Jpacademy FUNCTIONS
PREVIOUS EAMCET BITS
1. If f: [2, 3] → IR is defined by f (x ) = x3 + 3x − 2 , then the range f(x) is contained in the interval :
1) [1,12] 2) [12,34] 3) [35,50] [EAMCET 2009]
4) [−12,12]
Ans: 2
Sol. f (2) = 12 and f (3) = 34
∴ Range = [12, 34]
2. ⎧⎨x ∈ IR : x3 2x −1 3x ∈ IR ⎫ = [EAMCET 2009]
⎩ + 4x2 + ⎬
⎭
1) IR −{0} 2) IR −{0,1,3} 3) IR −{0, −1, −3} 4) IR − ⎧⎨0, −1, −3, + 1⎫
⎩ ⎬
2 ⎭
Ans: 3
Sol. x ( 2x −1 + 3) = x (x 2x −1 + 3)
x2 + 4x
+ 1) ( x
is not defined if x ( x +1)( x + 3) = 0 ⇒ x = −3, −1, 0
3. Using mathematical induction, the numbers an ‘s are defined by a0 = 1, an+1 = 3n2 + n + an (n ≥ 0)
, then an = [EAMCET 2009]
1) n3 + n2 +1 2) n3 − n2 +1 3) n3 − n2 4) n3 + n2
Ans: 2
Sol. a0 = 1, a1 = 1, a2 = 3 +1+ a1 = 5 and so on. Verify (2) is correct
4. The number of subsets of {1, 2, 3, …….9} containing at least one odd number is[EAMCET 2009]
1) 324 2) 396 3) 496 4) 512
Ans: 3
Sol. Number of subsets = 29 − 24 = 512 −16 = 46
4. If → C is defined by f (x ) = e2ix for x ∈ R , then f is (where C denotes the set of all complex
numbers) [EAMCET 2008]
3) one-one and onto 4) neither one-one nor onto
1) one-one 2) onto
Ans: 4
Sol. f ( x ) = e2ix = cos 2x + i sin 2x
f (0) = f (π) = 1 ⇒ f is not one one
There exists not x ∈ R ∋ f (x) = 2 ⇒ f is not onto.
5. If f : R → R and g : R → R are defined by f ( x) = x and g ( x) = [x − 3]for x ∈ R , then
⎧⎨g (f ( x ) ) : − 8 < x < 8 ⎫⎬ = [EAMCET 2008]
⎩ 5 5 ⎭ 4) {2, 3}
1) [0, 1] 2) [1, 2] 3) {–3, –2}
1
Jpacademy Functions
Ans: 3
Sol. − 8 < x < 8 ⇒ 0 ≤ x < 8 ⇒ −3 ≤ x − 3 < 8 − 3
55 5 5
⇒ −3 ≤ x −3< −7 ⇒ ⎡⎣ x − 3⎤⎦ = −3or − 2
5
⇒ ⎨⎧g ( f ( x )) : − 8 < x < 8 ⎫ = {−3, −2}
⎩ 5 5 ⎬
⎭
6. If f :[−6, 6] → R defined by f (x) = x2 − 3 for x ∈ R then
(fofof )(−1) + (fofof )(0) + (fofof )(1) = [EAMCET 2008]
(1) f 4 2 ) (2) f 3 2 ) (3) f 2 2 ) 4) f ( 2)
Ans: 1
Sol. (fofof )(−1) + (fofof )(0) + (fofof )(1) = −2 + 33 − 2 = 29
( )f 4 2 = 32 − 3 = 29
7. If Q denotes the set of all rational numbers and f ⎛ p ⎞ = p2 − q2 for any p ∈ Q, then observe
⎜ q ⎟ q
⎝ ⎠
the following statements [EAMCET 2007]
I) f ⎛ p ⎞ is real for each p ∈Q
⎜ q ⎟ q
⎝ ⎠
II) f ⎛p⎞ is complex number for each p ∈Q
⎜ ⎟ q
⎝ q ⎠
Which of the following is correct ? 2) I is true, II is false
1) Both I and II are true
3) I is false, II is true 4) Both I and II are false
Ans: 3
Sol. f ⎛ 1 ⎞ = 1−4 = −3 is an imaginary ⇒ I is false
⎜⎝ 2 ⎟⎠
f ⎛ p ⎞ = p2 − q2 it is a complex number ⇒ II is true
⎜ q ⎟
⎝ ⎠
8. If f : R → is defined by f (x) = 1 for each x ∈ R , then the range of f is
2 − cos 3x
[EAMCET 2007]
1) ⎛ 1 ,1⎞⎟⎠ 2) ⎡ 1 ,1⎤⎦⎥ 3) (1, 2) 4) [1, 2]
⎜⎝ 3 ⎣⎢ 3
Ans: 2
Sol. Max. and Min. values of 2 – cos3x are 3 and 1
∴ Range = ⎡ 1 ,1⎤⎦⎥
⎢⎣ 3
9. If f : R → and g : → are defined by f(x) = x – [x] and g(x) = [x] for x ∈ , where [x] is
The greatest integer not exceeding x, then for every x ∈ , f (g ( x)) = [EAMCET 2007]
2
Jpacademy Functions
1) x 2) 0 3) f(x) 4) g(x)
Ans: 2
Sol. f (g (x))
= g (x) − ⎣⎡g (x)⎤⎦
=[x]−[x] = 0
10. If f = → is defined by f (x) = x − [x] − 1 for x ∈ , where [x] is the greatest integer not
2
exceeding x, then ⎧⎨x ∈ : f ( x) = 1 ⎫ =…… [EAMCET 2006]
⎩ 2 ⎬
⎭
1) Z, the set of all integers 2) IN, the set of all natural number
3) φ, the empty set 4)
Ans: 3
Sol. f (x) = x −[x] − 1 , x ∈
2
f (x) = 1
2
⇒ x −[x]− 1 = 1
22
⇒ x −[x] =1
⇒ {x} = 1 which is not possible, where {x} denotes the fractional part
11. If f = → is defined by f (x) = [2x] − 2[x]for x ∈ . where [x] is the greatest integer not
exceeding x, then the range of f is [EAMCET 2006]
1) {x ∈ : 0 ≤ x ≤ 1} 2) {0, 1}
3) {x ∈ : x > 0} 4) {x ∈ : x ≤ 0}
Ans: 2
Sol. f (x) = [2x] − 2[x], x ∈ = 0
= ∀x ∈ where x = a + f
∋ 0 < f < 0.5
= 1,∀x ∈
x = a + f where 0.5 ≤ a < 1
∴ Range = {0, 1}
12. If f : → ⎧ x + 4 for x < −4
is defined by f (x ) = ⎨⎪3x + 2 for −4 ≤ x < 4 then the correct matching of List I
⎪⎩ x − 4 for x ≥ 4
from List II is [EAMCET 2006]
List – I List – II
A) f (−5) + f (−4) i) 14
B) f ( f (−8) ) ii) 4
C) f (f (−7) + f (3)) iii) – 11
3
Jpacademy Functions
D) f (f (f (f (0)))) + 1 iv) – 1
v) 1
vi) 0
A BC D AB CD
ii v
1) iii vi ii v 2) iii iv v ii
3) iv iii ii i 4) iii vi
Ans: 1
Sol. (A)f (−5) + f (−4) = (−5 + 4) + 3(−4) + 2 = −11
(B)f (−8 + 4) = f (−4) = 3 ⇒ f (4) = 0
(C) f ⎣⎡(−3) +11⎦⎤ = f (8) = 4
(D)f (f (f (2))) = f (f (8)) +1= f (4) +1= 0 +1=1
{ }13. x ∈ : ⎡⎣x − x ⎤⎦ = 5 = [EAMCET 2005]
1) , the set of all real numbers 2) φ, the empty set
3) {x ∈ : x < 0} 4) {x ∈ : x > 0}
Ans: 2
Sol. x− | x |= 2x,∀x < 0
= 0,∀x ≥ 0
∴ x - |x| ≠ 5
14. The function f : c → c defined by f ( x) = ax + b for x ∈ c where bd ≠ 0 reduces to a constant
cx + d
function if [EAMCET 2005]
1) a = c 2) b = d 3) ad = bc 4) ab = cd
Ans: 3
Sol. f (x) = ax + b
cx + d
cx + d) ax + b (a / c
ax + ad / c
bc − ad
c
f (x) = a + bc − ad = constant bc = ad
c
c(cx + d)
2004
15. For any integer n ≥ 1, the number of positive divisors of n is denoted by d(n). Then for a prime P,
d(d(d(P7 )))= [EAMCET 2004]
1) 1 2) 2 3) 3 4) P
Ans: 3
( )Sol. d d(d (p7 )) = d (d (8)) = d (d (23 )) = d (4)
= d(22 ) = 2 +1 = 3
4
Jpacademy Functions
⎧ 2 if n = 3k, k ∈ Z
16. If f : N → Z is defined by f (n) = ⎨⎪10 if n = 3k +1, k ∈ Z then {n ∈ N : f (n) > 2}=
⎪⎩ 0 if n = 3k + 2, k ∈ Z
1) {3, 6, 4} 2) {1, 4, 7} 3) {4, 7} [EAMCET 2004]
4) {7}
Ans: 2
Sol. f (n ) > 2 ⇒ n = 3k +1
⇒ n = 1; n = 4; n = 7
17. The function f : → is defined by f (x ) = 3−x . Observe the following statements of it :
I. f is one-one II) f is onto III) f is a decreasing function [EAMCET 2004]
Out of these, true statements are
1) only I, II 2) only II, III 3) only I, III 4) I, II, III
Ans:
Sol. f : R → R;f ( x) = 3−x
∴ f(x) is one-one and it is decreasing function
⎧ [x] if −3 < x ≤ −1
⎪
18. If f (x) = ⎨ x if 1 < x < 1 , then (x : f (x) ≥ 0) = [EAMCET 2004]
⎪⎩⎣⎡[x]⎦⎤ if 1 ≤ x < 3
1) (–1, 3) 2) [–1, 3) 3) (–1, 3] 4) [–1, 3]
Ans: 1
Sol. Verification
19. I f : → and g : → are definite by f(x) = 2x + 3 and g(x) = x2 + 7 then the values of x such
that g(f(x)) = 8 are [EAMCET 2003]
4) 1, –2
1) 1, 2 2) –1, 2 3) –1, –2
Ans: 3
Sol. g (f (x)) = 4x2 +12x +16
⇒ 4x2 +12x +16 = 8
⇒ (x +1)(x + 2) = 0 ⇒ x = −1, −2
20. Suppose f :[−2, 2] → is defined f (x) = ⎧ −1 for − 2 ≤ x ≤ 0
⎨⎩x −1 ,
for 0 ≤ x ≤ 2
{ }then x ∈[−2, 2]: x ≤ 0 and f ( x ) = x = .... [EAMCET 2003]
1) {–1} 2) {0} 3) ⎧⎨− 1⎫ 4) φ
⎩ ⎬
2 ⎭
Ans: 3
Sol. Now take x = − 1
2
∴f ⎛ − 1 ⎞ = f ⎛1⎞ = 1 −1 = − 1
⎜⎝ 2 ⎟⎠ ⎜⎝ 2 ⎠⎟ 2 2
Hence f(|x|) = x
5
Jpacademy Functions
∴ Domain of f (x) = ⎨⎧− 1 ⎬⎫
⎩ 2 ⎭
21. If f : → and g : → are given f(x) = |x| and g(x) = [x] for each
{x ∈ : g (f (x)) ≤ f (g (x))} [EAMCET 2003]
1) z ∪ (−∞, 0) 2) (−∞,0) 3) z 4)
Ans: 4
Sol. f (x) = x ;g (x) = [x]
g(f (x)) ≤ f (g(x))
g (f (x)) = g ( x ) = ⎡⎣ x ⎤⎦ = [x]
f (g(x)) = f [x] = [x]
[x]≤ [x]
∴x∈ 3) 1 [EAMCET 2002]
4) – 1
