Jpacademy Quadratic Expressions
The correct match to List – I from List – Ii is
i ii iii iv i ii iii iv i ii iii iv i ii iii iv
4) E B D A
1) E B D F 2) E B A D 3) E D B F
Ans: 4
Sol : If the roots are in the ratio m : n then b2 = (m + n )2
ac mn
i) α =β ⇒ α = 1 ⇒ b2 = (1 + 1)2 ⇒ b2 = 4ac
β 1 ac
1x1
ii) α = 2β ⇒ α = 2 ⇒ b2 = (2 +1)2 ⇒ 2b2 = 9ac
β 1 ac
2x1
iii) α = 3β ⇒ α = 3 ⇒ b2 = (3 +1)2 ⇒ 3b2 = 16ac
β 1 ac
3x1
iv) α = β2 ⇒ β +β2 = -b/a, β3 = c
a
⇒ ⎛ c ⎞1/ 3 + ⎛ c ⎞2/3 = -b / a
⎝⎜ a ⎠⎟ ⎜⎝ a ⎠⎟
( ) ( )⇒ a2c 1/3 + ac2 1/3 = -b
4. If α + β = -2 and α3 + β3 = -56 then the quadratic equation whose roots are α and β is
1) x2 + 2x - 16 = 0 2) x2 + 2x - 15 = 0 3) x2 + 2x - 12 = 0 4) x2 + 2x - 8 = 0
[EAMCET 2008]
Ans: 4
Sol : α3 + β3 = -56
(α + β)3 - 3αβ (α + β) = -56
(-2)3 + 3αβ (-2) = -56
-8 + 6αβ = -56
αβ = -8
∴ Required equation is
x2 - (α + β) x + αβ = 0
x2 + 2x - 8 = 0
5. If α and β are the roots of the equation ax2 + bx + c = 0 and px2 + qx + r = 0 has roots
1− α and 1− β then r = [EAMCET 2007]
αβ
1) a + 2b 2) a + b + c 3) ab + bc + ca 4) abc
Ans: 2
Sol. The equation heaving roots 1 , 1 is cx2 + bx + a = 0 .
αβ
2
Jpacademy Quadratic Expressions
The equation having roots 1 - 1, 1 -1 is
α α
c(x +1)2 + b(x +1) + a = 0
⇒ cx2 + (2c + b) x + (c + b + a) = 0
px2 + qx + r = 0
∴r=a+b+c
6. The set of values of x for which the inequalities x2 − 3x −10 < 0, 10x − x2 −16 > 0 hold
simultaneously is [EAMCET 2007)
1) (−2,5) 2) (2,8) 3) (−2,8) 4) (2,5)
Ans: 4
Sol. x2 - 3x -10 < 0 ⇒ (x - 5)(x + 2) > 0
⇒ -2 < x < 5(or) x > 3
10x - x2 - 16 > 0 ⇒ x2 - 10x + 16 < 0
⇒ (x- 2) (x-8) < 0
⇒ 2<x<8
∴ common set = (2,5)
7. If 9x2 + 6x + 1 < (2 - x) then [EAMCET 2006]
1) x ∈ ⎛ - 3 , 1 ⎞ 2) x ∈ ⎛ -3 , 1 ⎤ 3) x ∈ ⎡ -3 , 1 ⎞ 4) x < 1/4
⎜⎝ 2 4 ⎠⎟ ⎝⎜ 2 4 ⎦⎥ ⎢⎣ 2 4 ⎠⎟
Ans: 1
Sol : 9x2 + 6x + 1 < (2 - x)
⇒ (3x + 1)2 < (2 - x)
Taking +ve sign
3x + 1 < (2 - x)
⇒ x <1/ 4
Taking –ve sign
-3x - 1 < 2 - x
x > −3
2
x ∈⎜⎛⎝ -3 , 1 ⎞
2 4 ⎠⎟
8. If x is real, then the minimum value of x2 − x +1 is [EAMCET 2005]
x2 + x +1 4)1
1) 1/3 2) 3 3) 1/2
Ans: 1
3
Jpacademy Quadratic Expressions
Sol. Let y = x2 - x +1
x2 + x +1
⇒ (y -1) x2 + (y +1) x + (y -1) = 1
x is real ⇒ (y + 1)2 - 4(y - 1)2 ≥ 0
⇒ 3y2 -10y + 3 ≤ 0
⇒ (3y -1)(y - 3) ≤ 0
⇒ 1 ≤ y ≤ 3
3
∴ Minimum value = 1/3
9. E1: a + b + c = 0 if 1 is a root of ax2 + bx + c = 0
E2: b2-a2=2ac if sin cos are the roots of ax2 + bx + c = 0 [EAMCET 2005]
1) E1 is true, E2 is true 2) E1 is true, E2 is false
3) E1 is false, E2 is true 4) E1 is false, E2 is false
Ans: 1
Sol. E1 : 1 is a root of ax2 + bx + c = 0
⇒ a(1)2 + b(1) + c = 0
⇒ a+b+c = 0
E2 : Sinθ + Cosθ = - b , SinθCosθ = c/a
a
(Sinθ + Cosθ )2 = ⎛ -b ⎞2
⎜⎝ a ⎠⎟
1+ 2SinθCosθ = b2 ⇒ 1+ 2 ⎛ c ⎞ = b2
a2 ⎜⎝ a ⎟⎠ a2
⇒ b2 - a2 = 2ac
∴E 1 is true, E 2 is true.
