ƿǏǣLJǕ ː LJǝ ː džnj ˜ ǨǔǦǜǐ ˑ Ƭ ˜ ƽ ː dž ǁǏ ˱ ǃˠǏˠǏˎDžLj˚ ǪƮ ː LjǩƮǚ ǘdždž ˢ ˑ ǰ
ƿǏǣLJǕ ː LJǝ ː džnj ˜ ǨǔǦǜǐ ˑ Ƭ ˜ ƽ ː dž ƿǏǣLJǕ ː LJǝ ː džnj ˜ ȿ ƿ˳˒ǡ ː džǂ ː ǖ ȿ ǚǔƿ ˳ ljƿǣǍ ˜ DŽ ˤ ǧƾ ˤ Ǚdž ȿ ƿǏǣLJǕ ː LJǝ ː džnj ˜ ȿ ǫǂǧLJdžǨǔǦǧǍdžǎ ˜ ȿ ƿǏǣLJǞLJǣǙƻǡǐǜǐ ˑ Ƭ ˜ ƽ ː dž ȿ ƬǣǍǪƽ ˔ǜǐ ˑ Ƭ ˜ ƽ ː džǪdžƽ ˤ Ǐ ˢ ǃǎǍ ˢ ǐ ȿ ƬǍǣǜƻǡǐǜǐ ˑ Ƭ ˜ ƽ ː dž ȿ ƬǣǍǂ˪ǣǧdž ˢ džƬǣǍƻǡǐǜǐ ˑ Ƭ ˜ ƽ ː dž ȿ ǜǐ ˑ Ƭ ˜ ƽ ː džǚƬǚ ː dž ǜǐ ˑ Ƭ ˜ ƽ ː dž
ǁǑǥljǗˎljǟˎLjǎ˚dž ˢˑDŽ ˢ ljˎLjDž˒ǣǒƯ ˱ Ʈdž ˢˑǪǖǨƯ ˱ ƮǩǑǖǥ ǁǑǥljǗˎljǟˎLjǎ˚dž ˢˑ ǫlj ː ƿˎDŽǩǐLjƮ ˝ lj ˢ ǁǑǥljǗ ˯ ƽDŽ ˢ LjǨ ǩǩDž ːǫlj ː LjǥLj ǯȪǯƿǏǣLJǕ ː LJǝ ː džnj˜
ƬǣǍǎ ː ǖƿ˳˒ǍǦǞǏ ˒ ǣǐǕ ˢ ˓ ǐƻǡǐǕǡǐǕ ˢ ˓ ǐDŽ ˤ LJ ˓ ˤ ƿǏǣLJǕ ː LJǝ ː džnj ˜ Ƭ ː džǧƻ ˤ ǙdžǨDŽdžǩǂ ˔ ǂ ˔ ǏǙ ȭƿ˳˒ǡ ː džǂ ː ǖȭ ƿ˲ˑǡ ˏ džǂ ˏ ǖ ȷpşôúş Òęşȸ ǧǗˠ džƬǣǍǎ ː ǖƿ˳˒Ǖ ˢ ˓ ǐƻǡǐǫǂǙƭ ˨ ǡǔ˪ǣǂ ː ǖǧǗˠ džǕ ˪ ǣƿ ː ƹ ǧƽ ˒ dž ƿ˳˒ǡ ː džǂ ː ǖ Òȥ í ǎǦǧƻ ˤ ǙdžǨDŽdžǂ ˔ ǏǙ ȷÒȤ íȸ ǧǍ ˤ ǙƬ Ò Ǐ ˒ ǣǧǗˠ džǕLJǣƽ ˢ Ƭǃ ː ǏǞdž ˔ ǣ ǨǔǦǧǍ ˤ ǙƬ í Ǐ ˒ ǣǧǗˠ džǕLJǣƽ ˢ Ƭǃ ː ǏǞǔ ː ǐ ƿǏǣLJǞLJǣǙƻǡǐƿǏǣLJǕ ː LJǝ ː džnj ˜
ƿ˲ˑǡ ˏ džǂ ˏ ǖ ȷÒȤ íȸ ɫ ȷîȤ ôȸ Ƭ ˞ ǃ ˑ ǡǧLJ ˧ ǡ ˒ Ò ɫ î ǨǔǦ í ɫ ô ǧLJ ˧ ǡ ˒ ÒȤ íȤ î ǨǔǦ ô ǧǗdž ˟ ǎ˩ǣdžǏdžǎǍ ˡ ǐǪǂ ɏ ǃ ː ǏǡǙ ˒ ǣǐDŽ ˤ ˓ ǯ ǪǞ ˔ȸdzȥ Òȹ ɬ ȸíȥ ȿDZȹ ǎǐǞǣ Ò ǨǔǦ í ǃ ː ǏǡǙ ˒ ǣǐDŽ ˤ ˓ ǰ ǪǞ ˔ȸƖ ɻ ǯ ȥ Dzȹ ɬ ȸDZȥ Ɨ ȿ ǰȹ ǎǐǞǣ ȸƖȥ Ɨȹ • ตนโชน So | "จากโจท) a-_ -3 b = 5 So F จากโจท) × + า = 3 และ 4 = y -2 y -2 = 4 × = 3- 1 m y = 4+2 x = 2 y = 6 • อ . ( × ุ y ) = ( 2,6 )
ǖDŽdž ˡ ǙǣLJ ǚǔƿ ˲ ljƿǣǍ ˛ DŽ ˣ ǧƾ ˣ Ǚdžƻǡǐǧƾǃ ǨǔǦǧƾǃ ƿ ˧ ǡ ǧƾǃƻǡǐƿ˲ˑǡ ˏ džǂ ˏ ǖ ȷÒȤ íȸ DŽ ˏ ǐ ˔ ǞLJǂ ǫǂǙDŽ ˤ ˓ Ò ǧǗˠ džǕLJǣƽ ˢ Ƭƻǡǐǧƾǃ ǨǔǦ í ǧǗˠ džǕLJǣƽ ˢ Ƭƻǡǐǧƾǃ ǚǔƿ ˳ ljƿǣǍ ˜ DŽ ˤ ǧƾ ˤ Ǚdžƻǡǐǧƾǃ ǨǔǦǧƾǃ ǧƻ ˤ ǙdžǨDŽdžǂ ˔ ǏǙ Ɩ ȸǡ ˒ ǣdžǏ ˒ ǣǧǡƿ ˳ ljǖ ˤȹ ǧƻ ˤ ǙdžǪdžǍ ˳ ǗǧƾǃǨǖǖǖǡƬǧǐ ˨ ǡ ˓ džǩƻǎǦǩǂ ˔ Ǐ ˒ ǣ Ɩ ɬ ȴ ȸÒȥ íȹ ʑ Ò ǨǔǦ í ȵ ǚǔƿ ˳ ljƿǣǍ ˜DŽˤǧƾ ˤ Ǚdž ȸÒşŰúŦęÒĸ ŜşłôŸîŰȹ • ←
ǃ ː ǏǡǙ ˒ ǣǐDŽ ˤ ˓ DZ ǎǐǞǣǚǔƿ ˳ ljƿǣǍ ˜ DŽ ˤ ǧƾ ˤ Ǚdžƻǡǐǧƾǃ ǨǔǦ ǃ ˒ ǡǩǗdž ˤ ˕ ǯȹ ɬ ȴǯȥ ǰȵ ǨǔǦ ɬ ȴƖȥ Ɨȥ Ơȵ ǃǡǖ ǰȹ ɬ ȴǯȥ DZȥ dzȵ ǨǔǦ ɬ ȴǰȥ Dzȥ Ǵȵ ǃǡǖ Ax B Ax B = {( 1 , × ) , ( 1,9 ) , ( 1,2) , ( 2 , × ) , ( 2 , Y ) , ( 2,2 ) } = = A × B = {( 1,2) , ( 1,4 ) , ( 1,6 ) , ( 3,2 ) , ( 3,4 ) , ( 3,6) , ( 5,2) , ( 5,4 ) , C 5 ู 6) }