22. If f (x) = ax + a2 , then f (a ) =
ax
1) a 2) 0
Ans: 2
Sol. f ( x) = ax + a2
ax
f′(x) = 2 1 .a + a2 ⎣⎡⎢− 1 (ax )−3/2 a ⎤
ax ⎦⎥
2
f ′(a ) = a − a3.a−3 = 0
2a 2
23. If f (x) = cos2 x + sin4 x for x∈R , then f(2002)= [EAMCET 2002]
sin2 x + cos4 x 4) 4
1) 1 2) 2 3) 3
Ans: 1
Sol. f (x ) = cos2 x + sin4 x
sin 2 x + cos4 x
1− 1 sin2 2x
=4
1− 1 sin2x =1
4
⇒ f (2002) = 1
24. The function f : R → R is defined by f (x) = cos2 x + sin4 x for x ∈ R .Then f(R) =
[EAMCET 2002]
1) ⎛ 3 ,1⎦⎤⎥ 2) ⎡3 ,1⎠⎞⎟ 3) ⎡ 3 ,1⎤⎥⎦ 4) ⎛ 3 ,1⎠⎟⎞
⎜⎝ 4 ⎣⎢ 4 ⎢⎣ 4 ⎝⎜ 4
Ans: 3
6
Jpacademy Functions
Sol. f ( x) = cos2 x + sin4 x
( )= cos2 x + sin2 x 1− cos2 x
= 1− 1 sin2 2x
4
sin2 2x ∈[0,1]
∴ Maximum of f(x) = 1− 1 (0) = 1
4
Minimum of f(x) = 1− 1 (1) = 3
44
∴ Range of f(x) = ⎡3 ,1⎤⎥⎦
⎢⎣ 4
25. If the functions f and g are defined by f (x) = 3x − 4, g ( x) = 2 + 3x for x ∈ respectively, then
( )g−1 f −1 (5) = [EAMCET 2002]
1) 1 2) 1/2 3) 1/3 4) 1/4
Ans: 3 [EAMCET 2001]
4) 2−1
Sol. f −1 ( x ) = x + 4 , g−1 ( x ) = x − 2
33
( )f −1 (5) = 3 g−1 f −1 (5) = g−1 (3) = 1
3
If f ( x ) = 25 − x4 1/4 for 0 < x < ⎣⎢⎡f ⎛ 1 ⎞⎤
( )26. 5 then f ⎜⎝ 2 ⎟⎠⎥⎦ =
1) 2−4 2) 2−3 3) 2−2
Ans: 4
( )Sol. f (x ) = 25 − x4 1/4
( )⇒ f (f ( x)) = ⎡⎣25 − 25 − x4 ⎤⎦1/4 = x
∴ f (f (1/ 2)) = 1 = 2−1
2
27. Let z denote the set of all integers Define f : z →z by f (x) = ⎪⎧x / 2 (x is even)
⎨ ( x is odd) . Then f is =
⎪⎩ 0
[EAMCET 2001]
1) On to but not one-one 2) One –one but not onto
3) One-one and onto 4) Neither one-one nor onto
Ans: 1
Sol. ---
⎧x + 2 (x ≤ −1)
⎪
28. Let f :R →R be defined by f ( x ) = ⎨ x2 (−1 ≤ x ≤ 1) . Then the value of f(–1.75)+f(0.5) +
⎪⎩2 − x (x ≥ 1)
f(1.5) is [EAMCET 2001]
1) 0 2) 2 3) 1 4) – 1
Ans: 3
7
Jpacademy Functions
Sol. f (−1.75) + f (0.5) + f (1.5)
= (−1.75 + 2) + (0.5)2 + 2 −1.5 = 1
29. The functions f : → , g : → are defined as follows: [EAMCET 2001]
f ( x ) = ⎧⎪0 (x rational) ; g(x) = ⎧⎪−1 (x rational)
⎨⎪⎩1 (x irrational) ⎨ ( x irrational) . The (f0g) (π) + (gof) (e) =
⎩⎪ 0
1) –1 2) 0 3) 1 4) 2
Ans: 1
Sol. O
= f (0) + g (1) ( ∵ π and e are irrationals)
=0–1=-1
30. If f : R → R is defined by f(x) = 2x + |x|, then f(2x) + f(–x) – f(x) = [EAMCET 2000]
1) 2x 2) 2|x| 3) –2x 4) –2|x|
Ans: 2
Sol. f (x) = 2x + x
∴ f (2x) + f (−x) − f (x)
= 2(2x) + 2x + 2(−x) + −x − (2x + x ) = 2 x
31. If f : R → R and g : R → R are defined by f(x) = 2x + 3 and g(x) = x2+ 7, then the value of x for
which f(g(x)) = 25 are [EAMCET 2000]
1) ±1 2) ±2 3) ±3 4) ±4
Ans: 2
Sol. f (g (x)) = 25 ⇒ f (x2 + 7) = 25
⇒ 2(x2 + 7) + 3 = 25
∴ x = ±2 [EAMCET 2000]
{ }32. x ∈ R : x − 2 = x2 =
1) {–1, 2} 2) {1, 2} 3) {–1, –2} 4) {1, –2}
Ans: 4
Sol. {1, −2} satisfies
8
Jpacademy MATHEMATICAL INDUCTION
PREVIOUS EAMCET BITS
1. Using mathematical induction, the numbers an ‘s are defined by a0 = 1, an+1 = 3n2 + n + an (n ≥ 0)
, then an = [EAMCET 2009]
1) n3 + n2 +1 2) n3 − n2 +1 3) n3 − n2 4) n3 + n2
Ans: 2
Sol. a0 = 1, a1 = 1, a2 = 3 +1+ a1 = 5 and so on. Verify (2) is correct
n [EAMCET 2008]
2. For any integer n ≥ 1, then sum ∑ k (k + 2) is equal to
k =1
n (n +1)(2n + 7) n (n +1)(2n + 9)
n (n +1)(n + 2) n (n +1)(2n +1)
3) 4)
1) 2) 6 6
66
Ans: 3
Sol. n k (k + 2) = n (k2 + 2k ) = n k2 n k = n (n + 1) ( 2n +1) + 2n (n + 1)
∑ ∑ ∑ +2∑ 6 2
k=1 k=1 k=1 k=1
n (n +1) [2n +1+ 6] = n (n +1)(2n + 7)
66
3. If Sn = 13 + 23 + ...... + n3 and Tn = 1+ 2 + ..... + n then [EAMCET 2007]
1) Sn = Tn3 2) Sn = Tn2 3) Sn = Tn5 4) Sn = Tn4
Ans: 2
n3 = n2 (n +1)2 n 2 = Tn2
4
∑ (∑ )Sol. Sn =
4. For all integers n ≥ 1, which of the following is divisible by 9 [EAMCET 2006]
1) 8n +1 2) 4n − 3n −1 3) 32n + 3n +1 4) 10n +1
Ans: 2
Sol. by verification n = 2 [EAMCET 2005]
5. {n (n +1)(2n +1) : n ∈ Z} ⊂
1) {6k : k ∈ Z} 2) {12k : k ∈ Z} 3) {18k : k ∈ Z} 4) {24k : k ∈ Z}
Ans: 1
Sol. n (n +1)(2n +1)
= 6. n (n +1)(2n +1) = 6k, k ∈ Z ⎡⎣∵∑ n2 is an int eger⎤⎦
6
∑6. 5 13 + 23 + ...... + k3 [EAMCET 2004]
4) 32.5
k=1 1+ 3 + 5 + .... + (2k −1)
1) 22.5 2) 24.5 3) 28.5
Ans: 1
∑5 k2 (k +1)2
Sol.
k=1 4k 2
1
Jpacademy Mathematical Induction
= 22 + 32 + 42 + 52 + 62 = 22.5
4
7. If t1 = 1 ( n + 2) (n + 3) for n = 1, 2, …….then 1+1 +1 + .... + 1 = [EAMCET 2003]
4 t1 t2 t3 t 2003
1) 4006 2) 4003 3) 4006 4) 4006
3006 3007 3008 3009
Ans: 4
Sol. 1 = 4
tn
(n + 2)(n + 3)
= 4 ⎡ n 1 2 − n 1 ⎤
⎢⎣ + + 3 ⎥⎦
∴ 1 + 1 + .... + 1
t1 t2 tn
4 ⎡ 1 − 1 + 1 − 1 + .... + n 1 2 − n 1 3 ⎤
⎣⎢ 3 4 4 5 + + ⎥⎦
= 4n 3) = 4 ( 2003) = 4006
3 ( 2006 ) 3009
3(n +
8. In the sequence {1}, {2, 3}, {4, 5, 6}, {7, 8, 9, 10}…….. of sets the sum of elements in the 50th
set is [EAMCET 2002]
1) 62525 2) 65225 3) 56255 4) 55625
Ans: 1
Sol. The sum of elements in the nth set is
n (n2 +1)
Sn = 2
50(502 +1)
∴ S50 = 2 = 62525
∑9. = 1 ⎛ n ⎞2 =
If ak k ( k+ 1) , for k = 1, 2,3,...n then ⎜⎝ ⎠⎟ [EAMCET 2000]
ak n6
k =1 4) (n +1)6
1) n n2 n4
n +1
2) (n +1)2 3) (n +1)4
Ans: 1
Sol. Given ak = 1 = 1 − 1
k k +1
k (k +1)
= 1 + 1 + 1 + .... ⎡ 1 + 1 + ......⎦⎥⎤
2 3 ⎢⎣ 2 3
1 =1− 1 = n +1−1 = n
k +1 n +1 n +1 n +1
2
Jpacademy ADDITION OF VECTORS
PREVIOUS EAMCET BITS
1. IJnJJGa quaJdJJrGilatJeJrJaGl ABJJCJGD, thJeJJGpoint P divides DC in the ratio 1 : 2 and Q is the midpoint of AC. If
AB + 2AD + BC − 2DC = kPQ , then k =
[EAMCET 2009]
1) – 6 2) – 4 3) 6 4) 4
Ans: 1
Sol. A = a, B = b, C = c, D = d
∴ P = c + 2d ,Q = a + c
JJJG J3JJG JJJG 2JJJG JJJG
∴ AB + 2AD + BC − 2DC = KPQ
⇒ k = −6 HJJG
2. THJhJeG posHiJtJiGon vectors of P and Q are respectively a and b. If R is a point on PQ such that
P R = 5P Q , then the position vector of R is
[EAMCET 2008]
1) 5b – 4a 2) 5b + 4a 3) 4b – 5a 4) 4b + 5a
( )AJJnJGs: 1 JJJG JJJG JJJG JJJG JJJG JJJG JJJG JJJG GG G
Sol. PR = 5PQ ⇒ OR − OP = 5 OQ − OP ⇒ OR = 5OQ − 4OP = 5b − 4a
GGGGG G
3. If the points whose position vectors are 2i + j + k, 6i − j + 2k and 14i − 5 j + pk are collinear, then
the value of p is [EAMCET 2007]
1) 2 2) 4 3) 6 4) 8
Ans: 2
Sol. ( x1, y1, z1 ) = (2,1,1);
( x2, y2, z2 ) = (6, −1, 2);
( x3, y3, z3 ) = (14, −5, P)
x1 − x2 = z1 − z2 ⇒ P = 4
x2 − x3 z2 − z3
4. TGheGposGition vGecGtor oGf a point lying on the line joining the points whose position vectors are
i + j − k and i − j + k is [EAMCET 2006]
GG G G
1) j 2) i 3) k 4) 0
Ans: 2
Sol. Vector which is collinear with given two vector by verification answer is i.
5. I : Two non-zero, non-collinear vectors are linearly dependent. [EAMCET 2005]
II: Any three coplanar vectors are linearly dependent.
Which of the above statements is true?
1) Only I 2) Only II 3) Both I and II 4) Neither I nor II
Ans: 3
Sol. By conceptual
6. Observe the following statements : [EAMCET 2005]
1
Jpacademy Addition of Vectors
A : Three vectors are coplanar if one of them is expressible as a linear combination of the other
two.
R : Any three coplanar vectors are linearly dependent.
The which of the following is true?
