The words you are searching are inside this book. To get more targeted content, please make full-text search by clicking here.
Discover the best professional documents and content resources in AnyFlip Document Base.
Search
Published by Pelangi, 2021-03-05 03:55:37

Module & More Kimia Tg 5

eBook M&M 2021 Kimia Tg5

  Kimia Tingkatan 5  Bab 2 Sebatian Karbon

Asid karboksilik CnH2n+1COOH, Karboksil –COOH
n = 0, 1, 2, 3… –COO–
Carboxylic acid Carboxyl
CnH2n +1COOCmH2m
Ester + 1, Karboksilat
n = 0, 1, 2, 3…
Ester m = 1, 2, 3… Carboxylate

Formula molekul dan formula struktur dan penamaan mengikut sistem IUPAC

Molecular formula and structural formula and naming according to IUPAC system

4. Formula molekul alkana, alkena dan alkuna: / Molecular formula for alkanes, alkenes and alkynes: TP 2

Siri homolog

Homologous series

BAB 2 Bilangan atom Alkana Alkena Alkuna

C per molekul Alkane Alkene Alkyne

(n) Formula am / General Formula am / General Formula am / General formula:
formula: CnH2n + 2 formula: CnH2n CnH2n - 2
Number of C atoms
per molecule (n) Nama Formula Nama Formula Nama Formula

Name molekul Name molekul Name molekul

Molecular Molecular Molecular
formula formula formula

1 Metana / Methane CH4 - - - -

2 Etana / Ethane C2H6 Etena / Ethene C2H4 Etuna / Ethyne C2H2

3 Propana / Propane C3H8 Propena / Propene C3H6 Propuna / Propyne C3H4

4 Butana / Butane C4H10 Butena / Butene C4H8 Butuna / Butyne C4H6

5 Pentana / Pentane C5H12 Pentena / Pentene C5H10 Pentuna / Pentyne C5H8

6 Heksana / Hexane C6H14 Heksena / Hexene C6H12 Heksuna / Hexyne C6H10

7 Heptana / Heptane C7H16 Heptena / Heptene C7H14 Heptuna / Heptyne C7H12

8 Oktana / Octane C8H18 Oktena / Octene C8H16 - -

9 Nonana / Nonane C9H20 Nonena / Nonene C9H18 - -

10 Dekana / Decane C10H22 Dekena / Decene C10H20 - -

5. Formula molekul bagi alkohol dan asid karboksilik: TP 2

Molecular formula for alcohols and carboxylic acids:

Siri Homolog / Homologous Series

Bilangan Alkohol / Alcohol Asid karboksilik / Carboxylic acid

atom C per Formula am / General formula: Formula am / General formula:
CnH2n + 1OH CnH2n+1COOH
molekul
Nama Formula Nama Formula molekul
(n) molekul
Name Name Molecular formula
Number of Molecular formula
C atoms per
molecule (n)

1 Metanol / Methanol CH3OH Asid metanoik / Methanoic acid HCOOH

2 Etanol / Ethanol C2H5OH Asid etanoik / Ethanoic acid CH3COOH

3 Propanol / Propanol C3H7OH Asid propanoik / Propanoic acid C2H5COOH

4 Butanol / Butanol C4H9OH Asid butanoik / Butanoic acid C3H7COOH

5 Pentanol / Pentanol C5H11OH Asid pentanoik / Pentanoic acid C4H9COOH

6 Heksanol / Hexanol C6H13OH Asid heksanoik / Hexanoic acid C5H11COOH

© Penerbitan Pelangi Sdn. Bhd. 44

Kimia Tingkatan 5  Bab 2 Sebatian Karbon 

6. Penamaan bagi ahli kumpulan siri homolog berantai lurus terdiri daripada 2 bahagian, iaitu

Naming for members of straight-chain homologous series consists of 2 parts, namely TP 1
karbon
(a) awalan (induk) – merujuk bilangan atom dalam molekul
carbon
the prefix – refers to the number of atoms in a molecule

(b) akhiran – merujuk kumpulan siri homolog

the suffix – refers to the group of homologous series

7. Contoh bahagian awalan untuk alkana, alkena dan alkuna: TP 2

Examples of the prefixes for alkanes, alkenes and alkynes:

Bilangan atom C 1 2 3 4 5 6 7 8 9 10

Number of C atoms Dek

Awalan Met Et Prop But Pent Heks Hept Okt Non Dec

Prefix Meth Eth Prop But Pent Hex Hept Oct Non

8. Contoh bahagian awalan untuk alkohol dan asid karboksilik: TP 2 BAB 2

Examples of the prefixes for alcohols and carboxylic acids:

Bilangan atom C 1 2 3 4 567 8 9 10

Number of C atoms Metan Etan Propan Butan Pentan Heksan Heptan Oktan Nonan Dekan

Awalan Methan Ethan Propan Butan Pentan Hexan Heptan Octan Nonan Decan

Prefix

9. Bahagian akhiran untuk alkana, alkena, alkuna, alkokol, asid karboksilik dan ester: TP 2

Examples of the suffixes for alkane, alkene, alkyne, alcohol, carboxylic acid and ester:

Siri homolog Alkana Alkena Alkuna Alkohol Asid karboksilik Ester

Homologous series Alkane Alkene Alkyne Alcohol Carboxylic acid Ester

Akhiran …ana …ena …una …ol Asid …oik …il …oat

Suffix …ane …ene …yne …ol …oic acid …yl …oate

10. Contoh penamaan / Naming examples: TP 2

Bilangan atom C Siri homolog Awalan Akhiran Nama

Number of C atoms Homologous series Prefix Suffix Name

2 Alkana Et ana Etana
3
4 Alkane Eth ane Ethane

Alkohol Propan ol Propanol

Alcohol Propan ol Propanol

Asid karboksilik Butan Asid …oik Asid butanoik

Carboxylic acid Butan …oic acid Butanoic acid

11. Formula molekul, formula struktur dan nama untuk 10 ahli pertama alkana dengan rantai lurus mengikut

Sistem IUPAC: TP 2

Molecular formulae, structural formulae and names for the first 10 straight-chain alkanes according to the IUPAC System:

Formula Formula struktur dan nama alkana Formula Formula struktur dan nama alkana
molekul
Structural formula and name of alkane molekul Structural formula and name of alkane
Molecular Molecular
formula
formula Formula Struktur / Structural Formula:
CH4 Formula Struktur / Structural Formula: HHHHH

H

CH4 H C H C5H12 HCCCCCH

H C5H12 HHHHH
Metana Pentana
Methane Pentane

45 © Penerbitan Pelangi Sdn. Bhd.

  Kimia Tingkatan 5  Bab 2 Sebatian Karbon

C2H6 HH C6H14 HHHHHH

HCCH HCCCCCCH

HH HHHHHH
Etana Heksana
Ethane Hexane

C3H8 HHH C7H16 HHHHHHH

HCCCH HCCCCCCCH

HHH HHHHHHH
Propana Heptana
Propane Heptane

BAB 2 C4H10 HHHH C8H18 HHHHHHHH

HCCCCH HCCCCCCCCH

HHHH HHHHHHHH
Butana Oktana
Butane Octane

Formula molekul Formula struktur dan nama alkana

Molecular formula Structural formula and name of alkane

C9H20 HHHHHHHHH

HCCCCCCCCCH

HHHHHHHHH
Nonana
Nonane

C10H22 HHHHHHHHHH

HCCCCCCCCCCH

HHHHHHHHHH
Dekana
Decane

12. Formula molekul, formula struktur dan nama untuk 9 ahli pertama alkena dengan rantai lurus mengikut

Sistem IUPAC: TP 2

Molecular formulae, structural formulae and names for the first 9 straight-chain alkenes according to the IUPAC System:

Formula Formula struktur dan nama alkena Formula Formula struktur dan nama alkena

molekul Structural formula and name of alkene molekul Structural formula and name of alkene

Molecular Molecular
formula formula

C2H4 HH C6H12 HHHHHH
HCCH
HCCCCCCH
Etena
Ethene HHHH
Heks-1-ena
Hex-1-ene

© Penerbitan Pelangi Sdn. Bhd. 46

Kimia Tingkatan 5  Bab 2 Sebatian Karbon 

C3H6 HHH C7H14 HHHHHHH
C4H8 HCCCH C8H16 HCCCCCCCH

H HHHHH
Propena Hept-1-ena
Propene Hept-1-ene

HHHH HHHHHHHH
HCCCCH HCCCCCCCCH

HH HHHHHH
But-1-ena Okt-1-ena
But-1-ene Oct-1-ene

C5H10 HHHHH C9H18 HHHHHHHHH BAB 2

HCCCCCH HCCCCCCCCCH

HHH HHHHHHH
Pent-1-ena Non-1-ena
Pent-1-ene Non-1-ene

Formula molekul Formula struktur dan nama alkena

Molecular formula Structural formula and name of alkene

C10H20 HHHHHHHHHH Alkana & Alkena
Alkanes & Alkenes
HCCCCCCCCCCH VIDEO 3

HHHHHHHH
Dek-1-ena
Dec-1-ene

13. Formula molekul, formula struktur dan nama untuk 6 ahli pertama alkuna dengan rantai lurus mengikut

Sistem IUPAC: TP 2

Molecular formulae, structural formulae and names for the first 6 straight-chain alkynes according to the IUPAC System:

Formula Formula struktur dan nama alkuna Formula Formula struktur dan nama alkuna

molekul Structural formula and name of alkyne molekul Structural formula and name of alkyne

Molecular Molecular
formula formula

C2H2 HCCH C5H8 HHH
Etuna
Ethyne HCCCCCH

HHH
Pent-1-una
Pent-1-yne

C3H4 H C6H10 HHHH

HCCCH HCCCCCCH

H HHHH
Prop-1-una Heks-1-una
Prop-1-yne Hex-1-yne

47 © Penerbitan Pelangi Sdn. Bhd.

  Kimia Tingkatan 5  Bab 2 Sebatian Karbon

C4H6 HH C7H12 HHHHH

HCCCCH HCCCCCCCH

HH HHHHH
But-1-una Hept-1-una
But-1-yne Hept-1-yne

14. Formula molekul, formula struktur dan nama untuk 6 ahli pertama alkohol dengan rantai lurus mengikut

Sistem IUPAC: TP 2

Molecular formulae, structural formulae and names for the first 6 straight-chain alcohols according to the IUPAC System:

Formula Formula struktur dan nama alkohol Formula Formula struktur dan nama alkohol

molekul Structural formula and name of alcohol molekul Structural formula and name of alcohol

BAB 2 Molecular Molecular
formula formula

CH3OH H C4H9OH HHHH

H C OH H C C C C OH

H HHHH
Metanol Butan-1-ol
Methanol Butan-1-ol

C2H5OH HH C5H11OH HHHHH

H C C OH H C C C C C OH

HH HHHHH
Etanol Pentan-1-ol
Ethanol Pentan-1-ol

C3H7OH HHH C6H13OH HHHHHH

H C C C OH H C C C C C C OH

HHH HHHHHH
Propan-1-ol Heksan-1-ol
Propan-1-ol Hexan-1-ol

15. Formula molekul, formula struktur dan nama untuk 6 ahli pertama asid karboksilik dengan rantai lurus

mengikut Sistem IUPAC: TP 2

Molecular formulae, structural formulae and names for the first 6 straight-chain carboxylic acids according to the IUPAC
System:

Formula Formula struktur dan nama asid Formula Formula struktur dan nama asid
karboksilik karboksilik
molekul molekul
Structural formula and name of carboxylic acid Structural formula and name of carboxylic acid
Molecular Molecular
formula formula

HCOOH O C3H7COOH HHHO
H C OH
Asid metanoik H C C C C OH
Methanoic acid
HHH
Asid butanoik
Butanoic acid

© Penerbitan Pelangi Sdn. Bhd. 48

Kimia Tingkatan 5  Bab 2 Sebatian Karbon 

CH3COOH HO C4H9COOH HHHHO

H C C OH H C C C C C OH

H HHHH
Asid etanoik Asid pentanoik
Ethanoic acid Pentanoic acid

C2H5COOH H HO C5H11COOH HHHHHO

H C C C OH H C C C C C C OH

HH HHHHH
Asid propanoik Asid heksanoik
Propanoic acid Hexanoic acid

Sifat-sifat fizik alkana BAB 2

Physical properties of alkanes

16.

(a) Takat lebur dan takat didih yang rendah (b) Tidak larut dalam air

Low melting and boiling points Insoluble in water

(e) Kurang tumpat daripada air Sifat fizik alkana TP 1 (c) Tidak boleh mengkonduksi elektrik

Less dense than water Physical properties of alkanes Cannot conduct electricity

(d) Larut dalam pelarut organik

Soluble in organic solvents

*  Contoh pelarut organik: eter, benzena, tetraklorometana.

Examples of organic solvent: ether, benzene, tetrachloromethane.

17. Perubahan sifat fizik alkana dengan pertambahan bilangan atom karbon per molekul: TP 2

Changes in physical properties of alkanes with the increase of carbon atoms per molecule:

Nama Formula Jisim molar Takat lebur Takat didih Keadaan fizik
molekul
Name Molar mass Melting point Boiling point Physical state
Molecular formula (g mol–1) (oC) (oC)
Metana / Methane Gas / Gas
Etana / Ethane CH4 16 Bertambah Bertambah Gas / Gas
C2H6 30 Gas / Gas
Propana / Propane C3H8 44 Increase Increase Gas / Gas
Butana / Butane C4H10 58 Cecair / Liquid
Pentana / Pentane C5H12 72 Cecair / Liquid
Heksana / Hexane C6H14 86 Cecair / Liquid
Heptana / Heptane C7H16 100 Cecair /Liquid
Oktana /Octane C8H18 114 Cecair / Liquid
Nonana /Nonane C9H20 128 Cecair / Liquid
Dekana /Decane C10H22 142

49 © Penerbitan Pelangi Sdn. Bhd.

  Kimia Tingkatan 5  Bab 2 Sebatian Karbon

18. Empat ahli pertama alkana wujud dalam keadaan gas pada suhu bilik manakala alkana daripada pentana
cecair
hingga dekana wujud dalam keadaan . TP 2

The first four members of alkanes exist as gases at room temperature whereas alkanes from pentane to decane exist as
liquids
.

19. Apabila bilangan atom karbon dalam satu molekul alkana bertambah, TP 2

As the number of carbon atoms in an alkane molecule increases,

(a) Takat lebur dan takat didih bertambah. Ini disebabkan / The melting and boiling points increase . This is because
(i) saiz molekul alkana bertambah . / the molecular size of alkane increases
.

(ii) daya van der Waals (daya tarikan antara molekul) bertambah kuat .

the van der Waals forces (forces of attraction between molecules/ intermolecular forces) become stronger .

(iii) Lebih banyak tenaga haba diperlukan untuk mengatasi daya tarikan antara molekul .

More heat energy is needed to overcome the forces of attraction between molecules .

(b) Kelikatan dan ketumpatan alkana bertambah . TP 2
increases
BAB 2 Viscosity and density of alkanes .

(c) Alkana semakin susah untuk terbakar. TP 2

The alkane becomes less flammable.

Sifat-sifat fizik alkena

Physical properties of alkenes

20.

(a) Takat lebur dan takat didih yang rendah (b) Tidak larut dalam air

Low melting and boiling points Insoluble in water

(e) Kurang tumpat daripada air Sifat fizik alkena TP 1 (c) Tidak boleh mengkonduksi elektrik

Less dense than water Physical properties of alkenes Cannot conduct electricity

(d) Larut dalam pelarut organik

Soluble in organic solvents

21. Perubahan sifat fizik alkena dengan pertambahan bilangan atom karbon per molekul: TP 2

Changes in physical properties of alkenes with the increase of carbon atoms per molecule:

Nama Formula Jisim molar Takat lebur Takat didih Keadaan fizik
molekul
Name Molar mass Melting point Boiling point Physical state
Molecular formula (g mol–1) (oC) (oC)

Etena / Ethene C2H4 28 Gas / Gas
Propena / Propene C3H6
Butena / Butene C4H8 42 Gas / Gas
Pentena / Pentene C5H10
Heksena / Hexene C6H12 56 Gas / Gas
Heptena / Heptene C7H14
Oktena / Octene C8H16 70 Bertambah Bertambah Cecair / Liquid
Nonena / Nonene C9H18
Dekena / Decene C10H20 84 Increase Increase Cecair / Liquid

98 Cecair / Liquid

112 Cecair / Liquid

126 Cecair / Liquid

140 Cecair / Liquid

22. Etena , propena dan butena wujud dalam keadaan gas pada suhu bilik

manakala alkena daripada pentena hingga dekena wujud dalam keadaan cecair . TP 2

Ethene , propene and butene exist as gases at room temperature whereas alkenes
liquids
from pentene to decene exist as .

© Penerbitan Pelangi Sdn. Bhd. 50

Kimia Tingkatan 5  Bab 2 Sebatian Karbon 

23. Apabila bilangan atom karbon dalam satu molekul alkena bertambah, corak perubahan sifat fizik alkena sama

seperti alkana: TP 2

As the number of carbon atoms in a molecule of alkene increases, the pattern of physical change is similar to that of alkanes:

(a) Takat lebur dan takat didih bertambah . Ini disebabkan
increase
Melting and boiling points . This is because

(i) saiz molekul alkena bertambah .

Molecular size of alkene increases .

(ii) daya van der Waals (daya tarikan antara molekul) bertambah kuat.

van der Waals forces (forces of attraction between molecules/ intermolecular forces) become stronger.