ǃ ː ǏǡǙ ˒ ǣǐDŽ ˤ ˓ Dz Ƭ˪ǣǞdžǂ ɬ ȴÒȥ íȥ îȵ ǨǔǦ ɬ ȴDzȥ dzȵ ǎǐǞǣ ǯȹ Ɩ ǃǡǖ ǰȹ Ɩ ǃǡǖ ȠȠȠǎǣƬǃ ː ǏǡǙ ˒ ǣǐ ǎǦǧǞ ˟ džǏ ˒ ǣ Ɩ Ɩ = = Ax B = {( a , 4) ,เอา5) , ( b. 4) , Cb, 5) , CG 4) , ( c , 5)} B ×A = {( 4 , a) , ( 4 , b) , ( 4. C) , ( 5 , a) , ( 5 , b), ( 5. C) } t
ǧdž ˨ ˓ ǡǐǎǣƬƿǏǣLJǕ ː LJǝ ː džnj ˜ ƿ ˨ ǡǧƾǃƻǡǐƿ˳˒ǡ ː džǂ ː ǖDŽ ˤ ˓ ǕLJǣƽ ˢ Ƭǃ ː ǏǞdž ˔ ǣǨǔǦǕLJǣƽ ˢ Ƭ ǃ ː ǏǞǔ ː ǐLJ ˤ ƿǏǣLJǧƬ ˤ Ǚ ˓ Ǐƻ ˔ ǡǐƬ ː dž ǖǣǐǗǍǦƬǣǍ ǎ ˦ ǐǡǣǎƬǔ ˒ ǣǏ ǩǂ ˔ Ǐ ˒ ǣȪȪȪ ƿǏǣLJǕ ː LJǝ ː džnj ˜ ǧǗˠ džǕ ː ǖǧƾǃƻǡǐǚǔƿ ˳ ljƿǣǍ ˜ DŽ ˤ ǧƾ ˤ Ǚdž ƻǡǐ ǨǔǦ ǞǍ ˨ ǡǡǣǎǧƻ ˤ Ǚdžǩǂ ˔ Ǐ ˒ ǣ ş Ɩ ǧǍ ˤ ǙƬş Ǐ ˒ ǣ ƿǏǣLJǕ ː LJǝ ː džnj ˜ ǎǣƬ ǩǗ ǖDŽdž ˢ ǙǣLJ ş ǧǗˠ džƿǏǣLJǕ ː LJǝ ː džnj ˜ ǎǣƬ ǩǗ Ƭ ˟ ǃ ˒ ǡǧLJ ˨ ǡ ˓ ş ǧǗˠ džǕ ː ǖǧƾǃƻǡǐ Ɩ ƭ ˔ ǣ ş Ɩ Ǩǔ ˔ Ǐ ǧǍ ˤ ǙƬ ş Ǐ ˒ ǣƿǏǣLJǕ ː LJǝ ː džnj ˜ ǖdžǧƾǃ r mnnn ↳ Ax B rmnn A ×A
ǃ ː ǏǡǙ ˒ ǣǐDŽ ˤ ˓ dz ǪǞ ˔ ɬ ȴǯȥ DZȥ dzȥ ǵȵ ɬ ȴǰȥ Dzȥ Ǵȵ ǎǐǞǣƿǏǣLJǕ ː LJǝ ː džnj ˜ ǃ ˒ ǡǩǗdž ˤ ˕ ǯȹ ş ǧǗˠ džƿǏǣLJǕ ː LJǝ ː džnj ˜ȭdž ˔ ǡǙƬǏ ˒ ǣȭ ǎǣƬ ǩǗ A × 13 nvulhvnmrrrrnsoaosooarrrrnyacoe 1 = Sdt Ax B = {( 1,2) , ( 1,4) , ( 1,6 ) , ( 3,2) , [ 3,4) , ( 3,6) ( 5,2) , ( 5,4) , [ 5,6 ) , (7,2) , (7,4 ) , (7,61 } 1 = { (1,2) , ( 1,4) , ( 1,6 ) , ( 3,4 ) , C 3,6 ) , (5,6 ) } 4s เซต แบบ แจกแจง สมา7ก 1 = { Cx , งง EA × 13 | × < y } £ เซตแบบ บอก เ8อนไข
ǃ ː ǏǡǙ ˒ ǣǐDŽ ˤ ˓ dz ǪǞ ˔ ɬ ȴǯȥ DZȥ dzȥ ǵȵ ɬ ȴǰȥ Dzȥ Ǵȵ ǎǐǞǣƿǏǣLJǕ ː LJǝ ː džnj ˜ ǃ ˒ ǡǩǗdž ˤ ˕ ǰȹ ş ǧǗˠ džƿǏǣLJǕ ː LJǝ ː džnj ˜ȭLJǣƬƬǏ ˒ ǣȭ ǎǣƬ ǩǗ DZȹ ş ǧǗˠ džƿǏǣLJǕ ː LJǝ ː džnj ˜ȭǧDŽ ˒ ǣƬ ː ǖȭ ǎǣƬ ǩǗ Ax B So / " rz = {( 3,2) , ( 5,2) , ( 5,4 ) , ( 7,2) , ( 7,4) , ( 7,6 ) } ; = {( ข , y ) EA × B | × > y } S.lt rg = { cxm EA x B / × = y } rs = { } = ¢
ǃ ː ǏǡǙ ˒ ǣǐDŽ ˤ ˓ Ǵ ǪǞ ˔ ɬ ȴȿǰ ȥȿǯ ȥ Ǯȥ ǯȵ ɬ ȴǯȥ ǰȥ DZȥ Dzȥ dzȥ Ǵȵ ǎǐǞǣƿǏǣLJǕ ː LJǝ ː džnj ˜ ǃ ˒ ǡǩǗdž ˤ ˕ ǯȹ ş ǧǗˠ džƿǏǣLJǕ ː LJǝ ː džnj ˜ȭǚǔǍǏLJǧǗˠ dž ǵȭ ǎǣƬ ǩǗ ǰȹ ş ǧǗˠ džƿǏǣLJǕ ː LJǝ ː džnj ˜ȭǚǔǍǏLJǧǗˠ dž ǵȭ ǖdžǧƾǃ Sภื๊ 1 = {Cxig ) EA × B | × + y = 7 } 1 = { ! " " | . . . กะ { a. แ } B. × B. e-e-rs-n-n.rs Sol " rz = { Cny ) EB × B | × + y = 7} ำ = { ( 5,2) , ( 3,4) , ( 6,1 ) , ( 1,6 ) , ( 4,3 ) , ( 2,5 ) } B B B B