1) Both A and R are true and R is the correct reason for A
2) Both A and R are true but R is not the correct reason for A
3) A is true, R is false
4) A is false, R is true
Ans: 2
Sol. FroGm thGe defGinitGion AG anGd R are true but R is not correct explanation of A
7. If i + 2 j + 3k,3i + 2 j + k are sides of a parallelogram, then a unit vector parallel to one of the
diagGonGals oGf the parallelGogrGam Gis GGG G G[EAGMCET 2004]
1) i + j + k 2) i − j + k 3) i + j − k 4) −i + j − k
33
3 3
Ans: 1 GGG
Sol. diagonal = 4i + 4 j + 4k GGG
∴ unit vector parallel to diagonal = i + j + k
JJ3JG JJJG JJJG
8. If G JiJsJGthe centroid of theJΔJJAG BC, then GA + BGG + GC =
1) 2GB 2) 2GA 3) 0 JJJG [EAMCET 2004]
4) 2BG
AJJnJGs: 4JJJG JJJG
Sol. GAJJ+JGGBJ+JJGGCJ=JJG0 JJJG
⇒ GA + BG + GC = 2BG
JJJG JJJG
9. If D, E and F are respectively the midpoints of AB, AC and BC in ΔABC, then BE + AF = ....
JJJG JJJG JJJG JJJG [EAMCET 2003]
1) DC BF 3) 2BF BF
2) 1 4) 3
2 2
Sol. Ans:JJ1JG G JJJG G JJJG = G A
Let OA = a, OB = bGb,+OcGC c DF
G G
JJJG = a + c , JJJG =
OF OE
JJJG JJJG2 JJJG JJJG2 JJJG JJJG
BE + AF = OE − OB + OF − OA
G JJJG B EC
( )=G 1 G b = DC
c − a +
2
10. If GGG are three non-coplanar vectors, then the vector equation G = (1 − p − q ) G + G + G
a, b, c r a pb qc
represents is [EAMCET 2003]
1) Straight line 2) Plane
3) Plane passing through the origin 4) Sphere
Sol. Ans: 2 p − q ) G + G + G is a plane passing through a, b and c where p and q are scalars.
a Pb qc
r = (1−
2
Jpacademy Addition of Vectors
11. If three points A, B and C having position vector is (1, x, 3) (3, 4, 7) and (y, -2, -5) respectively
and if they are collinear, then (x, y) = [EAMCET 2002]
1) (2, –3) 2) (–2, 3) 3) (–2, –3) 4) (2, 3)
Ans: 1
Sol. AB = t AC ⇒ (2, 4 − 4, 4)
= t ( y −1, −2 − x, −8)
2 = 4 − x = 4 ⇒ 2 = −1 ⇒ y = −3
y −1 −2 − x −8 y −1 2
4 − x = −1 ⇒ x = 2
−2 − x 2
G G GG G G GGG
12 If the position vectors of the vertices of a triangle are 2i − j + k, i − 3 j − 5k and 3i − 4 j − 4k then
it is a …….triangle [EAMCET 2002]
1) Equilateral 2) Isosceles 3) Right angled isosceles 4) Right-angled
Ans: 4
Sol. Let A = (2, −1,1), B = (1, −3, −5), C = (3, −4, −4) are the vertical of ΔABC
AB2 = 1+ 4 + 36 = 41
BC2 = 4 +1+1 = 6 ; AC2 = 1+ 9 + 25 = 35
AB2 = AC2 + BC2
∴ GΔAGBC iGs rGight GangleGdGtrianGgle. G
13. If a=i G+ 4 j, b = 2i −3 jaGc+=25bGi +9 j , then C G[EAMCET 2001]
1) G b 2) G G G b
5a + 3) a + 3b 4) 3a +
Ans:G4 G G
Sol. Let C = ta + b
⇒ 5i + 9 j = t (i + 4 j) + (2i − 3j) G
G G b
t=3 ∴ C = 3a + JJJG JJJG
14. ABCJDJJGis a parallelogramJ,JwJG ith AC, BD as diagoJnJaJGls. Then AC − BD =JJJG [EAMCET 2001]
1) 4AB 2) 3AB 3) 2AB 4) AB
AJJnJGs: 3JJJG JJJG JJJG JJJG JJJG
( )Sol. AC − BD = AB + BC − BA + AD
( )JJJG JJJG JJJG JJJG JJJG
JJJG G JJJG G JJJG
= AB + BC − −AB + BC = 2AB
15. If OACB is a parallelogram with OC = a and AB = b then OA [EAMCET 2000]
G G G G 1 GG 1 GG
a b a b b−a a−b
1) + 2) − ( )3) ( )4)
2 2
Ans: 4 JJJG JJJG B
O
Sol. MG id JpJoJGint oJJfJGOC = Mid point of AB C
a= OA + OB A
22 JJJG JJJG
G JJJG JJJG JJJG 2OA G OA GG
G = + b ⇒ = 1 a−b
( )a = 2OA + OB − OA ; a
2
3
Jpacademy SCALAR (DOT) PRODUCT OF TWO VECTORS
PREVIOUS EAMCET BITS
1. If m1, m2 , m3 and m4 are respectively the magnitudes of the vectors [EAMCET 2009]
a1 = 2i − j + k, a2 = 3i − 4 j − 4k , a3 = i − j + k and a4 = − i + 3 j + k
Then the correct order of m1, m2, m3, m4 is
1) m3 < m1 < m4 < m2 2) m3 < m1 < m2 < m4
3) m3 < m4 < m1 < m2 4) m3 < m4 < m2 < m1
Ans: 1
Sol. m1 = 6, m2 = 41, m3 = 3, m4 = 11
∴ m3 < m1 < m4 < m2
2. Suppose a = λ i − 7 j + 3k, b = λ i + j + 2λk . If the angle between a and b is greater than 90°, then
λ satisfies the inequality : [EAMCET 2009]
1) −7 < λ < 1 2) λ > 1 3) 1 < λ < 7 4) −5 < λ < 1
Ans: 1
Sol. a.b < 0
⇒ λ2 + 6λ − 7 < 0
(λ −1)(λ + 7) < 0
−7 < λ < 1
3. If the position vectors of A, B and C are respectively 2i − j + k,i − 3j − 5k and 3i − 4 j − 4k , then
cos2A = [EAMCET 2008]
1) 0 2) 6/41 3) 35/41 4) 1
Ans: 3
Sol. AB = OB − OA = (i − 3j − 5k) − (2i − j + k ) = −i − 2 j − 6k
AC = OC − OA = (3i − 4 j − 4k) − (2i − j + k) = i − 3j − 5k
cos A = AB.AC = (−i − 2 j − 6k)(i − 3j − 5k)
AB AC −i − 2 j − 6k i − 3j − 5k
1
Jpacademy Scalar (dot) Product of Vectors
= −1+ 6 + 30 35 = 35
1+ 4 + 36 1+ 9 + 25 35 41 41
∴ cos2 A = 35
41
( )4. If a = i − j − k and b = λ i − 3 j + k and the orthogonal projection of b on a is 4 i − j − k ,
3
then λ = [EAMCET 2007]
1) 0 2) 2 3) 12 4) –1
Ans: 2
Sol. Orthogonal projection of b on a = (b.a) a
a2
⎛ λ +3 − 1 ⎞ ( i − J − k) = 4 (i − J − k) ⇒ λ = 2
⎝⎜ 3 ⎠⎟ 3
5. If a + b + c = 0 and a = 3, b = 4 and c = 37 , then the angle between a and b is
ππ π [EAMCET 2006]
1) 2) 3) π
4)
42 6 3
Ans: 4
[EAMCET 2006]
Sol. a + b = −c Squaring o.b.s
( )a 2 + b 2 + 2 a b cos a, b = c 2
9 + 16 + 24 cos (a, b) = 37
cos(a, b) = 1 ⇒ (a, b) = π
23
6. a.k = a.(2 i + j ) = a ( i + j + 3k) = 1⇒ a
1) i − k 2) 1 (3i + j − 3k) 3) 1 ( i + j + k) 4) 1 (3i − 3 j + k)
3 3 3
Ans: 4
Sol. Let a = a1i + a2 j + a3k
a.i = 1 ⇒ a1 = 1
a.(2i + j) = 1 ⇒ 2a1 + a2 = 1 ⇒ a2 = 1− 2 = −1
2
Jpacademy Scalar (dot) Product of Vectors
a.(i + j + 3k ) = 1 ⇒ a1 + a2 + 3a3 = 1
⇒ 3a 3 = 1 ⇒ a3 = 1
3
∴ a = 1 [3i − 3j + k]
3
7. If the vector a = 2i + 3 j + 6k and b are collinear and b = 21, then b = [EAMCET 2005]
( ) ( ) ( )1) ± 2i + 3 j + 6k 2) ±3 2i + 3 j + 6k 3) i + j + k ( )4) ±21 2i + 3 j + 6k
Ans: 2
Sol. a = t (b)
a = t b ⇒ t = 7 =1
21 3
t =±1 ∴ b = ±3(a )
3
8. If the vectors i + 3 j + 4k, λ i − 4 j + k are orthogonal to each other, then λ = [EAMCET 2004]
1) 5 2) – 5 3) 8 4) – 8
Ans: 3
Sol. a.b = 0 ⇒ λ −12 + 4 = 0 ⇒ λ = 8
9. If a, b, c are three vectors such that a = b + c and the angle between b and c is π : here
2
a = a ,b = b ,c = c [EAMCET 2003]
1) a2 = b2 + c2 2) b2 = c2 + a2 3) c2 = a2 + b2 4) 2a2 − b2 = c2
Ans: 1
Sol. a2 = (b + c)2
a2 = b2 + c2 + 2(b.c)
⇒ a2 = b2 + c2 (∵(b.c) = π / 2)
( ) ( )10. If a.i = a. i + j = a. i + j + k then a = [EAMCET 2002]
1) i 2) j 3) k 4) i + j + k
Ans: 1
Sol. By verification a = i
3
Jpacademy Scalar (dot) Product of Vectors
11. The orthogonal projection of a on b is [EAMCET 2002]
( a.b ) a ( a.b ) b 3) a 4) b
a a
1) a 2 2) 2
b
Ans: 2
( )Sol.a.bb
2
b
12. If θ is an acute angle and the vector (sin θ) i + (cos θ) j is perpendicular to the vector i − 3 j
then θ = [EAMCET 2000]
4) π
1) π 2) π 3) π
65 4 3
Ans: 4
( )Sol. The given vectors are ⊥ er then (sin θi + cos θj). i − 3j = 0
sin θ − 3 cos θ = 0 ⇒ tan θ = 3 [EAMCET 2000]
sin θ − 3 cos θ = 0 ⇒ tan θ = 3 ⇒ θ = π
3
13. If two out of the three vector a + b + c are unit vectors a + b + c = 0 and
( )2 a.b + b.c + a.c + 3 = 0 , then the third vector is of length
1) 3 2) 2 3) 1 4) 0
Ans: 3
2
( )Sol. a + b + c = 0 ⇒ a + b + c = 0
( )∴ a2 + b2 + c2 + 2 a.b + b.c + c.a = 0
1+1+ c2 − 3 = 0 ⇒ c2 = 1
∴ c =1
4
Jpacademy
TRIPLE PRODUCT AND PRODUCT OF FOUR VECTORS
PREVIOUS EAMG CEG TG BG ITG SG G G G
1. The volume of the tetrahedron having the edges i + 2 j − k, i + j + k, i − j + λk as conterminous, is
2/3 cubic units. Then λ [EAMCET 2009]
1) 1 2) 2 3) 3 4) 4
Ans: 1
Sol. V = 1 ⎣⎡a b c ⎤⎦ = 2 cubc units
6 3
⇒λ =1
2. If a = i + j + k , b = i – j + k, c = i + j + k, d = i – j – k, then observe the following lists
[EAMCET 2008]
List – I List – II
i) a.b A) a.d
ii) b.c B) 3
iii) ⎡⎣a b c ⎦⎤ C) b.d
iv) b × c D) 2 j − 2k
E) 2 j + 2k
F) 4
The correct match of List-I to List – II
i ii iii iv i ii iii iv
C AF E
1) C A B F 2) A CF D
4)
3) A C B F
Ans: 2
Sol. a.b = (i + j + k).(i − j + k) = 1−1+1 = 1
b.c = (i − j + k).(i + j − k) = 1−1−1 = −1
11 1
[abc] = 1 −1 1 = 1(1−1) −1(−1−1) +1(1+1) = 0 + 2 + 2 = 4
1 1 −1
ijk
b × c = 1 −1 1 = i (1−1) − j(−1−1) + k (1+1) = 2 j+ 2k
1 1 −1
a.d = (i + j + k).(i − j − k) = 1−1−1 = −1
b.d = (i − j + k).(i − j − k) = 1+1−1 = −1
3. Let a be a unit vector, b = 2i + j – k and c= i + 3k, the maximum value of [a b c ] is
[EAMCET 2008]
1) – 1 2) 10 + 6 3) 10 − 6 4) 59
Ans: 4
1
Jpacademy Triple product and product of four vectors
ijk
Sol. b × c = 2 1 −1 = i (3 − 0) − j(6 +1) + k (0 −1) = 3i − 7 j− k
10 3
[abc] = a.(b × c) = a.(3i − 7 j − k)
= a 3i − 7 j − k cos θ where θ = (a,3i − 7 j − k)
= 9 + 49 +1.cos θ
= 59 cos θ
∴ Maximum value of ⎣⎡abc ⎤⎦ is 59 G G GG G G G G G
4. The volume (in cubic units) of the tetrahedron with edges i + j + k, i − j + k and i + 2 j − k is
1) 4 2) 2/3 3) 1/6 [EAMCET 2007]
Ans: 2 4) 1/3
11 1
Sol. V = 1 1 −1 1 = 2
63
1 2 −1
G GG G GG
5. i − 2 j,3 j + k and λ i − 3 j are coplanar then = [EAMCET 2006]
1) – 1 2) 1/2 3) –3/2 4) 2
Ans: 3
a1 b1 c1 1 −2 0
Sol. a, b, c are coplanar ⇒ a2 b2 c2 = 0 ⇒ 0 3 1 = 0
a3 b3 c3 λ30
1(0 − 3) + 2(0 − λ) + 0(0 − 3λ) = 0
λ = −3 [EAMCET 2006]
2
6. IfGthe vGoluGmeGof tGhe paraGlleloGpipeGd with coterminous edges
4i + 5 j + k, − j + k and 3i + 9 j + pk is 34 cubic units, then p = ……..