10. The set of all solutions of the inequation x2 − 2x + 5 ≤ 0 is [EAMCET 2004]
1) R − (−∞, −5) 2) R − (5, ∞) 3) φ 4) R − (−∞, −4)
Ans: 3
Sol. x2 - 2x + 5 = 0 ⇒ x = 2 ± 4 - 20 = 1± 2i
2
⇒ x2 - 2x + 5 > 0∀x ∈ R
∴ x2 - 2x + 5 ≤ 0 has no real solution.
11 If x-2 is a common factor of the expressions x2 + ax + b and x2 + cx + d , then b − d =
c−a
[EAMCET 2004]
1) -2 2) -1 3) 1 4) 2
Ans:4
4
Jpacademy Quadratic Expressions
Sol. x - 2 is a common factor of x2 + ax + b and x2 + cx + d
⇒ 4 + 2a + b = 0, 4 + 2c + d = 0
⇒ 2a + b = 2c + d
⇒ b −d = 2(c-a)
⇒ b-d = 2
c-a
12. The solution set contained in R of the inequation 3x + 31−x − 4 < 0 is [EAMCET 2003]
1) (1, 3) 2) (0, 1) 3) (1, 2) 4) (0, 2)
Ans: 2
Sol. 3x + 3 - 4 < 0
3x
32x + 3 - 4.3x < 0
(3x -1)(3x - 3) < 0
1 < 3x < 3
∴ The solution set is (0,1)
13. The minimum value of 2x2 +x-1 is [EAMCET 2003]
1) 1/4 2) 3/2 3) -9/8 4) 9/4
Ans. 3
Sol. Minimum value of ax2 + bx + c is 4ac - b2
4a
∴ Minimum value of 2x2 + x - 1 is 4 ( 2 ) ( -1) - 1 = - 9
4(2) 8
14. If the equations x2 + ax + b = 0 and x2 + bx + a = 0 (a ≠ b) have a common root then a+b=
[EAMCET 2002]
1) -1 2) 2 3) 3 4) 4
Ans: 1
Sol. Let 'α' be a common root of x2 + ax + b = 0 and x2 + bx + a = 0
⇒ α2 + aα + b = 0 -(1)
α2 + bα + a = 0 - (2) -(1)
Solve (1) & (2)
(1) – (2) ⇒ (a - b)α + (b - a) = 0
⇒α =1 [EAMCET 2002]
1+a+b =0 4) x2 − 5x + k = 0
∴ a + b = -1
15. If ‘3’ is a root of x2 + kx − 24 = 0 it is also root of
1) x2 + 5x + k = 0 2) x2 + kx + 24 = 0 3) x2 − kx + 6 = 0
Ans: 2
5
Jpacademy Quadratic Expressions
Sol. Put x = 3
9 + 3k - 24 = 0 ⇒ K = 5
Put K=5 in options.
∴ 3 is also a root of x2 - kx + 6 = 0
x2 - 5x + 6 = 0
16. If α , β are the roots of x2 + bx + c = 0 and α + h, β + h are the roots of x2 + qx + r = 0 then
h = [EAMCET 2001]
1) b+q 2) b-q 3) ½ (b + q) 4) ½ (b − q)
Ans: 4
Sol. α,β are the roots of x2 + bx + c = 0
⇒ α + β = -b
α + h,β + h are the roots of x2 + qx + r = 0
⇒ (α + h) + (β + h) = -q
α + β + 2h = -q
-b + 2h = -q
⇒ h = 1 (b - q)
2
( )17. If 203−2x2 = 40 5 3x2 −2 then x = [EAMCET 2001]
1) ± 13 2) ± 12 3) ± 4 4) ± 5
2 13 5 4
Ans: 2
( )Sol. 20 3-2x2 = ⎣⎡20x2 5 ⎦⎤3x2-2
= ⎣⎡20 20 ⎦⎤3x2 -2
( )=⎡ 20 ⎤3/2 3x2 -2
⎣ ⎦
( ) ( )20 3-2x2 = 9x2 -6
20 2
3 - 2x2 = 9x2 - 6
2
6 - 4x2 = 9x2 - 6
13x2 = 12
x=± 12
13
18. If α , β are the roots of 9x2 + 6x +1 = 0 then the equation with the roots 1/α , 1/ β is
[EAMCET 2000]
1) 2x2 + 3x +18 = 0 2) x2 + 6x − 9 = 0 3) x2 + 6x + 9 = 0 4) x2 − 6x + 9 = 0
6
Jpacademy Quadratic Expressions
Ans: 3
Sol f ⎛ 1 ⎞ = 0
⎝⎜ x ⎠⎟
⇒ 9 ⎛ 1 ⎞2 + 6 ⎛ 1 ⎞ +1 = 0
⎝⎜ x ⎟⎠ ⎜⎝ x ⎠⎟