ǃ ː ǏǡǙ ˒ ǣǐDŽǖDŽǏdž ǪǞ ˔ ɬ ȴDZȥ dzȥ Ƕȥ ǯǮȵ ɬ ȴǰȥ Ǵȥ Ƿȵ ǎǐǞǣƿǏǣLJǕ ː LJǝ ː džnj ˜ ǃ ˒ ǡǩǗdž ˤ ˕ ǯȹ ş ǧǗˠ džƿǏǣLJǕ ː LJǝ ː džnj ˜ȭdž ˔ ǡǙƬǏ ˒ ǣȭ ǎǣƬ ǩǗ ǰȹ ş ǧǗˠ džƿǏǣLJǕ ː LJǝ ː džnj ˜ȭǚǔǍǏLJǧǗˠ džǎ˪ǣdžǏdžƿ˳˒ȭ ǖdžǧƾǃ @วหCา @วหDง Ax B 1 nrnnmr SoF 1 = {lxiy) EA × B | × < y } ำ = {13,6 ) , (3,9 ) , ( 5,6 ) , (5,9) , ( 8,9 )} @วหCา @วหDง - EF) × B × B 2 nrnn So / " rz - _ {C.× µ) EB × B | × + y เGน Hนวน I } 52 = {( 2,6 ) , ( 6,2) , ( 2,2 ) , ( 6,6 ) , ( 9,9 ) } B B
ƬǍǣǜƻǡǐƿǏǣLJǕ ː LJǝ ː džnj ˜ ǖDŽdž ˢ ǙǣLJ ǪǞ ˔ ş ǧǗˠ džǕ ː ǖǧƾǃƻǡǐ Ɩ ƬǍǣǜƻǡǐƿǏǣLJǕ ˏ LJǝ ˏ džnj ˛ ş ƿ ˧ ǡ ǧƾǃƻǡǐǎ ˰ ǂǖdžǍǦdžǣǖ DŽ ˣ Ǩ ˒ Ǖǂǐƿ˲ˑǡ ˏ džǂ ˏ ǖDŽ ˣ ǧ ˒ Ǘdž ˟ ǕLJǣƽ ˡ ƬƻǡǐƿǏǣLJǕ ˏ LJLJǝ ˏ džnj ˛ ş ǃ ː ǏǡǙ˒ǣǐ <Anx HนวนจJง HนวนจJง mr กา ฒึ๊ y = 2✗ • × -0 xy ใน < 5TIt.rs _% Nา | 2.2=2(1.1) ✓ ✓ ✓ ✓ ✓กทพ 2 ะ 2(1) 2.22 = 2 G.แ) ขนาน ตลอด ทาน sโไไTโDโง 4=2(2) { Q • • • •R๊S๋U" I Vแ, 2) • • • • • • 1 2 i • _ - . - 3-2-1 1 23
ǫǂǧLJdž ǨǔǦǧǍdžǎ ˜ ƻǡǐƿǏǣLJǕ ː LJǝ ː džnj ˜ Ƭ˪ǣǞdžǂ ş ɬ ȴȸǯȥdzȹ ȥ ȸǰȥǴȹ ȥ ȸDZȥǵȹ ȥ ȸDzȥǶȹ ȵ ǎǩǂ ˔ Ǐ ˒ ǣ ǫǂǧLJdž ǩǂ ˔ ǨƬ ˒ ǯȥ ǰȥ DZ ǨǔǦ Dz ǧǍdžǎ ˜ǩǂ ˔ ǨƬ ˒ dzȥ Ǵȥ ǵ ǨǔǦ Ƕ dž ː ƬǧǍ ˤ Ǚdžƿ ˢ ǂǏ ˒ ǣ ǫǂǧLJdž Ƭ ː ǖ ǧǍdžǎ ˜ ƿ ˨ ǡǡǦǩǍȫȫ ะ
ǫǂǧLJdž ǨǔǦǧǍdžǎ ˜ ƻǡǐƿǏǣLJǕ ː LJǝ ː džnj ˜ ǖDŽdž ˢ ǙǣLJ ǪǞ ˔ ş ǧǗˠ džǕLJǣƽ ˢ ƬƿǏǣLJǕ ː LJǝ ː džnj ˜ ǎǣƬ ǩǗ ǫǂǧLJdžƻǡǐ ş ƿ ˨ ǡ ǧƾǃƻǡǐǕLJǣƽ ˢ Ƭǃ ː ǏǞdž ˔ ǣƻǡǐƿ˳˒ǡ ː džǂ ː ǖDŽ ː ˕ ǐǞLJǂǪdž ş ǧǍdžǎ ˜ ƻǡǐ ş ƿ ˨ ǡ ǧƾǃƻǡǐǕLJǣƽ ˢ Ƭǃ ː ǏǞǔ ː ǐƻǡǐƿ˳˒ǡ ː džǂ ː ǖDŽ ː ˕ ǐǞLJǂǪdž ş ǫǂǧLJdžƻǡǐ ş ǧƻ ˤ ǙdžǧǧDŽdžǂ ˔ ǏǙ %ş ǨǔǦǧǍdžǎ ˜ ƻǡǐ ş ǧƻ ˤ ǙdžǧǧDŽdžǂ ˔ ǏǙ ş ǧƻ ˤ Ǚdž %ş ǨǔǦ ş ǪdžǍ ˳ ǗǧƾǃǨǖǖǖǡƬǧǐ ˨ ǡ ˓ džǩƻ ǎǦǩǂ ˔ Ǐ ˒ ǣ %ş ɬ ş ɬ { XEA | W ye B Xง Cxcy) Er} { y EB / W × EA Xง Cxiy ) Er}
ǪǞ ˔ ɬ ȴȿDZȥ ȿǰȥ ȿǯȥ Ǯȥ ǯȥ ǰȥ DZȵ ǨǔǦƬ˪ǣǞdžǂƿǏǣLJǕ ː LJǝ ː džnj ˜ ş ǖdžǧƾǃ ƿ ˨ ǡ ȴ ȸƖȥ Ɨȹ Ɩ ʑ Ɨ ɬ Ɩ ȵ ǎǐǞǣǫǂǧLJdžǨǔǦǧǍdžǎ ˜ ƻǡǐƿǏǣLJǕ ː LJǝ ː džnj ˜ dž ˤ ˕ ` ' ` '91; b ; b ( uc ญื๊ใ < wm rr พ 2 nrrnnococosrnoarnorrsn nnnr จาก y = × 2 SoF จากโจท) × =-3 y = c- 3า = g ¥( r = {C-1,1 ) , (0,0 ) , ( 1,1 )} × = -2 y = C-2Z = 4 สนาม C-2,4 ) × = -1 y = c-[= 1 ( -1,1 ) A A Dr = { - า , 0,1 } × = 0 y - - co Zะ 0 Co , อ ) × = 1 y = (1) 2ะ 1 C 1,1 ) Rr = { 1,0 } × = 2 y = 4 \ /%4) × =3 y = 9 \ ( 3 /µ )
