
ñM = ñN + ñO I= λ = N K=
O
=
=
=
7.2 Two-Dimensional Coordinate System
=
mçáåí=ÅççêÇáå~íÉëW= ñM I= ñN I= ñO I= óM I= óN I= óO =
mçä~ê=ÅççêÇáå~íÉëW= êI ϕ =
oÉ~ä=åìãÄÉêW= λ ==
mçëáíáîÉ=êÉ~ä=åìãÄÉêëW=~I=ÄI=ÅI==
aáëí~åÅÉ=ÄÉíïÉÉå=íïç=éçáåíëW=Ç=
^êÉ~W=p=
=
=
610. aáëí~åÅÉ=_ÉíïÉÉå=qïç=mçáåíë=
Ç = ^_ = (ñO − ñN )O + (óO − óN )O =
=
=
=
Figure 88.
131
CHAPTER 7. ANALYTIC GEOMETRY
611. aáîáÇáåÖ=~=iáåÉ=pÉÖãÉåí=áå=íÜÉ=o~íáç= λ =
ñM = ñN + λñO I= óM = óN + λóO I==
N+ λ N+ λ
λ = ^` I= λ ≠ −NK=
`_
=
======= =
=
Figure 89.
=
=
132
CHAPTER 7. ANALYTIC GEOMETRY
======= =
=
Figure 90.
=
612. jáÇéçáåí=çÑ=~=iáåÉ=pÉÖãÉåí=
ñM = ñN + ñO I= óM = óN + óO I= λ = N K=
O O
=
613. `ÉåíêçáÇ=EfåíÉêëÉÅíáçå=çÑ=jÉÇá~åëF=çÑ=~=qêá~åÖäÉ=
ñM = ñN + ñO + ñP I= óM = óN + óO + óP I==
P P
ïÜÉêÉ== ^(ñNIóN)I== _(ñO IóO )I==~åÇ== `(ñP I óP )==~êÉ=îÉêíáÅÉë=çÑ=
íÜÉ=íêá~åÖäÉ= ^_` K= =
=
133
CHAPTER 7. ANALYTIC GEOMETRY
========= =
=
Figure 91.
=
614. fåÅÉåíÉê=EfåíÉêëÉÅíáçå=çÑ=^åÖäÉ=_áëÉÅíçêëF=çÑ=~=qêá~åÖäÉ=
ñM = ~ñN + Äñ O + ÅñP I= óM = ~óN + ÄóO + ÅóP I==
~+Ä+Å ~+Ä+Å
ïÜÉêÉ= ~ = _` I= Ä = `^ I= Å = ^_ K==
=
======== =
=
Figure 92.
134
CHAPTER 7. ANALYTIC GEOMETRY
615. `áêÅìãÅÉåíÉê=EfåíÉêëÉÅíáçå=çÑ=íÜÉ=páÇÉ=mÉêéÉåÇáÅìä~ê======================
_áëÉÅíçêëF=çÑ=~=qêá~åÖäÉ=
ñ O + ó O óN N ñN ñ O + óNO N
N N N
ñ O + ó O óO N ñO ñ O + ó O N
O O O O
ñM = ñ O + ó O óP N ñP ñ O + ó O N
P P óN N I= óM = P P N=
ñN ñN óN
O ñO óO N O ñO óO N
ñP óP N ñP óP N
=
======== =
==
Figure 93.
=
=
=
=
=
=
=
135
CHAPTER 7. ANALYTIC GEOMETRY
616. lêíÜçÅÉåíÉê=EfåíÉêëÉÅíáçå=çÑ=^äíáíìÇÉëF=çÑ=~=qêá~åÖäÉ=
óN ñ OñP + óNO N ñNO + óOóP ñN N
N
óO ñPñN + ó O N ñ O + óPóN ñO N
O O
=
ñM = óP ñNñ O + ó O N ñ O + óNóO ñP
P I= óM = P N
ñN óN N ñN óN
ñO óO N ñO óO N
ñP óP N ñP óP N
=
====== =
=
Figure 94.
=
617. ^êÉ~=çÑ=~=qêá~åÖäÉ=
N ñN óN N N ñO − ñN óO − óN =
O ñO óO O ñP − ñN óP − óN
p = (±) ñP óP N = (±)
N
=
=
=
136
CHAPTER 7. ANALYTIC GEOMETRY
618. ^êÉ~=çÑ=~=nì~Çêáä~íÉê~ä=
p = (±) N [(ñN − ñ O )(óN + ó O ) + (ñ O − ñ P )(ó O + óP ) + =
O
+ (ñP − ñQ )(óP + óQ )+ (ñQ − ñN)(óQ + óN)] =
=
=== =
=
Figure 95.
=
kçíÉW=få=Ñçêãìä~ë=SNTI=SNU=ïÉ=ÅÜççëÉ=íÜÉ=ëáÖå=EHF=çê=E¥F=ëç=
íÜ~í=íç=ÖÉí=~=éçëáíáîÉ=~åëïÉê=Ñçê=~êÉ~K==
=
619. aáëí~åÅÉ=_ÉíïÉÉå=qïç=mçáåíë=áå=mçä~ê=`ççêÇáå~íÉë=
Ç = ^_ = êNO + êOO − OêNêO Åçë(ϕO − ϕN ) =
=
137
CHAPTER 7. ANALYTIC GEOMETRY
=
=
Figure 96.
=
620. `çåîÉêíáåÖ=oÉÅí~åÖìä~ê=`ççêÇáå~íÉë=íç=mçä~ê=`ççêÇáå~íÉë=
ñ = ê Åçë ϕ I= ó = ê ëáå ϕ K=
=
=
=
Figure 97.
=
621. `çåîÉêíáåÖ=mçä~ê=`ççêÇáå~íÉë=íç=oÉÅí~åÖìä~ê=`ççêÇáå~íÉë=
ê = ñO + óO I= í~å ϕ = ó K=
ñ
138
CHAPTER 7. ANALYTIC GEOMETRY
7.3 Straight Line in Plane
=
mçáåí=ÅççêÇáå~íÉëW=uI=vI=ñI= ñM I= ñN I== óM I= óN I= ~N I= ~O I=£==
oÉ~ä=åìãÄÉêëW=âI=~I=ÄI=éI=íI=^I=_I=`I= ^N I= ^O I=£=
^åÖäÉëW= α I= β =
km^çåçëÖêáãäíÉáç=~ÄåäÉ=î=íîïÉÉÅÉÅííÉççåêê=Wíë=ïåWr= çrê= =Iä=á~råIÉ=ëÄrW==ϕ =
=
=
622. dÉåÉê~ä=bèì~íáçå=çÑ=~=píê~áÖÜí=iáåÉ=
^ñ + _ó + ` = M =
=
623. kqÜçÉê=ãîÉ~Åäí=sçêÉ=Ååríç(^ê=Ií_ç=)~==ápëí=åê~çáêÖãÜí~=äi=íáçå=Éí=ÜÉ=äáåÉ= ^ñ + _ó + ` = M K=
=
=
=
Figure 98.
=
624. bñéäáÅáí=bèì~íáçå=çÑ=~=píê~áÖÜí=iáåÉ=EpäçéÉ-fåíÉêÅÉéí=cçêãF=
ó = âñ + Ä K==
139
CHAPTER 7. ANALYTIC GEOMETRY
qÜÉ=Öê~ÇáÉåí=çÑ=íÜÉ=äáåÉ=áë= â = í~å α K=
=
= =
= Figure 99.
625. dê~ÇáÉåí=çÑ=~=iáåÉ==
â = í~å α = óO − óN =
ñO − ñN
=
=
=
Figure 100.
140