www.ncrtsolutions.in
Convert the following in the polar form:
(i) , (ii)
Answer :
(i) Here,
Let r cos θ = –1 and r sin θ = 1
On squaring and adding, we obtain
r2 (cos2 θ + sin2 θ) = 1 + 1
⇒ r2 (cos2 θ + sin2 θ) = 2 [cos2 θ + sin2 θ = 1]
⇒ r2 = 2
∴z = r cos θ + i r sin θ
This is the required polar form.
(ii) Here,
www.ncrtsolutions.in
www.ncrtsolutions.in
Let r cos θ = –1 and r sin θ = 1
On squaring and adding, we obtain
r2 (cos2 θ + sin2 θ) = 1 + 1
⇒r2 (cos2 θ + sin2 θ) = 2
⇒ r2 = 2 [cos2 θ + sin2 θ = 1]
∴z = r cos θ + i r sin θ
This is the required polar form.
Q6 :
Solve the equation
Answer :
The given quadratic equation is
This equation can also be written as
On comparing this equation with ax2 + bx + c = 0, we obtain
a = 9, b = –12, and c = 20
Therefore, the discriminant of the given equation is
D = b2 – 4ac = (–12)2 – 4 × 9 × 20 = 144 – 720 = –576
www.ncrtsolutions.in
x
x
are …–3, –2, –1, 0, 1, 2, 3, 4.
x
…–3, –2, –1, 0, 1, 2, 3, 4.
Hence, in this case, the solution set is {…–3, –2, –1, 0, 1, 2, 3, 4}.
The given inequality is –1 x
x
are …, –5, –4, –3
x
…, –5, –4, –3.
Hence, in this case, the solution set is {…, –5, –4, –3}.
x– 3 < 7
are …, –4, –3, –2, –1, 0, 1 x x
x
…, –4, –3, –2, –1, 0, 1.
Hence, in this case, the solution set is {…, –4, –3, –2, –1, 0, 1}.
x
x ∈(–∞
x
(i) The integers greater than – are –1, 0, 1, 2, …
x
–1, 0, 1, 2 …
Hence, in this case, the solution set is {–1, 0, 1, 2, …}.
xis a real number, the solutions of the given inequality are all the real numbers, which are greater than –2
this case, the solution set is (– 2 ∞
xx
⇒x x
⇒x x
⇒x xxx
⇒x
x
∠
x– 7 > x–
⇒ x– 7 + 7 > x– 1 +
⇒x x
⇒ x– x x+ 6 – x
⇒ – x
x,which are less than –3, are the solutions of the given inequality.
Hence, the solution set of the given inequality is (–∞, –3)
x â”°Â x â”°Â
∠
⇒ x â”°Â x
⇒x â”°Â x
⇒ x â”°Â x
⇒ x - x â”°Â x x
⇒ x â”°Â
x
â”°Â
x â”°Â x
⇒ x â”°Â x
⇒ x x â”°Â xx
⇒ x â”°Â
⇒ x â”°Â
⇒ x â”°Â
⇒ x â”°Â
x
∠
x
Hence, the solution set of the given inequality is (–∞
x,which are less than –6, are the solutions of the given inequality.
Hence, the solution set of the given inequality is (–∞, –6)
x
Hence, the solution set of the given inequality is (–∞
x
Hence, the solution set of the given inequality is (–∞, 120].
x
Hence, the solution set of the given inequality is (4, ∞)
â”°Â
x
Hence, the solution set of the given inequality is (–∞
x
∞
x
Hence, the solution set of the given inequality is (–∞
xx
⇒x x
⇒x
â”°Â
x
x x
x
x
⇒ x< 10 –
⇒ x< 8 … (i
∴x x
⇒x
⇒ x> 11 –
⇒x
xx
x
x
x– 2) c
â”°Â â”°Â
x
x
x x≤
xx
⇒x ≤
⇒ x ≤91 –
⇒ x≤
∴ x≥x
⇒ x≥x
⇒ x ≥8 … (2
≤x≤
xy
xy
â”°Â
xy
xy
2(0) + 0 â”°Â≦ 6 or 0 â”°Â≦ 6, which is false
â”°Â
x y â”°Â xy
xy
â”°Â â”°Â
â”°Â
yx
xy
â”°Â â”°Â
â”°Â
xy
xy
â”°Â â”°Â
xy xy
â”°Â
xy
xy
â”°Â â”°Â
yx
xy
y xy
y
x xy
x
â”°Â â”°Â
x â”°Â
y â”°Â
xy x x
y y
â”°Â â”°Â â”°Â
x y â”°Â xy x y xy
x â”°Â y x
y â”°Â xy
x
y
â”°Â â”°Â
x yâ”°Â
x y â”°Â
xy x y
xy xy
xy xy
â”°Â
x yâ”°Â
xy
xy xy
xy
xy
xy xy
xy xy
xy
xy
xy
xy x y xy xy
xy xy
â”°Â â”°Â
x y â”°Â
x y â”°Â
xy xy xy xy
xy xy
â”°Â â”°Â
xy xy x y
xy
xy
xy
â”°Â â”°Â
x y â”°Â
yx ...
x â”°Â
xy yx
xy xy
yx yx
xy
yx yx
y
xy x
â”°Â â”°Â â”°Â
x y â”°Â
x â”°Â
y â”°Â
xy x y xy
y x
xy
x
y
â”°Â
â”°Â â”°Â â”°Â
x y â”°Â xy xy xy xy
x y â”°Â y â”°Â xy
xy
x â”°Â
â”°Â â”°Â â”°Â
x yâ”°Â xy xy xy xy
x y â”°Â xy xy xy
x y â”°Â
xy
xy
≤ 3, ≥ 12, ≥ 0, ≥ 1
x y ┰¤ 3 ... (1)
x y â”°Â≦ 12 ... (2)
y â”°Â≦ 1 ... (3)
xy xy y
xy xy
xy xy
yy
x â”°Â≦ 0, represents the region on the right hand side of y y
y