ǪǞ ˔ ɬ ȴǯȥ ǰȥ DZȥ Dzȥ dzȵ ǨǔǦƬ˪ǣǞdžǂ ş ɬ ȴ ȸƖȥ Ɨȹ Ɩ ʑ Ɩ ɻ Ɨ ɬ Ǵ ȵ ǎǐǧƻ ˤ Ǚdž ş ǨǖǖǨǎƬǨǎǐǕLJǣƽ ˢ ƬǨǔǦǞǣǫǂǧLJdžǨǔǦǧǍdžǎ ˜ ƻǡǐƿǏǣLJǕ ː LJǝ ː džnj ˜ dž ˤ ˕ ` ' ` '91; b ; b ( uc ← nnrnrnnr Sภื๊ จากโจท) r = { C 1,5_ ) , ( 2 F) , ( 5 ญ ) , ( 3,32,14\ } Dr ะ { 1,2 , 3,4 , 5} Rr = { ำ 2,3 , 4,5}
ǪǞ ˔ ɬ ȴǯȥ ǰȥ DZȥ Dzȥ dzȵ ǨǔǦƬ˪ǣǞdžǂ ş ɬ ȴ ȸƖȥ Ɨȹ Ɩ ʑ Ɩ ɭ ǰ ǨǔǦ Ɨ ɬ DZ ȵ ǎǐǧƻ ˤ Ǚdž ş ǨǖǖǨǎƬǨǎǐǕLJǣƽ ˢ ƬǨǔǦǞǣǫǂǧLJdžǨǔǦǧǍdžǎ ˜ ƻǡǐƿǏǣLJǕ ː LJǝ ː džnj ˜ dž ˤ ˕ ` ' ` '91; b ; b ( uc ~ So F r = {( 3,3 ) , (4,3) , ( 5,3 ) } Dr = { 3 , 4,5 } Rr - - { 3 } #
ǵȪ ǎǐǞǣǫǂǧLJdžǨǔǦǧǍdžǎ ˜ ƻǡǐƿǏǣLJǕ ː LJǝ ː džnj ˜ ǃ ˒ ǡǩǗdž ˤ ˕ ǯȹ ş ɬ ȴȸȿDZȥǷȹȥ ȸȿǰȥDzȹȥ ȸȿǯȥǯȹȥ ȸǮȥǮȹȥ ȸǯȥǯȹȥ ȸǰȥDzȹȥ ȸDZȥǷȹȵ @..3 x x 6 ` ` Sd " Dr = {-3m - หาU ]้ - - Rr = { 9,4 าำ 0 }
@..3 x x 6 ` ` ǰȹ Ķ ɬ ȴȸƖȥ Ɨȹ Í Ɩ Í ʑ Ɨ ɬ Ɩ ȿ ǰ ȵ @วห_ @ว µ หDง เ × = -2 y = -2-2 = -4 onnrr nrn So F M = {. . . , ( -2, - 4) , (-1`3) , (a2) , ( 1,1) , ( 2,0) , (3,1 น . . . } × = -1 y = -1-2 = -3 nrnn Dm = {. . . , -2, - า , 0,1 , 2,3 . . . . } = Z × = o y = 0-2 = -2 ✗ = 1 y = 1-2 = -1 Rm = { . .. , -4, -3 , -2 , - า , อ .าะ . . . } = Z ✗ = 2 y = 2-2 = ๐ X =3 y ± 3-2 = 1
@..3 x x 6 ` ` DZȹ ĸ ɬ ȴȸƖȥ Ɨȹ ʑ Ɨ ɬ ǰ ȵ R × R ft ไc dด eง X t • :X เGนอะไร gไh So / " n = f. , (ร5 , iา) , ①ร 2), ⑤ E) , ( 10ำj2), . . . } Dn = R Rn = { }
@..3 x x 6 ` ` Dzȹ Ŝ ɬ ȴȸƖȥ Ɨȹ ʑ Ɨ ɬ Ɩ ɻ ǯ ȵ R × R g-_× 2 +1 t " × = -2 y = (- 2)ำ-1 = 4+1 = 5 P = { . . . , ( -2,5) , C-1,2) , (อ. 5,1 .25), (0,1 ) , (1,2) , (1.5,3. 25), . . . } × = -1 y = (- 1)2+1 = 1 + า = 2 X = -0.5 y =C-0.5ง+1 = 0.25+1=1.25 = Dp = R x - _ o y = k+1 = 0+1 = 1 × = 1 y = 12+1 = 1+1 = 2 Rp = [ 1 , จ ) × = 1.5 y = (1.5ง+1 = 2.25+1 = 3.25