1) 4 2) –13 3) 13 4) 6
Ans: 1 or 3
451
Sol. Volume = |[a b c ]|= 0 −1 1 = 34
39p
⇒ 4p +18 = 34 ⇒ p = −13 or 4
7. Observe the following lists [EAMCET 2005]
LAi)st⎡⎣–aG IG cG⎤⎦ G ( )ListG–GII GG
b
)×b 1) a b cos ab
( cG G GG G GG G
B) ×a ( ) ( )2) a.b b− ab c
( )G G G GG G
3) a.b × c
C) a × b × b
2
Jpacademy Triple product and product of four vectors
GG GG
D) a.b 4) a b
GG G GG G
b.c a a.b c
( ) ( )5) −
A BC D A B CD
2) 3 5 21
1) 1 2 3 4 4) 2 3 41
3) 3 2 5 1 [EAMCET 2004]
Ans: 2 GG G
4) a.c × b
Sol. ⎣⎡a b c⎤⎦ = a.( b × c )
( c × a )× b = (b.c ) a − (a.b) c
a ×(b × c ) = (a.c ) b − (a.b) c
a.b = a b cos( a.b)
G G G G G G
( ) ( )8.c.b + c × a + b + c =
GG G G G
1) c.b × a 2) 0 3) GG × b
c.a
Ans: 1
Sol. ( c.b + c.c )× (a + b + c ) = c.( b × a ) = ⎣⎡c b a ⎤⎦
G G GG G G G G [EAMCET 2004]
9. If 3i + 3 j + 3k, i + k, 3i + 3 j + λk are coplanar, then λ = 4) 4
1) 1 2) 2 3) 3
Ans: 1
33 3
Sol. 1 0 1 = 0 ⇒ λ = 1
3 3λ
G G G GG G G G GG G G G
( )10. If a = i + j + k, b = i + j, c = i and a × b × c = λa + μb , then λ + μ.... [EAMCET 2003]
1) 0 2) 1 3) 2 4) 3
AGns:G1 G ( aG.cG ) G GG G G G
a×b c b b.c a = b − a
( ) ( )Sol. × = −
11. IλfG=⎣⎡−aGG1bG;μcG⎤⎦==13⇒, thλe+nμth=e0volume (in cubic units) of the parallelopiped with GGGG and
2a + b, 2b + c
2c + a as coterminous edges is [EAMCET 2002]
1) 15 2) 22 3) 25 4) 27
Ans: 4
Sol. = ⎣⎡2aG + G G + G G + aG ⎦⎤ = 2 1 0
b 2b c 2c 0 2 1 ⎣⎡abc ⎦⎤ = 9.3 = 27
102 [EAMCET 2002]
GG GG GGG
G G
( ) ( ) ( )12. a + b . b + c × a + b + c = b b
⎣⎡aG G G 2 ⎡⎣aG G ⎡⎣aG cG ⎦⎤
1) 0 2) − b c ⎦⎤ 3) c ⎤⎦ 4)
Ans:
3
Jpacademy 1 Triple product and product of four vectors
GG GG GGG 1 1 0 [EAMCET 2001]
a+b . b+c × a+b+c = 0 1 ⎡⎣a b c ⎤⎦
( ) ( ) ( )Sol.
111
= ⎣⎡0 −1(−1) + 0⎤⎦ ⎣⎡a b c ⎦⎤ = ⎡⎣a b c ⎤⎦
13. ⎡⎣ i − j j − k k − i ⎦⎤ =
1) 0 2) 1 3) 3 4) 2
Ans: 1
1 −1 0
Sol. 0 1 −1 = 0
−1 0 1
GGGG G G
If a, b, c, d are coplanar vectors then G b G d
( ) ( )14. a × × c × = [EAMCET 2001]
GG G [EAMCET 2000]
1) 1 2) a 3) b 4) O
AG nGs:G4 G
( ) ( )Sol. ∴aaG,×baGbG,×c,abGdnd×arcGecG×c×dGodGpalra=enOapGrarallel
G G G GG G G G G G G G G GG
( )15. If a = 2i + 3 j − 4k, b = i + j + k and c = 4i + 2 j + 3k and a × b × c =
1) 10 2) 1 3) 2 4) 5
Ans: G4 G aG.cG ) G GG G
G b× c b a.b c
a( ) ( )Sol.× = ( −
= −2i − k = 4 +1 = 5
G
( )16.b×G × ( G × G ) = [EAMCET 2000]
c c a
1) ⎣⎡aG G cG ⎤⎦ G 2) ⎡⎣aG G cG ⎤⎦ G 3) ⎣⎡aG G cG ⎤⎦ G ( )4)G×G × G
b c b b b a a b c
AGns:G1 G G G G G G G G G G
b×c c a b c a c b c c a
( ) ( )( ) ( ) ( )Sol.×(× ) = × − ×
⇒ ⎡⎣aG G cG ⎦⎤ G − 0 = ⎣⎡aG G cG ⎤⎦ G
b c b c
4
Jpacademy VECTOR PRODUCT OF TWO VECTORS
PREVIOUS EAMCET BITS
1. Let a1i + a2 j + a3k [EAMCET 2007]
Assertion (A) : The identify a × i 2 + a × j 2 + a × k 2 = 2 a 2 holds for a
Reason (R) : a × i = a3 j − a2k, a × j = a1k − a3 i , a × k = a2 i − a1 j
Which of the following is correct
1) Both A and R are true and R is the correct reason for A
2) Both A and R are true but R is not the correct reason for A
3) A is true, R is false
4) A is false, R is true
Ans: 1
Sol. axi = a3J − a2k; axJ = a1k − a3i; axk = a2i − a1J
∴ R is true
a = a12 + a 2 + a 2
2 3
( )axi 2 + axJ 2 +
axk 2 = 2 a12 + a 2 + a 2 =2a2
2 3
( ) ( )2. If a and b are unit vectors, then the vector a + b × a × b is parallel to the vector
1) a − b 2) a + b 3) 2a − b [EAMCET 2005]
4) 2a + b
Ans: 2
Sol. By verification
( ) ( ) ( )a + b × a × b . a + b = ⎡⎣a + b a × b a + b⎦⎤ = 0
(∵ [a b a] = 0)
3. Let a, b, c be the position vectors of the vertices, A, B, C respectively of ΔABC. The vector area
of ΔABC is [EAMCET 2003]
{ }( ) ( ) { }1) 1 a × b× c + b×(c× a) + c× a × b
2) 1 a × b + b × c + c × a
22
1
Jpacademy Vector product of two vectors
{ }3) 1 a + b + c { }4) 1 (b.c)a + (c.a) b + (a.b) c
2 2
Ans: 2
( )Sol. Δ = 1 a × b + b× c + c × a
2
4. If θ is the angle between a and b and a × b = a.b , then θ = [EAMCET 2001]
1) 0 2) π 3) π 4) π
Ans: 4 22
Sol. Given a × b = a.b
⇒ a b sin θ = a b cos θ
tan θ = 1 ⇒ θ = π
4
5. If θ is the angle between the vectors 2i − 2 j + 4k and 3 j + j + 2k, then sin θ = [EAMCET 2000]
1) 2 2) 2 3) 2 4) 2
7 7 7 7
Ans: 2
Sol. sin θ = a × b = 2
ab 7
2
Jpacademy COMPLEX NUMBERS
PREVIOUS EAMCET BITS
1. The locus of z satisfying the inequality z + 2i < 1 , where z = x + iy, is [EAMCET 2009]
2z + i
1) x2 + y2 < 1 2) x2 − y2 < 1 3) x2 + y2 > 1 4) 2x2 + 3y2 < 1
Ans: 3
Sol. x + i ( y + 2) 2 < 2x + i (2y +1) 2
⇒ x2 + y2 >1
2. The points in the set ⎨⎧z ∈ C : Arg ⎛ z−2 ⎞ = π⎫ lie on the curve which is a (where C denotes the
⎩ ⎝⎜ z − 6i ⎟⎠ ⎬
2 ⎭
set of all complex numbers) [EAMCET 2008]
4) hyperbola
1) circle 2) pair of lines 3) parabola
Ans: 1
Sol. z−2 = (x − 2) + iy = ⎣⎡( x − 2) + iy⎦⎤ ⎣⎡x −i(y − 6)⎤⎦
z − 6i x + i(y − 6)2
6) x2 −(y−
x (x − 2) + y ( y − 6) xy − (x − 2)( y − 6)
= x2 + (y − 6)2 + x2 + (y − 6)2 i
Arg ⎛ z−2 ⎞ = π ⇒ tan −1 xy − (x − 2)( y − 6) = π
⎝⎜ z − 6i ⎟⎠ 2 ⎡⎣x (x − 2) + y ( y − 6)⎦⎤ 2
⇒ xy − ( x − 2)(y −6) = 1
x(x − 2)+ y(y −6) 0
⇒ x ( x − 2) + y ( y − 6) = 0 ⇒ x2 + y2 − 2x − 6y = 0 ⇒ ( x, y) lies on a circle.
