Crystal oscilla
-22V
L C=300p
61~122uH
Cgd +Cstray D
2N2608
1MHz C S
10M
2.2kΩ 0.02μF
XTAL
Prof. Tai-Haur Kuo 12
ators (Cont.)
pF L
C
-22V
Bias circuit
(For AC,-22V and
ground are the same=0)
- 26 Electronics(3), 2012
Crystal oscilla
SthiencloeorpetguarninratotiobeTg=reAXavtX2e
X1 is very large when ω
ω
X1+X 2 +X 3 =0 & X3= 1 X
ωC
Z 2 =L//C= 1 1 = j
C+ jω L C+
jω ω
X2= 1 1 >0 ωL> ω
ωC+ ωL
Prof. Tai-Haur Kuo 12
ators (Cont.)
X1 then X1 must be large for
er than one.
ω closes to ωp and
ωS ω ωP
X1&X2 are inductive
+ 1 For 1MHz crystal,
ωL
C=300pF
1 1
ωC ω> LC L 84.4μH
1 1 1MHz
2π LC
- 27 Electronics(3), 2012
Bistable Mu
Multivibrators bistable:tw
(3 types) monostable
astable:n
Bistable
Has two stable states
Can be obtained by conn
amplifier in a positive-feed
greater than unity. I.e. βA
Prof. Tai-Haur Kuo 12
ultivibrators
wo stable states
e:one stable state
no stable state
necting an amplifier in a
dback loop having a loop gain
A>1 where β=R1/(R1+R2)
- 28 Electronics(3), 2012
Bistable Multivi
Bistable circuit with clockw
R1 R2
v+
-
vO
vI
-
Clockwise hysteresis (or i
L+:positive saturation v
L- :negative saturation
Prof. Tai-Haur Kuo 12
ibrators (Cont.)
wise hysteresis
VTL vo L
L- 0 vI
VTH
inverting hysteresis)
voltage of OPAMP
voltage of OPAMP
- 29 Electronics(3), 2012
Bistable Multivi
VTH βL R1 L
R1 R2
VTL βL R1 L
R1 R2
– Hysteresis width = VTH - VTL
Prof. Tai-Haur Kuo 12
ibrators (Cont.)
- 30 Electronics(3), 2012
Noninverting B
Counterclockwise hysteresis
Configuration
R1 R2
vI v+
-
- vO
v + =vI R2 +v0 R1
R1+R2 R1+R2
For v0=L+, v+=0,vI=vTL vTL
For v0=L-, v+=0,vI=vTH vTH
Prof. Tai-Haur Kuo 12
Bistable Circuit
s
vo
L
VTL 0 vI
VTH
L-
= L+ ( R1 )
R2
H= L ( R1 )
R2
- 31 Electronics(3), 2012
Noninverting Bista
Comparator characteristics w
Can reject interference
VTH S
VR 0 w
VTL Multiple
zero cross
Prof. Tai-Haur Kuo 12
able Circuit (Cont.)
with hysteresis
Signal corrupted t
with interference
e
sings
- 32 Electronics(3), 2012
Generation of Square an
using Astable
Can be done by connecting
RC circuit in a feedback loop
v1 0
VTL
VTH βL
VTL βL t
C
Prof. Tai-Haur Kuo 12
nd Triangular Waveforms
Multivibrators
a bistable multivibrator with a
p.
v2
L
VTH v1 v2
L- L t
L-
CR
- 33 Electronics(3), 2012
Generation of Square an
using Astable Mul
R1 R2
v+ vO
-
v- -
R
-
Prof. Tai-Haur Kuo 12
nd Triangular Waveforms
ltivibrators (Cont.)
vO t T1 T2
L
0
t
L-
v- t To L
VTH βL t
0 To L-
Time constant
VTL βL = RC
v t t
VTH βL Electronics(3), 2012
0
VTL βL
- 34
Generation of Square an
using Astable Mul
During T1
V t
L L βL e τ where τ RC
1 β L
L
if V βL at t T1 T1 τ ln
1β
During T2 t
τ
V e
L L βL
if V βL at t T2 T2 τ ln 1 β
1
T T1 T2 2τ ln 1 β ; L L is as
1 β
Prof. Tai-Haur Kuo 12
nd Triangular Waveforms
ltivibrators (Cont.)