x2 + 6x + 9 = 0
19. The equation formed by decreasing each root of ax2 + bx + c = 0 by 1 2x2 + 8x + 2 = 0 is then
[EAMCET 2000]
1) a = -b 2) b = -c 3) c = -a 4) b=a+c
Ans: 2
Sol. The equation formed by decreasing each root of ax2 + bx + c = 0 by 1 is 2x2 + 8x + 2 = 0
⇒ The equation formed by increasing each root of 2x2 + 8x + 2 = 0 is ax2 + bx + c = 0
∴ax2 + bx + c = 2(x - 1)2 + 8(x - 1) + 2
ax2 + bx + c = 2x2 + 4x - 4
∴ a = b = c ⇒ 2a = b = -c
2 4 -4
20. If (3 + i ) is a root of the equation x2 + ax + b = 0 then a = [EAMCET 2000]
1) 3 2) -3 3) 6 4) -6
Ans: 4
Sol. If 3 + i is one root of the given equation then the other root be 3 – i
Sum of the roots of x2 + ax + b = 0 is –a
⇒ 3 + i + 3 - i = -a
∴a = -6
7
Jpacademy 2. THEORY OF EQUATIONS
PREVIOUS EAMCET Bits
EAMCET-2001
1. Each of the roots of the equation x3 −6x2 + 6x −5 = 0 are increased by k so that the new
transformed equation does not contain term. Then k =
−1 −1 3. -1 4. -2
1. 3 2. 2
Ans: 4
Sol. The transformed equation is (x − k )3 − 6(x − k )2 + 6(x − k )− 5 = 0
Coefficient of x2 is 0 ⇒ − 3k − 6 = 0 ⇒ k = −2
2. The roots of the equation x3 −14x2 + 56x − 64 = 0 are in ......... progression.
1. Arithmetico-geometric 2. Harmonic 3. Arithmetic 4. Geometric
Ans : 4
Sol. By verification x = 2 is a factor of given equation.
2 1 −14 56 −64
0 2 −24 64
1 −12 32 0
(x-2) (x2-12x+32) = 0
x2-12x+32=0
x = 4,8
∴Roots are 2,4,8
∴ These are in G.P.
3. If there is a multiple root of order 3 for the equation x4 − 2x3 + 2x −1= 0 , then the other root is
1. -1 2. 0 3. 1 4. 2
Ans: 1
Let f(x) = x4-2x3+2x-1 ⇒ f (1) = 0
⇒ f ′(x ) = 4x3 − 6x2 + 2 ⇒ f ′(1) = 0
⇒ f11(x) = 12x2-12x ⇒ f 11(1) = 0
Roots of given equation are 1,1,1
Let the other root be α
S1 = 2
1+1+1+ α
α = -1
∴ Other root is -1
4. The equation whose roots are the negatives of the roots of the equation
x7 +3x5 + x3 − x2 + 7x + 2 = 0
1. x7 + 3x5 + x3 + x2 − 7x + 2 = 0 2. x7 + 3x5 + x3 + x2 + 7x − 2 = 0
1
Jpacademy Theory of Equations
3. x7 + 3x5 + x3 − x2 − 7x − 2 = 0 4. x7 + 3x5 + x3 − x2 + 7x − 2 = 0
Ans: 2
Sol. f(-x) = 0
(-x)7 + 3(-x)5 +(-x)3 -(-x)2 + 7(-x) + 2 = 0
-x7-3x5-x3-x2-7x+2=0
x7+3x5+x3+x2+7x-2=0
5. The biquadratic equation, two of whose roots are 1 + i, 1− 2 is
1. x4 − 4x3 + 5x2 − 2x − 2 = 0 2. x4 − 4x3 −5x2 + 2x + 2 = 0
3. x4 + 4x3 −5x2 + 2x − 2 = 0 4. x4 + 4x3 + 5x2 − 2x + 2 = 0
Ans: 1
Sol. The roots of required equation are
1+i, 1-i, 1− 2 , 1+ 2
Here S1 = 1+i+1-i+1− 2 +1+ 2 =4 (sum of the roots)
S4 = (1+i) (1-i) (1− 2 )(1+ 2 ) (product of the roots)
= (1-i2) (1- 2)
= -2
Now verify options.