( )3. ⎧ π⎫
If ω is a complex cube root of unity, then sin ⎨ ω10 + ω23 π− ⎬ = [EAMCET 2008]
⎩ 4 ⎭
1) 1 2) 1 3) 1 4) 3
22 2
Ans: 1
( ) ( )Sol.⎡ π⎤ ⎡ π ⎤ ⎛ π ⎞ π 1
sin ⎢⎣ ω10 + ω23 π− 4 ⎦⎥ = sin ⎣⎢ ω + ω2 π − 4 ⎥⎦ = sin ⎝⎜ −π − 4 ⎠⎟ = sin 4 = 2
4. If m1, m2, m3 and m4 respectively denote the moduli of the complex numbers 1 + 4i, 3+i, 1-i and
2-3i, then the correct one, among the following is [EAMCET 2008]
1) m1 < m2 < m3 < m4 2) m4 < m3 < m2 < m1
3) m3 < m2 < m4 < m1 4) m3 < m1 < m2 < m4
Ans: 3
Sol. m1 = 1+ 4i = * +16 = 17 , m2 = 3 + i = 9 +1 = 10
m3 = 1− i = 1+1 = 2, m4 = 2 − 3i = 4 + 9 = 13
1
Jpacademy Complex Numbers
∴ m3 < m2 < m4 < m1 [EAMCET 2007]
5. If a = 1− i 3 then the correct matching of List – I from List – II is
2
List – I List – II
i) aa A) 2π
3
ii) arg ⎛ 1⎞ B) −i 3
⎝⎜ a ⎟⎠
iii) a − a C) 2i / 3
iv) Im ⎛ 4 ⎞ D) 1
⎜⎝ 3a ⎠⎟
E) π/3
F) 2
3
i ii iii iv i ii iii iv
2) D A BF
1) D E C B 4) D A BC
3) F E B C
Ans: 2
Sol. i) a.a = ⎛ 1− i 3 ⎞⎛1+i 3 ⎞ = 1 = D
⎜⎝⎜ 2 ⎟⎟⎠⎜⎝⎜ 2 ⎠⎟⎟
ii) Arg ⎛ 1 ⎞ = Arg ⎛ 1−i 3 ⎞ = 2π = A
⎝⎜ a ⎠⎟ ⎜⎝⎜ 2 ⎟⎟⎠ 3
iii) a − a = −i 3 = B
⎛ 4 ⎞ ⎛ 8 ⎞ 2 =F
⎝⎜ 3a ⎟⎠ ⎜ 1− ⎟= 3
( )iv)Im = Im ⎜ ⎟
⎝ ⎠
3 3i
6. The locus of the point z = x + iy satisfying z − 2i = 1 is [EAMCET 2007]
z + 2i 4) x = 2
1) x-axis 2) y-axis 3) y = 2
Ans: 1
Sol. Z − 2i = Z + 2i
x2 + (y − 2)2 = x2 + (y + 2)2 ⇒ y = 0
∴ Locus is x-axis
7. The locus of the point z = x + iy satisfying the equation z −1 = 1 is given by [EAMCET 2006]
z +1
1) x = 0 2) y = 0 3) x = y 4) x + y = 0
Ans: 1
Sol. z −1 2 = z +1 2
( x −1)2 + y2 = ( x +1)2 + y2
2
Jpacademy Complex Numbers
⇒ 4x = 0 ⇒ x = 0 [EAMCET 2006]
8. The product of the distinct (2n)th roots of 1+ i 3 is equal to
1) 0 2) −1− i 3 3) 1+ i 3 4) −1+ i 3
Ans: 2
Sol. by substitution method put n = 1
( )Then 1 ⎛ ⎛ 1 3 ⎞ ⎞1/ 2 = 1 ⎛ π 1
1+ i 3 2 = ⎜⎜⎝ 2 ⎜⎝⎜ 2 + i 2 ⎠⎟⎟ ⎟⎟⎠ ⎝⎜ cis 3
22 ⎞2
⎠⎟
1 1
= 22 cis ⎛ 2kπ + π ⎞ 2
⎜⎝ 3 ⎟⎠
1 cis π
If k = 0, α1 = 22 6
k = 0, α2 = 21/ 2 cis ⎛ π + π ⎞ = 21/2 cis 7π
⎜⎝ 6 ⎟⎠ 6
Product of roots α1α2 = 21/ 221/ 2 cis π .cis ⎛ 7π ⎞
6 ⎝⎜ 6 ⎠⎟
= 2cis ⎛ π + 7π ⎞
⎜⎝ 6 6 ⎠⎟
= 2cis 8π = 2cis ⎛ 4π ⎞
6 ⎝⎜ 3 ⎠⎟
= −1− i 3
9. If α1, α2 , α3 respectively denote the moduli of the complex number – i, 1 (1+ i) and –1 + i, then
3
their increasing order is [EAMCET 2005]
1) α1, α2 , α3 2) α3, α2 , α1 3) α2 , α1, α3 4) α3, α1, α2
Ans: 3
Sol. α1 = −i = 1, 1 1 + i = 2 = α2 , −1 + i = 2 = α3
3 3
α2 , α1, α3
10. If z1, z2 are two complex numbers satisfying z1 − 3z2 = 1, z1 ≠ 3, then |z2| = [EAMCET 2004]
3 − z1z2
1) 1 2) 2 3) 3 4) 4
Ans: 1
Sol. z1 − 3z2 = 3 − z1z2 ⇒ (z1 − 3z2 )
( z1 − 3z2 ) = (3 − z1z2 ) (3 − z1z2 )
⇒ z1z1 + 9z2 z2 = 9 + z1 2 z2 2
⇒ z1 2 + 9 z2 2 − 9 − z1 2 z2 2 = 0
( )( )⇒ 9 − z1 2 1− z2 2 = 0 ⇒ z2 = 1
3
Jpacademy Complex Numbers
∑11. n ⎛ 2i ⎞n [EAMCET 2004]
n=0 ⎝⎜ 3 ⎟⎠ 4) 9 − 6i
1) 9 + 6i 2) 9 − 6i 3) 9 + 6i [EAMCET 2003]
13 13 4) x – y + 1 =0
Ans: 1
∑Sol.n ⎛ 2i ⎞n =1 = 3 = 9 + 6i
n=0 ⎜⎝ 3 ⎠⎟ 1− 2i 3 − 2i 13
3
12. If the amplitude of z − 2 − 3i is π , then the locus of Z = x + iy is
4
1) x + y – 1 = 0 2) x – y – 1 = 0 3) x + y + 1= 0
Ans: 4
Sol. z − 2 − 3i = (x − 2) + ( y − 3)i
tan −1 ⎛ y − 3 ⎞ = π ⇒ x − y +1 = 0
⎝⎜ x − 2 ⎠⎟ 4
( ) ( )13. If ω is a complex cube root of unity, then 225 + 3ω + 8ω2 2 + 3ω2 + 8ω 2 = ... [EAMCET 2003]
1) 72 2) 192 3) 200 4) 248
Ans: 4
( ) ( )Sol. 225 + 3ω + 8ω2 2 + 3ω2 + 8ω 2
= 225 + 73ω4 + 96ω3 + 73ω2 = 248
14. If z = x + iy is a complex number satisfying z+ i 2 z− i 2
= , then the locus of z is
22
[EAMCET 2002]
1) x-axis 2) y-axis 3) y = x 4) 2y = x
Ans: 1
Sol. Z = x + iy;
x + iy + i 2 = x + iy − i 2
22
x2 + ⎛ y + 1 ⎞2 = x2 + ⎛ y − 1 ⎞2
⎝⎜ 2 ⎠⎟ ⎝⎜ 2 ⎠⎟
⇒ y = 0 ∴ x-axis
15. If z = 3 + 5i, then z3 + z +198 = [EAMCET 2002]
4) 3 + 5i
1) –3-5i 2) – 3 + 5i 3) 3 –5i
Ans: 4
Sol. (3 + 5i)3 + (3 − 5i) +198 = 3 + 5i
16. If 3 + 2i sin θ is a real number and 0 < θ < 2π, then θ = [EAMCET 2002]
1− 2i sin θ
1) π 2) π/2 3) π/3 4) π/6
Ans: 1
Sol. 3 + 2i sin θ × 1+ 2i sin θ
1− 2i sin θ 1+ 2i sin θ
4
Jpacademy Complex Numbers
Purely real ⇒ Imag. Part = 0
ima . part = 8i sin θ = 0
1+ 4sin2 θ
sin θ = 0
∴θ = π
17. If α is a complex number and b is real number then the equation : az + az + b = 0 represents a
[EAMCET 2001]
1) Straight line 2) Parabola 3) Circle 4) Hyperbola
Ans: 1
Sol. Let a = p + iq and z = x + iy
az + az + b = 0
⇒ (p − iq)(x + iy) + (p + iq)(x − iy) + b = 0
equating real parts (or) imaginary parts on both sides then the locus of ‘z’ is straight line.
18. If 1−i i = x + iy , then x = [EAMCET 2001]
1+ 2i −1
1) 1 2) – 1 3) 2 4) –2
Ans: 1
1−i i = x + iy
Sol .
1+ 2i −1
−1(1− i) − i (1+ 2i) = x + iy
−1+ i − i + 2 = x + iy
∴x =1 [EAMCET 2000]
19. The locus of the point Z in the Argand plane for which z +1 2 + z −1 2 = 4 is a
1) Straight line 2) Pair of straight line 3) Circle 4) Parabola
Ans: 3
Sol. z +1 2 + z −1 2 = 4
( x +1)2 + y2 + ( x −1)2 + y2 = 4
∴ x2 + y2 = 1(circle)
20. If θ is real, then the modulus of 1 is [EAMCET 2000]
4) sec −θ
(1+ cos θ) + i sin θ
2
1) 1 sec θ 2) 1 cos θ 3) sec θ
22 22 2
Ans: 1
Sol. 1
(1+ cos θ) + i sin θ
= 1 =1
(1+ cos θ)2 + sin2 θ 2 + 2 cos θ
= 2 = 1 sec θ
2 cos θ / 2 2 2
5
Jpacademy Complex Numbers
3 aω2 + bω 3 =
( ) ( )21.
If 1, ω, ω2 are the cube roots of unity, then (a + b)2 + aω + bω2 +
1) a3 + b3 ( )2) 3 a3 + b3 3) a3 − b3 [EAMCET 2000]
4) a3 + b3 + 3ab
Ans: 2
( ) ( )Sol. (a + b)3 + aω + bω2 3 + aω2 + bω 3
= 3(a + b)(aω + bω2 )(aω2 + bω)
( )= 3 a3 + b3
22. In the Argand plane the area in square units of the triangle formed by the points 1+ i,1− i, 2i is
[EAMCET 2000]
1) 1/2 2) 1 3) 2 4) 2
Ans: 2
Sol. A(1,1) B(1, –1) C(0, 2)
Area ΔABC = 1 1−1 1− 0 = 1 (2) = 1sq.unit
2 1+1 1−2 2
23. If 3 + i is a root of x2 + ax + b = 0, then a = [EAMCET 2000]
1) 3 2) – 3 3) 6 4) –6
Ans: 4
Sol. One root is 3 + i then other roots is 3 – i sum of roots = 6 = – a
⇒ a = −6
6
Jpacademy COMPOUND ANGLES
PREVIOUS EAMCET BITS
1. 2 cos ec20°sec 20° = [EAMCET 2008]
1) 2 2) 2sin20° cosec40° 3) 4 4) 4sin45° cosec40°
Ans: 4
Sol. 2 cos ec20°sec 20° = 2 = 22 =22
sin 20° cos 20° 2sin 20°cos 20° sin 40°
= 2 2 cos ec40° = 4sin 45° cos ec40°
2. If cos (A − B) = 3 and tanA tanB=2, then which one of the following is true? [EAMCET 2007]
5
1) sin (A + B) = 1 2) sin (A + B) = − 1 3) cos (A − B) = 1 4) cos (A + B) = − 1
5 55 5
Ans: 4
Sol. tan A tan B = 2 ⇒ sin A sin B = 2
cos A cos B 1
By using compounds and dividends cos (A − B) = −3 ⇒ cos (A + B) = −1
cos (A + B) 5
3. tan 80° − tan10° = [EAMCET 2007]
tan 70°
1) 0 2) 1 3) 2 4) 3
Ans: 3
Sol. tan 70° = tan (80° −10°)
tan 70° = tan 80° − tan10° [EAMCET 2006]
1+ tan 80° tan10° 4) 6 + 2
⇒ tan 80° − tan10° = 2
tan 70°
4. cos ec15° + sec15° =
1) 2 2 2) 6 3) 2 6
Ans: 3
Sol. sin15 = 3 −1 ; cos15 = 3 +1
22 22
cos ec15° + sec15° = 2 2 + 2 2
3 −1 3 +1
( )2 2 3 +1+ 3 −1 = 2 2 × 2 3 = 2 6
( )( )3 +1 3 −1 2
5. cos12° + cos84° + cos132° + cos156° = 3) – 1 [EAMCET 2004]
1) 1 2) 1 4 4) − 1
24
Ans: 4 2
Jpacademy Compounds Angles
Sol. cos132° + cos12° + cos156° + cos84° = 2 cos 72° cos 60° + 2 cos120°cos36° = − 1
2
6. If cos (α + β) = 4 sin (α − β) = 5 and α, β lie between 0 and π , then tan2α= [EAMCET 2002]
5 13 4
1) 56 2) 33 3) 16 4) 60
33 56 65 61
Ans: 1
Sol. 2α = (α + β) + (α − β)
tan 2α = tan (α + β) + tan (α − β)
1− tan (α + β) tan (α − β)
= 3+5 = 56
42 33
1− 3. 5
4 12
7. cos2 ⎛ π + θ ⎞ − sin 2 ⎛ π − θ ⎞ = [EAMCET 2001]
⎝⎜ 6 ⎟⎠ ⎜⎝ 6 ⎟⎠ 4) 1
1) 1 cos 2θ 2) 0 3) −1 cos2 θ 2
2 2
Ans: 1
Sol. cos2 ⎛ π + θ ⎞ − sin 2 ⎛ π − θ ⎞
⎜⎝ 6 ⎟⎠ ⎜⎝ 6 ⎟⎠
= cos ⎛ π + θ + π − θ ⎠⎟⎞.cos ⎛ π + θ − π + θ ⎞
⎜⎝ 6 6 ⎜⎝ 6 6 ⎟⎠
= 1 cos 2θ
2
DDDD
Jpacademy DEMOVIRE’S THEOREM AND
TRIGONOMETRIC EXPANSION
PREVIOUS EAMCET BITS
1. A value of a such that ⎛ 3 + i ⎞n =1 is [EAMCET 2007]
⎝⎜⎜ 2 2 ⎟⎟⎠ 4) 1
1) 12 2) 3 3) 2 [EAMCET 2005]
4) α
Ans: 1
[EAMCET 2004]
Sol. ⎛ 3 + i ⎞n = 1 ⇒ cis nπ = 1 4) i
⎝⎜⎜ 2 2 ⎟⎠⎟ 6
2
∴ n = 12
[EAMCET 2003]
2. If α is a non-real root of x6 = 1, then α5 + α3 + α +1 = 4) sin 2 θ
α2 +1
1) α2 2) 0 3) – α2
Ans: 3
Sol. x6 = 1 ⇒ let α = ω
α5 + α3 + α +1 = ω5 + ω3 + ω +1
α2 +1 ω2 +1
= −ω2 = −α2
∏3. If = π + π ∞ =
xn cos 2n i sin 2n , then
xn
n =1
1) – 1 2) 1 3) 1
2
Ans: 1
Sol. xn = cis π ⇒ x1x 2 x 3 .....
