The words you are searching are inside this book. To get more targeted content, please make full-text search by clicking here.

Prof. Tai-Haur Kuo 12 - 2 Electronics(3), 2012 Basic Principles of Sinusoidal Oscillators (Cont.) at 0, the phase of the loop should be zero and the

Discover the best professional documents and content resources in AnyFlip Document Base.
Search
Published by , 2016-12-15 08:10:03

Basic Principles of Sinusoidal Oscillators - NCKU

Prof. Tai-Haur Kuo 12 - 2 Electronics(3), 2012 Basic Principles of Sinusoidal Oscillators (Cont.) at 0, the phase of the loop should be zero and the

Crystal oscilla

-22V

L C=300p
61~122uH

Cgd +Cstray D 
2N2608
1MHz C S

10M
2.2kΩ 0.02μF
XTAL

Prof. Tai-Haur Kuo 12

ators (Cont.)

pF L
C


-22V

Bias circuit

(For AC,-22V and
ground are the same=0)

- 26 Electronics(3), 2012

Crystal oscilla

 SthiencloeorpetguarninratotiobeTg=reAXavtX2e

 X1 is very large when ω
ω

 X1+X 2 +X 3 =0 & X3=  1  X
ωC

Z 2 =L//C= 1 1 = j
C+ jω L C+
jω ω

 X2= 1 1 >0  ωL> ω
ωC+ ωL

Prof. Tai-Haur Kuo 12

ators (Cont.)

X1 then X1 must be large for
er than one.

ω closes to ωp and

ωS  ω  ωP 

X1&X2 are inductive

+ 1 For 1MHz crystal,
ωL
C=300pF
1 1
ωC  ω> LC L  84.4μH

1 1  1MHz
2π LC

- 27 Electronics(3), 2012

Bistable Mu

Multivibrators bistable:tw
(3 types) monostable
astable:n

Bistable

 Has two stable states

 Can be obtained by conn
amplifier in a positive-feed
greater than unity. I.e. βA

Prof. Tai-Haur Kuo 12

ultivibrators

wo stable states
e:one stable state
no stable state

necting an amplifier in a
dback loop having a loop gain
A>1 where β=R1/(R1+R2)

- 28 Electronics(3), 2012

Bistable Multivi

 Bistable circuit with clockw

R1 R2

v+ 
-
vO

vI 
-

 Clockwise hysteresis (or i

L+:positive saturation v
L- :negative saturation

Prof. Tai-Haur Kuo 12

ibrators (Cont.)

wise hysteresis

VTL vo L
L- 0 vI

VTH

inverting hysteresis)
voltage of OPAMP

voltage of OPAMP

- 29 Electronics(3), 2012

Bistable Multivi

 VTH  βL   R1 L
R1  R2

 VTL  βL   R1 L
R1  R2

– Hysteresis width = VTH - VTL

Prof. Tai-Haur Kuo 12

ibrators (Cont.)

- 30 Electronics(3), 2012

Noninverting B

Counterclockwise hysteresis

Configuration

R1 R2

vI  v+
-

- vO

v + =vI R2 +v0 R1
R1+R2 R1+R2

For v0=L+, v+=0,vI=vTL  vTL

For v0=L-, v+=0,vI=vTH  vTH

Prof. Tai-Haur Kuo 12

Bistable Circuit

s

vo

L

VTL 0 vI
VTH

L-

=  L+ ( R1 )
R2

H=  L ( R1 )
R2

- 31 Electronics(3), 2012

Noninverting Bista

Comparator characteristics w
 Can reject interference

VTH S
VR  0 w

VTL Multiple
zero cross

Prof. Tai-Haur Kuo 12

able Circuit (Cont.)

with hysteresis

Signal corrupted t
with interference

e
sings

- 32 Electronics(3), 2012

Generation of Square an
using Astable

Can be done by connecting
RC circuit in a feedback loop

v1 0
VTL
VTH  βL
VTL  βL t

C

Prof. Tai-Haur Kuo 12

nd Triangular Waveforms
Multivibrators

a bistable multivibrator with a
p.

v2
L

VTH v1 v2

L- L t

L-

CR

- 33 Electronics(3), 2012

Generation of Square an
using Astable Mul

R1 R2 

v+  vO
-
v- -
R
-

Prof. Tai-Haur Kuo 12

nd Triangular Waveforms
ltivibrators (Cont.)