(iii) lebih banyak tenaga haba diperlukan untuk mengatasi daya tarikan antara

molekul .

more heat energy is needed to overcome the forces of attraction between molecules .

(b) Kelikatan dan ketumpatan alkena bertambah. TP 2 BAB 2

Viscocity and density of alkenes increase.

(c) Alkena semakin susah untuk terbakar . TP 2

Alkenes become less flammable .

Sifat-sifat fizik alkuna

Physical properties of alkynes

24.

(a) Hidrokarbon tak tepu dengan sifat fizik yang serupa

dengan alkana dan alkena.
Unsaturated
hydrocarbons with physical properties similar to

alkanes and alkenes.

(e) Secara umumnya, alkuna kurang Sifat fizik (b) Larut dalam pelarut organik , dan
air .
tumpat daripada air. alkuna TP 1 tidak larut dalam
Dissolve in organic solvents and are
In general, alkyenes are less dense than Physical properties water
water. of alkynes insoluble in .

(d) Alkuna mempunyai takat (c) Tidak boleh mengkonduksi elektrik.

lebur dan takat didih yang Cannot conduct electricity.
rendah
.
Alkynes has
low

melting point and boiling point.

25. Berbanding dengan alkana dan alkena, alkuna mempunyai takat didih yang sedikit lebih tinggi
disebabkan faktor medan elektrik etuna menghasilkan daya tarikan antara molekul etuna yang
lebih kuat . TP 2
Compared to alkanes and alkenes, alkynes have slightly higher boiling points due to the factor of electric field of
stronger force of attraction between molecules of ethyne.
ethyne producing a

Sebagai contohnya: / For example:

Takat didih / Boiling point (oC)

Hidrokarbon / Hydrocarbon Etana / Ethane Etena/ Ethene Etuna/ Ethyne

–88.6 –103.7 –84.0

51 © Penerbitan Pelangi Sdn. Bhd.

  Kimia Tingkatan 5  Bab 2 Sebatian Karbon

26. Perubahan sifat fizik alkuna dengan pertambahan bilangan atom karbon per molekul: TP 2

Changes in physical properties of alkynes with the increase of carbon atoms per molecule:

Nama Formula Jisim molar Takat lebur Takat didih Keadaan fizik
molekul
Name Molar mass Melting point Boiling point Physical state
Molecular
formula (g mol–1) (oC) (oC)

(CnH2n-2)

Etuna / Ethyne C2H2 26 – 80.8 – 84.0 Gas / Gas

Propuna / Propyne C3H4 40 – 102.7 – 23.0 Gas / Gas

But-1-una / But-1-yne C4H6 54 – 125.7 – 8.1 Gas / Gas

Pent-1-una / Pent-1-yne C5H8 68 – 106.0 40.2 Cecair / Liquid

Heks-1-una / Hex-1-yne C6H10 82 – 132.0 71.0 Cecair / Liquid

BAB 2 Hept-1-una / Hept-1-yne C7H12 96 – 81.0 99.0 Cecair / Liquid

27. Etuna , propuna dan but-1-una wujud dalam keadaan gas pada suhu bilik
cecair
manakala pent-1-una, heks-1-una dan hept-1-una wujud dalam keadaan . TP 2
Ethyne propyne and but-1-yne exist as a gas at room temperature whereas
,
liquid
pent-1-yne, hex-1-yne and hept-1-yne exist as a .

28. Jisim molar alkuna bertambah apabila bilangan atom karbon per molekul dalam alkuna bertambah .
Molar mass of an alkyne increases as the number of carbon atoms per molecule in the alkyne increases . TP 2

Sifat-sifat fizik alkohol

Physical properties of alcohols

29. Sifat-sifat fizik enam ahli pertama alkohol berantai lurus: TP 1

Physical properties of the first six members of straight-chain alcohols:

Keadaan fizik pada Cecair
suhu bilik
Liquid
Physical state at room
temperature • Alkohol dengan rantai hidrokarbon yang lebih kecil seperti metanol, etanol dan propanol
sangat larut dalam air.
Keterlarutan dalam air
Alkohol with a smaller hydrocarbon chain such as methanol, ethanol, and propanol are
Solubility in water very soluble in water.

Warna (cecair) • Heksanol sedikit larut dalam air.

Colour (of the liquid) Hexanol is slightly soluble in water.

Takat lebur Tak berwarna

Melting point Colourless

Takat lebur rendah . Takat lebur bertambah apabila bilangan atom karbon

dalam molekul alkohol bertambah. increases as the number of carbon atoms in
Low
melting point. Melting point

an alcohol molecule increases.

Takat didih Takat didih rendah . Contoh: takat didih etanol ialah 78oC, lebih rendah daripada

Boiling point takat didih air (100oC).
Low
Kemeruapan boiling point. Example: boling point of ethanol is 78oC, lower than boiling point of

Volatility water (100oC).

Nyalaan Mudah meruap

Flame Easily volatile

Terbakar dalam nyalaan biru .
blue
Burnt with a flame.

© Penerbitan Pelangi Sdn. Bhd. 52

Kimia Tingkatan 5  Bab 2 Sebatian Karbon 

Sifat-sifat fizik asid karboksilik

Physical properties of carboxylic acid

30. Sifat fizik enam ahli pertama asid karboksilik: / Physical properties of the first six members of carboxylic acid: TP 1

Keadaan fizik Cecair
(pada suhu bilik)
Liquid
Physical state
(at room temperature) Larut dalam air. Keterlarutan dalam air berkurang apabila bilangan atom

Keterlarutan dalam air karbon per molekul bertambah .
Dissolve
Solubility in water in water. The solubility in water decreases as the number of carbon atoms per
increases
Warna (cecair) molecule .

Colour (of liquid) Tak berwarna

Bau / Odour Colourless
Takat lebur / Melting point
Tajam / Sharp BAB 2
Takat didih
Rendah / Low
Boiling point
• Takat didih rendah . Takat didih meningkat dengan peningkatan
Kekonduksian elektrik
bilangan atom karbon per molekul.
Electrical conductivity Low increases
boiling point. Boiling point with increasing number of

carbon atoms per molecule.

• Takat didih asid karboksilik lebih tinggi daripada alkena yang sama bilangan
atom karbonnya disebabkan kehadiran ikatan hidrogen antara molekul asid.
Boiling points of carboxylic acids are higher than alkenes with the same number of carbon
hydrogen
atoms due to the presence of bond between the acid molecules.

Boleh mengkonduksi elektrik kerana mempunyai ion yang bebas bergerak.

Can conduct electricity because there are free-moving ions.

Nilai pH / pH value Kurang daripada 7 (rasa masam, mengakis) / Less than 7 (sour taste, corrosive)

2Tugasan

Terangkan mengapa takat lebur dan takat didih heksena lebih tinggi daripada etena.
Explain why the melting point and boiling point of hexene is higher than ethene. TP 2
• Heksena mempunyai lebih banyak bilangan atom karbon per molekul daripada etena.

Hexene has a greater number of carbon atoms per molecule than ethene.

• Saiz molekul heksena lebih besar daripada etena. / Size of the hexene molecule is bigger than the ethene molecule.

• Daya tarikan antara molekul heksena lebih kuat. / Forces of attraction between hexene molecules are stronger.

• Lebih banyak tenaga haba diperlukan untuk mengatasi daya tarikan antara molekul heksena.
More heat energy is needed to overcome the forces of attraction between hexene molecules.

2.3 Sifat Kimia dan Saling Pertukaran antara Siri Homolog
Chemical Properties and Interconversion between Homologous Series

Sifat kimia alkana

Chemical properties of Alkanes

1. Alkana ialah sebatian organik yang paling kurang reaktif. TP 1
Alkanes are the least reactive  organic compounds.

53 © Penerbitan Pelangi Sdn. Bhd.

  Kimia Tingkatan 5  Bab 2 Sebatian Karbon

2. Walaupun alkana tidak bertindak balas dengan kebanyakan bahan kimia, alkana terbakar dalam
oksigen halogen
dan bertindak balas dengan apabila didedahkan kepada sinaran

ultraungu. TP 1 oxygen and react with halogen

Although alkanes do not react with most chemicals, alkanes burn in

when exposed to ultraviolet radiation.

3. Tindak balas pembakaran alkana / Combustion reactions of alkanes
(a) Alkana terbakar lengkap dalam oksigen, O2 berlebihan untuk membentuk karbon dioksida , CO2 dan
air , H2O. TP 1
water , H2O.
Alkanes undergo complete combustion in excess oxygen, O2 to produce carbon dioxide , CO2 and

Alkana + oksigen → karbon dioksida + air

Alkanes + oxygen → carbon dioxide + water

(b) Cara untuk menyeimbangkan persamaan kimia: / Way to balance the chemical equation: TP 2

BAB 2 C3H8 + O2 CO2 + H2O (tidak seimbang/ unbalanced)

Persamaan yang perlu diseimbangkan Penerangan

Equation needs to be balanced Explanation

❶ Langkah / Step:

❶ Seimbangkan C / Balance C
C3H8 +  [3(2) + 4] O2  3 CO2 +  8 H2O
2 2 ❷ & ❸ Seimbangkan H, perlu bahagi 2

❷ ❸ Balance H, need to divide by 2

❹ 8 =4 ❹, ❺ & ❻ Akhir sekali, seimbangkan O, angka boleh
2 tulis dalam pecahan

Lastly, balance O, number can be written in fraction.

C3H8 + 5 O2 3 CO2 + 4 H2O (seimbang/ balanced)

(c) Persamaan kimia seimbang untuk pembakaran lengkap alkana: TP 3

Balanced chemical equations for complete combustion of alkanes:

Alkana Persamaan kimia seimbang Alkana Persamaan kimia seimbang

Alkane Balanced chemical equation Alkane Balanced chemical equation

Metana CH4 + 2O2 → CO2 + 2H2O Butana C4H10 + 13 O2 → 4CO2 + 5H2O
2
Methane Butane
C2H6 + 7 O2 → 2CO2 + 3H2O
Etana 2 Pentana
C5H12 + 8O2 → 5CO2 + 6H2O
Ethane Pentane
C3H8 + 5O2 → 3CO2 + 4H2O
Propana

Propane

(d) Pembakaran tidak lengkap alkana boleh menghasilkan karbon monoksida, karbon dan air. TP 1
Incomplete
combustion of alkanes can produce carbon monoxide, carbon and water.

(e) Alkana sesuai digunakan sebagai bahan api kerana pembakaran alkana menghasilkan banyak
tenaga haba . TP 1
Alkanes are suitable to be used as fuels because combustion of alkanes produce a lot of heat energy .

(f) Apabila saiz molekul alkana semakin besar, alkana semakin sukar terbakar. TP 1

Molekul alkana yang lebih besar terbakar dengan lebih berjelaga disebabkan pertambahan

bilangan atom karbon per molekul apabila saiz molekul alkana semakin bertambah. Peratus

karbon mengikut jisim dalam molekul alkana juga semakin bertambah.

As the size of the alkane molecules gets larger, they become more difficult to burn. Larger alkane molecules

burn with more soot due to the increase in the number of carbon atoms per molecule

as the size of the alkane molecule increases. The mass percentage of carbon in alkane molecules also

increases.

© Penerbitan Pelangi Sdn. Bhd. 54

Kimia Tingkatan 5  Bab 2 Sebatian Karbon 

4. Tindak balas penukargantian alkana / Substitution reactions of alkanes
hidrogen
(a) (i) Berlaku apabila atom-atom dalam molekul alkana ditukargantikan satu demi satu
oleh atom yang lain seperti atom halogen dengan kehadiran cahaya matahari (sinaran ultraungu).
hydrogen
Reaction whereby each atom in the alkane molecule is substituted one by one by another

atom, such as halogen atoms in the presence of sunlight (ultraviolet light). TP 1

(ii) Sinaran ultraungu diperlukan untuk memutuskan ikatan kovalen dalam molekul halogen dan
alkana untuk menghasilkan atom hidrogen dan klorin . TP 1

Ultraviolet light is needed to break the covalent bonds in halogen and alkane molecules to produce
hydrogen and chlorine atoms .

(b) Contoh tindak balas penukargantian melibatkan metana dan gas klorin: TP 2

Example of substitution reaction involving methane and chlorine gas:

Langkah 1 / Step 1 H Langkah 2 / Step 2 H BAB 2
H H C Cl + H Cl H H C Cl + H Cl

H C H + Cl Cl H H C Cl + Cl Cl Cl
H Klorometana H Diklorometana
Chloromethane Dichloromethane
Metana Klorometana
Methane Chloromethane

CH4 + Cl2 uv CH3Cl + HCl CH3Cl + Cl2 uv CH2Cl2 + HCl
Langkah 3 / Step 3
Cl Langkah 4 / Step 4 Cl
H H C Cl + H Cl Cl Cl C Cl + H Cl
H C Cl + Cl Cl
Cl H C Cl + Cl Cl Cl
Cl Triklorometana Cl Tetraklorometana
Diklorometana Trichloromethane Tetrachloromethane
Dichloromethane Triklorometana
Trichloromethane

CH2Cl2 + Cl2 uv CHCl3 + HCl CHCl3 + Cl2 uv CCl4 + HCl

(c) Alkana juga bertindak balas dengan wap bromin melalui tindak balas penukargantian dalam kehadiran

sinaran ultraungu. Contohnya, metana bertindak balas dengan wap bromin untuk menghasilkan
bromometana, dibromometana , tribromometana dan tetrabromometana . TP 2

Alkane also reacts with bromine vapour through a substitution reaction in the presence of ultraviolet radiation.
For example, methane reacts with bromine vapour to produce bromomethane, dibromomethane , tribromomethane
and tetrabromomethane .

3Tugasan

Sebatian X bertindak balas dengan wap bromin dengan kehadiran cahaya matahari untuk menghasilkan
bromoetana dan hidrogen bromida. TP 4

Compund X reacts with bromine vapour in the presence of sunlight to produce bromoethane and hydrogen bromide.

(a) Namakan siri homolog bagi sebatian X. Alkana/ Alkane
Name the homologous series of compound X.

(b) Namakan tindak balas ini. / Name the reaction. Tindak balas penukargantian/ Substitution reaction

(c) Tulis persamaan kimia yang seimbang untuk tindak balas ini. C2H6 + Br2 → C2H5Br + HBr
Write a balanced chemical equation for this reaction.

(d) Nyatakan satu pemerhatian dalam tindak balas ini. Warna perang wap bromin menjadi tidak berwarna.
State one observation in this reaction. Brown colour of bromine vapour becomes colourless.

55 © Penerbitan Pelangi Sdn. Bhd.

  Kimia Tingkatan 5  Bab 2 Sebatian Karbon

Sifat kimia alkena

Chemical properties of alkenes

5. Alkena adalah lebih reaktif berbanding dengan alkana kerana kewujudan ikatan kovalen ganda dua

antara atom karbon. TP 1
reactive double
Alkenes are more than alkanes because of the existence of covalent bond between

carbon atoms.

6. Tindak balas pembakaran alkena / Combustion reactions of alkenes
(a) Alkena terbakar dengan lengkap dalam oksigen berlebihan untuk menghasilkan karbon dioksida
air . TP 1 dan

Alkenes burn completely in excess oxygen to produce carbon dioxide and water .

(b) Persamaan kimia seimbang untuk pembakaran lengkap alkena: TP 3

Balanced chemical equations for complete combustion of alkenes:

BAB 2 Alkena Persamaan kimia seimbang Alkena Persamaan kimia seimbang

Alkene Balanced chemical equation Alkene Balanced chemical equation

Etena / Ethene C2H4 + 3O2 → 2CO2 + 2H2O Butena / Butene C4H8 + 6O2 → 4CO2 + 4H2O
Propena / Propene Pentena / Pentene C5H10 + O2 → 5CO2 + 5H2O
C3H6 + 9 O2 → 3CO2 + 3H2O
2

(c) Pembakaran tidak lengkap alkena dalam keadaan bekalan oksigen yang terhad boleh menghasilkan

karbon monoksida atau karbon dan air. TP 1
Incomplete
combustion of alkenes in limited supply of oxygen can produce carbon monoxide or carbon and

water. Example / Contoh: TP 2

(i) C2H4 + O2 2C + 2H2O

(ii) C2H4 + 2O2 2CO + 2H2O

(d) (i) Pembakaran alkena akan menghasilkan lebih jelaga berbanding dengan alkana yang
setara kerana peratus karbon mengikut jisim
yang lebih tinggi dalam alkena berbanding

dengan alkana yang setara. TP 1

Combustion of alkenes will produce more soot compared with their corresponding alkanes due to the

higher mass percentage of carbon in alkenes than their corresponding alkanes.

(ii) Example / Contoh: TP 2

Hidrokarbon setara / Corresponding hydrocarbon Propana / Propane C3H8 Propena / Propene C3H6
Peratus karbon mengikut jisim
Peratus karbon mengikut Peratus karbon mengikut
Mass percentage of carbon
jisim jisim

Mass percentage of carbon Mass percentage of carbon

= 12 × 3 × 100% = 12 × 3 × 100%
12 × 3 + 8 × 1 12 × 3 + 6 × 1

= 81.81% = 85.71%

(iii) Propena mempunyai peratus karbon mengikut jisim yang lebih tinggi daripada propana,
maka propena menghasilkan lebih banyak jelaga apabila terbakar. TP 2
Propene has a higher mass percentage of carbon than propane, so propene produces more
soot

when burned.