2n
= cis (π/ 2) = cisπ = −1
1− 1
2
4. If sin 6θ = 32 cos2 θsin θ − 32 cos3 θsin θ + 3x, then x = .........
1) cos θ 2) cos 2θ 3) sin θ
Ans: 4
Sol. sin 6θ = 2sin 3θ cos 3θ
( )( )= 2 3sin θ − 4sin3 θ 4 cos3 θ − 3cos θ
= 32 cos5 θsin θ − 32 cos3 θsin θ + 3sin 2θ
∴ x = sin2θ
5. If xn = cos ⎛ π ⎞ + i sin ⎛ π ⎞ , x1x2x3…….. ∞ = [EAMCET 2002]
⎝⎜ 4n ⎠⎟ ⎝⎜ 4n ⎠⎟
1
Jpacademy Demovire’s Theorem and Trigonometric Expansions
1) 1+ i 3 2) −1+ i 3 3) 1− i 3 4) −1− i 3
2 2 2 2
Ans: 1
Sol. x1x2.............∞
= cis π .cis π .cis π ......∞
4 42 43
= cis ⎛ π + π + ......∞ ⎞ = cis ⎛ 1 π/4 ⎞
⎜⎝ 4 42 ⎟⎠ ⎜⎝ −1/ 4 ⎠⎟
= cis π = 1+ i 3
32
6 If θ = π/6, then the tenth term of 1+ (cos θ + i sin θ) + (cos θ + i sin θ)2 + ... is [EAMCET 2001]
1) i 2) – 1 3) 1 4) –1
Ans: 4
1+ c i s θ + (ci s θ)2 + ......,10th term = cis9θ
Sol.
= cos 9θ + i sin 9θ
at θ = π ⇒ 10th term = −i
6
7 sin 5θ = [EAMCET 2001]
sin θ
1) 16 cos4 θ −12 cos2 θ +1 2) 16 cos4 θ +12 cos2 θ +1
3) 16 cos4 θ −12 cos2 θ −1 4) 16 cos4 θ +12 cos2 θ −1
Ans: 1
Sol. sin 5θ = 16 cos4 θ.sin θ −12 cos2 θ.sin θ + sin θ
∴ sin 5θ = 16 cos4 θ −12 cos2 θ +1
sin θ
UUUU
2
Jpacademy HEIGHTS AND DISTANCES
PREVIOUS EAMCET BITS
1. P is a point on the segment joining the feet of two vertical poles of heights a and b. The angles of
elevation of the tops of the poles from P are 45° each. Then the square of the distance between
the tops of the poles is [EAMCET 2009]
1) a2 + b2 2) a2 + b2 ( )3) 2 a2 + b2 ( )4) 4 a2 + b2
2
Ans: 3 A
2 2 a 2a
a
2a + 2b
( ) ( )Sol. AC2 = B C
( )2 a2 + b2 b
2b
bD
2. From the top of the hill h meters high the angles of depressions of the top and the bottom of a
pillar are α and β respectively. The height (in metres) of the pillar is [EAMCET 2008]
h (tan β − tan α) h (tan α − tan β) h (tan β + tan α) h (tan β + tan α)
1) 2) 3) 4)
tan β tan α tan β tan α
Ans: 1 βα
Sol. x = h cot β, x = (h − d) cot α
⇒ h cot β = (h − d) cot α
⇒ h tan α = (h − d) tan β h α
⇒ d tan β = h (tan β − tan α) h
⇒ d = h (tan β − tan α)
d
tan β
β
x
3. The angle of elevation of an object from a point P on the level ground is α. Moving d metres on
the ground towards the object, the angle of elevation is found to be β. Then the height (in metres)
of the object is [EAMCET 2007]
1) d tan α 2) d tan β 3) d 4) d
cot α + cot β cot α − cot β
Ans: 4
Sol. h cot α = d + x h
h cot β = x αβ
d = h (cot α + cot β)
∴ h= d
cot α − cot β dx
4. The locus of the point z = x + iy satisfying the equation z −1 = 1 is given by [EAMCET 2006]
z +1
1
Jpacademy Heights and Distances
1) x = 0 2) y = 0 3) x = y 4) x + y = 0
Ans: 1
Sol. z −1 2 = z +1 2
( x −1)2 + y2 = ( x +1)2 + y2
⇒ 4x = 0 ⇒ x = 0 [EAMCET 2006]
5. The product of the distinct (2n)th roots of 1+ i 3 is equal to
1) 0 2) −1− i 3 3) 1+ i 3 4) −1+ i 3
Ans: 2
Sol. by substitution method put n = 1
( )Then 1 = ⎛ ⎛ 1 3 ⎞ ⎞1/ 2 = 1 ⎛ π 1
1+ i 3 2 ⎜⎜⎝ 2 ⎜⎝⎜ 2 + i 2 ⎟⎟⎠ ⎟⎠⎟ ⎜⎝ cis 3
22 ⎞2
⎟⎠
1 1
= 22 cis ⎛ 2kπ + π ⎞ 2
⎜⎝ 3 ⎠⎟
1 cis π
If k = 0, α1 = 22 6
k = 0, α2 = 21/ 2 cis ⎛ π + π ⎞ = 21/ 2 cis 7π
⎜⎝ 6 ⎟⎠ 6
Product of roots α1α2 = 21/ 221/ 2 cis π .cis ⎛ 7π ⎞
6 ⎜⎝ 6 ⎟⎠
= 2cis ⎛ π + 7π ⎞
⎜⎝ 6 6 ⎟⎠
= 2cis 8π = 2cis ⎛ 4π ⎞
6 ⎝⎜ 3 ⎟⎠
= −1− i 3
6. A tower, of x meters high, has a Flagstaff at its top. The tower and the Flagstaff subtend equal
angle at a point distant y metres from the foot of the tower. Then the length of the Flagstaff in
metres is ( )x y2 + x2 ( )x x2 + y2 [EAMCET 2005]
( )2) ( )3)
( )y x2 − y2 ( )x x2 − y2
( )1) y2 − x2 x2 − y2 ( )4)
x2 + y2 x2 + y2
Ans: 2 D
Sol. tan 2α = x + h , tan α = x h
yy B
Use tan(2α) formula x 2α α
α
( )x y2 + x2
( )Then h = Ay C
y2 − x2
7. An aeroplane flying with uniform speed horizontally one kilometer above the ground is observed
at an elevation of 60°. After 10 seconds if the elevation is observed to be 30°, then the speed of
the plane (in km/hr) is [EAMCET 2004]
1) 240 2) 200 3 3) 240 3 4) 120
3 3
2
Jpacademy Heights and Distances
Ans: 3 BD
Sol. In ΔAPD ⇒ tan 60° = 1 ⇒ AP = 1 E
60°
AP 3 30° 1km
d
⇒ AP + PQ = 3 AP
PQ = 3 − 1 = 2 km Q
33
10sec− 2 km
3
1hr − 2 × 3600 = 240 3km / hr
3 10
8. A tower subtends angles, α, 2α and 3α respectively at points A, B and C, all lying on a
horizontal line through the foot of the tower. Then AB =……. [EAMCET 2003]
BC
1) sin 3α 2) 1+ 2 cos 2α 3) 2 cos 2α 4) sin 2α
sin 2α sin α
Ans: 2 P
Sol. Let height of the tower OP = h
AB = OA – OB = h(cotα - cot2α)
BC = OB – OC = h(cot2α - cot3α) h
AB = cot α − cot 2α α 2α 3α
BC cot 2α − cot 3α A BC O
= cos α sin 2α − cos 2α sin α × sin 2α.sin 3α
sin α sin 2α cos 2α sin 3α − cos 3α sin 2α
= sin 3α = 1+ 2 cos 2α
sin α
9. From a point on the level ground, the angle of elevation of the top of a pole is 30°. On moving 20
mts nearer, the angle of elevation is 45°. Then the height of the pole in mts is
[EAMCET 2002]
( )1) 10 3 −1 ( )2) 10 3 +1 3) 15 4) 20
Ans: 2
Sol. tan 30° = h
h + 20
( )⇒ h = 10 3 +1
10. The shadow of the two standing on a level ground is found to be 60 metres longer when the sun’s
altitude is 30° then when it is 45°. The height of the tower is [EAMCET 2001]
1) 60 m 2) 30 m 3) 60 3 m ( )4) 30 3 +1 m
Ans: 4
Sol. h = 60
cot 30° − cot 45° 45° 30°
h
( )h = 60 = 30 3 +1
3 −1
30°3 45°
60mt
Jpacademy Heights and Distances
11. If two towers of height h1 and h2 subtend angles 60° and 30° respectively at the midpoint of the
line joining their feet, then h1: h2 = [EAMCET 2000]
1) 1 : 2 2) 1 : 3 3) 2 : 1 4) 3 : 1
Ans: 4
Sol. h1 : h2 = tan α : tan β
= tan 60° : tan 30°
= 3:1
DDD
4
Jpacademy HYPERBOLIC FUNCTIONS
PREVIOUS EAMCET BITS
1. sinh−1 2 + sinh−1 3 = x ⇒ cosh x = [EAMCET 2009]
3) 1 12 + 2 50 ( )4) 1 12 − 2 50
( ) ( ) ( )1) 1 3 5 + 2 10 2) 1 3 5 − 2 10 2
22 2
Ans: 3
( )Sol. cosh x = cosh sinh−1 2 + sinh−1 3
( )= 1 12 + 2 50 [EAMCET 2008]
2
1+ tanh (x / 2)
2. 1− tanh (x / 2)
1) e−x 2) ex 3) 2ex / 2 4) 2e−x / 2
Ans: 2
1+ tanh ⎛ x ⎞ cosh ⎛ x ⎞ + sinh ⎛ x ⎞ ⎣⎢⎡cosh ⎛ x ⎞ + sinh ⎛ x ⎞⎤2
⎜⎝ 2 ⎠⎟ ⎜⎝ 2 ⎟⎠ ⎝⎜ 2 ⎟⎠ ⎜⎝ 2 ⎟⎠ ⎜⎝ 2 ⎟⎠⎦⎥
Sol. = =
⎛ x ⎞ ⎛ x ⎞ ⎛ x ⎞ ⎛ x ⎞ ⎛ x ⎞
1 − tanh ⎝⎜ 2 ⎠⎟ cosh ⎝⎜ 2 ⎠⎟ − sinh ⎜⎝ 2 ⎟⎠ cosh 2 ⎜⎝ 2 ⎠⎟ − sinh 2 ⎝⎜ 2 ⎟⎠