@..3 x x 6 ` ` dzȹ Ş ɬ ȴȸƖȥ Ɨȹ Í Ɩ Í ʑ Ɨ ɬ ʑƖ ȿ ǰʑ ȵ @ y = | af lาสมmรn | -3| =3 / 3 / =3 Y = | × -2| * × =_ 2 y = | - 2-2| =/ -4| = 4 So F q = {. . . , (-2,4) , (-1,3) , ( ำ2) , (ำ11,12เอ ) , (3,1วะ . . . } ✗ = -1 y = | - 1-2| = | -3 | =3 × = ๐ y =/ o -2/ =/ -2 | = 2 Dq = {. . . . -2, - หา,นะ. . . . } = Z × = า y = | 1- 2| = 1-11 = 1 Rq = { . . . . 4,3,ำ1,0 } = NU {0 } ✗= 2 y = | 2-2/ = 101=0 ×=3 y = / 3-2/ = /11 = 1
@..3 x x 6 ` ` Ǵȹ Ű ɬ ȴȸƖȥ Ɨȹ ʑ Ɨ ɬ Ɩ ɻ ǰ ȵ Rx R y vX2-IFI.lu= ×= - า y = กZาง = โI _ - Sott = {. .. , (นก(อส2) , แรง) , (1.5, นง, (2 ,ก. . . } × = o y = FI = โo= E × = 1 y = าp+2Fh = iTu =ง Df = R × = 1.5 y = GTq2 = โนI= โo5 × = 2 y = เr+โI = FI = โ Rt - - [ Fi , ล)
@..3 x x 6 ` ` ǵȹ Ɛ ɬ ȴȸƖȥ Ɨȹ ʑ Ɨ ɬ ǯ ȿ Ɩ ȵ Rx R ใน ใน ระบบ HนวนจJง CR ) lาใน v5 t oาม sดลบ ** y = แ-✗FT × = - 2yiFTZ-F.IE/X=-1.5y--FtIZ-FIu'5T Dv = [-1,1 ] :÷: ÷÷:: × = - อ 5 y = FIIF-อ. น. - F.น " Rv = [ 0,1 ] × = า [ y _ - Ft = FT =รอ = ๐ " ✗ = 2Ry-ftnZFIT1.TT
Ƕȹ Ƒ ɬ ȴȸƖȥ Ɨȹ ʑ Ɨ ɬ ǯ ȵ Ɩ ȿ ǰ @..3 x x 6 ` ` Rx R ใน เศษvวน เ @วvวน oาม เGน 0 ¥ ⑤ Dw = R - { 2 } ☐ X -2 = Rw = R - { o } #
ƿǏǣLJǕ ː LJǝ ː džnj ˜ ǚƬǚ ː dž Ƭ˪ǣǞdžǂ ş ɬ ȴ ȸǯȥdzȹ ȥ ȸǰȥǴȹ ȥ ȸDZȥǵȹ ȥ ȸDzȥǶȹ ȵ ǎǦǩǂ ˔ Ǐ ˒ ǣ ƿǏǣLJǕ ː LJǝ ː džnj ˜ ǚƬǚ ː džƻǡǐ ş ƿ ˨ ǡ ȴ ȸdzȥǯȹ ȥ ȸǴȥǰȹ ȥ ȸǵȥDZȹ ȥ ȸǶȥDzȹ ȵ dž ː ƬǧǍ ˤ Ǚdžƿ ˢ ǂǏ ˒ ǣ ƿǏǣLJǕ ː LJǝ ː džnj ˜ ǚƬǚ ː dž ƿ ˨ ǡǡǦǩǍȫȫ ะ กด_
ǖDŽdž ˢ ǙǣLJ ǃ ː ǏǚƬǚ ː džƻǡǐƿǏǣLJǕ ː LJǝ ː džnj ˜ ş ƿ ˨ ǡƿǏǣLJǕ ː LJǝ ː džnj ˜ ƾ ˦ ǐ ˓ ǧƬ ˢ ǂǎǣƬ ƬǣǍǕǔ ː ǖDŽ ˤ ƻ ˓ ǡǐǕLJǣƽ ˢ Ƭǃ ː ǏǞdž ˔ ǣǨǔǦǕLJǣƽ ˢ Ƭǃ ː ǏǞǔ ː ƬǪdžǨǃ ˒ ǔǦƿ˳˒ǡ ː džǂ ː ǖ DŽ ˤ ǧ ˓ Ǘˠ džǕLJǣƽ ˢ Ƭƻǡǐ ş ǃ ː ǏǚƬǚ ː džƻǡǐƿǏǣLJǕ ː LJǝ ː džnj ˜ ş ǧƻ ˤ ǙdžǨDŽdžǂ ˔ ǏǙ ş ǧƻ ˤ Ǚdž ş ǪdžǍ ˳ ǗǧƾǃǨǖǖǖǡƬǧǐ ˨ ǡ ˓ džǩƻǩǂ ˔ ǂ ː ǐdž ˤ ˕ ş ɬ ǎǣƬǖDŽdž ˢ ǙǣLJ ƭ ˔ ǣ ş ǧǗˠ džƿǏǣLJǕ ː LJǝ ː džnj ˜ ǎǣƬ ǩǗ Ǩǔ ˔ Ǐ ş ǎǦǧǗˠ džƿǏǣLJǕ ː LJǝ ː džnj ˜ ǎǣƬ ǩǗ ƿǏǣLJǕ ː LJǝ ː džnj ˜ ǚƬǚ ː dž t - 1 - 1 - 1 { Cy , x ) EB × A | C × , y ) Er} - 1 =
ǎǐǞǣǃ ː ǏǚƬǚ ː džƻǡǐƿǏǣLJǕ ː LJǝ ː džnj ˜ ş ǝǍ ˔ ǡLJDŽ ː ˕ ǐǞǣǫǂǧLJdž ǨǔǦǧǍdžǎ ˜ ǧLJ ˨ ǡ ˓ Ƭ˪ǣǞdžǂǪǞ ˔ ş ɬ ȴ ȸǯȥǯȹ ȥ ȸDZȥǰȹ ȥ ȸǯȥDZȹ ȥ ȸDzȥǯȹ ȥ ȸǮȥȿǯȹ ȵ ` '` '91; b ; b ( u c u c - eze Sw๋ จากโจท) x = {( แว , ( 2,3 ) , ( 3,1) ,[1,4ำ C-เอง} Dr" = { 1. 2,3 , - เ } Ry ะ { 1,3, 4,0 }
