The words you are searching are inside this book. To get more targeted content, please make full-text search by clicking here.

Prof. Tai-Haur Kuo 12 - 2 Electronics(3), 2012 Basic Principles of Sinusoidal Oscillators (Cont.) at 0, the phase of the loop should be zero and the

Discover the best professional documents and content resources in AnyFlip Document Base.
Search
Published by , 2016-12-15 08:10:03

Basic Principles of Sinusoidal Oscillators - NCKU

Prof. Tai-Haur Kuo 12 - 2 Electronics(3), 2012 Basic Principles of Sinusoidal Oscillators (Cont.) at 0, the phase of the loop should be zero and the

Basic Principles of S

Linear oscillator
 Linear region of circuit : li
 Nonlinear region of circuit
Barkhausen criterion

XS   Amplifier A



Xf Frequency-sele

network 

 loop gain L(s) = β (s)A(s)
 characteristic equation 1
 oscillation criterion L(j0

Prof. Tai-Haur Kuo 12

Sinusoidal Oscillators

inear oscillation
t : amplitudes stabilization

A XO

ective



1-L(s) = 0
= A(j0) β(j0) = 1

- 1 Electronics(3), 2012

Basic Principles of Sinus

at 0, the phase of the loop
magnitude of the loop gain s

Oscillation frequency 0 is d

φ ∆ω0  ∆φ
dφ dω

∆φ ω0
0

A steep phase response res
given change in phase 

Prof. Tai-Haur Kuo 12

soidal Oscillators (Cont.)

should be zero and the
should be unity.
determined solely by

ω

sults in a small 0 for a

- 2 Electronics(3), 2012

Nonlinear Amp

To sustain oscillation : βA>1
a.overdesign for βA variatio
b.oscillation will grow in am
 poles are in the right half
c.Nonlinear network reduce

amplitude is reached
 poles will be pulled to j-a

Prof. Tai-Haur Kuo 12

plitude Control

1
ons
mplitude

of the s-plane
es βA to 1 when the desired
axis

- 3 Electronics(3), 2012

Nonlinear Amplitud

Limiter circuit for amplitude c

 linear region

VO  ( Rf )Vi
R1

VA  V R3  VO R2
R2  R3 R2  R3

VB  V R4  VO R5
R4  R5 R4  R5

Prof. Tai-Haur Kuo 12

de Control (Cont.)

control

V

VI R1 D1 R2
A
Rf
R3

 VO

D2 R4
B

R5

-V

- 4 Electronics(3), 2012

Nonlinear Amplitud

 nonlinear region

VO VA -VD L  R2  R3 ( V R R
R2 2

 V R3  VD (1 R
R2 R

similarly, L  V R4  VD (1 R4
R5 R5

Prof. Tai-Haur Kuo 12

de Control (Cont.)

R3  VD )
 R3

R3 )
R2

4 ) VO

5 L
(R R )
Slope   f R1 4

0 Slope VI Rf
R1


L

Slope   (R f R3 )
R1

- 5 Electronics(3), 2012

OPAMP-RC Os

Wien-bridge oscillator

Ls  1 R2  Zp
 R1  Zp  Zs


1 R2
R1
 1
SCR
3  SCR 

1 R2
R1
Ljω  Vd
jωRC  1 
3   ωRC 

     For phase  0. ω0RC  1
ω0RC

 ω0  1
RC

     Ls  1 R2  2
R1

Prof. Tai-Haur Kuo 12

scillator Circuits

R2

R1 _ VO


CR

CR ZS

ZP

- 6 Electronics(3), 2012

OPAMP-RC Oscilla

Wien-bridge oscillator with a

D1
20.3k

10k V1 _
16nF


10
16nF
10k

D2

Prof. Tai-Haur Kuo 12

ator Circuits (Cont.)

a limiter  15V

R 3  3k

a

0k R 4  1k

VO

R5  1k

b
R6  3k

 15V

- 7 Electronics(3), 2012

OPAMP-RC Oscilla

50k b
p

16nF 10k

Prof. Tai-Haur Kuo 12

ator Circuits (Cont.)

vO

10k a

-


16nF
10k

- 8 Electronics(3), 2012

Phase-Shif

Without amplitude stabilizatio

CC C
RR R

------- phase shift of the RC
Total phase shift ar
degrees.

Prof. Tai-Haur Kuo 12

ft Oscillator

on

-K

network is 180 degrees.
round the loop is 0 or 360

- 9 Electronics(3), 2012

Phase-Shift Os

With amplitude stabilization

16nF 16nF 16nF

xC C C
R 10k R 10k

Prof. Tai-Haur Kuo 12

scillator (Cont.)

100k 50k

P1 V vO
Rt R1
R2 Electronics(3), 2012
D1
_ R3



D2

R4
V
- 10

Quadrature

V- 2R
R1
R2

R3
R4
C V

XR _ 2R
OP1

VO1 C

Prof. Tai-Haur Kuo 12

e Oscillator

2R VO2

_

OP2

C Rf

(Nominally 2R)

- 11 Electronics(3), 2012

Quadrature Os

-------Break the loop at X, loop
oscillation frequency 

-------Vo2 is the integral of Vo1
90° phase difference b
“quadrature” oscillator

Prof. Tai-Haur Kuo 12

scillator (Cont.)

gain L(s) = V02 = 1
VX S2C2R 2
1
0  RC

between Vo1 and Vo2

- 12 Electronics(3), 2012

Active-Filter Tu

Block diagram

 V V2
-V t

V

 High-distortion v2

 High-Q bandpass  low

Prof. Tai-Haur Kuo 12

uned Oscillator

f0 V1

V2 t
- V V1

w-distortion v1 Electronics(3), 2012

- 13

Active-Filter Tuned

Practical implementation

QR R C
C

V2 R1

Prof. Tai-Haur Kuo 12

d Oscillator (Cont.)

