Basic Principles of S
Linear oscillator
Linear region of circuit : li
Nonlinear region of circuit
Barkhausen criterion
XS Amplifier A
Xf Frequency-sele
network
loop gain L(s) = β (s)A(s)
characteristic equation 1
oscillation criterion L(j0
Prof. Tai-Haur Kuo 12
Sinusoidal Oscillators
inear oscillation
t : amplitudes stabilization
A XO
ective
1-L(s) = 0
= A(j0) β(j0) = 1
- 1 Electronics(3), 2012
Basic Principles of Sinus
at 0, the phase of the loop
magnitude of the loop gain s
Oscillation frequency 0 is d
φ ∆ω0 ∆φ
dφ dω
∆φ ω0
0
A steep phase response res
given change in phase
Prof. Tai-Haur Kuo 12
soidal Oscillators (Cont.)
should be zero and the
should be unity.
determined solely by
ω
sults in a small 0 for a
- 2 Electronics(3), 2012
Nonlinear Amp
To sustain oscillation : βA>1
a.overdesign for βA variatio
b.oscillation will grow in am
poles are in the right half
c.Nonlinear network reduce
amplitude is reached
poles will be pulled to j-a
Prof. Tai-Haur Kuo 12
plitude Control
1
ons
mplitude
of the s-plane
es βA to 1 when the desired
axis
- 3 Electronics(3), 2012
Nonlinear Amplitud
Limiter circuit for amplitude c
linear region
VO ( Rf )Vi
R1
VA V R3 VO R2
R2 R3 R2 R3
VB V R4 VO R5
R4 R5 R4 R5
Prof. Tai-Haur Kuo 12
de Control (Cont.)
control
V
VI R1 D1 R2
A
Rf
R3
VO
D2 R4
B
R5
-V
- 4 Electronics(3), 2012
Nonlinear Amplitud
nonlinear region
VO VA -VD L R2 R3 ( V R R
R2 2
V R3 VD (1 R
R2 R
similarly, L V R4 VD (1 R4
R5 R5
Prof. Tai-Haur Kuo 12
de Control (Cont.)
R3 VD )
R3
R3 )
R2
4 ) VO
5 L
(R R )
Slope f R1 4
0 Slope VI Rf
R1
L
Slope (R f R3 )
R1
- 5 Electronics(3), 2012
OPAMP-RC Os
Wien-bridge oscillator
Ls 1 R2 Zp
R1 Zp Zs
1 R2
R1
1
SCR
3 SCR
1 R2
R1
Ljω Vd
jωRC 1
3 ωRC
For phase 0. ω0RC 1
ω0RC
ω0 1
RC
Ls 1 R2 2
R1
Prof. Tai-Haur Kuo 12
scillator Circuits
R2
R1 _ VO
CR
CR ZS
ZP
- 6 Electronics(3), 2012
OPAMP-RC Oscilla
Wien-bridge oscillator with a
D1
20.3k
10k V1 _
16nF
10
16nF
10k
D2
Prof. Tai-Haur Kuo 12
ator Circuits (Cont.)
a limiter 15V
R 3 3k
a
0k R 4 1k
VO
R5 1k
b
R6 3k
15V
- 7 Electronics(3), 2012
OPAMP-RC Oscilla
50k b
p
16nF 10k
Prof. Tai-Haur Kuo 12
ator Circuits (Cont.)
vO
10k a
-
16nF
10k
- 8 Electronics(3), 2012
Phase-Shif
Without amplitude stabilizatio
CC C
RR R
------- phase shift of the RC
Total phase shift ar
degrees.
Prof. Tai-Haur Kuo 12
ft Oscillator
on
-K
network is 180 degrees.
round the loop is 0 or 360
- 9 Electronics(3), 2012
Phase-Shift Os
With amplitude stabilization
16nF 16nF 16nF
xC C C
R 10k R 10k
Prof. Tai-Haur Kuo 12
scillator (Cont.)
100k 50k
P1 V vO
Rt R1
R2 Electronics(3), 2012
D1
_ R3
D2
R4
V
- 10
Quadrature
V- 2R
R1
R2
R3
R4
C V
XR _ 2R
OP1
VO1 C
Prof. Tai-Haur Kuo 12
e Oscillator
2R VO2
_
OP2
C Rf
(Nominally 2R)
- 11 Electronics(3), 2012
Quadrature Os
-------Break the loop at X, loop
oscillation frequency
-------Vo2 is the integral of Vo1
90° phase difference b
“quadrature” oscillator
Prof. Tai-Haur Kuo 12
scillator (Cont.)
gain L(s) = V02 = 1
VX S2C2R 2
1
0 RC
between Vo1 and Vo2
- 12 Electronics(3), 2012
Active-Filter Tu
Block diagram
V V2
-V t
V
High-distortion v2
High-Q bandpass low
Prof. Tai-Haur Kuo 12
uned Oscillator
f0 V1
V2 t
- V V1
w-distortion v1 Electronics(3), 2012
- 13
Active-Filter Tuned
Practical implementation
QR R C
C
V2 R1
Prof. Tai-Haur Kuo 12
d Oscillator (Cont.)