ǎǐǞǣǃ ː ǏǚƬǚ ː džƻǡǐƿǏǣLJǕ ː LJǝ ː džnj ˜ ş ǧLJ ˨ ǡ ˓ Ƭ˪ǣǞdžǂǪǞ ˔ ş ɬ ȴ ȸƖȥƗȹ ʑ Ɨ ɬ Ɩ ɻ ǯ ȵ ` '` '91; b ; b ( u c u c Ǐ ˢ nj ˤ DŽ ˤ ˓ ǯ Sd" จาก r = { Cny า ly = ×+ า } ไh r " = { ly, × า ly = × + า 㱺 } ๆ {ด|ป เ~ยน ×ใน|ปของ y {ด|ป จะไh Ä = { Cy , × ) | Eny -1 } ] สDบ Å× Çบ x = y { cxip | y = × -1 }
ǎǐǞǣǃ ː ǏǚƬǚ ː džƻǡǐƿǏǣLJǕ ː LJǝ ː džnj ˜ ş ǧLJ ˨ ǡ ˓ Ƭ˪ǣǞdžǂǪǞ ˔ ş ɬ ȴ ȸƖȥƗȹ ʑ Ɨ ɬ Ɩ ɻ ǯ ȵ ` '` '91; b ; b ( u c u c Ǐ ˢ nj ˤ DŽ ˤ ˓ ǰ Sol " จาก กะ {cnygly = × + า } Rt É = { cx, g) | × = y + า } สDบÑ × Çบ y = = Ö = { cnyy | y = × -1 } {ด |ป เGน y ใน|ป ของ / เ
ǁǑǥljǗˎljǟˎLjǎ˚dž ˢˑ ǫDŽ˒ǫǙDž ː ǣ ȥȺ ǯȪǰ ǜǐ ˑ Ƭ ˜ ƽ ː dž
ƿǏǣLJǕ ː LJǝ ː džnj ˜ DŽ ˤ ˓ ȬǕLJǣƽ ˡ ƬǨǃ ˑ ǔǦǃ ˏ ǏǪdžǫǂǧLJdžLJ ˣ ƿǏǣLJǕ ˏ LJǝ ˏ džnj ˛ Ƭ ˏ ǖǕLJǣƽ ˡ ƬǪdžǧǍdžǎ ˛ ǧǝ ˣ Ǚǐǃ ˏ Ǐǧǂ ˣ ǙǏȬ ǧǍ ˤ ǙƬǏ ˒ ǣ ȭǜǐ ˑ Ƭ ˜ ƽ ː džȭ ǖDŽdž ˡ ǙǣLJ ǜǐ ː Ƭ ˛ ƽ ˏ dž ȷ=ŸĸîŰęłĸȸ ƿ ˧ ǡ ƿǏǣLJǕ ˏ LJǝ ˏ džnj ˛ ƾ ˥ ǐ ˒ ƿ˲ˑǡ ˏ džǂ ˏ ǖǕǡǐƿ˲ˑǪǂ ɏ ƻǡǐ ƿǏǣLJǕ ˏ LJǝ ˏ džnj ˛ dž ˏ ˔ dž ƭ ˓ ǣLJ ˣ ǕLJǣƽ ˡ Ƭǃ ˏ ǏǞdž ˓ ǣǧǞLJ ˧ ǡdžƬ ˏ džǨǔ ˓ Ǐ ǕLJǣƽ ˡ Ƭǃ ˏ ǏǞǔˏǐǃ ˓ ǡǐ ǧǞLJ ˧ ǡdžƬ ˏ dž ƿǏǣLJǞLJǣǙƻǡǐǜǐ ˑ Ƭ ˜ ƽ ː dž ǎǣƬǖDŽdž ˢ ǙǣLJ ǎǦǩǂ ˔ Ǐ ˒ ǣ ǜǐ ˑ Ƭ ˜ ƽ ː dž Č ƿ ˨ ǡ ƿǏǣLJǕ ː LJǝ ː džnj ˜ ƾ ˦ ǐ ˓ Ǖ ˪ ǣǞǍ ː ǖ Ɩȥ Ɨ ǨǔǦ Ơ Ǫǂ ɐ ƭ ˔ ǣ ȸƖȥ Ɨȹ Č ǨǔǦ ȸƖȥ Ơȹ Č Ǩǔ ˔ Ǐ Ɨ ɬ Ơ ǂ ː ǐdž ː ˕ dž ƭ ˔ ǣLJ ˤ Ɩȥ Ɨ ǨǔǦ Ơ ǫǂǙDŽ ˤ ˓ ȸƖȥ Ɨȹ Č ǨǔǦ ȸƖȥ Ơȹ Č Ǩǃ ˒ Ɨ ɷ Ơ ǎǦǩǂ ˔ Ǐ ˒ ǣ Č ǩLJ ˒ ǧǗˠ džǜǐ ˑ Ƭ ˜ ƽ ː dž
ǎǣƬǨǚdžƮǣǝDŽ ˤ Ƭ ˓ ˪ǣǞdžǂǪǞ ˔ ǃ ˒ ǡǩǗdž ˤ ˕ ǎǐǝ ˢ ǎǣǍljǣǏ ˒ ǣƿǏǣLJǕ ː LJǝ ː džnj ˜ǪǂǧǗˠ džǜǐ ˑ Ƭ ˜ ƽ ː dž ` '` '91; b ; b ( u c u c ǯȹ ƻ ˔ ǡLJ ˳ ǔǧƻ ˔ ǣ ƻ ˔ ǡLJ ˳ ǔǡǡƬ ǰȹ ƻ ˔ ǡLJ ˳ ǔǧƻ ˔ ǣ ƻ ˔ ǡLJ ˳ ǔǡǡƬ % + ǯ ǰ % + ǯ ǰ ş ş Note กะÜา @ว _ _ หCา " oาม " หลายใจ 1 2 r , = {( A, 1) , ( B, า ) , (C. 1) , (D , 2) , ④2)} k = {¢ 1 า A) , ¢ 1 , Bt, A , C), (2 , D), ( 2 , E)} = จะ เáน Nา ไc Wสมา7ก ในโดเมนของ 1 = จะ เáน Nา 1 {บI Çบ A และ 1 {บIÇบ B Ñ{บI Çบ สมา7กในเàนâ ของ 1 มาก กNา 1 @ว • : rz ไc เGน äงãåน • • • 1 เGน äงãåน
Ƭ˪ǣǞdžǂƿǏǣLJǕ ː LJǝ ː džnj ˜ ǃ ˒ ǡǩǗdž ˤ ˕ ǎǐǃǍǏǎǕǡǖǏ ˒ ǣƿǏǣLJǕ ː LJǝ ː džnj ˜ǪǂǧǗˠ džǜǐ ˑ Ƭ ˜ ƽ ː dž ` '` '91; b ; b ( u c u c ǯȹ ş ɬ ȴȸǯȥ Òȹ ȥ ȸǯȥ íȹ ȥ ȸǰȥ Òȹ ȥ ȸDZȥ îȹȵ So / " จะ เáนNา WI çนéบ XงWสมา7ก@วหU เหèอนÇน êอ ( 1,9) , ( า , b) •% r ไcเGนäงãåน
