1.
2.
-
-
3.
-
-
13
S
H
T
S HHH, HHT, HTH, HTT, THH, THT, TTH, TTT
n(s) = 8 E3 3
E0, E1 , E 2
P E0 1 P E1 3
P E2 8 P E3 8
3 1
8 8
{0, 1, 2, 3} 3
(6 XS
1
X(HHH ) 3 X(HHT ) 2
X(HTH ) 2 X(HTT ) 1
X(THH ) 2 X(THT ) 1
X(TTH ) 1 X(TTT ) 0
X
(random variable)
X, Y, Z
x, y, z x X
13
x {0,1,2, 3} x
X=x
P(X 0) P (E 0 ) 0
P(X 1) P(E1) 1
P(X 2) P (E2 )
P(X 3) P (E 3 ) 3
1. (discrete random variable)
1
{2, 3, 4, 5, 6, 7, 8, 9,10,11,12}
(6
11 0 1
1
{0,1}
{1, 2, 3,...}
2. (continuous random variable)
6
[150,190]
[1, 6]
[0, ]
1 X1 50
100
X2
3
3 X3
X4
(6
5 X5 -
6 X6
(
(GB)
(
()
(
(
4
(
(6 4
6 50
() 6
0
1 17
4
3 1
4
1X
x x {0,1, 2, 3, 4}
X (probability distribution)
(6 5
x 01234
P(X x)
X 13
X
(6 6
Y Y
1
(6 7
01 3 4 5 6 7 8 9 10
01 5638733
X X
100 01 3456
Y 41 17 14 4 3 0 1
Y
(6 8
3. Z
Z
(6 9
(expected value) X
X
X
XX nn x x iPP( (XX xix)i )
i1
1 i
i
n X
x1, x 2 , x 3 ,..., x n
3 XX
XX nn XX)2)2PP(X(X xxi )i )
2 (x(xi i
X
i i1 1
n
x1, x 2 , x 3 ,..., x n X
X
X
4 6 50
1
X
06
1
17
34
41
(6 10
5
–7
6X 1
X
(6 11
7Y
Y
(6
01 3 4 5 6 7 8 9 10
01 5638733
X X
(6 13
100 01 3456
Y 41 17 14 4 3 0 1
Y
(6 14
Z
Z
(6 15
6 3 11
X
1) X
X
(6 16
2, 000, 000
2, 000, 000
50, 000
(
60
01 3
47 4 6 3
11 1
(6 17
4 X x1, x 2 , x 3 ,..., x n
X
X
(discrete uniform distribution)
P(PX(X xi )xi ) 1 1 i i {1,{21,,32,,.3.,..,.n.,}n}
n n
8 11 X
X
X
(6 18
91 X
500 X
1)
X
3 150 1
(6 19
1 X1 1
1 10
X2 80
3 X3
4 X4
01 34
16 16 16 16 16
(6
X X
X
10
100
(6
1
a
0a 5 Z
1 a5 Z
aZ
3 a1
(6
5 10
500
300
(6
5 (binomial distribution) n
X p
1-p
Note! -n p X
X B(n, p) p 1
n 1
(Bernoulli trial)
-
1n p 0p1
3
q (1 - p)
(6
1
X
P(X x) n px (q)n x x 0, 1, 2,..., n
x (1 p)
X np
X npq
n
p
q
10 X B(8, 0.7) X
P(X 4)
P(X 6)
(6
P(X 5)
P(3 X 7)
11 X B(5, 0.4)
P(X 1)
P(X 4)
P(X 4)
(6
P(1 X 4)
12 X 5 17
1
X
55
(6
3X
4X
(6
13
1)
(6
14 1
5
1)
) 30
(6
X B(6, 0.3) 31
P(X 2)
P(X 2)
P(X 2)
P(2 X 5)
(6
X X 6
1) X
)
3) 3
(6
4 X
5
18
3 Y
1) Y
(6 33
3 5
4) 8
4
Y
9
10
(6 34
5
5
1
6 35
(6
3
1
3 36
(6
7
9
1 4
3
(6
37
36
4
density curve)
X y f (x) X
(6 (probability density function)
38
Note! f (x) X
- f (x) 0 x X
-
1
X
y fx X 13
P1 X 3 3
f (x) dx
1
(6 39
Xa X P(X a) 0
aa
[a,b ]
(a,b)
Pa X b Pa X b
ab X
PX a PX a PX a PX a
a
X
08
7
–
(6 40
6
(normal distribution)
X
11x x 22
ff xx 11 ee 22
22 xx
X
X normal curve)
1X
XX X
3
(6 41
X 2 2
X
X N ,2 X
2
(6
7 (Standard normal distribution)
0 ( 0) 1 ( 1)
Z
f (fz()z) 1 1 e z2 z2 zz
2 2 2
e2
0 1
Standard normal curve)
random variable) Standard normal
Z z
z PZ z
(6
43
15 Z 44
PZ 2
P Z 1.29
P 1.27 Z 0.45
(6
16 Z 45
P Z 1.66
P Z 1.44
P 2.45 Z 0
) P 0 Z 1.88
(6
2
X
Z
ZX
Z z0 z1
Pa X b P a Zb
a,b X a b
17 X N (3.5, 4) P(2.4 X 5.2)
(6 46
X Z
ZX
) P( 1 Z 1)
P( X P(Z 1) P(Z
0.8413 0.1587
0.6826 1)
X [, ]
68
(6 47
2X 2) P( 2 Z 2)
P(Z 2) P(Z
0.9772 0.0228 2)
0.9544
X [ 2, 2] 9544
22
(6 48
P( 3 X 3) P( 3 Z 3)
P(Z 3) P(Z
0.9987 0.0013 3)
0.9974
X [ 3, 3] 9
33
9
(6 49