7. Tindak balas penambahan alkena / Addition reactions of alkenes

(a) Penambahan dengan hidrogen (Penghidrogenan) TP 2

Addition of hydrogen (Hydrogenation)

Bahan tindak balas Alkena dan hidrogen

Reactants Alkene and hydrogen

Hasil tindak balas Alkana

Product Alkane

© Penerbitan Pelangi Sdn. Bhd. 56

Kimia Tingkatan 5  Bab 2 Sebatian Karbon 

Keadaan tindak balas Mangkin: Nikel / Platinum

Condition of reaction Catalyst: Nickle / Platinum

Contoh tindak balas Suhu /Temperature: 180oC

Example of reaction Apabila campuran gas etena dan hidrogen dialirkan melalui nikel pada suhu

Persamaan kimia 180oC, etana terhasil.

Chemical equation When a mixture of ethene and hydrogen gas is channelled through nickel at the temperature

of 180oC, ethane is produced.

C2H4 + H2 → C2H6

(b) Penambahan dengan halogen (Penghalogenan) TP 2

Addition of halogen (Halogenation)

Bahan tindak balas Alkena dan halogen

Reactants Alkene and halogen

Hasil tindak balas Dihaloalkana (dikloroalkana, dibromoalkana) BAB 2

Product Dihaloalkane (dichloroalkane, dibromoalkane)

Contoh tindak balas (i) Gas klorin bertindak balas dengan gas etena untuk menghasilkan 1,2-dikloroetana .

Example of reaction Chlorine gas reacts with ethene gas to produce 1,2-dichloroethane .

(ii) Gas bromin bertindak balas dengan gas etena untuk menghasilkan 1,2-dibromoetana .

Bromine gas reacts with ethene gas to produce 1,2-dibromoethane .

Persamaan kimia (i) C2H4 + Cl2 → C2H4Cl2
(ii) C2H4 + Br2 → C2H4Br2
Chemical equation

(c) Penambahan dengan hidrogen halida TP 2

Addition of hydrogen halide

Bahan tindak balas Alkena dan hidrogen halida (HCl / HBr / HI)

Reactants Alkene and hydrogen halide (HCl / HBr / HI)

Hasil tindak balas Haloalkana (kloroalkana, bromoalkana, iodoalkana)

Product Haloalkane (chloroalkane, bromoalkane, iodoalkane)

Contoh tindak balas (i) Gas hidrogen klorida bertindak balas dengan gas etena pada suhu bilik untuk
menghasilkan kloroetana .
Example of reaction
Hydrogen chloride gas reacts with ethene gas at room temperature to produce chloroethane
.

(ii) Gas hidrogen bromida bertindak balas dengan gas etena pada suhu bilik untuk .
menghasilkan bromoetana .

Hydrogen bromide gas reacts with ethene gas at room temperature to produce bromoethane

(iii) Gas hidrogen iodida bertindak balas dengan gas etena pada suhu bilik untuk
menghasilkan iodooetana .
iodoethane
Hydrogen iodide gas reacts with ethene gas at room temperature to produce .

Persamaan kimia (i) C2H4 + HCl → C2H5Cl
(ii) C2H4 + HBr → C2H5Br
Chemical equation (iii) C2H4 + HI → C2H5I

(d) Penambahan dengan stim / air (Penghidratan) TP 2

Addition of steam / water (Hydration)

Bahan tindak balas Alkena dan air / stim

Reactants Alkene and water / steam

Hasil tindak balas Alkohol

Product Alcohol

Keadaan tindak balas Mangkin / Catalyst: asid fosforik pekat / concentrated phosphoric acid
Suhu / Temperature: 300oC
Condition of reaction Tekanan / Pressure: 60 atm

57 © Penerbitan Pelangi Sdn. Bhd.

  Kimia Tingkatan 5  Bab 2 Sebatian Karbon

Contoh tindak balas Apabila campuran gas etena dan stim / wap air dialirkan melalui asid fosforik pekat pada
suhu 300oC dan tekanan 60 atm , etanol terhasil.
Example of reaction When a mixture of ethene gas and steam/ water vapour is channeled through concentrated phosphoric
300oC 60 atm , ethanol
Persamaan kimia acid at the temperature of and pressure of is produced.

Chemical equation C2H4 + H2O → C2H5OH

(e) Penambahan dengan kumpulan hidroksil (Pengoksidaan) TP 2

Addition of hydroxyl groups (Oxidation)

Bahan tindak balas Alkena dan agen pengoksidaan (larutan KMnO4 berasid atau larutan K2Cr2O7 berasid)

Reactants Alkene and oxidising agent (acidified KMnO4 or acidified K2Cr2O7 solution)

Hasil tindak balas Diol

Product Diol

BAB 2 Contoh tindak balas Etena bertindak balas dengan larutan kalium manganat(VII) berasid untuk menghasilkan
etana-1, 2-diol .
Example of reaction
Ethene reacts with acidified potassium manganate(VII) to produce ethane-1, 2-diol .

Persamaan kimia C2H4 + H2O + [O] → C2H4(OH)2

Chemical equation

(f) Penambahan pempolimeran TP 2

Addition polymerisation

Bahan tindak balas Alkena (Monomer)

Reactants Alkene (Monomer)

Hasil tindak balas Polialkena (Polimer)

Product Polyalkene (Polymer)

Keadaan tindak balas Suhu / Temperature: 200oC

Condition of reaction Tekanan / Pressure: 1000 atm

Contoh tindak balas Beribu-ribu molekul etena (monomer) terikat bersama untuk membentuk molekul berantai
panjang yang besar yang dikenali sebagai polietena (polimer) melalui tindak balas
Example of reaction

penambahan / pempolimeran .

Thousands of ethene molecules (monomers) combine to form large long chain molecules known as

polyethene (polymer) through the addition / polymerisation reaction.

Persamaan kimia nn CC222HH444 -((CC222HH444))nn-

Chemical equation HH HH
nn CC CC
΂ ΃HH HH
HH HH CC CC
EEEEttthtehaenannnaeae HH HH nnn
PPPPoololoyileelyittttheeheennnnaaee

8. Aktiviti untuk membandingkan sifat kimia alkana dengan alkena: TP 2

Activities to compare the chemical properties of alkanes and alkenes:

Perbandingan antara sifat kimia heksana dengan heksena

Comparison of chemical properties of hexane dan hexene

Pembakaran Tindak balas kimia dengan air bromin Tindak balas kimia dengan larutan
KMnO4 berasid
(Kejelagaan) Chemical reaction with bromine water
Chemical reaction with acidified KMnO4
Combustion solution
(Sootiness)

© Penerbitan Pelangi Sdn. Bhd. 58

Kimia Tingkatan 5  Bab 2 Sebatian Karbon 

Prosedur / Procedure

1. Sebanyak 2 cm3 heksana dan 1. Sebanyak 2 cm3 heksana 1. Sebanyak 2 cm3 heksana BAB 2
heksena dituangkan ke dalam dituangkan ke dalam tabung uji. dituangkan ke dalam tabung uji.
dua mangkuk penyejat yang
berasingan dan diletak di atas About 2 cm3 of hexane is poured into a About 2 cm3 of hexane is poured into a
kepingan asbestos. test tube. test tube.

About 2 cm3 of hexane and hexene are 2. Beberapa titis air bromin 2. Beberapa titis larutan kalium
poured into two separated evaporating ditambahkan kepada heksana. manganat(VII) berasid
dishes and are placed on asbestos ditambahkan kepada heksana.
sheets. A few drops of bromine water are added
to the hexane. A few drops of acidified potassium
2. Kayu uji bernyala digunakan manganate(VII) solution are added to
untuk menyalakan kedua-dua 3. Campuran itu digoncang. the hexane.
cecair tersebut.
The mixture is shaken. 3. Campuran itu digoncang.
A lighted wooden splinter is used to
light up the two liquids. 4. Semua perubahan diperhatikan The mixture is shaken.
dan dicatatkan.
3. Sekeping kertas turas dipegang di 4. Semua perubahan diperhatikan
atas setiap nyalaan. All changes that occur are observed and dan dicatatkan.
recorded.
A piece of filter paper is held above each All changes that occur are observed and
flame. 5. Langkah 1 hingga 4 diulang recorded.
menggunakan heksena untuk
4. Warna nyalaan dan kuantiti jelaga menggantikan heksana. 5. Langkah 1 hingga 4 diulang
yang terkumpul di atas kertas menggunakan heksena untuk
turas diperhatikan dan dicatatkan. Steps 1 to 4 are repeated using hexene menggantikan heksana.
to replace hexane.
The colour of flame is observed, and the Steps 1 to 4 are repeated using hexene
amount of soot collected on the filter to replace hexane.
paper is observed and recorded.

Pemerhatian / Observation TP 2

Sifat kimia Heksana Heksena

Chemical properties Hexane Hexene

Pembakaran Terbakar dengan nyalaan kuning dan Terbakar dengan nyalaan kuning dan

Combustion kurang berjelaga. lebih berjelaga.

Tindak balas dengan air bromin Burns with a yellow flame and less soot. Burns with a yellow flame and more soot.

Reaction with bromine water Tiada perubahan Warna perang air bromin

Tindak balas dengan larutan kalium No change dinyahwarnakan.
manganat(VII) berasid
Brown colour of bromine
Reaction with acidified potassium
manganat(VII) solution water is decolourised.

Tiada perubahan Warna ungu larutan kalium

No change manganat(VII) berasid dinyahwarnakan.

Purple colour of acidified potassium
manganat(VII) solution is decolourised.

Kesimpulan / Conclusion TP 2

1. Alkena menghasilkan lebih banyak jelaga berbanding dengan alkana apabila dibakar.

Alkenes produce more soot than alkanes when they are burnt in the air.

2. Alkena menyahwarnakan warna perang air bromin tetapi alkana tidak.

Alkenes decolourise brown colour of bromine water but alkanes do not.

3. Alkena menyahwarnakan warna ungu larutan kalium manganat(VII) berasid tetapi alkana tidak.

Alkenes decolourise purple colour of acidified potassium manganate(VII) but alkanes do not.

4. Alkena ialah hidrokarbon tak tepu , manakala alkana ialah hidrokarbon tepu.

Alkenes are unsaturated hydrocarbons , but alkanes are saturated hydrocarbons.

59 © Penerbitan Pelangi Sdn. Bhd.

  Kimia Tingkatan 5  Bab 2 Sebatian Karbon

9. Perbandingan alkana (hidrokarbon tepu) dengan alkena (hidrokarbon tak tepu): TP 4

Comparison of alkanes (saturated hydrocarbons) and alkenes (unsaturated hydrocarbons):

Jenis hidrokarbon Alkana Alkena

Type of hydrocarbon Alkane Alkene

(a) Komposisi Karbon dan hidrogen Karbon dan hidrogen

Composition Carbon and hydrogen Carbon and hydrogen

(b) Jenis ikatan antara atom karbon Ikatan tunggal Ikatan ganda dua / dubel

Type of bond between carbon atoms Single bond Double bond

(c) Peratus karbon mengikut jisim per molekul Lebih rendah Lebih tinggi

Mass percentage of carbon per molecule Lower Higher

(d) Kejelagaan Kurang jelaga Lebih jelaga

Sootiness Less soot More soot

BAB 2 4Tugasan

Rajah berikut menunjukkan kumpulan-kumpulan siri homolog yang terbentuk apabila alkena mengalami suatu tindak
balas kimia. TP 2
The followng diagram shows groups of homologous series formed when an alkene undergoes chemical reactions.

Alkena / Alkene
CnH2n

(A) (B) (C) (D) (E) (F)

Alkana Dihaloalkana Haloalkana Alkohol Diol Polimer
Alkane Dihaloalkane Haloalkane Alcohol Diol Polymer
CnH2n + 2 CnH2n + 1X CnH2n+ 1OH CnH2n (OH)2 (CnH2n)n
CnH2nX2

X mewakili suatu halogen. / X represents a halogen.
Berdasarkan rajah tersebut, namakan proses A, B, C, D, E dan F. / Based on the diagram, name process A, B, C, D, E and F.

A: Penghidrogenan / Penambahan dengan hidrogen D: Penghidratan / Penambahan dengan air
Hydrogenation / Addition of hydrogen Hydration / Addition of water

B: Penghalogenan / Penambahan dengan halogen E: Pengoksidaan / Penambahan dengan kumpulan
Halogenation / Addition of halogen hidroksil / Penambahan dengan larutan kalium
manganat(VII) berasid / Penambahan dengan larutan
kalium dikromat(VI) berasid

Oxidation / Addition of hydroxyl groups /
Addition with acidified potassium manganate(VII) solution
/ Addition with acidified potassium dichromate(VI) solution

C: Penambahan dengan hidrogen halida F: Pempolimeran
Addition of hydrogen halide Polymerisation

© Penerbitan Pelangi Sdn. Bhd. 60

Penyediaan etanol Kimia Tingkatan 5  Bab 2 Sebatian Karbon 
Penyediaan etanol / Preparation of ethanol
Preparation of ethanol

10.

(a)  Dalam industri / In industry (b)  Di makmal / In laboratory

(i) Melalui penghidratan etena TP 1 (i) Melalui proses penapaian TP 1 BAB 2

By hydration of ethena By fermentation process

(ii) Campuran gas etena dan stim/ air (ii) Penapaian ialah proses mikroorganisma seperti yis
dialirkan melalui asid fosforik pekat pada suhu karbohidrat
300oC dan tekanan 60 atm . TP 1 bertindak ke atas (gula atau
etanol
kanji) untuk menghasilkan

A mixture of ethene gas and steam/ water dan karbon dioksida. TP 1

is channeled through concentrated phosphoric acid Fermentation is a process in which microorganisms such

at the temperature of 300oC and pressure of as yeasts act on carbohydrates (sugar or starch)

60 atm . to produce ethanol and carbon dioxide.

(iii) C2H4 + H2O → C2H5OH TP 2 (iii) C6H12O6 → 2C2H5OH + 2CO2 TP 2

Aktiviti 2.1 Penyediaan Etanol melalui Proses Penapaian Glukosa
Preparation of Ethanol by Fermentation of Glucose

Tujuan / Aim:
Untuk menyediakan etanol melalui proses penapaian glukosa.

To prepare ethanol by fermentation of glucose.

Bahan / Materials:
Glukosa, yis, air suling, kertas turas, dan air kapur.

Glucose, yeast, distilled water, filter paper, and limewater.

Radas / Apparatus:
Kelalang kon, silinder penyukat, rod kaca, tabung didih, salur penghantar dengan penyumbat getah, corong turas,
turus berperingkat, kelalang dasar bulat, termometer, kondenser Liebig, penyumbat getah berlubang satu, kaki
retort dan pengapit, tungku kaki tiga, kasa dawai, penunu Bunsen dan bikar.

Conical flasks, measuring cylinders, glass rod, boiling tube, delivery tube with rubber stopper, filter funnel, fractional distillation
column, round-bottomed flask, thermometer, Liebig condenser, rubber stopper with a hole, retort stand and clamps, tripod stand,
wire gauze, Bunsen burner and beaker.

61 © Penerbitan Pelangi Sdn. Bhd.

  Kimia Tingkatan 5  Bab 2 Sebatian Karbon

Prosedur / Procedure:

Termometer 100 90 80 70 60 50 40 30 20 10 Air keluar
Thermometer Water out Kondenser Liebig

Liebig condenser

Salur penghantar Kelalang Turus
Delivery tube dasar bulat berperingkat
Round- Fractionating
Penyumbat getah bottomed flask column Air masuk
Rubber stopper
Water in

Kelalang kon Tabung didih Kukus air Hasil turasan Hasil sulingan
Conical flask Boiling tube Water bath Filtrate Distillate
Glukosa + yis Air kapur
BAB 2 + air suling Limewater Panaskan
Glucose + yeast Heat
+ distilled water

Susunan radas untuk penapaian Susunan radas untuk penyulingan

Set-up of apparatus for fermentation Set-up of apparatus for distillation

1. 20 g glukosa dilarutkan dalam 200 cm3 air suling di dalam kelalang kon 250 cm3.

20 g of glucose is dissolved in 200 cm3 distilled water in a 250 cm3 conical flask.

2. 10 g yis dimasukkan ke dalam kelalang kon itu dan campuran dikacau sehingga sekata.

10 g of yeast is put in the conical flask and the mixture is stirred evenly.

3. Kelalang kon ditutup dengan penyumbat yang telah dipasang dengan salur penghantar.

The conical flask is closed with a stopper that has been fitted with a delivery tube.

4. Hujung salur penghantar dimasukkan ke dalam sebuah tabung uji berisi air kapur. Hujung salur penghantar
dipastikan berada di bawah aras air kapur.

The end of the delivery tube is put into a test tube containing lime water. The end of delivery tube has to be below the level of
limewater.

5. Radas dibiarkan di tempat yang panas selama 1 hingga 3 hari.

The apparatus is left in a warm place for 1 to 3 days.

6. Perubahan yang berlaku kepada kandungan dalam kelalang kon dan air kapur diperhatikan.

The changes that occur to the content in the conical flask and limewater are observed.

7. Campuran dalam kelalang kon dituras.

The mixture in the conical flask is filtered.

8. Hasil turasan disuling.

The filtrate is distilled.

9. Hasil sulingan dikutip pada 78 – 80oC.

The distillate is collected at 78 – 80oC.

Pemerhatian / Observation: TP 2

1. Semasa penapaian, gelembung-gelembung gas kelihatan dalam kelalang kon.

During fermentation, gas bubbles appear in the conical flask.