= cosh 2 ⎛ x ⎞ + sinh 2 ⎛ x ⎞ + 2 cosh ⎛ x ⎞ sinh ⎛ x ⎞ = cosh x + sinh x = ex
⎝⎜ 2 ⎠⎟ ⎜⎝ 2 ⎠⎟ ⎝⎜ 2 ⎟⎠ ⎜⎝ 2 ⎠⎟
3. sec h−1 (sin θ) = [EAMCET 2007]
1) log tan θ 2) log sin θ 3) log cos θ 4) log cot θ
2 2 2 2
Ans: 4
Sol. sec h −1 ( sin θ ) = log ⎛ 1 + 1− sin 2 θ ⎞
⎜⎜⎝ sin θ ⎠⎟⎟
= log ⎛ 1+ cos θ ⎞ = log ( cot θ / 2)
⎜⎝ sin θ ⎟⎠
4. ( )e =log cosh−1 2 ( )2) log 3 − 2 ( )3) log 2 + 3 [EAMCET 2006]
( )1) log 2 − 3 4) log (2 + 5)
Ans: 3
( )Sol. eloge f (x) = f x
( )e = cosh 2logecosh−1(2) −1
{ }= log 2 + 22 −1
( )= log 2 + 3
1
Jpacademy Hyperbolic Functions
5. 2 tanh−1 1 = [EAMCET 2005]
2 3) log 3 4) log 4
1) 0 2) log 2 [EAMCET 2004]
Ans: 3 4) –cot2θ
Sol. tanh−1 x = 1 log 1+ x
[EAMCET 2003]
2 1− x
( )4) log 8 + 27
1+ 1
∴ 2 tanh−1 x = log 2 = log 3 [EAMCET 2002]
4) i sin(ix)
1− 1
2 [EAMCET 2001]
4) 20
6. x = log ⎡ ⎛ π + θ ⎞⎤ ⇒ sinh x =
⎣⎢cot ⎜⎝ 4 ⎠⎟⎦⎥ [EAMCET 2000]
4) e2
1) tan2θ 2) – tan2θ 3) cot 2θ
Ans: 2 [EAMCET 2000]
4) 5
cot ⎛ π + θ ⎞ − tan ⎛ π + θ ⎟⎞⎠
⎝⎜ 4 ⎟⎠ ⎜⎝ 4
Sol. sinh x = = − tan 2θ
2
( )7. sinh−1 23/2 = ……
( ) ( )1) log 2 + 18 2) log 3 + 8 ( )3) log 3 − 8
Ans: 2
( ) ( )( )Sol. sinh−1 23/2 = log 8 + 1+ 8 = log 3 + 8
8. sin h ix =
1) i sinx 2) sin (ix) 3) – sinx
Ans: 1
Sol. sinh (ix) = eix − e−ix = (cos x + i sin x ) − (cos x − i sin x) = i sin x
22
( ) ( )9. sec2 tan−1 2 + cos ec2 cot−1 3 =
1) 5 2) 10 3) 15
Ans: 3
Sol. Let tan−1 (2) = α and cot−1 (3) = β
tan α = 2; cot β = 3
⇒ sec α = 5;cos ecβ = 10
∴ sec2 α + cos ec2β = 5 +10 = 15
10. cosh 2 + sinh 2 =
1) 1/e 2) e 3) 1/e2
3) 3
Ans: 4
Sol. cosh 2 + sinh 2 = e2 + e−2 + e2 − e−2 = e2
22
( )11. If cosh−1 x = loge 2 + 3 ,then x =
1) 2 2) 1
2
Jpacademy Hyperbolic Functions
Ans: 1
( )Sol. log ⎡⎣x + x2 −1⎦⎤ = log 2 + 3
log ⎡⎣x + x2 −1⎦⎤ = log ⎣⎡⎢2 + ( 2)2 − 1 ⎤
⎦⎥
∴x=2
3
Jpacademy INVERSE TRIGONOMETRIC FUNCTIONS
PREVIOUS EAMCET BITS
1. cos−1 ⎛ −1 ⎞ − 2 sin −1 ⎛ 1 ⎞ + 3 cos−1 ⎛ −1 ⎞ − 4 tan −1 ( −1) = [EAMCET 2009]
⎜⎝ 2 ⎟⎠ ⎝⎜ 2 ⎟⎠ ⎜⎝ 2 ⎟⎠ 4) 43π
1) 19π 2) 35π 3) 47π 12
12 12 12 [EAMCET 2008]
Ans: 4 4) 11
Sol. 2π − 2× π + 3× 3π + 4× π = 43π [EAMCET 2007]
3 6 4 4 12 4) 2
2. If sin −1 ⎛ 3 ⎞ + sin −1 ⎛ 4 ⎞ = π then x = 3
⎜⎝ x ⎟⎠ ⎝⎜ x ⎠⎟ 2
[EAMCET 2005]
1) 3 2) 5 3) 7 4) 0
Ans: 2 [EAMCET 2004]
Sol. sin −1 ⎛ 3 ⎞ + sin −1 ⎛ 4 ⎞ = π ⇒ sin −1 3 = cos−1 4
⎝⎜ x ⎟⎠ ⎝⎜ x ⎠⎟ 2 x x
⇒ sin−1 3 = sin−1 1 − 16 ⇒ 9 = 1 − 16 ⇒ x2 = 25
x x2 x2 x2
( )3. ⎛ ⎛ 1 ⎞ ⎞
The value of x where x > 0 and tan ⎝⎜ sec−1 ⎜⎝ x ⎟⎠ ⎟⎠ = sin tan−1 2 is
1) 5 2) 5 3) 1
3
Ans: 2
( )Sol. ⎛ 1 ⎞
tan ⎜⎝ sec−1 x ⎠⎟ = sin tan−1 2
⎛ 1− x2 ⎞ = sin ⎛ sin −1 2⎞
tan ⎜⎜⎝ tan−1 x ⎟⎟⎠ ⎜ ⎟
⎝ 5 ⎠
⇒ 1− x2 = 2 ⇒ x = 5
x5 3
4. sin−1 4 + 2 tan−1 1 =
53
1) π 2) π 3) π
34 2
Ans: 3
Sol. sin−1 4 + 2 tan−1 1 = sin−1 4 + tan−1 3
5 354
= sin−1 4 + cos−1 4 = π
5 52
5. sin−1 x + sin−1 (1− x ) = cos−1 x ⇒ x ∈
1
Jpacademy ⎧⎨0, 1 ⎫ Inverse Trigonometric Functions
1) {1, 0} 2) {−1,1} 3) ⎩ 2 ⎬
⎭ 4) {2,0}
Ans: 3 [EAMCET 2003]
4) 4
Sol. sin−1 (1− x ) = π − 2sin−1 ( x)
9
2
[EAMCET 2002]
1− x = 1− 2x2 ⇒ x = 0, 1 4) − 3
2
2
6. cos ⎢⎡⎣cos−1 ⎛ 1 ⎞ + sin −1 ⎛ − 1 ⎞⎤ = …….. [EAMCET 2001]
⎝⎜ 7 ⎟⎠ ⎝⎜ 7 ⎠⎟⎥⎦
4) 20
1) − 1 2) 0 3) 1
3 3 [EAMCET 2000]
4) 14/5
Ans: 2
Sol. cos ⎣⎢⎡cos−1 ⎛ − 1 ⎞ + sin −1 ⎛ − 1 ⎞⎤
⎝⎜ 7 ⎟⎠ ⎝⎜ 7 ⎟⎠⎦⎥
= cos π = 0 ⎣⎡⎢∵ sin −1 x + cos−1 x = π⎤
2 2 ⎦⎥
7. If sin−1 x − cos−1 x = π , then x =
6
1) 1 2) 3 3) −1
2 2 2
Ans: 2 3) 15
Sol. By verification x = 3 / 2 3) 5/14
( ) ( )8. sec2 tan−1 2 + cos ec2 cot−1 3 =
1) 5 2) 10
Ans: 3
Sol. Let tan−1 (2) = α and cot−1 (3) = β
tan α = 2; cot β = 3
⇒ sec α = 5;cos ecβ = 10
∴ sec2 α + cos ec2β = 5 +10 = 15
9. If tan−1 3 + tan−1 x = tan− 8 , then x =
1) 5 2) 1/5
Ans: 2
Sol. tan−1 3 + tan−1 x = tan−1 8
3+x =8⇒ x = 1
1− 3x 5
\\[[
2
Jpacademy MULTIPLE AND SUBMULTIPLE ANGLES
PREVIOUS EAMET BITS
1. If A = 35°, B = 15° and C = 40°, then tanAtanB+tanBtancC + tanC tanA [EAMCET 2008]
1) 0 2) 1 3) 2 4) 3
Ans: 2
Sol. A + B + C = 35° +15° + 40° = 90°
⇒ tan A tan B + tan B tan C + tan C tan A = 1
2. If tan θ + tan ⎛ θ + π ⎞ + tan ⎛ θ + 2π ⎞ = 3, then which of the following is equal to 1? [EAMCET 2008]
⎝⎜ 3 ⎠⎟ ⎝⎜ 3 ⎟⎠
1) tan2θ 2) tan3θ 3) tan2θ 4) tan3θ
Ans: 2
Sol. tan θ + tan ⎛ θ + π ⎞ + tan ⎛ θ + 2π ⎞ = 3
⎝⎜ 3 ⎠⎟ ⎝⎜ 3 ⎟⎠
tan θ + tan ⎛ π ⎞ tan θ + tan ⎛ 2π ⎞
⎜⎝ 3 ⎟⎠ ⎝⎜ 3 ⎟⎠
⇒ tan θ + + =3
⎛ π ⎞ ⎛ 2π ⎞
1− tan θ tan ⎝⎜ 3 ⎟⎠ 1− tan θ tan ⎝⎜ 3 ⎟⎠
⇒ tan θ + tan θ + 3 + tan θ − 3 = 3
1− 3 tan θ 1− 3 tan θ
⇒ tan θ + tan θ + 3 tan2 θ + 3 + 3 tan θ + tan θ − 3 tan2 θ + 3 tan
( )( )1− 3 tan θ 1+ 3 tan θ
⇒ tan θ + 8 tan θ = 3⇒ tan θ − 3 tan3 θ + 8sin θ = 3
− 3 tan2 1− 3 tan2 θ
1 θ
⇒ 3 ⎡ 3 tan θ − tan3 θ ⎤ = 3 ⇒ tan 3θ = 1
⎢ 1− 3 tan2 θ ⎥
⎣ ⎦
3. If x = tan15°, y = cosec 75° and z = 4sin18°, then [EAMCET 2006]
4) x < z < y
1) x. > y > z 2) y < z < x 3) z < x < y
[EAMCET 2005]
Ans: 1 4) a
Sol. x = tan15° = 2 − 3 = 0.3 a −1
y = cos ec75° = 1 = 2 2
sin 75° 3 +1
= 6 − 2 ≅ 0.9
z = 4sin18° = 5 −1 = 1.05
x<y<z
4. tan 3A = α ⇒ sin 3A =
tan A sin A
1) 2a 2) 2a 3) a
a +1 a −1 a +1
1
Jpacademy Multiple and Submultiple Angles
Ans: 2
Sol. a = tan 3A , putA = 45° ⇒ a = −1
tan A
Verification sin 3A = 1 = 2a
sin A a −1
5. tan 9° − tan 27° − tan 63° + tan 81° = [EAMCET 2004]
1) 4 2) 3 3) 2 4) 1
Ans: 1
Sol. tan 9° − tan 27° − cot 27° + cos 9° = ⎛ sin 9° + cos 9° ⎞ − ⎛ sin 27° + cos 27° ⎞
⎜⎝ cos 9° sin 9° ⎠⎟ ⎜⎝ cos 27° sin 27° ⎠⎟
⇒ 2 − 2 = 2×4 − 2×4 = 4
sin18° sin 54° 5 −1 5 +1
6 cos 6°sin 24° cos 72° = [EAMCET 2000]
4) 1/4
1) –1/8 2) –1/4 3) 1/8
777
Ans: 3
Sol. 1 (2 cos 6°sin 24°) cos 72°
2
= 1 (sin 30° + sin18°) cos 72°
2
= 1⎛1 + 5 −1⎞⎛ 5− 1⎞ = 1
2 ⎜⎝⎜ 2 4 ⎠⎟⎟⎜⎝⎜ 4 ⎟⎠⎟ 8
2
Jpacademy PERIODICITY AND EXTREME VALUES
PREVIOUS EAMCET BITS
1. The period of sin4 x + cos4 x is [EAMCET 2009]
π4 π2 3) π 4) π
1) 2) 4 2
2 2
Ans: 4
Sol. f ⎛ π + x ⎞ = cos4 x + sin4 x = f (x)
⎝⎜ 2 ⎠⎟
∴ Period = π/2
2. For all values of θ, the values of 3 − cos θ + cos ⎛ θ + π⎞ lie in the interval [EAMCET 2006]
⎜⎝ 3 ⎟⎠
1) [−2,3] 2) [−2,1] 3) [2, 4] 4) [1,5]
Ans: 3
Sol. cos ⎛ θ + π ⎞ = cos θ cos π − sin θ.sin π
⎜⎝ 3 ⎟⎠ 3 3
= 1 cos θ − 3 sin θ
22
3− cos θ + cos ⎛ θ + p ⎞ = 3− 1 cos θ − 3 sin θ
⎜⎝ 3 ⎟⎠ 2 2
Min. value = C − a2 + b2 = 3 − 1 + 3 = 2
44
Max. value = C + a2 + b2 = 3 +1 = 4
( )3. x2 ⎛ π + x2 ⎞ ⎛ π − x2 ⎞ \ [EAMCET 2005]