6. To remove the 2nd term of the equation x4 −8x3 + x2 − x + 3 = 0 diminished the root of the
equation by [ EAMCET-2002 ]
1. 1 2. 2 3. 3 4. 4
Ans: 2
Sol. h = − a1 = − (− 8) = 2
na0 4(1)
7. The maximum possible number of real roots of the equation x5 −6x2 − 4x + 5 = 0 is
1. 3 2. 4 3. 5 4. 0
Ans: 1
Sol. Let f(x) = x5 – 6 x2 – 4x + 5 = 0, f(–x) = –x5 – 6x2 + 4x + 5 = 0
Number of positive real roots = Number of changes of signs in f(x)
=2
No. of negative roots = No. of changes of signs in f(-x)
=1
∴ No. of real roots = No. of positive roots + No. of negative roots =
= 2 +1 = 3
8. If α, β, γ are the roots of the equation x3 + ax2 + bx + c = 0 then α−1 + β−1 + γ−1 =
a −b c b
1. c 2. c 3. a 4. a
Ans: 2
Sol. α −1 + β −1 + γ −1 = 1 + 1 + 1
αβγ
2
Jpacademy Theory of Equations
= βγ + αγ + αβ = S2 = b
αβγ S3 − c
1+ 3i
9. If 2 is a root of the equation x4 − x3 + x −1= 0 then its real roots are
1. 1,1 2. -1, -1 3. 1, 2 4. 1, -1
Ans: 4
1+ 3i
Sol. If 2 is a roots of the given equation then the other root be roots are 1− 3i
2
Let the remaining roots be α , β
Now sum of the roots of given equation = S1 = 1
1+ 3i +1− 3i +α + β =1
22
1+α + β =1
α+β =0
By verification roots are 1,-1
10. If α, β, γ are the roots of 2x3 − 2x −1= 0 then
1. -1 2. 1 3. 2 4. 3
Ans: 2
Sol. (Σαβ )2 = (S2 )2
= ⎜⎛ − 2 ⎟⎞2 = 1
⎝2⎠
11. If α,β, γ are the roots of the equation x3 + 4x +1 = 0 then (α + β)−1 + (β + γ )−1 + (γ + α)−1 =
EAMCET - 2003
1) 2 2) 3 3) 4 4) 5
Ans: 3
Sol. α + β + γ = 0
(α + β )−1 + (β + γ )−1 + (γ + α )−1 = (− γ )−1 + (−α )−1 + (− β )−1
= −1−1−1
γαβ
= − ⎜⎜⎝⎛ 1 + 1 + 1 ⎠⎞⎟⎟
α β γ
= − ⎜⎜⎛⎝ αβ + βγ + γα ⎠⎟⎟⎞ = − ⎛⎜ 4 ⎞⎟ = 4
αβγ ⎝ −1⎠
12. Let α ≠ 0 and P(x) be a polynomial of degree greater than 2. If P(x) leaves remainders
α and − α when divided respectively by x + α and x − α then the remainder when P(x) is divided by
x2 − α2 is
3
Jpacademy Theory of Equations
1) 2x 2) -2x 3) x 4) –x
Ans: 4 and R(a) = -a
pa+q = -a------(2)
Sol. Let the remainder be R(x), then
R(x) = p(x)+q
Given R(-a) = a
- pa + q = a -------(1)
Solving (1) & (2), we get
p = -1, q = 0
∴R(x) = −x
13. If the sum of two of the roots of x3 + px2 + qx + r = 0 is zero then pq =
1) -r 2) r 3) 2r 4) -2r
Ans: 2
Sol. Let the roots be α , β ,γ
Given α + β = 0
α +β +γ =−p⇒γ =−p
γ = − p is a root of x3 + px2 + qx + r = 0
⇒ (− p)3 + p(− p)2 + q(− p)+ r = 0
∴ pq = r
14. If the roots of the equation 4x3 −12x2 +11x + k = 0 are in A.P. Then K = [EAMCET-2004]
1) -3 2) 1 3) 2 4) 3
Ans: 1
Sol. Let the roots be a-d, a, a+d
(a-d) + a + (a+d) = − ⎜⎛ −12 ⎞⎟
⎝4⎠
3a = 3 ⇒ a = 1
a = 1 is a root of 4x3-12x2+11x+k = 0
⇒ 4(1)3-12(1)2+11(1)+k=0
⇒ 3+k = 0 ∴ k = -3
15. α,β, γ are the roots of the equation x3 −10x2 + 7x + 8 = 0 Match the following
1) α + β + γ − 43
a) 4
2) α2 + β2 + γ2 −7
b) 8
1 +1+1 c) 86
d) 0
3) α β γ
α+β + γ
4) βγ γα αβ
e) 10
1) e, c, a, b 2) d, c, a, b 3) e, c, b, a 4) e, b, c, a
4
Jpacademy Theory of Equations
Ans: 3
Sol. x3 −10x2 + 7x + 8 = 0
Now α + β + γ = 10
α 2 + β 2 + γ 2 = (α + β + γ )2 − 2(αβ + βγ + γα )
= (10)2 – 2(7)
= 86
1 + 1 + 1 = βγ + γα + αβ = 7
α β γ αβγ −8
α + β + α = α2 + β2 + γ2 = 86 = −43
βγ γα αβ αβγ −8 4
16. If f(x) is a polynomial of degree n with rational coefficients and 1 + 2i, 2 − 3 and 5 are three
roots of f(x)=0, then the least value of n is
1) 5 2) 4 3) 3 4) 6
Ans: 1
Sol. Since 1+2i, 2 − 3 and 5 are the some roots of polynomial f(x) of degree n. As we know this
conjugate are also the roots of the polynomial is 1-2i, 2 + 3
∴ The least value of n is 5. [EAMCET-2005]
17. The roots of the equation x3 − 3x − 2 = 0 are