2. Air kapur menjadi keruh .

Limewater becomes cloudy .

3. Hasil sulingan pada 78-80oC ialah cecair tidak berwarna .
colourless liquid
The distillate at 78-80 oC is a .

Inferens / Inference: TP 2

Gas karbon dioksida terhasil. Hasil sulingan ialah etanol .
Carbon dioxide
gas is produced. The distillate is ethanol .

© Penerbitan Pelangi Sdn. Bhd. 62

Kimia Tingkatan 5  Bab 2 Sebatian Karbon 

Perbincangan / Discussion: TP 2

1. Yis mengandungi enzim zimase yang menguraikan glukosa kepada etanol dan gas

karbon dioksida .
zymase ethanol and carbon dioxide gas.
Yeast contains enzyme which breaks down glucose into

2. Persamaan kimia bagi tindak balas penapaian: / Chemical equation for fermentation reaction:

C6H12O6 → 2C2H5OH + 2CO2

3. Hasil penapaian ialah campuran etanol dan air . Campuran ini boleh diasingkan melalui
penyulingan berperingkat . Cecair etanol dikumpul pada suhu 78oC, iaitu takat didih
etanol.
The product of fermentation is a mixture of ethanol and water . This mixture can be separated by fractional distillation .
boiling
Ethanol liquid is collected at 78oC, which is the point of ethanol.

Kesimpulan / Conclusion: TP 2 penapaian glukosa. / Etanol can be prepared by fermentation of glucose.
Etanol boleh disediakan melalui

11. Namakan hasil bagi tindak balas kimia yang berikut. TP 2 BAB 2

Name the products of the following chemical reactions.

Sifat kimia alkohol / Chemical properties of alcohol

(a) Pembakaran lengkap (b) Pengoksidaan (c) Pendehidratan

Complete combustion Oxidation Dehydration

Hasil / Product Hasil / Product Hasil / Product
Karbon dioksida dan air Asid karboksilik Alkena

Carbon dioxide and water Carboxylic acid Alkene

Pembakaran etanol

Combustion of ethanol

12. (a) Etanol terbakar dengan nyalaan biru muda tanpa jelaga. Ini menunjukkan pembakaran etanol
lengkap dan tidak menghasilkan karbon (jelaga). TP 1

Ethanol burns with pale-blue and non-sooty flame. It shows that the combustion of ethanol is complete and
does not produce carbon (soot).

(b) Persamaan kimia bagi tindak balas pembakaran etanol: / Chemical equation for the combustion of ethanol: TP 2

C2H5OH + 3O2 → 2CO2 + 3H2O

(c) Etanol ialah bahan api yang baik kerana etanol boleh terbakar untuk menghasilkan banyak
haba . TP 1

Ethanol is a good fuel because it can burn to produce a lot of heat .

13. Aktiviti untuk mengkaji sifat kimia alkohol: / Activity to study the chemical properties of alkohol:

Pengoksidaan alkohol / Oxidation of alcohol Pendehidratan alkohol / Dehydration of alcohol
(Alkohol → Asid karboksilik) / (Alcohol → Carboxylic Acid) (Alkohol → Alkena) / (Alcohol → Alkene)

Etanol dan larutan Air sejuk Wul kaca + etanol Etana
kalium dikromat(VI) Cold water Glass wool + ethanol Ethene
Air
Serpihan porselin Water
Porcelain chips

berasid
Ethanol and
acidified potassium
dichromate(VI)
solution Panaskan
Panaskan Heat
Heat Hasil sulingan
Distillate

63 © Penerbitan Pelangi Sdn. Bhd.

  Kimia Tingkatan 5  Bab 2 Sebatian Karbon

BAB 2 1. Sebanyak 5 cm3 larutan kalium dikromat(VI), K2Cr2O7 dituangkan 1. Wul kaca yang dibasahkan dengan etanol
ke dalam tabung didih. dimasukkan ke dalam tabung didih.

About 5 cm3 of potassium dichromate(VI) solution, K2Cr2O7 is poured into a Some glass wool which is wet with ethanol is placed in a
boiling tube. boiling tube.

2. 10 titis asid sulfurik pekat ditambah ke dalam tabung didih 2. Tabung didih diapit secara mendatar dan serpihan
dengan berhati-hati. porselin diletakkan di bahagian tengah tabung
didih seperti ditunjukkan dalam rajah.
10 drops of concentrated sulphuric acid are added into the boiling tube
carefully. The boiling tube is clamped horizontally, and some
porcelain chips are placed in the middle section of the
3. Tambahkan 3 cm3 etanol ke dalam tabung didih. boiling tube as shown in the diagram.

3 cm3 of ethanol is added into the boiling tube. 3. Tabung didih ditutup dengan penyumbat yang
mempunyai salur penghantar. Hujung salur
4. Salur penghantar disambungkan kepada tabung didih seperti yang penghantar diletakkan di bawah tabung uji
ditunjukkan dalam rajah. terbalik yang diisi dengan air.

A delivery tube is connected to the boiling tube as shown in the diagram. Close the boiling tube with a stopper fitted with a
delivery tube. The other end of delivery tube is placed
5. Campuran dalam tabung didih dipanaskan perlahan-lahan under an inverted test tube filled with water.
sehingga mendidih.
4. Serpihan porselin dipanaskan dengan kuat. Wul
The mixture in the boiling tube is heated gently until it boils. kaca kemudiannya dihangatkan sehingga etanol
meruap dan wapnya dilalukan melalui serpihan
6. Perubahan warna larutan dalam tabung didih direkodkan. porselin yang dipanaskan.

The colour change of the solution in the boling tube is recorded. Porcelain chips are heated strongly. The glass wool
is then heated gently so that ethanol vapourised and
7. Hasil sulingan dikumpulkan dalam tabung uji yang direndam di passed through the heated porcelain chips.
dalam air sejuk.
5. Gas yang terbebas dikumpul ke dalam sebuah
The distillate is collected in a test tube immersed in cold water. tabung uji.

8. Hasil sulingan diuji dengan kertas litmus biru lembap. The gas released is collected in a test tube.

The distillate is tested with moist blue litmus paper. 6. Gas tersebut ditambah dengan 2 cm3 air bromin
dan digoncangkan.

The gas produced is added with 2 cm3 of bromine water
and is shaken well.

Pemerhatian / Observations TP 2

1. Warna jingga larutan kalium dikromat(VI) berasid menjadi 1. Gas tanpa warna dikumpulkan di dalam
hijau .
orange colour of acidified potassium dichromate(VI) solution tabung uji.
The . gas is collected in the test tube.
green A colourless

turns 2. Gas itu menukarkan warna perang air

3. Hasil sulingan ialah cecair tidak berwarna yang berbau seperti bromin kepada tidak berwarna.
cuka . brown
The gas changed the colour of bromine

The distillate is a colourless liquid smells like vinegar . water to colourless.

4. Hasil turasan menukarkan warna kertas litmus biru lembap kepada
merah .
red .
The distillate turns moist blue litmus paper to

Kesimpulan / Conclusion TP 2

Pengoksidaan etanol dengan agen pengoksidaan seperti larutan kalium Pendehidratan etanol menghasilkan etena .
dikromat(VI) berasid menghasilkan asid etanoik . ethene
Dehydration of ethanol produces .
Oxidation of ethanol with an oxidising agent such as acidified potassium
dichromate(VI) solution produces ethanoic acid .

© Penerbitan Pelangi Sdn. Bhd. 64

Kimia Tingkatan 5  Bab 2 Sebatian Karbon 

5Tugasan

Rajah berikut menunjukkan satu siri tindak balas kimia. / The following diagram shows a series of chemical reactions. TP 4

S III P I Q II R
C2H6 C2H4 CH3COOH

IV

(a) Namakan proses I dan sebatian Q. Proses / Process I: Penghidratan / Hydration
Name process I and compound Q. Sebatian / Compound Q: Etanol / Ethanol
C2H5OH + 2[O] → CH3COOH + H2O
(b) Tulis persamaan kimia bagi tindak balas dalam
proses II. Mangkin nikel / platinum digunakan, suhu pada 180oC. BAB 2
Catalyst nickel / platinum is used, temperature at 180oC.
Write the chemical equation for the reaction in process II.
(c) Nyatakan dua keadaan yang diperlukan untuk Wul kaca + etanol Etana
Glass wool + ethanol Ethene
tindak balas III berlaku.
State two conditions for reaction III to occur. Serpihan porselin
(d) Lukis rajah berlabel bagaimana tindak balas IV Porcelain chips

dijalankan dalam makmal.
Draw a labelled diagram how reaction IV can be carried

out in the laboratory.

Panaskan
Heat

Air
Water

Penyediaan asid etanoik

Preparation of ethanoic acid

14. (a) Kaedah penyediaan asid etanoik: pengoksidaan etanol . TP 1

Method of preparation of ethanoic acid: oxidation of ethanol .

(b) Agen pengoksidaan yang digunakan: larutan kalium Air keluar
dikromat(VI) berasid kalium Water out
atau larutan Kondenser Liebig
manganat(VII) berasid . TP 1 Liebig condenser

Oxidising agents used are: acidified potassium dichromate(VI) Air masuk
solution or acidified potassium manganate(VII) solution. Water in

15. Campuran etanol dan agen pengoksidaan seperti larutan kalium Kelalang
dikromat(VI) berasid dipanaskan secara refluks . TP 1 dasar bulat
Round-
A mixture of ethanol and oxidising agent such as acidified potassium bottomed flask
reflux . Kukus air
dichromate(VI) solution is heated by Water bath Etanol
Ethanol
16. Dalam tindak balas ini, warna larutan kalium dikromat(VI)
berasid bertukar daripada jingga kepada hijau . +
Larutan kalium
In this reaction, the colour of acidified potassium dichromate(VI) solution dikromat(VI) berasid
orange green Panaskan Acidified potassium
turns from to . TP 1 Heat dichromate(VI) solution

65 © Penerbitan Pelangi Sdn. Bhd.

  Kimia Tingkatan 5  Bab 2 Sebatian Karbon

17. Persamaan kimia / Chemical equation: TP 2
C2H5OH + 2[O] → CH3COOH + H2O

18. Terangkan mengapa /Explain why
(a) kaedah refluks digunakan dalam penyediaan asid etanoik. TP 1

Reflux method is used in the preparation of ethanoic acid.

Dapat mengekalkan etanol yang mudah meruap semasa pemanasan.

Can maintain volatile ethanol during heating.

(b) kondenser Liebig dipasang secara menegak pada kelalang dasar bulat. TP 1

The Liebig condenser is mounted vertically on the round-bottomed flask.

Dapat mengkondensasi gas etanol yang belum lagi dioksidakan.

Can condense ethanol gas that has not yet been oxidised.

BAB 2 Sifat kimia asid karboksilik TP 1

Chemical properties of carboxylic acids

19. Hasil tindak balas / Products
Tindak balas / Reaction
Garam karboksilat + air
(a) Asid karboksilik dengan bes
Carboxylate salt + water
Carboxylic acid with base
Garam karboksilat + air + karbon dioksida
(Peneutralan / Neutralisation) carbon dioxide
Carboxylate salt + water +
(b) Asid karboksilik dengan karbonat logam
Garam karboksilat + gas hidrogen
Carboxylic acid with metal carbonate
Carboxylate salt + hydrogen gas
(c) Asid karboksilik dengan logam reaktif

Carboxylic acid with reactive metal

(d) Asid karboksilik dengan alkohol Ester + air

Carboxylic acid with alcohol Ester + water

(Pengesteran / Esterification)

Aktiviti 2.2 Mengkaji Sifat Kimia Asid Etanoik
Investigating the Chemical Properties of Ethanoic Acid

Tujuan / Aim:
Untuk mengkaji sifat kimia asid etanoik. / To investigate the chemical properties of ethanoic acid.

A. Tindak balas asid B. Tindak balas asid etanoik dengan C. Tindak balas asid etanoik dengan
logam
etanoik dengan Asid etanoik karbonat logam
Ethanoic acid Reaction between ethanoic acid and
bes Reaction between ethanoic acid and metal
+ metal carbonate
Reaction Kayu uji bernyala
Larutan natrium hidroksida Asid etanoik cair Burning wooden splinter
between Sodium hydroxide solution Dilute ethanoic acid
ethanoic

acid and base

Panaskan kSaerrbbounkant atrium Air kapur Asid etanoik cair
Heat Spoowdiduemr carbonate Limewater Dilute ethanoic acid
Pita magnesium
Magnesium ribbon

© Penerbitan Pelangi Sdn. Bhd. 66

Kimia Tingkatan 5  Bab 2 Sebatian Karbon 

Prosedur / Procedure

1. 2 cm3 asid etanoik 1 mol dm–3 1. Kira-kira 5 cm3 asid etanoik 1 mol 1. Kira-kira 5 cm3 asid etanoik BAB 2
dituang ke dalam sebuah mangkuk dm–3 dituangkan ke dalam sebuah dituangkan ke dalam sebuah tabung
penyejat. tabung uji. uji.

2 cm3 of ethanoic acid 1 mol dm–3 is About 5 cm3 of 1 mol dm–3 ethanoic acid is About 5 cm3 of ethanoic acid is poured
poured into an evaporating dish. poured into a test tube. into a test tube.

2. 2 cm3 larutan natrium hidroksida 2. Satu spatula serbuk natrium 2. 3 cm pita magnesium dibersihkan
1 mol dm–3 ditambah ke dalam karbonat ditambah kepada asid dengan kertas pasir.
mangkuk penyejat tersebut. etanoik.
3 cm of magnesium ribbon is cleaned
2 cm3 of sodium hydroxide solution 1 A spatula of sodium carbonate powder is with sandpaper.
mol dm–3 is added into the evaporating added into the ethanoic acid.
3. Pita magnesium dimasukkan ke
dish. 3. Tabung uji ditutup dengan dalam asid etanoik dalam tabung
penyumbat yang bersambung uji.
3. Campuran dikacau dengan rod kaca dengan salur penghantar.
dan dipanaskan dengan perlahan- The magnesium ribbon is added into the
lahan sehingga kering. The test tube is closed with a stopper ethanoic acid in the test tube.
fitted with a delivery tube.
The mixture is stirred with a glass rod and 4. Mulut tabung uji ditutup dengan
heated slowly until it dries. 4. Gas yang terbebas dialirkan ke ibu jari untuk mengumpulkan gas
dalam air kapur. terbebas.
4. Pemerhatian direkodkan.
The gas released is passed through The mouth of test tube is closed with the
The observation is recorded. limewater. thumb to collect the released gas.

5. Pemerhatian direkodkan. 5. Mulut tabung uji dibuka dan
sebatang kayu uji bernyala
The observation is recorded. diletakkan berdekatan dengan
mulut tabung uji untuk menguji gas
terkumpul.

The mouth of test tube is opened and a
lighted wooden splinter is held near the
mouth of the test tube to test the collected
gas.

6. Pemerhatian direkodkan.

The observation is recorded.

Pemerhatian / Observation TP 2

Pepejal putih terhasil. Pembuakan berlaku. Gas Pembuakan berlaku. Gas yang terbebas
White
solid is produced. tidak berwarna yang terbebas menghasilkan bunyi “pop”.

mengeruhkan air kapur . Effervescence occurs. Gas released produces
Effervescence occurs. Colourless “pop” sound.

gas released turns the limewater

cloudy.

Natrium etanoat terhasil. Inferens/ Inference TP 2 Gas hidrogen terbebas.

Sodium ethanoate is produced. Gas karbon dioksida yang Hydrogen gas is produced.
mengeruhkan air kapur terhasil.

Carbon dioxide gas that turns the
limewater cloudy is produced.

Kesimpulan / Conclusions TP 2

1. Asid etanoik bertindak balas dengan bes untuk menghasilkan garam etanoat dan air .

Ethanoic acid reacts with base to produce ethanoate salt and water .

2. Asid etanoik bertindak balas dengan karbonat logam untuk membentuk garam etanoat, air dan gas karbon dioksida .
Ethanoic acid reacts with metal carbonate to form an ethanoate salt, water dan carbon dioxide gas .

3. Asid etanoik bertindak balas dengan logam reaktif untuk menghasilkan garam etanoat dan gas hidrogen .

Ethanoic acid reacts with reactive metal to form an ethanoate salt and hydrogen gas .

67 © Penerbitan Pelangi Sdn. Bhd.

  Kimia Tingkatan 5  Bab 2 Sebatian Karbon

Ester

Esters

20. Penamaan mengikut sistem IUPAC: / Naming according to the IUPAC system: TP 2

Formula am (a) CnH2n+1CO OCmH2m+1

General formula

CnH2n+1COOCmH2m+1 (i)  Asalnya daripada asid karboksilik (ii)  Asalnya daripada alkohol
m = 0,1,2…
Originated from carboxylic acid Originated from alcohol
n = 1,2,3…
CnH2n+1COOH CmH2m+1OH

Contoh formula molekul (b) C3H7CO OCH3

Example of molecular formula

BAB 2 C3H7COOCH3

(i)  Asalnya daripada asid butanoik (ii)  Asalnya daripada metanol

Originated from butanoic acid Originated from methanol

C3H7COOH CH3OH

Contoh penamaan (c) C3H7CO OCH3

mengikut sistem IUPAC

Example of naming according
to the IUPAC system

(i)  Metil / Methyl (ii)  Butanoat / Butanoate

(iii) Nama IUPAC untuk C3H7COOCH3: Metil butanoat

IUPAC name of C3H7COOCH3: Methyl butanoate

21. Lengkapkan tindak balas pengesteran yang melibatkan asid dan alkohol. TP 2

Complete the following esterification reactions that involve acid and alcohol.