vO t T1 T2
L
0
t

L-

v- t To L

VTH  βL t

0 To L-
Time constant
VTL  βL = RC

v t t

VTH  βL Electronics(3), 2012

0

VTL  βL

- 34

Generation of Square an
using Astable Mul

During T1

 V  t
 L  L  βL e τ where τ  RC

1  β L
L
if V  βL  at t  T1  T1  τ ln
1β

During T2 t
τ
 V e
 L  L  βL

if V  βL  at t  T2  T2  τ ln 1 β
1

T  T1  T2  2τ ln 1  β ; L   L is as
1  β

Prof. Tai-Haur Kuo 12

nd Triangular Waveforms
ltivibrators (Cont.)

C, β  R1
R1  R2

L 
L

β

L 
L

β

ssumed

- 35 Electronics(3), 2012

Generation of Trian

V1
C

R V1 0

_ VTL


V2 T2 Bis
T1 t

L 12

0

L
T

Prof. Tai-Haur Kuo

ngular Waveforms

t

v2

L
V0
v1 2
VTH
V2 t

L-

stable

V1 T2 Slope  -L
VTH T1 RC

0 t
VTL
Slope  L
RC

- 36 Electronics(3), 2012

Generation of Triangul

During T1 1 LL T1
C
VTH T1 iCdt RC
VTL   0  ;

 T1  RC VTH  VTL
L
During T2

Similarily

 T2  RC VTH  VTL
L

To obtain symmetrical wavef

T1  T2  L  L

Prof. Tai-Haur Kuo 12

lar Waveforms (Cont.)

where iC  L
R

forms Electronics(3), 2012

- 37

Monostable M

Its alternative name is “ one

Has one stable state (

Can be triggered to a quasi-s

E R2

C2 R D 2 
_
4
R3
R1 A

B
D1 C1

Prof. Tai-Haur Kuo 12

Multivibrators

shot “

(βL +  VD2 ) v E ( t)

state

LvA (t)

T
L-

βL v  ( t )



βL -

VD1v B ( t ) To L 
To L 
βL -

- 38 Electronics(3), 2012

Monostable Multi

During T1
t

VB (t)  L  (L  VD1)eR3C1

VB(T)  βL  βL  L  (L  VD

 T  R3C1 ln( VD1 L )
βL  L

ForVD1  | L |  T  R3C1(11β )

βL+ is greater then VD1
Stable state is maintaine

Prof. Tai-Haur Kuo 12

ivibrators (Cont.)

T
 R 3C1

)eD1

ed Electronics(3), 2012

- 39

Monostable Mult

Monostable multivibrator usi

VDD

vR

Vin Vo1 X

NOR C

vin v O1 VDD
3 2
VVT VDD
VT 
0 T  T1 t0 T1
t
Prof. Tai-Haur Kuo
12

tivibrators(Cont.)

ing NOR gates

D

VO2

NOR 

 VT VX v O2
2 VDD
VDD
VDD

 VDD 2

0 T1 t 0 T1 t

- 40 Electronics(3), 2012

Mono-stable Mul

C

- R

 Vc vX
-
- VO1  0 VDD

vC(0)  0
vx  VDD(1 eRtC )

vx (T1)  VT  VDD (1 e  T1 )
RC

 T1  RCln VDD  RC
VDD  VT

where VT  VDD ; VT is NO
2

Prof. Tai-Haur Kuo 12

ltivibrator (Cont.)

C

- R

 Vc VDD vX
-
- VO1  VDD

vC (T1V) DDVVT TeRtC

vx

)

Cln2  0.693RC

OR gate threshold voltage

- 41 Electronics(3), 2012

Mono-stable Mul

Monostable multivibrator with

 VD

Vin Vo1 R
NOR C

VX 5.6V

5V VD

0 Ti

Prof. Tai-Haur Kuo T1 t

12

ltivibrator (Cont.)

h catching diode

VDD

D VO2
NOR
Vx

forward resistance of diode
Time constant  RfC
ime constant  RC

- 42 Electronics(3), 2012

Astable Multivibrator Using

VX VO1 VO2

R

 vC_

C

Transient behavior

(1)0<t<T1

(i) v o1:VDD  0 w h e n t=
(ii) v o2 : 0  VDD w h e n t

-t

(iii)v x = (VD D + V T )e RC

(iv )v c = v x -V O 2 = -VDD + (VDD

Prof. Tai-Haur Kuo 12

g NOR(or Inverter) Gates
v o1
VDD

v 0 T 1 2T1 t

o2

VDD

0 T1 2 T1 t
vX 2 T1 t

VDD VT t

VT  VDD
2

=0 0
t= 0
VT v T 1

C

VDD

VT T1
2 T1
-t 0
VT
D + VT )e RC

- 43 Electronics(3), 2012

Astable Multivibrator Using
(Co

(2)T1<t<(T1+T2)