RR
R
-
- 14 V1
Electronics(3), 2012
A General Form of L
Configu
Many oscillator circuits fall in
below
RO
3 2
1 A V
-
Vˆ 13 V13 Z3
Z2
I 0 V13 Z1
ZL
Z1,Z2,Z3 :capacitive or indu
Prof. Tai-Haur Kuo 12
LC-Tuned Oscillator
uration
nto a general form shown
RO 2 VO
VO
Z3
1
Z2
- A v Vˆ13
V13 Z1
3
uctive ZL
- 15 Electronics(3), 2012
A General Form of L
Configurati
VO AvVˆ13Z L
Z L RO
V13 Z1 VO T V13 RO (Z1 Z
Z1 Z3 Vˆ13
if Z1 jX1, Z2 jX 2, Z3 jX 3
X L for inductance X 1
C
Av X1 X 2
T jRO ( X1 X 2 X 3 ) X 2 ( X1 X 3
for oscillation, T 10
X1 X2 X3 0
T Av X1 X 2 Av X1
X2(X1 X3) X1 X3
T Av X1
X2
Prof. Tai-Haur Kuo 12
LC-Tuned Oscillator
ion (Cont.)
AvZ1Z2
Z2 Z3 ) Z2 (Z1 Z3 )
for capacitance
3)
- 16 Electronics(3), 2012
A General Form of L
Configurati
With oscillation
|T| = 1 and T = 0, 360, 720
i.e. T = 1 (X =ωL or
X1 & X2 must have the sam
X1 & X2 are L, X3 = -(X1 +
or X1 & X2 are C, X3 = -(X1 +
Transistor oscillators
1.Collpitts oscillator
-- X1 & X2 are Cs, X3 is L
2.Hartley oscillator
-- X1 & X2 are Ls, X3 is C
Prof. Tai-Haur Kuo 12
LC-Tuned Oscillator
ion (Cont.)
0, … degree.
r X = - ω1C)
me sign if Av is positive
+ X2) is C
+ X2) is L
- 17 Electronics(3), 2012
LC Tuned O
Two commonly used configu
1.Collpitts (feedback is ac
divider)
2.Harley (feedback is ach
divider)
Configuration
1.Collpitts
R C1
L
a.c. ground(VDD) C2
Prof. Tai-Haur Kuo 12
Oscillators
urations
chieved by using a capacitive
hieved by using an inductive
2.Hartley
R L1 C
a.c. ground(VDD) L2
- 18 Electronics(3), 2012
LC Tuned Osc
Collpitts oscillator
Equivalent circuit
sC 2 Vπ
sC2 Vπ
C2
Vπ GmVπ
R = loss of inductor + load
output resistance of trans
Prof. Tai-Haur Kuo 12
cillators (Cont.)
L VO Vπ(1 s2LC2 )
C
R C1
d resistance of oscillator +
sistor
- 19 Electronics(3), 2012
LC Tuned Osc
SC2 V+gmv+( 1 +SC1)(1+S2LC
R
S3LC1C2 +S2( LC2 )+S(C1+C2 )+
R
(gm + 1 w 2LC2 )+j W(C1+C2
R R
For oscillations to start, b
parts must be zero
Oscillation frequency
ω0 = 1
L( c1c 2 )
c1 +c
2
Prof. Tai-Haur Kuo 12
cillators (Cont.)
C2 )V=0
+(gm + 1 )=0 S=jw
R
) W3LC1C2 =0
both the real and imaginary
- 20 Electronics(3), 2012
LC Tuned Osc
Gain
gmR c2 (Actually, gmR
c1
Oscillation amplitude
1.LC tuned oscillators ar
oscillators. (As oscillat
transistor gain is reduc
value)
2.Output voltage signal w
purity because of the f
circuit
Hartley oscillator can be sim
Prof. Tai-Haur Kuo 12
cillators (Cont.)
c2 )
c1
re known as self – limiting
tions grown in amplitude,
ced below its small – signal
will be a sinusoid of high
filtering action of the LC tuned
milarity analyzed Electronics(3), 2012
- 21
Crystal os
Symbol of crystal
Circuit model of crystal
L
CS
r
Prof. Tai-Haur Kuo 12
scillators
CP Electronics(3), 2012
- 22
Crystal oscilla
Reactance of a crystal assuming r
1 1 s2
sL sCP
Z(s) 1 s2
sCP 1 Cr
sCS
ωS2 1 reac
Let LCS
ωP2
1 1 1
L CS CP
Zjω j 1 ω2 ωS2
ωCP ω2 ωP2
If CP CS, then ωP ωS
Prof. Tai-Haur Kuo 12
ators (Cont.)
r=0
1
LCS
CP CS
LCSCP (Crystal is high – Q device)
rystal
ctance
inductive
0 ωp ω
ωS
capacitive
- 23 Electronics(3), 2012
Crystal oscilla
The crystal reactance is indu
frequency band between ws
Collpitts crystal oscillator
Configuration
R
a.c. ground(VDD
Prof. Tai-Haur Kuo 12
ators (Cont.)
uctive over the narrow
and wp
C1 crystal
D) C2
- 24 Electronics(3), 2012
Crystal oscilla
Equivalent circuit
CS<<CP, C1, C2
ω0 1 =ωS
LCS
Prof. Tai-Haur Kuo 12
ators (Cont.) R C1
CP
L
CS
C2 vπ
-
- 25 Electronics(3), 2012