Bahan tindak balas Asid metanoik dan etanol Asid propanoik dan butanol

Reactants Methanoic acid and ethanol Propanoic acid and butanol

Persamaan kimia HCOOH + C2H5OH → HCOOC2H5 + H2O C2H5COOH + C4H9OH →
C2H5COOC4H9 + H2O
Chemical equation O HH
H C OC C H HHO HHHH
Formula struktur ester
terhasil HH H C C C OC C C C H

Structural formula of ester HH HHHH
produced

Nama ester terhasil Etil metanoat Butil propanoat

Name of ester produced Ethyl methanoate Butyl propanoate

22. Sifat-sifat fizik ester / Physical properties of esters TP 1

(a) Sebatian neutral dengan bau (b) Ester ringkas ialah (c) Mempunyai ketumpatan
cecair tak berwarna pada suhu
buah-buahan . yang lebih rendah berbanding
bilik.
Neutral compounds with a dengan air. density
Simple ester is a colourless liquid
fruity smell. at room temperature. Have a lower

than water.

(f) Larut dalam pelarut organik . Sifat fizik ester (d) Tidak larut dalam air

Soluble in organic solvents . Physical properties of esters kecuali metil metanoat.
Insoluble
in water

except methyl methanoate.

(e) Sebatian sangat meruap (kerana takat didihnya rendah)
Very volatile
compounds (due to low boiling point).

© Penerbitan Pelangi Sdn. Bhd. 68

Kimia Tingkatan 5  Bab 2 Sebatian Karbon 

Aktiviti 2.3 Penyediaan Ester: Tindak Balas Asid Etanoik dengan Etanol
Preparation of Ester: Reaction between Ethanoic Acid and Ethanol

Tujuan / Aim: BAB 2
Mengkaji penyediaan etil etanoat.

To investigate the preparation of ethyl ethanoate.

Bahan/ Materials:
Asid etanoik glasial, etanol mutlak, asid sulfurik pekat, dan air sejuk.

Glacial ethanoic acid, absolute ethanol, concentrated sulphuric acid, and cold water.

Radas / Apparatus:
Tabung didih, penitis, bikar, pemegang tabung didih, penunu Bunsen, dan silinder penyukat.

Boiling tube, dropper, beaker, boiling tube holder, Bunsen burner, and measuring cylinder.

Prosedur / Procedure:

Etanol mutlak Asid sulfurik Panaskan Air sejuk
Absolute ethanol pekat Heat Cold water
Concentrated
+ sulphuric acid
Asid etanoik glasial
Glacial ethanoic acid

1. Kira-kira 2 cm3 asid etanoik glasial dituangkan ke dalam sebuah tabung didih.

About 2 cm3 of glacial ethanoic acid is poured into a boiling tube.

2. Kira-kira 4 cm3 etanol mutlak ditambah kepada asid etanoik dan digoncang.

About 4 cm3 of absolute ethanol is added to the ethanoic acid and shaken.

3. Dengan menggunakan penitis, beberapa titis asid sulfurik pekat ditambah dengan cermat kepada campuran.

Campuran digoncang sehingga sekata.

Using a dropper, a few drops of concentrated sulphuric acid are added carefully to the mixture. The mixture is shaken well.

4. Campuran dihangatkan perlahan-lahan selama 3 minit.

The mixture is heated gently and slowly for about 3 minutes.

5. Kandungan dalam tabung didih dituang ke dalam sebuah bikar yang berisi air.

The content in the boiling tube is poured into a beaker filled with water.

6. Warna dan bau sebatian organik yang terbentuk dalam bikar direkodkan.

The colour and smell of the organic compound formed in the beaker are recorded.

Pemerhatian / Observation: TP 2

Ujian / Test Pemerhatian / Observation

Warna / Colour Cecair tidak berwarna terhasil / Colourless liquid is produced

Bau / Smell Berbau buah-buahan / Fruity smell

Perbincangan / Discussion: TP 2

1. Asid sulfurik pekat bertindak sebagai mangkin untuk meningkatkan kadar tindak balas dan sebagai

agen pengering untuk menyerap air yang terbentuk semasa pengesteran.
catalyst to increase the rate of reaction and as a drying agent
Concentrated sulphuric acid acts as a to

absorb water formed during esterification.

2. Asid etanoik glasial bertindak balas dengan etanol mutlak untuk membentuk etil etanoat (satu contoh

ester ) dan air.

Glacial ethanoic acid reacts with absolute ethanol to form ethyl ethanoate (an example of ester ) and

water.

3. Persamaan kimia: CH3COOH + C2H5OH → CH3COOC2H5 + H2O
CH3COOH + C2H5OH → CH3COOC2H5 + H2O
The chemical equation:

69 © Penerbitan Pelangi Sdn. Bhd.

  Kimia Tingkatan 5  Bab 2 Sebatian Karbon

Kesimpulan / Conclusion: TP 2

Asid etanoik bertindak balas dengan etanol untuk menghasilkan etil etanoat dan air.

Ethanoic acid reacts with ethanol to form ethyl ethanoate and water.

23. Penyediaan pelbagai ester: / Preparation of various esters: TP 2

Pengesteran / Esterification Ester terhasil / Ester produced
(a) Asid etanoik, CH3COOH + Metanol, CH3OH Metil etanoat, CH3COOCH3

Ethanoic acid, CH3COOH + Methanol, CH3OH Methyl ethanoate, CH3COOCH3

(b) Asid etanoik, CH3COOH + Propanol, C3H7OH Propil etanoat, CH3COOC3H7

Ethanoic acid, CH3COOH + Propanol, C3H7OH Propyl ethanoate, CH3COOC3H7

(c) Asid butanoik, C3H7COOH + Etanol, C2H5OH Etil butanoat, C3H7COOC2H5

Butanoic acid, C3H7COOH + Ethanol, C2H5OH Ethyl butanoate, C3H7COOC2H5

(d) Asid metanoik, HCOOH + Propanol, C3H7OH Propil metanoat, HCOOC3H7

Methanoic acid, HCOOH + Propanol, C3H7OH Propyl methanoate, HCOOC3H7

BAB 2 2.4 Isomer dan Penamaan Mengikut IUPAC
Isomer and Naming According to IUPAC

1. Keisomeran struktur ialah suatu fenomena yang berlaku apabila dua atau lebih molekul sebatian mempunyai
sama berbeza
formula molekul yang tetapi formula struktur yang . TP 1
same
Structural isomerism is a phenomenon in which two or more molecules of compounds have the
different
molecular formula but structural formulae.

2. Perbandingan sifat isomer / Comparison of isomer properties TP 1

Sifat fizik/ Physical property Sifat kimia / Chemical property

Takat lebur, takat didih dan ketumpatan yang berbeza. Sama kerana mempunyai kumpulan berfungsi yang sama.
Melting and boiling points, and density are different. Same because of same functional group .

3. Sebagai contoh: Butana, C4H10 mempunyai dua isomer.

Takat lebur, takat didih dan ketumpatan untuk dua isomer ini adalah berbeza, tetapi kedua-dua isomer ini
mengalami tindak balas pembakaran dan penukargantian . TP 2

For example: Butane, C4H10 has two isomers. The melting point, boiling point and density for these two isomers are different,
but these two isomers undergo combustion and substitution reactions.

4. Keisomeran alkana / Alkane isomerism TP 3

Formula Formula struktur dan nama IUPAC Bilangan
molekul isomer
Structural formula and IUPAC name
Molecular formula Number of isomers

H

CH4 HCH Tiada isomer
H
No isomer

Metana
Methane

C2H6 HH Tiada isomer

HCCH No isomer

HH
Etana
Ethane

© Penerbitan Pelangi Sdn. Bhd. 70

C3H8 HHH Kimia Tingkatan 5  Bab 2 Sebatian Karbon 

HCCCH Tiada isomer

HHH No isomer
Propana
Propane

C4H10 HHHH HHH 2 isomer
HCCCH
HCCCCH 2 isomers BAB 2
HH
HHHH HCH 3 isomer
Butana
Butane H 3 isomers
2-metilpropana
2-methylpropane Bilangan isomer

C5H12 HHHHH H Number of isomers
HCCCCCH HCH
HH Tiada isomer
HHHHH HCCCH
Pentana HH No isomer
Pentane HCH

HHHH H
HCCCCH 2,2-dimetilpropana
2,2-dimethylpropane
H HH
HCH

H
2-metilbutana
2-methylbutane

5. Keisomeran alkena / Alkene isomerism TP 3

Formula molekul Formula struktur dan nama IUPAC

Molecular formula Structural formula and IUPAC name

C2H4 HH
HCCH

Etena
Ethene

C3H6 HHH Tiada isomer

HCCCH No isomer

H
Propena
Propene

71 © Penerbitan Pelangi Sdn. Bhd.

  Kimia Tingkatan 5  Bab 2 Sebatian Karbon

HHHH H

HCCCCH HCH

C4H8 HH HH 3 isomer
But-1-ena HCCCH
But-1-ene 3 isomers
H
HHHH 2-metilpropena
HCCCCH 2-methylpropene

HH HHHHH
HCCCCCH
But-2-ena H
But-2-ene HCH H HH
Pent-2-ena
HHHHH H HH H HH HH Pent-2-ene

BAB 2 H C C C C CH H H CH CC CC CC CC HH

H HH HC H H HH HH H

PPeenntt--11--eenneaH HH H H H H P22PeH--emmnnette--t22thi--lybeelbnunueta-t-11--eennea HCH

HCCCCH HH H

H HH H C C C C C HH HCCCCH

H C H2-metilbut-1-ena H H HH CC HH HH

H 2-methylbut-1-ene H H HPPeenHntt--22--HeeHnnea HH HH H 3-metilbut-1-ena
HH 3-methylbut-1-ene

H H C C C C HH H C C C CH CCH HCC CC CC HC H 5 isomer

C5H10 H C H H HH C H H H H H H H HH H 5 isomers

H H 2-mHetilbHut-1-Hena H H H PPeenntt--22--HeenneaC 33--mmHHeet22thi--lybmmlbueeutt-tth-i1ly1b-l-beueunnt-tea-22--eennea
C 2-methylbut-1-ene C C HH
C C CH HC C

H H H H CHC C C H
HH H

22--mmeetthilybHHlbuut-t-11C--eenneaHH22--mmHeetthilyblbuut-t-22--eennea H H C HH H
H3-metilbHut-1-ena
HHC C C C H HC C3-mCethylCbut-1H-ene

H CHH H H HH

H 2-mHetilbHut-2-ena 3-metilbut-1-ena
H C C2-mCethylCbut-2H-ene 3-methylbut-1-ene

6. Keisomeran alkuna / H HH TP 3
Alkyne isomerism
2-metilbut-2-ena
2-methylbut-2-eneFormula struktur dan nama IUPAC
Formula molekul Bilangan isomer
Molecular formula Structural formula and IUPAC name
Number of isomers
HCCH
Tiada isomer
C2H2
No isomer
Etuna
Ethyne Tiada isomer

C3H4 H No isomer
HCCCH

H
Propuna
Propyne

© Penerbitan Pelangi Sdn. Bhd. 72

Kimia Tingkatan 5  Bab 2 Sebatian Karbon 

C4H6 HH HH 2 isomer
HCCCCH HCCCCH
2 isomers
HH HH
But-1-una But-2-una
But-1-yne But-2-yne

HHH
HCCCCCH

HHH
Pent-1-una
Pent-1-yne

C5H8 H HH 3 isomer BAB 2
HCCCCCH
3 isomers
H HH
Pent-2-una
Pent-2-yne

H
HCH

H
HCCCCH

HH
3-metilbut-1-una
3-methylbut-1-yne

7. Keisomeran alkohol / Alcohol isomerism TP 3

Formula molekul Formula struktur dan nama IUPAC Bilangan isomer

Molecular formula Structural formula and IUPAC name Number of isomers

CH3OH H Tiada isomer
H C OH
No isomer
H
Metanol Tiada isomer
Methanol
No isomer
C2H5OH HH
H C C OH 2 isomer

HH 2 isomers
Etanol
Ethanol

C3H7OH HHH HHH
H C C C OH HCCC H

HHH H OH H
Propan-1-ol Propan-2-ol
Propan-1-ol Propan-2-ol

73 © Penerbitan Pelangi Sdn. Bhd.

  Kimia Tingkatan 5  Bab 2 Sebatian Karbon

HHHH
H C C C C OH

HHHH
Butan-1-ol
Butan-1-ol

C4H9OH HHHH 4 isomer
HCCCC H
BAB 2 4 isomers
H H OH H
Butan-2-ol 8 isomer
Butan-2-ol
8 isomers
H H
HCH HCH
HH HH
H C C C OH H CC C H
HHH H OH H
2-metilpropan-1-ol 2-metilpropan-2-ol
2-methylpropan-1-ol 2-methylpropan-2-ol

H HH H H HHHHH
H C C C C C OH HCCCCC H

H HH H H H H H OH H
Pentan-1-ol Pentan-2-ol
Pentan-1-ol Pentan-2-ol

HHHHH H
HCCCCC H
HCH
H H OH H H
Pentan-3-ol HH H
Pentan-3-ol
H C C C C OH

C5H11OH HHHH
2-metilbutan-1-ol
© Penerbitan Pelangi Sdn. Bhd. 2-methylbutan-1-ol

H H
HCH
H HH HCH
H C C C C OH
HHHH HH H
3-metilbutan-1-ol
3-methylbutan-1-ol HCCCC H

H H OH H
2-metilbutan-2-ol
2-methylbutan-2-ol

H H
HCH
HCH HH
H C C C OH
HH H 74 HH

H CC C C H

H OH H H

H C C C C OH HCCCC H

HHHH H H OH H
3-metilbutan-1-ol 2-metilbutan-2-Kolimia Tingkatan 5  Bab 2 Sebatian Karbon 
3-methylbutan-1-ol 2-methylbutan-2-ol

HH

HCH HCH

HH H HH

H CC C C H H C C C OH

H OH H H HH

3-metilbutan-2-ol HCH
3-methylbutan-2-ol H

2,2-dimetilpropan-1-ol BAB 2
2,2-dimethylpropan-1-ol


Kegunaan Setiap Siri Homolog dalam Kehidupan Harian TP 3

Uses of Each Homologous Series in Daily Life

8. Hidrokarbon / Hydrocarbons

Hidrokarbon Kegunaan Contoh

Hydrocarbon Uses Examples

Alkana Pemanasan, memasak dan Gas petroleum cecair yang mengandungi propana dan
penjanaan elektrik butana
Alkanes butana digunakan sebagai bahan api. Gas juga
Heating, cooking, and electricity
Alkena generation digunakan dalam pemetik api.

Alkenes Liquefied petroleum gas containing propane and butane is used as

Alkuna fuel. Butane gas is also used in lighters.

Alkynes Pembuatan plastik Pembuatan polietena menggunakan etena .

Manufacturing of plastic Manufacturing of polythene uses ethene .

Memasakkan buah-buahan Etuna digunakan untuk membuat sebatian organik seperti etanol,
secara buatan dan pembuatan asid etanoik dan asid akrilik. Etuna juga digunakan
organik
polimer untuk menyediakan banyak pelarut .

Artificially ripening of fruits and Ethyne is used for making organic compounds like ethanol,  ethanoic

making of polymers acid and acrylic acid. Ethyne is also used to prepare many organic

solvents.

9. Alkohol / Alcohols
(a) Sebagai bahan api (terbakar dalam udara untuk menghasilkan air, karbon dioksida, dan membebaskan

tenaga haba yang banyak). TP 1

As a fuel (burns in air to produce water, carbon dioxide, and release a lot of heat energy).

(b) Sebagai pelarut organik (melarutkan cat, varnis). TP 1

As an organic solvent (dissolve paint, varnish).

(c) Etanol digunakan sebagai antiseptik dan ramuan ubat batuk . TP 1

Ethanol is used as an antiseptic and cough medicine ingredient.

10. Asid karboksilik / Carboxylic acids
(a) Digunakan dalam penyediaan barang kosmetik dan minyak wangi . TP 1
Used in the preparation of cosmetics and perfumes .

(b) Sebagai perisa tiruan dalam makanan dan minuman yang diproses. TP 1

As artificial flavour in processed food and drinks.

(c) Digunakan dalam penghasilan poliester (gentian sintetik untuk pembuatan tekstil). TP 1

Used in the production of polyester (synthetic fibers for making textiles).

(d) Sebagai pelarut organik untuk gam, varnis dan cat. TP 1

As organic solvent for glue, varnish and paint.

75 © Penerbitan Pelangi Sdn. Bhd.

  Kimia Tingkatan 5  Bab 2 Sebatian Karbon

(e) Kegunaan pelbagai jenis asid karboksilik: / Uses of different types of carboxylic acids: TP 3

Asid • Untuk menggumpalkan lateks. Asid sitrik Sebagai bahan tambah makanan

metanoik To coagulate latex. Citric acid untuk memberikan rasa masam kepada

Methanoic • Untuk membuat pewarna, kulit makanan. to give food a sour
acid
tiruan dan racun serangga. As a food additive

To make dyes, synthetic leather and taste.
insecticide.