(i) v o1:0  VDD w h e n
(ii) v o2 :VDD  0 w h e n

(

(iii)v x = VDD -(VDD + VT )e 

(iv )v c = v x -VO2 = v x = VD

Prof. Tai-Haur Kuo 12

g NOR(or Inverter) Gates
ont.)

t= T1
t= T1

(t-T1 )
RC

-(VDD + V )e  (t-T1 )
RC
DD T

- 44 Electronics(3), 2012

Astable Multivibrator Using
(Co

Oscillation frequency

v x (T1)=VT

 (VDD +VT ) e  t =VT
RC

 T1=RCln VDD +VT
VT

If VT = VDD , then T1=RCln3
2

oscillation frequency f0 = 2

Prof. Tai-Haur Kuo 12

g NOR(or Inverter) Gates
ont.)

and T2 =RCln3

1  0.455
2RCln3 RC

- 45 Electronics(3), 2012

Astable Multivibrator Using
(Co

 With catching diode atV X

VX VO1 VO2

R

 vC_

C

0 VDD

 Asymmetrical square wav

(i)VT  VDD VX
2 D

(ii)R1  R2

Prof. Tai-Haur Kuo 12

g NOR(or Inverter) Gates
ont.)

X

T1  T2  RCln2

f0  1  0.721
2RCln2 RC

ve Electronics(3), 2012

VO1 VO2

R1 R2

D1 D2  vC_

C
- 46

The 555 I

Widely used as both a monos
multivibrator

Used as monostable multivibr

VCC

Threshold R 1 Comparator 1
V
R Q To
C c VTH _
Trigger RVT1L ou

_ SQ

V t R 1 Comparator 2

Q1

Discharge

Prof. Tai-Haur Kuo 12

IC Timer

stable and astable

Rn Sn QQnnn+1 V1  Vcc
3
0 0 1
rator 0 1 V2  2V cc
1 0 0 3
1 1
v t(t) N/A Vc  2V cc  Rn  1
3

otem-pole VO v c ( t )0 v t  V TL

utput stage VCC (1  e t RC )
T1
V TH
 2VCC 3 T1

transistor 0 Electronics(3), 2012

- 47 v O (t)
v(t)

0

The 555 IC T

 For 0  t  T1 t
RC
 vx e
 VCC  VCC  V(0)

 For t = T1, vC(T1)  VTH 

 T1  RCln VCC  V(0)  R
VCC

3

Prof. Tai-Haur Kuo 12

Timer (Cont.)

(V(0)  VCE(sat)  0)

 2VCC
3

RCln3 (V(0)  0)

- 48 Electronics(3), 2012

The 555 IC T

Used as an astable multivibr

VCC ( RA RB )C

VTH = 2Vcc Thres
VTL = 3 RA V

Vcc Tr
3
RB
0 T1 t
V
T2
C
Vc  2V c c  S  0, R 1
3

Vc  Vcc  S  1, R  0
3

Vcc  Vc  2V c c  S  R 0
3 3

T1  R BCln2 ,T2  T1  (R A  RfB)CT1l2n 2

Oscillation frequency 

Prof. Tai-Haur Kuo 12

Timer (Cont.)

rator VCC 555 timer chip

shold R 1 Comparator 1

Vc VO
VTH _ RQ Totem-pole
output stage
rigger RVT1L
 SQ
_

V t R 1 Comparator 2

Q1

2 Discharge transistor

1
 (RA  2RB )Cln2

- 49 Electronics(3), 2012

Sine-Wav

Shape a triangular waveform
Extensively used in function
Note:linear oscillators are

vO

0 vf 0 T 2 Tt
12
0

T2
T

t

Prof. Tai-Haur Kuo

ve Shaper

m into a sinusoid
generators
not cost-effective for low
frequency application
not easy to time over
wide frequency ranges

- 50 Electronics(3), 2012


Click to View FlipBook Version