C, β R1
R1 R2
L
L
β
L
L
β
ssumed
- 35 Electronics(3), 2012
Generation of Trian
V1
C
R V1 0
_ VTL
V2 T2 Bis
T1 t
L 12
0
L
T
Prof. Tai-Haur Kuo
ngular Waveforms
t
v2
L
V0
v1 2
VTH
V2 t
L-
stable
V1 T2 Slope -L
VTH T1 RC
0 t
VTL
Slope L
RC
- 36 Electronics(3), 2012
Generation of Triangul
During T1 1 LL T1
C
VTH T1 iCdt RC
VTL 0 ;
T1 RC VTH VTL
L
During T2
Similarily
T2 RC VTH VTL
L
To obtain symmetrical wavef
T1 T2 L L
Prof. Tai-Haur Kuo 12
lar Waveforms (Cont.)
where iC L
R
forms Electronics(3), 2012
- 37
Monostable M
Its alternative name is “ one
Has one stable state (
Can be triggered to a quasi-s
E R2
C2 R D 2
_
4
R3
R1 A
B
D1 C1
Prof. Tai-Haur Kuo 12
Multivibrators
shot “
(βL + VD2 ) v E ( t)
state
LvA (t)
T
L-
βL v ( t )
βL -
VD1v B ( t ) To L
To L
βL -
- 38 Electronics(3), 2012
Monostable Multi
During T1
t
VB (t) L (L VD1)eR3C1
VB(T) βL βL L (L VD
T R3C1 ln( VD1 L )
βL L
ForVD1 | L | T R3C1(11β )
βL+ is greater then VD1
Stable state is maintaine
Prof. Tai-Haur Kuo 12
ivibrators (Cont.)
T
R 3C1
)eD1
ed Electronics(3), 2012
- 39
Monostable Mult
Monostable multivibrator usi
VDD
vR
Vin Vo1 X
NOR C
vin v O1 VDD
3 2
VVT VDD
VT
0 T T1 t0 T1
t
Prof. Tai-Haur Kuo
12
tivibrators(Cont.)
ing NOR gates
D
VO2
NOR
VT VX v O2
2 VDD
VDD
VDD
VDD 2
0 T1 t 0 T1 t
- 40 Electronics(3), 2012
Mono-stable Mul
C
- R
Vc vX
-
- VO1 0 VDD
vC(0) 0
vx VDD(1 eRtC )
vx (T1) VT VDD (1 e T1 )
RC
T1 RCln VDD RC
VDD VT
where VT VDD ; VT is NO
2
Prof. Tai-Haur Kuo 12
ltivibrator (Cont.)
C
- R
Vc VDD vX
-
- VO1 VDD
vC (T1V) DDVVT TeRtC
vx
)
Cln2 0.693RC
OR gate threshold voltage
- 41 Electronics(3), 2012
Mono-stable Mul
Monostable multivibrator with
VD
Vin Vo1 R
NOR C
VX 5.6V
5V VD
0 Ti
Prof. Tai-Haur Kuo T1 t
12
ltivibrator (Cont.)
h catching diode
VDD
D VO2
NOR
Vx
forward resistance of diode
Time constant RfC
ime constant RC
- 42 Electronics(3), 2012
Astable Multivibrator Using
VX VO1 VO2
R
vC_
C
Transient behavior
(1)0<t<T1
(i) v o1:VDD 0 w h e n t=
(ii) v o2 : 0 VDD w h e n t
-t
(iii)v x = (VD D + V T )e RC
(iv )v c = v x -V O 2 = -VDD + (VDD
Prof. Tai-Haur Kuo 12
g NOR(or Inverter) Gates
v o1
VDD
v 0 T 1 2T1 t
o2
VDD
0 T1 2 T1 t
vX 2 T1 t
VDD VT t
VT VDD
2
=0 0
t= 0
VT v T 1
C
VDD
VT T1
2 T1
-t 0
VT
D + VT )e RC
- 43 Electronics(3), 2012
Astable Multivibrator Using
(Co
(2)T1<t<(T1+T2)
(i) v o1:0 VDD w h e n
(ii) v o2 :VDD 0 w h e n
(
(iii)v x = VDD -(VDD + VT )e
(iv )v c = v x -VO2 = v x = VD
Prof. Tai-Haur Kuo 12
g NOR(or Inverter) Gates
ont.)