Asid • Sebagai perisa makanan Asid Untuk membuat ester
etanoik makanan
As a food flavouring butanoik To make ester
Ethanoic acid
• Sebagai pengawet Butanoic
(cuka) acid

As a food preservative (vinegar)

BAB 2 11. Ester / Esters

(a) Lemak semula jadi ialah ester yang boleh bertindak balas dengan alkali untuk menghasilkan
sabun
. TP 1

Natural fats are esters which can react with alkalis to produce soap .

(b) Ester sesuai untuk penyediaan bahan kosmetik dan minyak wangi kerana ester ialah cecair yang mudah
meruap aroma
dan mempunyai yang unik. TP 1

Esters are suitable for the preparation of cosmetics and perfumes because they are volatile liquids and

have a unique aroma .

(c) Digunakan secara meluas sebagai pelarut untuk gam dan varnis. TP 1

It is widely used as solvents for glues and varnishes.

(d) Ester sintetik boleh digunakan sebagai perisa dalam makanan. TP 2

Synthetic esters can be used as flavourings in food.

Perisa Ester Perisa Ester

Flavouring Ester Flavouring Ester

Nanas Etil butanoat Oren Oktil etanoat

Pineapple Ethyl butanoate Orange Octyl ethanoate

Epal Metil butanoat Pisang Pentil etanoat

Apple Methyl butanoate Banana Pentyl ethanoate

Kesan penyalahgunaan alkohol TP 2

Effects of alcohol misuse and abuse

12. Minum minuman beralkohol secara berlebihan boleh menyebabkan pemandu mabuk dan
.
berlakunya kemalangan jalan raya. drunk and accidents on road.

Excessive drinking of alcoholic beverages can cause a driver to get

13. Minum minuman beralkohol secara berlebihan adalah berbahaya kerana kemungkinan keacunan

Excessive drinking can be fatal due to poisoning .

14. Alkoholisme memberikan kesan buruk terhadap kesihatan seorang individu.

Alcoholism affects the health of an individual negatively.

© Penerbitan Pelangi Sdn. Bhd. 76

Kimia Tingkatan 5  Bab 2 Sebatian Karbon 

PRAKTIS SPM 2

Soalan Objektif

1. Antara sebatian organik berikut, yang manakah C Tidak bertindak Bertindak balas
mengandungi empat atom karbon dalam balas dengan kalium dengan kalium
molekulnya? manganat(VII) berasid manganat(VII) berasid
Does not react with React with
Which of the following organic compounds has four carbon acidified potassium acidified potassium
atoms in its molecule? manganate(VII) manganate(VII)

A Etana / Ethane D Menghasilkan Tidak menghasilkan BAB 2
B Propena / Propene banyak jelaga apabila jelaga apabila
C Butanol / Butanol terbakar terbakar
D Asid pentanoik / Pentanoic acid Produces a lot of soot
when it burns Does not produce soot
2. Yang manakah formula am bagi alkuna? when it burns
Which of the following is the general formula for alkyne?
5. Sebatian P mempunyai ciri-ciri di bawah:
A CnH2n Compound P has the following characteristics:
B CnH2n+2
C CnH2n-2 • Sangat larut dalam air
Very soluble in water
3. Proses yang manakah menukarkan etanol kepada • Boleh disediakan daripada alkena
asid etanoik? Can be prepared from an alkene

2 007 Which process converts ethanol to ethanoic acid? What is probably compound P?
A Penghidrogenan Apakah kemungkinan sebatian P?
Hydrogenation
B Pengoksidaan A C2H5COOCH3 C C3H7COOH
Oxidation B CH3COONa D C2H5OH
C Penghidratan
Hydration 6. Pembakaran lengkap bagi satu hidrokarbon diwakili
oleh persamaan yang berikut:
4. Rajah 1 menunjukkan formula molekul bagi sebatian
X dan sebatian Y. 2 008 The complete combustion of a hydrocarbon is represented by
the following equation:
2 015 Diagram 1 shows the molecular formula of compound X and
compound Y. CH2x + xO2 → CO2 + xH2O

C5H12 C5H10 Apakah nilai x? / What is the value of x?

A 2 C 4

XY B 3 D 5

Rajah 1/ Diagram 1 7. Rajah 2 menunjukkan formula struktur ester yang
terkandung dalam buah tembikai.
Antara yang berikut, yang manakah sifat yang betul
bagi sebatian X dan Y? 2 007 Diagram 2 shows the structural formula of an ester contained
in watermelon.
Which of the following are the correct properties for
compounds X and Y? HHHO HH

XY HC CC CO C C H

HHH HH

A Larut dalam asid Larut dalam alkali
Soluble in acid Soluble in alkali

B Bertindak balas Tidak bertindak balas
dengan bromin dengan bromin
Reacts with bromine Does not react with
bromine Rajah 2/ Diagram 2

77 © Penerbitan Pelangi Sdn. Bhd.

  Kimia Tingkatan 5  Bab 2 Sebatian Karbon 9. Gas petroleum cecair (LPG) terdiri terutamanya
daripada propana yang digunakan sebagai bahan api
Apakah nama ester tersebut mengikut sistem kenderaan. Apakah ciri-ciri propana?
penamaan IUPAC?
Liquefied petroleum gas (LPG) is composed mainly of propane
What is the name of the ester based on the IUPAC nomenclature that is used as fuel for vehicles. What are the characteristics for
system? propane?
A Butil etanoat / Butyl ethanoate I Larut dalam air
B Propil etanoat / Propyl ethanoate Dissolves in water
C Etil propanoat / Ethyl propanoate II Wujud sebagai gas pada suhu bilik
D Etil butanoat / Ethyl butanoate Exists as a gas at room temperature
III Mempunyai takat didih yang tinggi
8. Antara yang berikut, yang manakah hidrokarbon tak Has a high boiling point
tepu? IV Tidak boleh mengkonduksi elektrik
Cannot conduct electricity
2 018 Which of the following are unsaturated hydrocarbons? A I dan III
I and III
I HH B II dan IV
II and IV
BAB 2 HCC H C I dan IV
CCC I and IV
D III dan IV
CCC III and IV
HCC H
10. Rajah 3 menunjukkan formula struktur bagi satu
HH isomer alkena.

II H H 2 013 Diagram 3 shows the structural formula of an isomer for an
alkene.
HH
H HH
C
HCCCCH
HC CH
HH
HC CH
HCH
C
HCH
H H
H H H

III CH3 Rajah 3/ Diagram 3

H3C C CH3 Namakan isomer itu berdasarkan sistem penamaan
CH3 IUPAC.

IV H H Name the isomer according to the IUPAC nomenclature
system.
CC A 2-metilbut-2-ena
HH 2-methylbut-2-ene
B 3-metilpent-2-ena
A I dan III 3-methylpent-2-ene
I and III C 3-etilbut-2-ena
B II dan IV 3-ethylbut-2-ene
II and IV D 2,2-dimetilbut-2-ena
C I dan IV 2,2-dimethylbut-2-ene
I and IV
D II dan III
II and III

© Penerbitan Pelangi Sdn. Bhd. 78

Kimia Tingkatan 5  Bab 2 Sebatian Karbon 

Soalan Struktur
Bahagian A

1. Rajah 1 menunjukkan alkena W, C5H10 melalui tindak balas I untuk membentuk sebatian X, sebaliknya sebatian X
melalui tindak balas II untuk membentuk alkena W.

2 013 Diagram 1 shows alkene W, C5H10 undergoes reaction I to form compound X while compound X undergoes reaction II to form alkene W.

Alkena W, C5H10 Tindak balas I / Reaction I Sebatian X
Alkene W, C5H10 H2O [H3PO4, 300oC, 60 atm] Compound X
Tindak balas II / Reaction II



(a) Nyatakan nama bagi alkena W, C5H10. BAB 2
State the name for alkene W, C5H10.

Pentena / Pentene

[1 markah / mark]

(b) Lukis formula struktur untuk dua isomer bagi alkena W, C5H10.
Draw the structural formulae for two isomers of alkene W, C5H10.

Mana-mana dua isomer berikut: / Any two of these isomers:

HHHHH HHHHH

HCCCCCH HCCCCCH

HHH H HH

H H H
HCH HCH
H HH HCH H HH
HCCCCH HCCC C H
HH H HH
HH
HCCCC H

HH

(c) (i) Nyatakan pemerhatian apabila alkena W dialirkan melalui air bromin. [2 markah / marks]
State the observation when alkene W is passed over bromine water.
Warna perang air bromin menjadi tidak berwarna. [1 markah / mark]
Brown colour of bromine water turns colourless. [2 markah / marks]
[1 markah / mark]
(ii) Tulis persamaan kimia seimbang bagi tindak balas dalam 1(c)(i). [1 markah / mark]
Write the balanced chemical equation for the reaction in 1(c)(i).
C5H10 + Br2 → C5H10Br2

(d) Berdasarkan Rajah 1: / Based on Diagram 1:
(i) Namakan tindak balas I. / Name reaction I.
Penghidratan / Hydration

(ii) Tulis formula molekul untuk sebatian X. / Write the molecular formula of compound X.
C5H11OH

79 © Penerbitan Pelangi Sdn. Bhd.

  Kimia Tingkatan 5  Bab 2 Sebatian Karbon

(ii) Lukis rajah berlabel untuk tindak balas II yang dijalankan dalam makmal bagi etanol.
Draw a labelled diagram for reaction II that is carried out in the laboratory for ethanol.

Serpihan porselin
Porcelain chips

Wul kaca Panaskan
dibasahi etanol Heat
Glass wool
soaked in ethanol

Air
Water

BAB 2 [2 markah / marks]

Bahagian B

1. (a) Rajah 2.1 menunjukkan formula struktur bagi HHH H HHH
sebatian A, B dan C. HCCCH HCCCH HCCCH

Diagram 2.1 shows the structural formula of compounds A, H H HHH
B and C.
(i) Banding dan bezakan sebatian A, B dan Sebatian A Sebatian B Sebatian C
C berdasarkan strukturnya. Nyatakan siri Compound A Compound B Compound C
homolog untuk sebatian A, B dan C.
Compare and contrast compounds A, B and C based Rajah 2.1 / Diagram 2.1
on their structures. State the homologous series for
compounds A, B and C.

[5 markah / marks]

(ii) Jadual 2 menunjukkan keputusan ujian kimia untuk membezakan antara sebatian A dan sebatian C.
Table 2 shows the result of a chemical test to differentiate between compound A and compound C.

Prosedur / Procedure Pemerhatian / Observation

Air bromin ditambah ke dalam sebatian A. Warna perang air bromin dinyahwarnakan.
Bromine water is added to compound A. Brown bromine water is decolourised.

Air bromin ditambah ke dalam sebatian C. Warna perang air bromin tidak berubah.
Bromine water is added to compound C. Brown bromine water remains unchanged.

Jadual 2 / Table 2

Terangkan mengapa terdapat perbezaan dalam pemerhatian tersebut.
Explain why there is a difference in the observations.

[5 markah / marks]

(b) Rajah 2.2 menunjukkan satu siri tindak balas yang melibatkan hidrokarbon P.
Diagram 2.2 shows a series of reactions involving hydrocarbon P.

Hidrokarbon P Pempolimeran Polimer R
Hydrocarbon P Polymerisation Polymer R

Proses I
Process I

Sebatian Q Pengoksidaan Asid propanoik
Compound Q Oxidation Propanoic acid

Rajah 2.2 / Diagram 2.2

© Penerbitan Pelangi Sdn. Bhd. 80

Kimia Tingkatan 5  Bab 2 Sebatian Karbon 

Berdasarkan Rajah 2.2,
Based on Diagram 2.2,

(i) Nyatakan formula am bagi P dan kumpulan berfungsi bagi Q. Kenal pasti Q.
Lukis formula struktur bagi semua isomer Q dan namakan isomer-isomer tersebut.
State the general formula of P and functional group of Q. Identify Q.
Draw the structural formulae of all the isomers of Q and name the isomers.

(ii) Tuliskan persamaan kimia yang seimbang untuk menunjukkan proses pempolimeran yang berlaku terhadap
hidrokarbon P.

Write a balanced chemical equation to show the polymerisation that occurs to hydrocarbon P.

(iii) Nyatakan dua keadaan yang diperlukan untuk proses I berlaku. [10 markah / marks]
State two conditions needed for process I to take place.
Bahagian C BAB 2

3. Suatu sebatian organik R dengan formula empirik C3H6O merupakan perisa nanas. Jisim molekul relatif bagi sebatian
ini ialah 116. Sebatian R boleh dihasilkan melalui tindak balas asid butanoik dengan alkohol Q.

An organic compound R with empirical formula C3H6O is a pineapple flavouring. The relative molecular mass of this compound is 116.
Compound R can be produced through the reaction of butanoic acid and alcohol Q.
(a) (i) Tentukan formula molekul bagi sebatian R.
Determine the molecular formula of compound R.

(ii) Nyatakan nama siri homolog bagi R dan lukis formula struktur R.
State the name of the homologous series of R and draw the structural formula of R.

(iii) Bandingkan asid butanoik dan sebatian organik R dari segi
Compare butanoic acid and organic compound R in terms of

• Kumpulan berfungsi
Functional groups
•  Keterlarutan dalam air
Solubility in water

(iv) Kenal pasti alkohol Q. Tulis persamaan kimia yang seimbang untuk tindak balas antara asid butanoik dengan
alkohol Q.

Identify alcohol Q. Write a balanced chemical equation for the reaction of butanoic acid and alcohol Q.
[11 markah / marks]

(b) Dengan menggunakan asid butanoik dan alcohol Q yang dikenal pasti di 3(a)(iv), huraikan secara ringkas
bagaimana seorang murid dapat menyediakan perisa nanas. Dalam huraian anda, sertakan senarai bahan kimia,

2013 prosedur eksperimen, pemerhatian dan nama perisa nanas yang terhasil.
Using butanoic acid and alcohol Q identified in 3(a)(iv), describe briefly how a student can prepare the pineapple flavouring. In
your description, include a list of materials, procedure of the experiment, observation and the name of the pineapple flavouring
produced.
[9 markah / marks]

Kuiz 2

81 © Penerbitan Pelangi Sdn. Bhd.

BAB Termokimia

3 Thermochemistry

PETA Konsep

TERMOKIMIA
THERMOCHEMISTRY

Perubahan haba Aplikasi harian

Heat change Daily applications

Tindak balas eksotermik Tindak balas endotermik Haba tindak balas

Exothermic reactions Endothermic reactions Heat of reactions

• Haba dibebaskan ke persekitaran • Haba diserap dari persekitaran • Definisi

Heat released to the surroundings Heat absorbed from the surroundings Definition

• Gambar rajah aras tenaga • Gambar rajah aras tenaga • Persamaan termokimia

Energy level diagram Energy level diagram Thermochemical equation

Tenaga / Energy Tenaga / Energy • Gambar rajah aras tenaga
Bahan tindak balas
Reactants Hasil tindak balas Energy level diagram
Products
• Penyelesaian masalah
bernombor

Numerical problem solving

Heat of precipitation

Haba pemendakan

∆H = –x kJ mol–1 ∆H = +y kJ mol–1 Heat of displacement
Hasil tindak balas
Products Bahan tindak balas Haba penyesaran
Reactants
Heat of neutralisation
∆H = Haba tindak balas / Heat of reaction
= Tenaga hasil tindak balas – Tenaga bahan tindak balas Haba peneutralan
Energy of the products – Energy of the reactants
Heat of combustion

Haba pembakaran

• Nilai bahan api

Fuel value

© Penerbitan Pelangi Sdn. Bhd. 82

Kimia Tingkatan 5  Bab 3 Termokimia 

3.1 Perubahan Haba dalam Tindak Balas
Heat Change in Reactions

1. Semua tindak balas kimia melibatkan perubahan tenaga . TP 1

All chemical reactions involve energy changes .

2. Termokimia ialah cabang kimia yang mengkaji perubahan haba semasa tindak balas kimia. TP 1

Thermochemistry is a branch of chemistry studying the heat changes during chemical reactions.

3. Terdapat dua jenis tindak balas kimia yang melibatkan perubahan tenaga: TP 2

There are two types of chemical reactions that involve energy changes:

(a) Tindak balas eksotermik – tindak balas kimia yang membebaskan tenaga haba ke persekitaran.
Exothermic
reaction – chemical reaction that releases heat energy to the surroundings.

(b) Tindak balas endotermik – tindak balas kimia yang menyerap tenaga haba dari persekitaran.
Endothermic reaction – chemical reaction that absorbs heat energy from the surroundings.


4. Haba tindak balas (ΔH) merujuk tenaga haba yang dibebaskan atau diserap dalam tindak
balas kimia . TP 3

Heat of reaction (∆H) refers to heat energy released or absorbed in a chemical reaction .

5. Kelaskan tindak balas kimia berikut kepada tindak balas eksotermik dan tindak balas endotermik. TP 2

Classify the following chemical reactions into exothermic reactions and endothermic reactions.