1) -1, -1, 2 2) -1, 1, -2 3) -1, 2, -3 4) -1, -1, -2
Ans 1
Sol. Verify S1
Here S1 = 0
By verification the roots are -1,-1,2
18. If α,β, γ are the roots of x3 + 2x2 − 3x −1 = 0 then α−2 + β−2 + γ−2 =
1) 12 2) 13 3) 14 4) 15
Ans: 2
α−2 + β−2 + γ−2 = 1 + 1 + 1
Sol. α2 β2 γ2
α 2β 2 + β 2γ 2 + γ 2α 2
= α 2β 2γ 2
αβγ = −2
αβ + βγ + γα = −3
αβγ = 1
(αβ + βγ + γα )2 = α 2β 2 + β 2γ 2 + γ 2α 2 + 2αβγ (α + β + γ )
9 = α 2β 2 + β 2γ 2 + γ 2α 2 + 2(1)(− 2)
α 2β 2 + β 2γ 2 + γ 2α 2 = 13
5
Jpacademy Theory of Equations
α −2 + β −2 + γ 2 = 13 = 13
1
19 The difference between two roots of the equation x3-13x2+15x+189=0 is 2. Then the roots of the
equation are [EAMCET : 2006]
1) -3,5,9 2) -3,-7,-9 3) 3,-5,7 4) -3,7, 9
Ans: 4
Sol. Verify S1
20. If α, β ,γ are the roots of the equation x3 − 6x2 +11x + 6 = 0 then Σα 2β + Σαβ 2 is equal to
1) 80 2) 84 3) 90 4) -84
Ans: 2
Sol. Σα 2β + Σαβ 2 = S1S2 − 3S3
= (6) (11) – 3(-6)
= 84
21. If 1, 2, 3 and 4 are the roots of the equation x4 + ax3 + bx2 + cx + d = 0, then a + 2b + c = (E-2007)
1) -25 2) 0 3) 10 4) 24
Ans: 3
Sol. (x-1)(x-2)(x-3)(x-4) = x4+ax3+bx2+cx+d
( )( )⇒ x2 − 3x + 2 x2 − 7x +12 = x4 + ax3 + bx2 + cx + d
⇒ x4 −10x3 + 35x2 − 50x + 24 = x4 + ax3 + bx2 + cx + d
Now a = -10, b = 35, c = -50, d = 24
a +2b+c=-10+2(35)-50
= 10
22. If α , β ,γ are the roots of x3 − 2x2 + 3x − 4 = 0 then the value of α 2β 2 + β 2γ 2 + γ 2α 2 is
1) -7 2) -5 3) -3 4) 0
Ans: 1
Sol. α + β + γ = 2 , αβ + βγ + γα = 3 , αβγ = −4
α 2β 2 + β 2γ 2 + γ 2α 2 = (αβ + βγ + γα )2 − 2αβγ (α + β + γ )
= (3)2 − 2(4)(2) = -7
EAMCET 2008
23. The cubic equation whose roots are thrice to each of the roots of x3-2x2-4x+1=0 is
1) x3-6x2+36x+27=0 2) x3+6x2+36x+27=0 3) x3-6x2-36x+27=0 4) x3+6x2-36x+27=0
Ans: 4
Sol. x = 3α ⇒ x ⇒ f ⎜⎛ x ⎟⎞ = 0
3 ⎝3⎠
⎜⎛ x ⎞⎟3 + 2⎛⎜ x ⎞⎟2 − 4⎜⎛ x ⎞⎟ +1 = 0
⎝3⎠ ⎝3⎠ ⎝3⎠
⇒ x3 + 6x2 − 36x + 27 = 0
24. The sum of fourth powers of the roots of the equation x3 + x +1 = 0 is
6
Jpacademy Theory of Equations
1) -2 2) -1 3) 1 4) 2
Ans: 4
Sol. Let roots be α , β ,γ we have to find α 4 + β 4 + γ 4
Let f(x) = x3+x+1
f1(x) = 3x2+1
( )Now 1(x)
− f (x) = − 3x2 +1
f x3 + x +1
301
10 0 3 1
10 3 3 1
3 3 12
∴ α4 +β4 +γ4 = 2
25. If α , β ,γ are the roots of x3+4x+1=0 then the equation whose roots are α2 β2 , γ2 is
,
β +γ γ +α α +β
1) x3-4x-1=0 2) x3-4x+1=0 3) x3+4x-1=0 4) x3+4x+1=0
[EAMCET 2009]
Ans: 3
Sol. Let y = α 2 = α 2 = −α = −x [∵α + β + γ = 0]
β +γ α
∴ Required equation is (-x)3+4(-x)+1=0
⇒ x3 + 4x −1= 0
26. If f(x)=2x4-13x2+ax+b is divisible by x2-3x+2, then (a,b) =
1) (-a,-2) 2) (6,4) 3) (9,2) 4) (2,9)
Ans: 3
Sol. x2-3x+2 = (x-1)(x-2)
f(1)=0, f(2)=0
2-13+a+b=0 32-52+2a+b=0
a+b=11 2a+b=20
Solving (1) & (2) we get
(a,b) = (9,2)
7
Jpacademy NUMERICAL INTEGRATION
PREVIOUS EAMCET BITS
1. The lines x = π divides the area of the region bounded by y = sinx, y = cosx and x-axis
4
⎛ 0 ≤ x ≤ π⎞ into two regions of area A1 and A2. The A1 : A2: [EAMCET 2009]
⎜⎝ 2 ⎟⎠
1) 4 : 1 2) 3 : 1 3) 2 : 1 4) 1 : 1
Ans: 4
π/4
Sol. A1 = ∫ (cos x − sin x) dx
0
π/2
A2 = ∫ (sin x − cos x) dx
π/4
∴ A1 : A2 = 1:1
2. The velocity of a particle which starts from rest is given by the following table
t (in seconds) : 0 2 4 6 8 10
v (in m/sec) : 0 12 16 20 35 60
The total distance travelled (in meters) by the particle in 10 seconds, using Trapezoidal rule is
given by [EAMCET 2009]
1) 113 2) 226 3) 143 4) 246
Ans: 2
Sol. Distance travelled = h ⎣⎡( y0 + yn ) + 2( y1 + y2 + ...... + y n −1 )⎤⎦
2
3. The area (in square units) of the region bounded by the curve 2x = y2 – 1 and x = 0 is
[EAMCET 2008]
1) 1 2) 2 3) 1 4) 2
33
1
Ans: 2
1 y2 −1 dy 1
∫ ∫ ( )Sol.