RR

R

-

- 14 V1

Electronics(3), 2012

A General Form of L
Configu

Many oscillator circuits fall in
below

RO

3  2

1 A V

-

Vˆ 13 V13 Z3
Z2

I  0 V13 Z1


ZL

Z1,Z2,Z3 :capacitive or indu

Prof. Tai-Haur Kuo 12

LC-Tuned Oscillator
uration

nto a general form shown

RO 2 VO

VO

 Z3
1
Z2
 - A v Vˆ13 

V13 Z1



3

uctive ZL

- 15 Electronics(3), 2012

A General Form of L
Configurati

VO   AvVˆ13Z L
Z L  RO

V13  Z1 VO T  V13  RO (Z1 Z
Z1  Z3 Vˆ13

if Z1  jX1, Z2  jX 2, Z3  jX 3

X  L for inductance X   1

C
Av X1 X 2
T  jRO ( X1  X 2  X 3 )  X 2 ( X1  X 3

for oscillation, T  10

 X1  X2  X3  0

T   Av X1 X 2   Av X1
X2(X1  X3) X1  X3

T  Av X1
X2

Prof. Tai-Haur Kuo 12

LC-Tuned Oscillator
ion (Cont.)

 AvZ1Z2
Z2  Z3 )  Z2 (Z1  Z3 )

for capacitance

3)

- 16 Electronics(3), 2012

A General Form of L
Configurati

With oscillation

|T| = 1 and T = 0, 360, 720

i.e. T = 1 (X =ωL or

 X1 & X2 must have the sam
 X1 & X2 are L, X3 = -(X1 +
or X1 & X2 are C, X3 = -(X1 +
Transistor oscillators

1.Collpitts oscillator

-- X1 & X2 are Cs, X3 is L
2.Hartley oscillator

-- X1 & X2 are Ls, X3 is C

Prof. Tai-Haur Kuo 12

LC-Tuned Oscillator
ion (Cont.)

0, … degree.

r X = - ω1C)

me sign if Av is positive
+ X2) is C
+ X2) is L

- 17 Electronics(3), 2012

LC Tuned O

Two commonly used configu
 1.Collpitts (feedback is ac

divider)
 2.Harley (feedback is ach

divider)
 Configuration

1.Collpitts

R C1

L

a.c. ground(VDD) C2

Prof. Tai-Haur Kuo 12

Oscillators

urations
chieved by using a capacitive

hieved by using an inductive

2.Hartley

R L1 C
a.c. ground(VDD) L2

- 18 Electronics(3), 2012

LC Tuned Osc

Collpitts oscillator
 Equivalent circuit

sC 2 Vπ

sC2 Vπ 
C2
Vπ GmVπ


 R = loss of inductor + load
output resistance of trans

Prof. Tai-Haur Kuo 12

cillators (Cont.)

L VO  Vπ(1 s2LC2 )

C
R C1

d resistance of oscillator +
sistor

- 19 Electronics(3), 2012

LC Tuned Osc

SC2 V+gmv+( 1 +SC1)(1+S2LC
R

S3LC1C2 +S2( LC2 )+S(C1+C2 )+
R

(gm + 1  w 2LC2 )+j W(C1+C2
R R

 For oscillations to start, b
parts must be zero

 Oscillation frequency

ω0 = 1

L( c1c 2 )
c1 +c
2

Prof. Tai-Haur Kuo 12

cillators (Cont.)

C2 )V=0

+(gm + 1 )=0 S=jw
R

)  W3LC1C2  =0

both the real and imaginary

- 20 Electronics(3), 2012

LC Tuned Osc

 Gain

gmR  c2 (Actually, gmR 
c1

 Oscillation amplitude

1.LC tuned oscillators ar
oscillators. (As oscillat
transistor gain is reduc
value)

2.Output voltage signal w
purity because of the f
circuit

Hartley oscillator can be sim

Prof. Tai-Haur Kuo 12

cillators (Cont.)

 c2 )
c1

re known as self – limiting
tions grown in amplitude,
ced below its small – signal

will be a sinusoid of high
filtering action of the LC tuned

milarity analyzed Electronics(3), 2012

- 21

Crystal os

Symbol of crystal

Circuit model of crystal

L
CS
r

Prof. Tai-Haur Kuo 12

scillators

CP Electronics(3), 2012

- 22

Crystal oscilla

Reactance of a crystal assuming r

1 1 s2 
sL  sCP
Z(s)  1 s2  

sCP  1 Cr
sCS


ωS2  1 reac
 
Let  LCS
ωP2
1  1  1 
L CS CP

 Zjω  j 1  ω2  ωS2 
ωCP ω2  ωP2

If CP  CS, then ωP  ωS

Prof. Tai-Haur Kuo 12

ators (Cont.)

r=0

  1 
LCS
CP  CS 

LCSCP (Crystal is high – Q device)

rystal
ctance

inductive

0 ωp ω
ωS

capacitive

- 23 Electronics(3), 2012

Crystal oscilla

The crystal reactance is indu
frequency band between ws

Collpitts crystal oscillator
 Configuration

R

a.c. ground(VDD

Prof. Tai-Haur Kuo 12

ators (Cont.)

uctive over the narrow
and wp

C1 crystal
D) C2

- 24 Electronics(3), 2012

Crystal oscilla

 Equivalent circuit

CS<<CP, C1, C2

 ω0  1 =ωS
LCS

Prof. Tai-Haur Kuo 12

ators (Cont.) R C1

CP
L

CS



C2 vπ

-

- 25 Electronics(3), 2012


Click to View FlipBook Version