Fotosintesis Menggoreng telur Pembakaran sehelai kertas

Photosynthesis Frying an egg Burning a piece of paper

Melarutkan serbuk ammonium Peneutralan antara cuka dengan Melarutkan serbuk detergen BAB 3

klorida dalam air larutan natrium hidroksida dalam air

Dissolving ammonium chloride powder in Neutralisation between vinegar and sodium Dissolving detergent powder
water hydroxide solution in water

Tindak balas endotermik Tindak balas eksotermik

Endothermic reaction Exothermic reaction

Menggoreng telur Melarutkan serbuk detergen dalam air

Frying an egg Dissolving detergent powder in water

Melarut serbuk ammonium klorida dalam air Peneutralan antara cuka dengan larutan natrium hidroksida

Dissolving ammonium chloride powder in water Neutralisation between vinegar and sodium hydroxide solution

Fotosintesis Pembakaran sehelai kertas

Photosynthesis Burning a piece of paper

1Tugasan

1. Rajah menunjukkan susunan radas bagi eksperimen Termometer Serbuk natrium hidroksida
untuk menentukan jenis tindak balas termokimia apabila Thermometer Sodium hydroxide powder
bahan kimia yang berlainan dilarutkan dalam air. Air suling
Distilled water
The diagram shows the apparatus set-up for the experiment
to identify the type of thermochemical reaction when different
chemical substances are dissolved in water.
(a) Banding dan bezakan tindak balas eksotermik dengan
tindak balas endotermik. TP 2
Compare and contrast exothermic and endothermic reactions.

83 © Penerbitan Pelangi Sdn. Bhd.

  Kimia Tingkatan 5  Bab 3 Termokimia

Jenis tindak balas Tindak balas eksotermik Tindak balas endotermik
Type of reaction Exothermic reaction Endothermic reaction

Perubahan tenaga haba Tenaga haba dibebaskan ke Tenaga haba diserap dari
Change in heat energy persekitaran. released to the persekitaran. absorbed from the
Heat energy is Heat energy is
Perubahan bacaan surroundings. surroundings.
termometer
Change in thermometer Bacaan termometer akhir lebih tinggi Bacaan termometer akhir lebih rendah
readings daripada bacaan termometer awal. daripada bacaan termometer awal.
Perubahan suhu Final thermometer reading is higher lower
persekitaran than Final thermometer reading is than
Change in surrounding initial thermometer reading. initial thermometer reading.
temperature
Contoh tindak balas Suhu persekitaran meningkat . Suhu persekitaran menurun .
Examples of reaction increases . Surrounding temperature decreases .
Surrounding temperature

1. Serbuk natrium hidroksida + air suling 1. Serbuk ammonium nitrat + air suling
Sodium hydroxide powder + distilled water Ammonium nitrate powder + distilled water
2. Serbuk kalsium klorida + air suling 2. Serbuk natrium tiosulfat + air suling
Calcium chloride powder + distilled water Sodium thiosulphate powder + distilled water

(b) Lukis gambar rajah aras tenaga bagi empat contoh tindak balas kimia di atas. TP 3
Draw energy level diagrams for the four examples of chemical reactions above.

BAB 3 Tindak balas eksotermik Tindak balas endotermik
Exothermic reactions Endothermic reactions

Tenaga / Energy Tenaga / Energy

NaOH(p) +H2HO2(Ol) (ce) NH4NO3(ak)
NaOH(s) + NH4NO3(aq)

∆H = –x kJ mol–1 ∆H = +y kJ mol–1
NaOH(ak) NH4NO3(p) + H2O(ce)
NaOH(aq) NH4NO3(s) + H2O(l)

Tenaga / Energy Tenaga / Energy
CaCI2(p) + H2O(ce)
CaCI2(s) + H2O(l) Na2S2O3(ak)
Na2S2O3(aq)

∆H = –x kJ mol–1 ∆H = +y kJ mol–1
CaCI2(ak) Na2S2O3(p) + H2O(ce)
CaCI2(aq) Na2S2O3(s) + H2O(l)

2. Lengkapkan jadual berdasarkan persamaan termokimia yang diberikan. TP 3
Complete the table based on the given thermochemical equation.

Pb(NO3)2(ak) + K2SO4(ak) → PbSO4(p) + 2KNO3(ak) ∆H = – 50 kJ mol–1
Pb(NO3)2(aq) + K2SO4(aq) → PbSO4(s) + 2KNO3(aq) ∆H = – 50 kJ mol–1

© Penerbitan Pelangi Sdn. Bhd. 84

Kimia Tingkatan 5  Bab 3 Termokimia 

(a) Persamaan ion Pb2+(ak) + SO42–(ak) → PbSO4(p)
Ionic equation Pb2+(aq) + SO42–(aq) → PbSO4(s)
(b) Haba dibebaskan atau diserapkan Haba dibebaskan.
Heat is released or absorbed Heat is released.

(c) Suhu tindak balas meningkat atau menurun Meningkat.
The temperature of the reaction increases or decreases Increases.

(d) Tindak balas jenis eksotermik atau endotermik dan sebab Eksotermik / Exothermic
Exorthermic or endothermic type of reaction and reason Haba dibebaskan. / Heat is released.

(e) Perubahan haba jika 0.5 mol plumbum(II) sulfat terbentuk Perubahan haba / Heat change
Heat change if 0.5 mole of lead(II) sulphate is formed = 0.5 × 50
(Diberi: Perubahan haba = bilangan mol × ∆H) = 25 kJ
(Given: Heat change = number of moles × ∆H)

(f ) Gambar rajah aras tenaga untuk tindak balas Tenaga / Energy
Energy level diagram for the reaction Pb2+(ak) + SO42–(ak)
Pb2+(aq) + SO42–(aq)

∆H = –50 kJ mol–1
PbSO4(p)
PbSO4(s)

3. Lengkapkan jadual berdasarkan persamaan termokimia yang diberikan. TP 3 BAB 3
Complete the table based on the given thermochemical equation.

2H2(g) + 2C(p) → C2H4(g) ∆H = +51 kJ mol–1
2H2(g) + 2C(s) → C2H4(g) ∆H = +51 kJ mol–1

(a) Haba dibebaskan atau diserapkan Haba diserap.
Heat is released or absorbed Heat is absorbed.
(b) Suhu tindak balas meningkat atau menurun Menurun
The temperature of the reaction increases or decreases Decreases
(c) Tindak balas jenis eksotermik atau endotermik dan sebab Endotermik / Endothermic
Exorthermic or endothermic type of reaction and reason Haba diserapkan. / Heat is absorbed.
Perubahan haba / Heat change
(d) Perubahan haba jika 4 mol gas etena terbentuk = 4 × 51
Heat change if 4 moles of ethene gas are formed = 204 kJ
(Diberi: Perubahan haba = bilangan mol × ∆H)
(Given: Heat change = number of moles × ∆H) Tenaga / Energy
(e) Gambar rajah aras tenaga untuk tindak balas
Energy level diagram for the reaction C2H4(g)
C2H4(g)

∆H = +51 kJ mol–1

2H2(g) + 2C(p)
2H2(g) + 2C(s)

85 © Penerbitan Pelangi Sdn. Bhd.

  Kimia Tingkatan 5  Bab 3 Termokimia

3.2 Haba Tindak Balas
Heat of Reaction

Haba pemendakan

Heat of precipitation

1. Mendakan ialah sebatian ion yang tidak larut dalam air . TP 1
insoluble
A precipitate is an ionic compound.

2. Mendakan terbentuk melalui tindak balas kimia yang dikenali sebagai tindak balas pemendakan
atau tindak balas penguraian ganda dua . TP 1
or double decomposition reaction .
A precipitate is formed through a chemical reaction known as precipitation reaction

3. Haba pemendakan ialah perubahan haba apabila 1 mol mendakan terbentuk daripada ion-ionnya dalam
larutan akueus
. TP 1
The heat of precipitation is the heat change when 1 mole of a precipitate is formed from its ions in aqueous solution .

4. Lengkapkan jadual untuk menghuraikan tindak balas pemendakan:

Complete the table to describe the precipitation reactions:

BAB 3 Persamaan kimia Larutam kuprum(II) nitrat + Larutan ferum(III) klorida +
seimbang TP 3 larutan natrium hidroksida larutan kalium hidroksida

Balanced chemical equation Copper(II) nitrate solution + Iron(III) chloride solution +
sodium hydroxide solution potassium hydroxide solution
Persamaan ion TP 3
Cu(NO3)2(ak) + 2NaOH(ak) → Cu(OH)2(p) + FeCl3(ak) + 3KOH(ak) → Fe(OH)3(p) +
Ionic equation 2NaNO3(ak) 3KCl(ak)

Nama mendakan TP 2 Cu(NO3)2(aq) + 2NaOH(aq) → Cu(OH)2(s) + FeCl3(aq) + 3KOH(aq) → Fe(OH)3(s) + 3KCl(aq)
2NaNO3(aq)
Precipitate name Fe3+(ak) + 3OH–(ak) → Fe(OH)3(p)
Cu2+(ak) + 2OH–(ak) → Cu(OH)2(p)
Warna mendakan TP 1 Fe3+(aq) + 3OH–(aq) → Fe(OH)3(s)
Cu2+(aq) + 2OH–(aq) → Cu(OH)2(s)
Colour of precipitate Ferum(III) hidroksida
Kuprum(II) hidroksida
Iron(III) hydroxide
Copper(II) hydroxide
Perang kemerahan
Biru
Reddish-brown
Blue

5. Rajah di bawah menunjukkan susunan radas untuk menentukan haba pemendakan magnesium karbonat.

The diagram shows the apparatus set-up to determine the heat of precipitation of magnesium carbonate.

Termometer Kacau menggunakan
Thermometer termometer
Stir using a thermometer
Campurkan
kedua-dua larutan

Mix both solutions

50 cm3 larutan magnesium A Cawan B 50 cm3 larutan natrium
nitrat, Mg(NO3)21.0 mol dm–3 polistirena karbonat, Na2CO3
50 cm3 of 1.0 mol dm–3 magnesium Polystyrene 1.0 mol dm–3
nitrate, Mg(NO3) 2 solution 50 cm3 of 1.0 mol dm–3 sodium
cup carbonate, Na2CO3 solution

Jadual berikut menunjukkan keputusan yang diperoleh.

The table shows the results obtained.

Suhu awal larutan magnesium nitrat, Mg(NO3)2 (oC) 28.0
29.0
Initial temperature of magnesium nitrate, Mg(NO3)2 solution (oC) 22.5

Suhu awal larutan natrium karbonat, Na2CO3 (oC)

Initial temperature of sodium carbonate, Na2CO3 solution (oC)

Suhu akhir larutan campuran (oC)

Final temperature of mixture solution (oC)

© Penerbitan Pelangi Sdn. Bhd. 86

Kimia Tingkatan 5  Bab 3 Termokimia 

(a) Hitung/ Calculate: (28.0 + 29.0)
(i) suhu awal purata larutan Mg(NO3)2 dan Na2CO3. 2

average initial temperature of Mg(NO3)2 and Na2CO3 solutions. = 28.5 oC

(ii) perubahan suhu, θ 28.5 – 22.5
= 6.0 oC
temperature change, θ
Perubahan haba,
(iii) perubahan haba, Q
Heat change,
heat change, Q
Q = mcθ
Anggapan dibuat / Assumptions made = (50 + 50) (4.2) (6.0)
• Muatan haba tentu larutan = Muatan haba tentu air = 4.2 J g–1 oC–1. = 2520 J

Specific heat capacity of the solutions = Specific heat capacity of water = 4.2 J g-1 oC–1. n = (1.0)(50)
• Ketumpatan larutan = Ketumpatan air = 1 g cm–3. 1000
Density of the solutions = Density of water = 1 g cm–3
= 0.05 mol
(iv) bilangan mol Mg(NO3)2
n = (1.0)(50)
number of moles of Mg(NO3)2 1000

(v) bilangan mol Na2CO3 = 0.05 mol

number of moles of Na2CO3

(b) Tulis/ Write: Mg(NO3)2(ak) + Na2CO3(ak) → MgCO3(p) + 2NaNO3(ak)

(i) persamaan kimia seimbang tindak balas Mg(NO3)2(aq) + Na2CO3(aq) → MgCO3(s) + 2NaNO3(aq)
pemendakan

balanced chemical equation for the precipitation
reaction

(ii) persamaan ion tindak balas pemendakan: Mg2+(ak) + CO32–(ak) → MgCO3(p) BAB 3

ionic equation for the precipitation reaction: Mg2+(aq) + CO32–(aq) → MgCO3(s)

(c) Hitung/ Calculate: n = Bilangan mol Mg2+ / Number of moles of Mg2+
(i) bilangan mol mendakan MgCO3
= Bilangan mol CO32– / Number of moles of CO32–
number of moles of MgCO3 precipitate n = 0.05 mol

(ii) haba pemendakan MgCO3, ∆H ∆H = Q
n
heat of precipitation of MgCO3, ∆H

= 2520
0.05
= + 50400 J mol–1

= + 50.4 kJ mol–1

(d) Terdapat penurunan suhu dalam tindak balas pemendakan MgCO3; haba diserap dari persekitaran. Oleh
itu, tindak balas pemendakan MgCO3 ialah tindak balas endotermik dan ∆H bernilai positif(+) .
Maka, haba pemendakan MgCO3 ialah + 50.4 kJ mol–1 .
Since there is a decrease in temperature in the precipitation reaction of MgCO3, heat is absorbed from the surroundings.
endothermic positive(+)
Tthheuhs,etahteopf rperceicpiiptaittaiotinonreoafcMtiognCOof3MisgC+O53 0is.4ankJ mol–1 . reaction and ∆H is . Therefore,

(e) Tulis persamaan termokimia pemendakan magnesium karbonat.

Write the thermochemical equation for the precipitation of magnesium carbonate.

(i) Mg(NO3)2(ak) + Na2CO3(ak) → MgCO3(p) + 2NaNO3(ak) ∆H = +50.4 kJ mol–1

Mg(NO3)2(aq) + Na2CO3(aq) → MgCO3(s) + 2NaNO3(aq) ∆H = +50.4 kJ mol–1

(ii) Mg2+(ak) + CO32–(ak) → MgCO3(p) ∆H = +50.4 kJ mol–1

Mg2+(aq) + CO32–(aq) → MgCO3(s) ∆H = +50.4 kJ mol–1

87 © Penerbitan Pelangi Sdn. Bhd.

  Kimia Tingkatan 5  Bab 3 Termokimia

(f) Lukis gambar rajah aras tenaga untuk tindak balas pemendakan MgCO3

Draw the energy level diagram for the precipitation reaction of MgCO3:

Tenaga / Energy

MgCO3(p)
MgCO3(s)

∆H = +50.4 kJ mol–1

Mg2+(ak) + CO32–(ak)
Mg2+(aq) + CO32–(aq)

(g) Mengapakah cawan polistirena yang digunakan dalam eksperimen ini dan bukannya bikar kaca?

Why is a polystyrene cup used in this experiment instead of a typical glass beaker?

Polistirena ialah penebat haba yang baik untuk mengurangkan haba yang diserap dari persekitaran.

Polystyrene is a good insulator of heat to reduce heat absorbed from the surroundings .

(h) Mengapakah penutup plastik digunakan untuk menutupi cawan polistirena dalam tempoh menunggu

selama 5 minit sebelum mengukur suhu awal larutan?

Why is a plastic cover used to cover the polystyrene cup during the 5-minute waiting period before measuring the initial
temperature of the solution?

Untuk mengurangkan haba yang hilang ke persekitarannya.

To reduce heat loss to the surroundings.

BAB 3 (i) Nyatakan langkah berjaga-jaga dalam eksperimen ini. / State the precautionary steps in this experiment.

1. Bacaan termometer awal larutan diambil setelah 5 minit masa menunggu bagi memastikan
larutan mencapai suhu tetap .

The initial thermometer readings of the solutions are taken after the 5-minute waiting period to ensure the solution
has reached a constant temperature .

2. Larutan dicampurkan dengan segera dan berhati-hati supaya tidak berlaku tumpahan.

Solutions are mixed immedietely and carefully so that no spillage occurs.

3. Kacau campuran dengan termometer sepanjang eksperimen untuk penyebaran haba yang sekata bagi
memastikan suhu campuran yang sekata diperoleh .

Stir the mixture with a thermometer throughout the experiment for even heat distribution to make sure
a uniform temperature of the mixture is obtained .