Area of the region = − = − y2 −1 dy -1/2 0
−1 2
0
⎡ y3 ⎤1 2 -1
⎢ 3 y⎥ 3
= − ⎣ − = sq.units
⎦0
4. The area (in square units) of the region enclosed by the curves y = x2 and y = x3 is
[EAMCET 2007]
1) 1 2) 1 3) 1 4) 1
12 6 3
Ans: 1
Sol. x2 = x3
x2 − x3 = 0 ⇒ x2 ( x −1) = 0 ⇒ x = 0,1
Jpacademy Numerical Integration
∫ ( )∴ Area = 1 ⎡ x3 x4 ⎤1 1
0 x2 − x3 dx = ⎢ 3 − 4 ⎥ = 12 sq.units
⎣ ⎦0
6
5. Dividing the interval [0, 6] into 6 equal parts and by using trapezoidal rule the value of ∫ x3dx is
0
approximately. [EAMCET 2006]
1) 330 2) 331 3) 332 4) 333
Ans: 4
Sol. a = 0, b = 6; n = 6; yn = a+ (r – 1) h
h = b−a =1
n
∫6 x3dx = h ⎡⎣( y0 + y6 ) + 2( y1 + y2 + y3 + y4 +5 )⎤⎦ = 333
2
0
6. The area (in square units) bounded by the curves y2 = 4x and x2 = 4y in the plane is
[EAMCET 2005]
1) 8 2) 16 3) 32 4) 64
33 3 3
Ans: 2 Y
Sol. Area bounded by the curves y2 = 4ax and x2 = 4by is 16ab OX
3
where a = 1, b = 1
∴ Area = 16 sq.units [EAMCET 2004]
3
7. The area bounded by y = x2 + 2, x-axis, x = 1 an x = 2 is
1) 16 2) 17 3) 13 4) 20
3 3 3 3
Ans: 3
( )∫Sol. 2 x2 + 2 dx = 13
13
6 1
8. ∫2 x2 − x dx
If [2, 6] is divided into four intervals of equal length, then the approximate value of
by using Simpson’s rule is [EAMCET 2003]
1) 0.3222 2) 0.2333 3) 0.5222 4) 0.2555
Ans: 3
∫6 1
Sol. dx
2 x2 − x
(6 − 2) ⎡⎣( y0 + y4 ) + 4( y1 + y3 ) + 2y2 ⎤⎦ = 0.5222
3.4
9
∫9. The approximate value of x2dx by using trapezoidal rule with equal, intervals is[EAMCET 2002]
1
1) 248 2) 242.5 3) 242.8 4) 243
Jpacademy Numerical Integration
Ans: 1
Sol. h = b − a = 9 −1 = 2
n4
x 1 3579
y = x2 1 9 25 49 81
9 x 2dx = 2 ⎣⎡(1 + 81) + 2(9 + 25 + 49)⎦⎤ = (82 + 166) = 248
2
∫
1
10.