The extreme value of 4 cos cos ⎜⎝ 3 ⎠⎟ cos ⎜⎝ 3 ⎟⎠ over are
1) – 1, 1 2) –2, 2 3) –3, 3 4) –4, 4
Ans: 1
Sol. cos A cos (60 − A) cos (60 + A) = 1 cos 3A
4
∴ 4 cos x2 cos ⎛ π + x2 ⎞ cos ⎛ π − x2 ⎞ = cos 3x2 = [−1 1]
⎝⎜ 3 ⎠⎟ ⎝⎜ 3 ⎟⎠
4. If n ∈ N , and the period of cos nx is 4π, then n = [EAMCET 2004]
⎛ x ⎞
sin ⎝⎜ n ⎠⎟
1) 4 2) 3 3) 2 4) 1
Ans: 3
Sol. Period of cos nx = 2π
n
1
Jpacademy ⎛ x ⎞ = 2nπ Periodicity and Extreme values
Period of sin ⎝⎜ n ⎠⎟
[EAMCET 2004]
2nπ = 4π ⇒ n = 2
4) [2,7]
5. For x ∈ \,3cos (4x − 5) + 4 lies in the interval
[EAMCET 2003]
1) [1,7] 2) [4,7] 3) [0,7] 4) 12π
Ans: 1 [EAMCET 2002]
4) 2π
Sol. Maximum and Minimum values of cosθ are 1 an – 1
∴ [−3 + 4,3 + 4] = [1, 7]
6. The period of the function f (θ) = sin θ + cos θ is
32
1) 3π 2) 6π 3) 9π
Ans: 4
Sol. The period of sin ⎛ θ ⎞ is 2π = 6π
⎜⎝ 3 ⎟⎠ 1/ 3
The period of θ 2π = 4π
cos is
2 1/ 2
The period of sin ⎛ θ ⎞ + cos ⎛ θ ⎞ is L.C.M of 6π, 4π = 12π
⎜⎝ 3 ⎠⎟ ⎜⎝ 2 ⎠⎟
7. If f (x) = sin 2 ⎛ π + π ⎞ − sin 2 ⎛ π − π ⎞ , then the period of f is
⎜⎝ 8 2 ⎟⎠ ⎜⎝ 8 2 ⎠⎟
1) π 2) π/2 3) π/3
Ans: 4
Sol. Sin2A − sin2 B = sin (A + B)Sin (A − B)
∴ sin 2 ⎛ π + x ⎞ − sin 2 ⎛ π − x ⎞ = sin π sin x
⎜⎝ 8 2 ⎟⎠ ⎜⎝ 8 2 ⎟⎠ 4
∴ period = 2π
777
2
Jpacademy PROPERTIES OF TRIANGLES
PREVIOUS EAMCET BITS [EAMCET 2009]
1. In any ΔABC, a (b cos C − c cos B) =
1) b2 + c2 2) b2 − c2 3) 1 + 1 4) 1 −1
bc b2 c2
Ans: 2
Sol. 1 (2ab cos C − 2ca cos B)
2
1 ⎣⎡a 2 + b2 − c2 − c2 − a2 + b2 ⎦⎤
2
= b2 − c2
2. In a ΔABC (a + b+ c)(b + c−a)(c+ a − b)(a + b−c) [EAMCET 2009]
4) sin2B
4b2c2
1) cos2A 2) cos2B 3) sin2A
Ans: 3
2s (2s − 2a )(2s − 2b)(2s − 2c)
Sol.
4b2c2
= 4Δ2 = ⎛ 2Δ ⎞2 = sin2 A
b2c2 ⎝⎜ bc ⎟⎠
3. In ΔΑBC if 1 + 1 = 3 then C = [EAMCET 2008]
b+c c+a a+b+c
1) 90° 2) 60° 3) 45° 4) 30°
Ans: 2
Sol. Given 1 + 1 = 3
b+c c+a a+b+c
⇒1+ b +1+ a = 3
a+c a+c
⇒ b(b + c)+ a(a + c) = (a + c)(b+ c)
⇒ b2 + bc + a2 + ac = ab + ac + bc + c2
⇒ a2 + b2 − c2 = ab [EAMCET 2008]
Now, cos C = a2 + b2 − c2 = ab = 1
2ab 2ab 2
⇒ C = 60°
4. Observe the following statements :
I) In ΔABC b cos2 C + c cos2 B = s
22
II) In ΔABC, cot A = b + c ⇒ B = 90°
22
1
Jpacademy Properties of Triangles
Which of the following is correct?
1) Both I and II are true 2) I is true, II is false
3) I is false , II is true 4) Both I and II are false
Ans: 2
Sol. I) b cos2 C + c cos2 B = b s (s − c) + c s (s − b) = s (s − c + s − b) = s
2 2 ab ac a
II) If A = 45°, B = 90°, C = 45°, then a = 2R, b = 2R, c = 2R
( )But b + c = 2R + 2R = 2 +1 R = R cot 22 1 ° ≠ cot A
22 22 2 2
5. In a triangle, if r1 = 2r2 = 3r3 , then a+b+c = [EAMCET 2008]
bca
1) 75 2) 155 3) 176 4) 191
60 60 60 60
Ans: 4
Sol. r1 = 2r2 = 3r3 ⇒ s Δ = 2Δ = 3Δ = Δ (say)
−a s−b s−c k
⇒ s − a = k,s − b = 2k,s − c = 3k ⇒ s − a + s − b + s − c = 6k
⇒ s = 6k ⇒ a = 5k, b = 4k, c = 3k
∴ a + b + c = 5k + 3k = 5 + 4 + 3 = 75 + 80 − 36 = 191
b c a 4k 5k 4 3 5 60 60
(or)
If xr1 = yr2 = zr3 , then
a:b:c=y+z:z+x:x+y
∴a:b:c=5:4:3
6. If two angles of ΔABC are 45° and 60°, then the ratio of the smallest and the greatest sides are
( )1) 3 −1 :1 2) 3 : 2 3) 1: 3 [EAMCET 2007]
4) 3 :1
Ans: 1
Sol. Angles are 45°, 60° and 75°.
The ratio of smallest and greatest sides = sin45°; sin75°= 3 −1:1
7. In ΔABC, (a + b + c) ⎛ tan A + tan B ⎞ = [EAMCET 2007]
⎜⎝ 2 2 ⎟⎠
1) 2c cot C 2) 2a cot A 3) 2b cot B 4) tan C
2 2 2 2
Ans: 1
Sol. ( a + b + c) ⎛ tan A + tan B ⎞ = 2s ⎛ s Δ a ) + s Δ b ) ⎞
⎝⎜ 2 2 ⎠⎟ ⎜⎜⎝ ⎟⎟⎠
(s − (s −
= 2Δc = 2c s(s −a)(s − b)(s −c)
(s −a)(s − b)
(s − a)(s − b)
= 2c cot c
2
2
Jpacademy Properties of Triangles
8. In ΔABC, with usual notation, observe the two statements given below [EAMCET 2007]
I) rr1r2r3 = Δ2
II) r1r2 + r2r3 + r3r1 = s2
Which of the following is correct
1) Both I and II are true 2) I is true, II is false
3) I is false, II is true 4) Both I and II are false
Ans: 1
Sol. i) rr1r2r3 = Δ . s Δ . Δ . Δ = Δ2
s −a s −b s −c
ii) r1r2 + r2 r3 + r3 r1 = s Δ . Δ + s Δ. Δ + s Δ. Δ
−a s −b −b s −c −c s −a
= s(s − c) + s(s − a) + s(s − b) = s2
9. If, in a ΔABC, tan A = 5 and tan C = 2 then a, b, c are such that : [EAMCET 2006]
26 25
1) b2 + ac 2) 2b = a + c 3) 2ac = b(a + c) 4) a + b = c
Ans: 2
Sol. tan A .tan C = 5 . 2 = 1
2 2 65 3
(s − b)(s −c) (s −a)(s − b) = 1
s(s −a) s(s −c) 3
⇒ s − b = 1 ⇒ 3s − 3b = s
s3
2s = 3b
a + b + c = 3b
⇒ a + c = 2b
10. The angles of a triangle are in the ratio 3 : 5 : 10. Then the ratio of the smallest side to the
greatest side is [EAMCET 2006]
1) 1: sin 10° 2) 1 : 2 sin 10° 3) 1 : cos 10° 4) 1 : 2 cos10°
Ans: 4
Sol. Let angles as 3x, 5x, 10x
∴ 18x = 180° ⇒ x = 10°
∴ angle aer 30°, 50°, 100°
a : c = sinA : sinC = sin30 : sin100
1 : sin (90 +10) = 1: 2 cos10°
2
11. In a triangle ABC, s − a = 1 , s − b = 1 , s − c = 1 then b = [EAMCET 2006]
Δ 8 Δ 12 Δ 24
1) 16 2) 20 3) 24 4) 28
Ans: 1
Sol. 1 = s − a = 1 ; 1 = s−b = 1 ; 1 = s−c = 1
r1 Δ 8 r2 Δ 12 r3 Δ 24
1=1+1+1 = 6 =1
r r1 r2 r3 24 4
3
Jpacademy Properties of Triangles
(r2 − r )(r1 + r3 ) = b2
(12 − 4)(24 + 8) = b2 ⇒ 16×16, b = 16 [EAMCET 2005]
4) a + b +c
( )12. In a ΔABC, a cos2 B + cos2 C + cos A (c cos C + b cos B) =
1) a 2) b 3) c
Ans: 1
Sol. = a ⎡⎢⎜⎛ a2 + c2 − b2 ⎞2 + ⎛ a2 + b2 − c2 ⎞2 ⎤
⎣⎢⎝ 2ac ⎟ ⎜ 2ab ⎟ ⎥
⎠ ⎝ ⎠ ⎦⎥
+ ⎛ b2 + c2 − a2 ⎞⎡ ⎛ b2 + a2 − c2 ⎞ + ⎛ a2 + c2 − b2 ⎞⎤
⎜ 2bc ⎟ ⎢c⎜ 2ab ⎟ b⎜ 2ac ⎟⎥
⎝ ⎠⎣ ⎝ ⎠ ⎠⎦
⎝
a2 + c2 − b2 + a2 + b2 − c2 = 2a2 = a
2a 2a 2a
13. In a ΔABC, ∑(b + c) tan A tan ⎛ B − C ⎞ = [EAMCET 2005]
2 ⎝⎜ 2 ⎠⎟
1) a 2) b 3) c 4) 0
Ans: 4
Sol. From Napier’s formula tan ⎛ B − C ⎞ = b − c cot A
⎜⎝ 2 ⎟⎠ b+c 2
∑ (b + c) tan A tan ⎛ B − C ⎞ = ∑ ( b + c ) tan A . b − c cot A
2 ⎜⎝ 2 ⎠⎟ 2 b + c 2
∑(b−c) = 0
14. Two sides of a triangle are given by the roots of the equation x2 – 5x + 6 = 0 and the angle
between the sides is π/3. Then the perimeter of the triangle is [EAMCET 2005]
1) 5 + 2 2) 5 + 3 3) 5 + 5 4) 5 + 7
Ans: 4
Sol. c2 = a2 + b2 − 2ab cos C A
= 9 + 4 −12× 1 = 7 2
2 π/3
=c= 7 C3 B
2S = a + b + c = 5 + 7
15. If , in a ΔABC, r3 = r1 + r2 + r , then A + B = [EAMCET 2004]
1) 120° 2) 100° 3) 90° 4) 80°
Ans: 3
Sol. r3 − r = 4R sin 2 c
2
r1 + r2 = 4R cos2 c
2
r1 + r2 + r − r3 = 0
4