2Tugasan

Allen mengukur dan menuangkan 50 cm3 larutan argentum nitrat, AgNO3 1.0 mol dm–3 ke dalam cawan polistirena.
Bacaan termometer awal larutan AgNO3 ialah 28.0oC. Ahmad mengukur dan menuangkan 50 cm3 larutan natrium
klorida, NaCl 1.0 mol dm–3 ke dalam cawan polistirena yang lain. Bacaan termometer awal larutan NaCl ialah 29.0oC.
Allen menambahkan larutan AgNO3 ke dalam cawan polistirena dengan larutan NaCl dan kacau larutan campuran serta-
merta dengan termometer. Bacaan termometer tertinggi yang diperoleh Allen dan Ahmad ialah 32.5oC.
[Anggapan bahawa muatan haba tentu larutan = muatan haba tentu air = 4.2 J g–1 oC–1; ketumpatan larutan = ketumpatan
air = 1 g cm–3]
Allen measures and pours 50 cm3 of 1.0 mol dm–3 silver nitrate AgNO3 solution into a polystyrene cup. The initial thermometer reading of
AgNO3 solution is 28.0oC. Ahmad measures and pours 50 cm3 of 1.0 mol dm–3 sodium chloride, NaCl solution into another polystyrene cup.
The initial thermometer reading of NaCl solution is 29.0oC. Allen adds AgNO3 solution into the polystyrene cup with NaCl solution and stir
the mixture solution immediately with a thermometer. The highest thermometer reading that both Allen and Ahmad obtained is 32.5oC.
[Assuming specific heat capacity of solution = specific heat capacity of water = 4.2 J g–1 oC–1; density of solution = density of water = 1 g cm–3]

© Penerbitan Pelangi Sdn. Bhd. 88

Kimia Tingkatan 5  Bab 3 Termokimia 

(a) Tulis persamaan kimia seimbang bagi tindak balas Perubahan suhu / Temperature change, θ
di atas. = 32.5 – 28.5
= 4.0 oC
Write a balanced chemical equation for the above
reaction. Perubahan haba / Heat change, Q
= (50 + 50) (4.2) (4.0)
AgNO3(ak) + NaCI(ak) → AgCI(p) + NaNO3(ak) = 1680 J
AgNO3(aq) + NaCI(aq) → AgCI(s) + NaNO3(aq)

(b) Tulis persamaan ion bagi tindak balas di atas. Bilangan mol AgNO3 / Number of moles of AgNO3
Write an ionic equation for the above reaction. (1.0) (50)
Ag+(ak) + CI–(ak) → AgCI(p) n= 1000
Ag+(aq) + CI–(aq) → AgCI(s)
= 0.05 mol

Bilangan mol NaCI / Number of moles of NaCI

(c) Hitung haba pemendakan argentum klorida. n= (1.0) (50)
Calculate the heat of precipitation of silver chloride. 1000
= 0.05 mol
Suhu awal purata larutan AgNO3 dan NaCI
Average initial temperature of AgNO3 and NaCI solutions Bilangan mol AgCI terbentuk / Number of moles of AgCI formed
= Bilangan mol Ag+ / Number of moles of Ag+
= (28.0 + 29.0) = Bilangan mol CI– / Number of moles of CI–
2 = 0.05 mol
= 28.5 oC
Haba pemendakan AgCI / Heat of precipitation of AgCI

= 1680
0.05
= –33600 J mol–1
= –33.6 kJ mol–1
BAB 3
(d) Tulis persamaan termokimia bagi tindak balas di atas. / Write the thermochemical equation for the above reaction. TP 2
AgNO3(ak) + NaCl(ak) → AgCl(p) + NaNO3(ak) ΔH = –33.6 kJ mol–1
AgNO3(aq) + NaCl(aq) → AgCl(s) + NaNO3(aq) ΔH = –33.6 kJ mol–1
Ag+(ak) + Cl-( ak) → AgCl(p) ΔH = –33.6 kJ mol–1
Ag+(aq) + Cl-(aq) → AgCl(s) ΔH =–33.6 kJ mol–1

(e) Lukis gambar rajah aras tenaga untuk tindak balas di atas. / Draw energy level diagram for the above reaction. TP 3

Tenaga / Energy
Ag+(ak) + CI–(ak)
Ag+(aq) + CI–(aq)

∆H = –33.6 kJ mol–1
AgCI(p)
AgCI(s)

Haba penyesaran

Heat of displacement

1. Tindak balas penyesaran berlaku apabila logam yang lebih elektropositif ditambahkan ke dalam

larutan yang mengandungi ion logam yang kurang elektropositif. TP 1
more
A displacement reaction occurs when a electropositive metal is added to a solution with a less

electropositive metal ion. lebih tinggi dalam Siri

2. Logam yang lebih elektropositif ialah logam yang berada di kedudukan yang

Elektrokimia. higher position in the Electrochemical Series. TP 1

A more electropositive metal is a metal that is located at a

89 © Penerbitan Pelangi Sdn. Bhd.

  Kimia Tingkatan 5  Bab 3 Termokimia

3. Haba penyesaran ialah perubahan haba apabila 1 mol logam disesarkan oleh logam yang lebih elektropositif
daripada larutan garamnya
.
1 mole of metal is displaced by a more electropositive metal from
Heat of displacement is heat change when
its salt solution
. TP 1

4. Lengkapkan jadual untuk menghuraikan tindak balas penyesaran:

Complete the table to describe the displacement reactions:

Larutan argentum nitrat + serbuk zink Larutan kuprum(II) klorida + serbuk besi
Silver nitrate solution + zinc powder Copper(II) chloride solution + iron powder

Persamaan kimia 2AgNO3(ak) + Zn(p) → Zn(NO3)2(ak) + 2Ag(p) CuCl2(ak) + Fe(p) → FeCl2(ak) + Cu(p)
seimbang TP 3 2AgNO3(aq) + Zn(s) → Zn(NO3)2(aq) + 2Ag(s) CuCl2(aq) + Fe(s) → FeCl2(aq) + Cu(s)

Balanced chemical 2Ag+(ak) + Zn(p) → Zn2+(ak) + 2Ag(p) Cu2+(ak) + Fe(p) → Fe2+(ak) + Cu(p)
equation
2Ag+(aq) + Zn(s) → Zn2+(aq) + 2Ag(s) Cu2+(aq) + Fe(s) → Fe2+(aq) + Cu(s)
Persamaan ion TP 3
Argentum Kuprum
Ionic equation
Silver Copper
Nama logam yang
disesarkan TP 2

Name of displaced metal

Eksperimen 3.1 Membandingkan Haba Penyesaran Kuprum oleh Logam yang
Berlainan Keelektropositifan

Comparing the Heat of Displacement of Copper by Metals with Different
Electropositivities

BAB 3 Tujuan / Aim:
Untuk membandingkan haba penyesaran kuprum oleh logam yang berlainan keelektropositifan.

To compare the heat of displacement of copper by the metals with different electropositivities.

Pernyataan masalah / Problem statement:
Bagaimanakah logam yang berlainan keelektropositifan mempengaruhi haba penyesaran kuprum?

How do metals of different electropositivities affect the heat of displacement of copper?

Hipotesis / Hypothesis:
Apabila logam yang lebih elektropositif digunakan untuk menyesarkan kuprum, magnitud haba penyesaran lebih

tinggi. / When a more electropositive metal is used to displace copper, the magnitude of heat of displacement is higher.

Pemboleh ubah / Variables:
Dimanipulasikan / Manipulated:
Logam lebih elektropositif yang berlainan / Different more electropositive metals

Bergerak balas / Responding:
Haba penyesaran kuprum / Heat of displacement of copper

Dimalarkan / Constant:
Kepekatan dan isi padu larutan kuprum(II) nitrat, cawan polistirena, dan jisim serbuk logam.

Concentration and volume of copper(II) nitrate solution, polystyrene cup, and mass of metal powder.

Bahan / Materials:
Larutan kurpum(II) nitrat 0.1 mol dm–3, serbuk magnesium dan serbuk zink.

0.1 mol dm–3 copper(II) nitrate solution, magnesium powder and zinc powder.

Radas / Apparatus:
Cawan polistirena, penutup cawan plastik, spatula, penimbang elektronik, termometer dan silinder penyukat 50 cm3.

Polystyrene cups, plastic cup cover, spatula, electronic balance, thermometers and 50 cm3 measuring cylinder.

© Penerbitan Pelangi Sdn. Bhd. 90

Prosedur / Procedures: Kimia Tingkatan 5  Bab 3 Termokimia 
Kacau menggunakan termometer
Termometer Stir using a thermometer
Thermometer

50 cm3 larutan Cawan polistirena 0.5 g serbuk magnesium
kuprum(ll) nitrat, Polystyrene cup 0.5 g magnesium powder
5C0uc(NmO3 o3f)20.01.1mmol odlmd–m3 –3
copper(ll) nitrate,
Cu(NO3) 2 solution

1. 50 cm3 larutan kuprum(II) nitrat 0.1 mol dm–3 disukat dan dituangkan ke dalam sebuah cawan polistirena dan BAB 3
ditutup dengan penutup plastik dan dibiarkan selama 5 minit.

50 cm3 of 0.1 mol dm–3 copper(II) nitrate solution is measured and poured into a polystyrene cup and covered with a plastic
cover and left for 5 minutes.

2. Termometer dimasukkan ke dalam cawan polistirena untuk mengukur suhu awal larutan.

A thermometer is inserted into the polystyrene cup to measure the initial temperature of the solution.

3. Suhu awal larutan dicatatkan dalam jadual.

The initial temperature of the solution is recorded in the table.

4. Penutup plastik ditanggalkan, 0.5 g serbuk magnesium ditimbang dan dimasukkan dengan teliti ke dalam
cawan polistirena.

The plastic cover is removed, 0.5 g magnesium powder is weighed and added cafefully into the polystyrene cup.

5. Campuran dikacau serta-merta dengan termometer.

The mixture is stirred immediately with a thermometer.

6. Suhu maksimum yang tercapai dicatatkan dalam jadual.

The highest temperature obtained is recorded in the table.

7. Langkah 1 – 7 diulangi dengan menggunakan serbuk zink.

Steps 1 – 7 are repeated with zinc powder.

Keputusan / Results:

Set Serbuk logam yang ditambah Suhu awal larutan Cu(NO3)2 (oC) Suhu maksimum campuran (oC)
Metal powder added Initial temperature of Cu(NO3)2 solution (oC)
Highest temperature of mixture (oC)

I Magnesium / Magnesium 28.0 35.5

II Zink / Zinc 28.5 33.5

Penghitungan / Calculation:

[Anggapan: Muatan haba tentu larutan = Muatan haba tentu air = 4.2 J g–1 oC–1; Ketumpatan larutan = Ketumpatan

air = 1 g cm–3

Assumption: Specific heat capacity of the solutions = Specific heat capacity of water = 4.2 J g-1 oC–1; Density of the solutions =
Density of water = 1 g cm–3]

Set I II
Serbuk logam yang ditambah
Magnesium Zink
Metal powder added
Magnesium Zinc
Perubahan suhu, θ (°C)
35.5 – 28.0 33.5 – 28.5
Temperature change, θ (°C) = 7.5 = 5.0

Perubahan haba, Q = mcθ (J) (50) (4.2) (7.5) (50) (4.2) (5.0)
= 1575 = 1050
Heat change, Q = mcθ(J)
(0.1)(50) (0.1)(50)
Bilangan mol Cu(NO3)2 1000 1000

Number of moles of Cu(NO3)2 = 0.005 mol = 0.005 mol

91 © Penerbitan Pelangi Sdn. Bhd.

  Kimia Tingkatan 5  Bab 3 Termokimia

Bilangan mol Cu yang disesarkan 0.005 mol 0.005 mol

= Bilangan mol ion Cu2+, n 1575 1050
0.005 0.005
Number of moles of Cu that is displaced = –315000 J mol–1 = –210000 J mol–1
= Number of moles of Cu2+ ion, n = –315 kJ mol–1 = –210 kJ mol–1

Haba penyesaran, ∆H = Q
n
Q
Heat of displacement, ∆H = n

[Catatan: Terdapat peningkatan suhu semasa tindak balas penyesaran; haba dibebaskan ke persekitaran. Oleh itu,
tindak balas penyesaran kuprum ialah tindak balas eksotermik dan ∆H bernilai negatif (–) .
Remarks: Since there is an increase in temperature during the displacement reaction, heat is released to the surroundings. Thus, the
reaction and ∆H is negative (–) .]
displacement reaction of copper is an exothermic

Set Serbuk logam yang ditambah Persamaan kimia seimbang untuk tindak balas penyesaran

Metal powder added Balanced chemical equation for displacement reaction

I Magnesium Mg(p) + Cu(NO3)2(ak) → Mg(NO3)2(ak) + Cu(p)

Magnesium Mg(s) + Cu(NO3)2(aq) → Mg(NO3)2(aq) + Cu(s)

II Zink Zn(p) + Cu(NO3)2(ak) → Zn(NO3)2(ak) + Cu(p)

Zinc Zn(s) + Cu(NO3)2(aq) → Zn(NO3)2(aq) + Cu(s)

BAB 3 Set Serbuk logam yang ditambah Persamaan ion untuk tindak balas penyesaran

Metal powder added Ionic equation for displacement reaction

I Magnesium Mg(p) + Cu2+(ak) → Mg2+(ak) + Cu(p)

Magnesium Mg(s) + Cu2+(aq) → Mg2+(aq) + Cu(s)

II Zink Zn(p) + Cu2+(ak) → Zn2+(ak) + Cu(p)

Zinc Zn(s) + Cu2+(aq) → Zn2+(aq) + Cu(s)

Set Serbuk logam yang ditambah Persamaan termokimia untuk tindak balas penyesaran

Metal powder added Thermochemical equation for displacement reaction

I Magnesium Mg(p) + Cu2+(ak) → Mg2+(ak) + Cu(p) ∆H = –315 kJ mol–1

Magnesium Mg(s) + Cu2+(aq) → Mg2+(aq) + Cu(s) ∆H = –315 kJ mol–1

II Zink Zn(p) + Cu2+(ak) → Zn2+(ak) + Cu(p) ∆H = –210 kJ mol–1

Zinc Zn(s) + Cu2+(aq) → Zn2+(aq) + Cu(s) ∆H = –210 kJ mol–1

Perbincangan / Discussion: eksotermik

1. Tindak balas penyesaran kuprum oleh magnesium and zink ialah tindak balas kerana

haba dibebaskan ke persekitaran. exothermic reactions because heat is

The displacement reaction of copper by magnesium and zinc are both

released to the surroundings.

2. Lebih banyak haba dibebaskan apabila serbuk magnesium ditambahkan ke dalam larutan kuprum(II) nitrat
lebih
kerana magnesium elektropositif daripada zink.

More heat is released when magnesium powder is added to copper(II) nitrate solution because magnesium is
more
electropositive than zinc.

3. Kedua-dua serbuk magnesium dan serbuk zink ditambahkan secara berlebihan ke dalam larutan kuprum(II)
nitrat untuk memastikan semua kuprum disesarkan sepenuhnya daripada larutannya .

Both magnesium powder and zinc powder are added in excess to copper(II) nitrate solution to make sure
all copper is displaced completely from its solution
.

© Penerbitan Pelangi Sdn. Bhd. 92

Kimia Tingkatan 5  Bab 3 Termokimia 

4. Gambar rajah aras tenaga untuk kedua-dua tindak balas penyesaran:

The energy level diagram for both displacement reactions:

Tenaga / Energy Tenaga / Energy

Mg(p) + Cu2+(ak) Zn(p) + Cu2+(ak)
Mg(s) + Cu2+(aq) Zn(s) + Cu2+(aq)

∆H = –315 kJ mol–1 ∆H = –210 kJ mol–1
Mg2+(ak) + Cu(p) Zn2+(ak) + Cu(p)
Mg2+(aq) + Cu(s) Zn2+(aq) + Cu(s)

Gambar rajah aras tenaga untuk tindak balas penyesaran Gambar rajah aras tenaga untuk tindak balas penyesaran

kuprum oleh magnesium. kuprum oleh zink.

Energy level diagram for the displacement reaction of copper by Energy level diagram for the displacement reaction of copper by zinc.
magnesium.

5. Cawan polistirena digunakan kerana polistirena ialah penebat haba yang baik untuk mengurangkan haba

yang hilang ke persekitaran atau diserap oleh cawan.

A polystyrene cup is used because polystyrene is a good insulator of heat to reduce heat loss to the surroundings or

absorbed by the cup.

6. Penutup plastik digunakan untuk menutupi cawan polistirena dalam tempoh menunggu selama 5 minit
mengurangkan haba yang hilang ke persekitarannya .
sebelum mengukur suhu awal larutan untuk

A plastic cover is used to cover the polystyrene cup during the 5-minute waiting period before measuring the initial
temperature of the solution to reduce heat loss to the surroundings .

7. Langkah berjaga-jaga / Precautionary steps: BAB 3

(a) Suhu awal larutan diambil setelah 5 minit masa menunggu membolehkan larutan mencapai suhu tetap.

Initial temperature of the solution is taken after the 5-minute waiting period to make sure the solution has reached a

constant temperature.

(b) Serbuk logam dicampurkan dengan segera dan berhati-hati supaya tidak berlaku tumpahan.

Metal powder is added quickly and carefully so that no spillage occurs.

(c) Kacau campuran dengan termometer sepanjang eksperimen demi penyebaran haba yang sekata untuk

memastikan suhu campuran yang sekata diperoleh.

Stir the mixture with a thermometer throughout the experiment for even heat distribution to make sure a uniform
temperature of the mixture is obtained.

Kesimpulan / Conclusion:
1. Kedua-dua tindak balas penyesaran kuprum oleh magnesium dan zink ialah tindak balas eksotermik
dibebaskan
kerana haba ke persekitaran.
exothermic
Both displacement reactions of copper by magnesium and zinc are reactions because heat is
released
to the surroundings.
2. Haba penyesaran kuprum oleh magnesium lebih tinggi daripada haba penyesaran kuprum oleh zink.
higher
The heat of displacement of copper by magnesium is than the heat of displacement of copper by zinc.

3Tugasan

Dalam suatu penyelidikan, paku besi yang telah dibersihkan ditambahkan ke dalam 50 cm3 larutan kuprum(II) sulfat 0.2
mol dm–3. Bacaan termometer meningkat daripada 28.5oC kepada 40.5oC. Andaikan bahawa paku besi ditambahkan ke
dalam larutan kuprum(II) sulfat secara berlebihan.
[Anggapan bahawa muatan haba tentu larutan = muatan haba tentu air = 4.2 J g–1 oC–1; ketumpatan larutan = ketumpatan
air = 1 g cm–3]
In an investigation, a cleaned iron nail is added to 50 cm3 of 0.2 mol dm–3 copper(II) sulphate solution. The thermometer reading increased
from 28.5oC to 40.5 oC. Assuming that the iron nail is added into an excess of copper(II) sulphate solution.
[Assuming that specific heat capacity of solution = specific heat capacity of water = 4.2 J g–1 oC–1; density of the solution = density of water
= 1 g cm–3].

93 © Penerbitan Pelangi Sdn. Bhd.


Click to View FlipBook Version