X1 2 3 4
Y 0.7111 0.7222 0.7333 0.7444
4
∫Using the above table and trapezoidal rule, the approximately value of ydx is [EAMCET 2001]
1
1) 0.1833 2) 1.1833 3) 2.1833 4) 3.1833
Ans:3
∫Sol. b h ⎣⎡( + ) + ( + + + )⎤⎦
Trapezoidal rule = 2 y0 yn 2 y1 y2 ..... y n −1
f (x)dx =
a
Where h = b − a
n
∴ 4 ydx = 1 (0.7111 + 0.7444) + 2 ( 0.7222 + 0.7333) = 2.1833
∫ 2
1
11. The area (in square units ) of the region bounded by the curve x2 = 4y, the line x = 2 and the X-
axis is [EAMCET 2000]
1) 1 2) 2 y
3 → x2= 4y
3) 4 4) 8 Ox
3 3
Ans: 2
∫ ∫Sol. 2 ydx = 2 x2 dx = 2 →x=0
0 04 3
12. The area (in square units) bounded by the curves y = x3, y = x2 and the ordinates x = 1, x = 2 is
[EAMCET 2000]
1) 17 2) 12 3) 2 4) 7
12 17 7 2
Ans: 1
∫ ( )Sol. 2 x3 − x2 dx = 17
1 12
UUUU
Jpacademy DEFINITE INTEGRATION
PREVIOUS EAMCET BITS
∫π 1 [EAMCET 2009]
[EAMCET 2008]
1. dx = [EAMCET 2008]
0 1+ sin x
1) 1 2) 2 3) – 1 4) – 2
4) π
Ans: 2
16
∫π 1 × 1− sin x dx 4) π
Sol: 0 1+ sin x 1− sin x
∫ ∫ ( )= π 1− sin x dx ⇒ π sec2 x − sec x tan x dx
0 cos2 x 0
= ( tan x − sex)π
0
= [tan π − sec π] − [tan 0° − sec 0°]
= (0 +1) − (0 −1) = 2
1 3) π
12
∫2. x3/2 1− xdx =
0
1) π 2) π
69
Ans: 4
Sol: Put x = sin2 θ then dx = 2sin θ cos θdθ
Also x = 0, 1 ⇒ 0, π/2
1 π/2
∫ ∫x3/2 1− xdx = sin3 θ 1− sin2 θ.2sin θ cos θdθ
00
π/ 2 1 3 1 π π
2 sin 4 s2
∫= θ co θdθ = 2 × × × × =
0 6 4 2 2 16
π/2
3. ∫ sin x dx =
−π/2
1) 0 2) 1 3) 2
Ans:3
π/2 0 π/2
Sol: ∫ sin x dx = ∫ sin (−x) dx + ∫ sin xdx
−π/2 −π/2 0
[ ] [ ]= cos x 0 + − cos x π/2
−π/2 0
=1−0−0+1= 2
Jpacademy Definite Integration
∫4. If f (x ) = t e− x dx then Lt f ( t ) is [EAMCET 2007]
−t 2 t→∞ 4) – 1
1) 1 2) 1/2 3) 0 [EAMCET 2007]
4) – π
Ans:1
[EAMCET 2006]
∫ ∫Sol: f ( t ) = 0 ex dx + t e−x dx 4) 3π
−t 2 02
2
= 1 ⎡⎣ex ⎤⎦ 0 t + 1 ⎡⎣−e−x ⎤⎦ t
2 − 2 0
= 1 ⎣⎡1 − e−t ⎦⎤ − 1 ⎣⎡e−t −1⎦⎤ = 1 − 1 e−t − 1 e−t + 1
2 2 2 2 2 2
f(t) = 1− e−t
Lt f (t) = Lt ⎡⎣1− e−t ⎦⎤ =1− e−∞ =1− 0 =1
t→∞ x→∞
2π
∫5. sin6 x cos5 xdx =
0
1) 2π 2) π 3) 0
2
Ans: 3
2π
∫Sol: I = sin6 x cos5 xdx
0
Let f (x) = sin6 x cos5 x
f (2π − x) = f (x)
π
∫I = 2 sin6 x cos5 xdx
0
f (π − x) = sin6 (π − x) cos5 (π − x)
= − sin6 x cos5 x = −f (x)
∴I = 0
∫6. π/2 dx = 2) π 3) π
0 1+ tan3 x 2 4
1) π
Ans: 3
Let∫Sol:I= π/ 2 dx x
0 1+ tan3
Jpacademy∫π/ 2 cos3 x dx ……….(1) Definite Integration
= 0 sin3 x + cos3 x [EAMCET 2006]
4) e2 + 2
∫π/ 2 cos3 ⎛ π − x ⎞
⎝⎜ 2 ⎟⎠ 2e
= dx
⎛ π ⎞ ⎛ π ⎞ [EAMCET 2005]
0 sin 3 ⎜⎝ 2 − x ⎟⎠ + cos3 ⎝⎜ 2 − x ⎠⎟ 4) 150π
∫= π/2 sin3 x 3 x dx …………(2)
0 cos3 x + sin
(1) + (2)
π/2
2I = ∫ 1.dx
0
2I = π ⇒ I = π
24
∫7.1 cosh x dx =
−1 1+ e2x
1) 0 2) 1 3) e2 −1
2e
Ans: 3
∫ ( )1 ex + e−x ⎡⎢∵ cosh x = ex + e−x ⎤