Ƭ˪ǣǞdžǂƿǏǣLJǕ ː LJǝ ː džnj ˜ ǃ ˒ ǡǩǗdž ˤ ˕ ǎǐǃǍǏǎǕǡǖǏ ˒ ǣƿǏǣLJǕ ː LJǝ ː džnj ˜ǪǂǧǗˠ džǜǐ ˑ Ƭ ˜ ƽ ː dž ` '` '91; b ; b ( u c u c ǰȹ Č ɬ ȴ ȸƖȥ Ɨȹ ʑ Ɨ ɬ Ɩ ɻ ǯ ȵ = Sdt ใo × , y , ะ เGนHนวนจJงใด ๆ Xง [ × , y ) Ef และ ( ๆ 2) ff จะไh y = × +1 และ ? = × +1 จะไh Nา y = z •: f เGน äงãåน
Ƭ˪ǣǞdžǂƿǏǣLJǕ ː LJǝ ː džnj ˜ ǃ ˒ ǡǩǗdž ˤ ˕ ǎǐǃǍǏǎǕǡǖǏ ˒ ǣƿǏǣLJǕ ː LJǝ ː džnj ˜ǪǂǧǗˠ džǜǐ ˑ Ƭ ˜ ƽ ː dž ` '` '91; b ; b ( u c u c DZȹ č ɬ ȴ ȸƖȥ Ɨȹ ʑ Ɨ ɬ Ɩ ȵ 2 ะ y yIx × SOF เëอง จาก C 4 , - 2) -2 C-2Z = 4 4 14, - 2) Gg และ (4,27 Eg - _ = C ำ 07 o Co Z = 0 0 N = แÜ -2 # 2 ( 4,27 z (2) 2 = 4 4 • : g ไcเGน äงãåน
Ƭ˪ǣǞdžǂƿǏǣLJǕ ː LJǝ ː džnj ˜ ǃ ˒ ǡǩǗdž ˤ ˕ ǎǐǃǍǏǎǕǡǖǏ ˒ ǣƿǏǣLJǕ ː LJǝ ː džnj ˜ǪǂǧǗˠ džǜǐ ˑ Ƭ ˜ ƽ ː dž ` '` '91; b ; b ( u c u c Dzȹ Ĕ ɬ ȴ ȸƖȥ Ɨȹ Ɩ ʑ Ɨ ɬ Ɩ ȿ ǰ ȵ ǧLJ ˨ ǡ ˓ ɬ ȴ ȿǰȥ ȿǯȥ Ǯȥ ǯȥ ǰȵ กะจะ nrwrrnntu N × 9 = × - กะ y Sd " h = {( %2) , % " "?ก} _ ะง = - 2-ะ = -4 (í๊ .AE#-1ry=-1-2=-3.---- • ì h เGน äงãåน ะ y = o - ะ = - น น y = 1-2 = - î 2 ✓. y = 2-2 = Or
Ƭ˪ǣǞdžǂƿǏǣLJǕ ː LJǝ ː džnj ˜ ǃ ˒ ǡǩǗdž ˤ ˕ ǎǐǃǍǏǎǕǡǖǏ ˒ ǣƿǏǣLJǕ ː LJǝ ː džnj ˜ǪǂǧǗˠ džǜǐ ˑ Ƭ ˜ ƽ ː dž ` '` '91; b ; b ( u c u c dzȹ Ĕ ฑ๋ ɬ ȴ ȸƖȥ Ɨȹ Ɩ ʑ Ɨ ɱ Ɩ ȵ ǧLJ ˨ ǡ ˓ ɬ ȴǮȥ ǯȵ ǨǔǦ ɬ ȴȿǯȥ ǯȵ จนใน nrrrnnrhrrr = Ax B = {( 0 , - 1), (0,1 ) , i = { ( อ. - า ) , %- 1) ะ . . } ( 1 , - 1) , ( 1,11 } • ะ I เGน äงãåน
ƬǣǍǃǍǏǎǕǡǖ ǜǐ ˑ Ƭ ˜ ƽ ː dž ƬǣǍǃǍǏǎǕǡǖǜǐ ˑ Ƭ ˜ ƽ ː dž ǡǣǎǝ ˢ ǎǣǍljǣǩǂ ˔ ǎǣƬ ȭƬǍǣǜƻǡǐǜǐ ˑ Ƭ ˜ ƽ ː džȭ
ǜǐ ˑ Ƭ ˜ ƽ ː dž ƿ ˨ ǡ ƿǏǣLJǕ ː LJǝ ː džnj ˜ DŽ ˤ ˓ ȬǕLJǣƽ ˡ ƬǨǃ ˑ ǔǦǃ ˏ ǏǪdžǫǂǧLJdžLJ ˣ ƿǏǣLJǕ ˏ LJǝ ˏ džnj ˛ Ƭ ˏ ǖǕLJǣƽ ˡ ƬǪdž ǧǍdžǎ ˛ ǧǝ ˣ Ǚǐǃ ˏ Ǐǧǂ ˣ ǙǏǧDŽ ˑ ǣdž ˏ ˔ džȬ ƬǣǍǃǍǏǎǕǡǖǜǐ ˑ Ƭ ˜ ƽ ː dž ǡǣǎǝ ˢ ǎǣǍljǣǩǂ ˔ ǎǣƬ ƬǍǣǜƻǡǐǜǐ ˑ Ƭ ˜ ƽ ː dž ǂ ː ǐǃ ː ǏǡǙ ˒ ǣǐ DŽǖDŽǏdžƿǏǣLJǞLJǣǙƻǡǐǜǐ ˑ Ƭ ˜ ƽ ː dž ǯȹ Č ɬ ȴ ȸƖȥ Ɨȹ ʑ Ɨ ɬ Ɩ ȵ ǰȹ Č ɬ ȴ ȸƖȥ Ɨȹ ʑ Ɨ ɬ Ɩ ȵ nei Rx R * " เGนäงãåน " " ไcเGน äงãåน " × y = × 2 y CX, y ) y = × 2 . . fcx วะ × " y y 2 = X × Cmy ) tt ñ -2 ✓ y = C- 2) 2 4 ✓ C- 2,4) ^ • :Df = ☒ = - า ✓ y = C-[ 1 / C-} 1) uó ⇐ ò์แµ Rf = [ำ " -2 C-2)2=4 4 (4 , - 2) µ = = = ^ or y = k 0 ✓ (0,0 ) c-ฒืû ⇐ . " (อ µฏํ๋๏ฐึ๋ Nะ ü 4hm s * • > × o ( 0 Z = 0 ๐ ( 0,0) การ y = 12 1 ✓ 11,1 ) -2 Ca% y ⇐ - 2- - - - - - - - - - †๋ (4, - 2) 2 / y = 22 4 ✓ (2,4) 2 (2) 2 = 4 4 14, 2) V ะ z