t= T1
t= T1
(t-T1 )
RC
-(VDD + V )e (t-T1 )
RC
DD T
- 44 Electronics(3), 2012
Astable Multivibrator Using
(Co
Oscillation frequency
v x (T1)=VT
(VDD +VT ) e t =VT
RC
T1=RCln VDD +VT
VT
If VT = VDD , then T1=RCln3
2
oscillation frequency f0 = 2
Prof. Tai-Haur Kuo 12
g NOR(or Inverter) Gates
ont.)
and T2 =RCln3
1 0.455
2RCln3 RC
- 45 Electronics(3), 2012
Astable Multivibrator Using
(Co
With catching diode atV X
VX VO1 VO2
R
vC_
C
0 VDD
Asymmetrical square wav
(i)VT VDD VX
2 D
(ii)R1 R2
Prof. Tai-Haur Kuo 12
g NOR(or Inverter) Gates
ont.)
X
T1 T2 RCln2
f0 1 0.721
2RCln2 RC
ve Electronics(3), 2012
VO1 VO2
R1 R2
D1 D2 vC_
C
- 46
The 555 I
Widely used as both a monos
multivibrator
Used as monostable multivibr
VCC
Threshold R 1 Comparator 1
V
R Q To
C c VTH _
Trigger RVT1L ou
_ SQ
V t R 1 Comparator 2
Q1
Discharge
Prof. Tai-Haur Kuo 12
IC Timer
stable and astable
Rn Sn QQnnn+1 V1 Vcc
3
0 0 1
rator 0 1 V2 2V cc
1 0 0 3
1 1
v t(t) N/A Vc 2V cc Rn 1
3
otem-pole VO v c ( t )0 v t V TL
utput stage VCC (1 e t RC )
T1
V TH
2VCC 3 T1
transistor 0 Electronics(3), 2012
- 47 v O (t)
v(t)
0
The 555 IC T
For 0 t T1 t
RC
vx e
VCC VCC V(0)
For t = T1, vC(T1) VTH
T1 RCln VCC V(0) R
VCC
3
Prof. Tai-Haur Kuo 12
Timer (Cont.)
(V(0) VCE(sat) 0)
2VCC
3
RCln3 (V(0) 0)
- 48 Electronics(3), 2012
The 555 IC T
Used as an astable multivibr
VCC ( RA RB )C
VTH = 2Vcc Thres
VTL = 3 RA V
Vcc Tr
3
RB
0 T1 t
V
T2
C
Vc 2V c c S 0, R 1
3
Vc Vcc S 1, R 0
3
Vcc Vc 2V c c S R 0
3 3
T1 R BCln2 ,T2 T1 (R A RfB)CT1l2n 2
Oscillation frequency
Prof. Tai-Haur Kuo 12
Timer (Cont.)
rator VCC 555 timer chip
shold R 1 Comparator 1
Vc VO
VTH _ RQ Totem-pole
output stage
rigger RVT1L
SQ
_
V t R 1 Comparator 2
Q1
2 Discharge transistor
1
(RA 2RB )Cln2
- 49 Electronics(3), 2012
Sine-Wav
Shape a triangular waveform
Extensively used in function
Note:linear oscillators are
vO
0 vf 0 T 2 Tt
12
0
T2
T
t
Prof. Tai-Haur Kuo
ve Shaper
m into a sinusoid
generators
not cost-effective for low
frequency application
not easy to time over
wide frequency ranges
- 50 Electronics(3), 2012