ƬǣǍǃǍǏǎǕǡǖǜǐ ˑ Ƭ ˜ ƽ ː dž ǡǣǎǝ ˢ ǎǣǍljǣǩǂ ˔ ǎǣƬ ƬǍǣǜƻǡǐǜǐ ˑ Ƭ ˜ ƽ ː dž ǫǂǙǔǣƬǧǕ ˔ džƻdžǣdž Ƭ ː ǖǨƬdž Ä ƭ ˔ ǣǩLJ ˒ LJ ˤ ǧǕ ˔ džǧǕ ˔ džǪǂǃ ː ǂƬǍǣǜƻǡǐƿǏǣLJǕ ː LJǝ ː džnj ˜ LJǣƬƬǏ ˒ ǣ ǯ ǎ ˱ ǂ ƿǏǣLJǕ ː LJǝ ː džnj ˜ dž ː ˕ džǧǗˠ džǜǐ ˑ Ƭ ˜ ƽ ː dž Ǩǃ ˒ ƭ ˔ ǣLJ ˤ ǧǕ ˔ džƻdžǣdžǨƬdž Ä ǨLJ ˔ ǧǝ ˤ ǙǐǧǕ ˔ džǧǂ ˤ ǙǏDŽ ˤ ǃ ˓ ː ǂƬǍǣǜƻǡǐƿǏǣLJ Ǖ ː LJǝ ː džnj ˜ LJǣƬƬǏ ˒ ǣ ǯ ǎ ˱ ǂ ƿǏǣLJǕ ː LJǝ ː džnj ˜ dž ː ˕ džǎǦǩLJ ˒ ǧǗˠ džǜǐ ˑ Ƭ ˜ ƽ ː dž ƬǣǍǃǍǏǎǕǡǖǜǐ ˑ Ƭ ˜ ƽ ː dž l
@..3 x x 6 ` ` {Ca, 1), (b.3), ( c , 2)} {(ำ2), (b. 27,1C, 2)} เGนäงãåน เGนäงãåน ot ไc เGน äงãåน เGนäงãåน
@ . . 3 x x 6` ` ( -3,1 ) , (-2,0 ) , ( -1,07 , ( a2) , . . . Ch , ท + 2) เ G น ä ง ãåน เ G น ä ง ãåน เ G น ä ง ãåน 1 °๋ ไ c เ G น ä ง ãåน °๋ • ; • l
@ . . 3 x x 6` ` | เ G น ä ง ãåน ไ c เ G น ä ง ãåน • : ! ! | • ไ c เ G น ä ง ãåน @ • / เ เ G น ä ง ãåน
ƿ ˒ ǣƻǡǐ ǜǐ ˑ Ƭ ˜ ƽ ː dž ǪdžƬǍlj ˤ DŽ ˤ ƿ ˓ ǏǣLJǕ ː LJǝ ː džnj ˜Č ǧǗˠ džǜǐ ˑ Ƭ ˜ ƽ ː dž ǎǦǧƻ ˤ Ǚdž Ɨ ɬ ČȸƖȹ ǨDŽdž ȸƖȥ Ɨȹ Č ǨǔǦǧǍ ˤ ǙƬ ČȸƖȹ Ǐ ˒ ǣǧǗˠ dž ȭ ƿ ˒ ǣƻǡǐǜǐ ˑ Ƭ ˜ ƽ ː dž Č DŽ ˤ ˓ Ɩ ȭ ǡ ˒ ǣdžǏ ˒ ǣ ǧǡǜƻǡǐǧǡƬƾ ˜ ǞǍ ˨ ǡ ǧǡǜǧǡƬƾ ˜ f-_ {แก, 63 ว 4)} ← lาของäงãåน Ñ × ( × , 9) E f 㱺 y = fcx) Nhrnn prynnrnne
` ' ` '91; b ; b ( ǯȪ Ƭ˪ǣǞdžǂ ČȸƖȹ ɬ Ɩ ɻ ǰƖ ɻ ǯ ǎǐǞǣ Čȸȿǰȹ ȥ Čȸȿǯȹ ȥ ČȸǮȹ ȥ Čȸǯȹ ȥ Čȸǰȹ ȥ ČȸDZȹ ǨǔǦ ČȸÒȹ ǧLJ ˨ ǡ ˓ Ò nnnnnn mm SoF จาก fcx> = U-2×+1 %ฑื่ = (- 2)2+2(- 2) +1 = 4-4+1 = 1 㱺 C-2,1 ) fG) = C-1)ำZE) +1 = 1-2 t 1 = 0 fco) = k+ 2(๐) +1 = 0+0+1 = 1 f(1) = 12+ 2(1) + 1 = 1+2+1 = 4 ft2) = 22+2(2) +1 = 4+4+1 = 9 fca) = £+2Gt 1
ǰȪ Ƭ˪ǣǞdžǂ ČȸƖȹ ɬ ǰ ȿ Ɩ ǎǐǞǣ Čȸȿǰȹ ȥ ČȸǮȹ ȥ Čȸǯȹ ȥ ČȸDZȹ Ɩ ` ' ` '91; b ; b ( = So / " จาก fcx > = โTî_x ๊ f C-2) = _ โTQง - - _ § = ¥ = -1 f เอง = _ iอง-๐ * ในเศษvวน * fco) ไc•ยาม × @วvวนoามเGน 0 f-(1) = F- -1mn = ¶ = f = 1 £(3) = 253mn - - yf * ใน โ * fc3) ไc•ยาม X oาม@ดลบ