⎣ 2 ⎥
Sol: dx ⎦
−1 2 1 + e2x
e2x +1 dx ⇒ 1 1 e−xdx
∫ ( ) ∫1
=
−1 2ex 1+ e2x 2 −1
∫= 1 1 ⇒ 1 ⎣⎡−e−x ⎤⎦1−1
2 2
e− x dx
−1
= − 1 ⎣⎡e−1 − e1 ⎦⎤ ⇒ e2 −1
2 2e
∫8. π/2 200sin x +100 cos x dx =
0 sin x + cos x
1) 50π 2) 25π 3) 75π
Ans: 3
∫Sol: π/2 a sin x + b cos x dx = (a + b) π
0 sin x + cox 4
∫π/2 200sin x +100 cos x dx = (200 +100) π = 75π
0 sin x + cos x 4
Jpacademy Definite Integration
∫9. π 1 θ sin θ θ dθ = [EAMCET 2005]
0 + cos2 [EAMCET 2004]
π2 π3 3) π2 π2
1) 2) 4)
2 3 4
Ans: 4
π θsin θ
Let I =
∫Sol: 0 1+ cos2 θ dθ
= π (π − θ)sin (π − θ) dθ ⇒ π (π − θ)sin θ dθ
1+ cos2 (π − θ)
∫ ∫ 1+ cos2 θ
0 0
π sin θ π/2 sin θ
0 + cos2 + cos2
∫ ∫I= π 1 θ dθ − I = 2I = π.2 1 θ dθ let cosθ = 5 , - sinθdθ = dt
0
0 −dt 1 1
1+ t2 1+ t2
∫ ∫I= π ⇒ π dt
1 0
= π ⎡⎣ tan −1 t ⎦⎤10 ⇒ I = π ⎡ π − 0⎦⎥⎤ ⇒ I = π2
⎣⎢ 4 4
∫10. π/2 log ⎛ 2 − sin θ ⎞ dθ =
−π/2 ⎝⎜ 2 + sin θ ⎟⎠
1) 0 2) 1 3) 2 4) – 1
Ans: 1
Sol: Let f (θ) = log ⎛ 2 − sin θ ⎞
⎜⎝ 2 + sin θ ⎠⎟
f (−θ) = log ⎛ 2 + sin θ ⎞ = − log ⎛ 2 − sin θ ⎞
⎜⎝ 2 − sin θ ⎠⎟ ⎜⎝ 2 + sin θ ⎠⎟
f (−θ) = −f (θ)
∴ It is an odd function
∫∴ I = π/2 log ⎛ 2 − sin θ ⎞ dθ = 0
−π/2 ⎜⎝ 2 + sin θ ⎟⎠
∫11. 2 2x − 2 dx = [EAMCET 2004]
0 2x − x2 4) 4
1) 0 2) 2 3) 3
Ans: 1
∫2 2x − 2
Sol: Let I = 0 2x − x2 dx
Jpacademy Definite Integration
Put 2x − x2 = t ⇒ (2 − 2x) dx = dt
∫0 dt = 0
− 0t
2 [EAMCET 2003]
4) 4
12. ∫ [x] dx =
−2
1) 1 2) 2 3) 3
Ans: 4
−1 0 1 2
Sol: ∫ [x] dx + ∫ [x] dx + ∫ [x] dx + ∫ [x] dx
−2 −1 0 1
=2+1+0+1=4
∫13.1 sin ⎛ 2 tan −1 1+ x ⎞ = [EAMCET 2003]
0 ⎜⎜⎝ 1− x ⎠⎟⎟dx
ππ π 4) π
1) 2) 3)
2
64
Ans: 2
Sol: Put x = cosθ L.L : 0 = cosθ ⇒ θ = π / 2
dx = - sinθdθ U.L : 1 = cosθ ⇒ θ = 0°
0 ⎡ 1+ cos θ ⎤
⎢2 1− cos θ ⎥
∫= sin tan −1 ⎦ ( − sin θ)dθ
π/2 ⎣
π/2 π/2
= ∫ sin (π − θ)sin θdθ = ∫ sin2 θdθ
00
= 1×π = π
22 4
∫14.3 3x +1 = [EAMCET 2003]
0 dx
x 2 + 9 ( )4) Log 2 2 + π
3
( ) ( )1) Log 2 2 + π 2) Log 2 2 + π ( )3) Log 2 2 + π
12 2 6
Ans: 1
=∫ ∫Sol:33 2x 9 dx + 3 x 1 9 dx
20 x2 + 0 2+
( )= 3 3 1 ⎡ −1 x ⎤3
2 ⎡⎣Log x2 +9 ⎤⎦ 0 + 3 ⎢⎣ tan 3 ⎥⎦0
= 3 [Log18 − Log9] + 1 ⎣⎡ tan −1 (1) − tan −1 (0)⎦⎤
2 3
Jpacademy Definite Integration
= 3 Log2 + π = Log23/2 + π
2 12 12 [EAMCET 2002]
4) log 1
( )= Log 2 2 + π
12 4
∫15. 3 dx =
2 x2 − x
1) log 2 2) log 4 3) log 8
3 3 3
Ans: 2 3) 3π
572
3 dx 3 dx
2 x2 − x 2 3) 5π
∫ ∫Sol: = x (x −1) 512
∫= 3 ⎛ 1 − 1 ⎞ dx = ⎡ ⎛ x −1⎞⎤3
2 ⎜⎝ x −1 x ⎟⎠ ⎣⎢log ⎜⎝ x ⎟⎠⎦⎥x=2
= log 2 − log 1 = log 4
32 3
π/2 [EAMCET 2002]
∫16. sin4 x cos6 xdx =
−π/2
1) 3π 2) 3π 4) 3π
128 256 64
Ans: 2
π/2 π/2
∫ ∫Sol: sin4 x cos6 xdx = 2 sin4 x cos6 xdx
−π/2 0
= 2 ⎡3 . 1 . 5 . 3 . 1 . π ⎤ = 3π
⎣⎢10 8 6 4 2 2 ⎦⎥ 256
π/2 [EAMCET 2001]
4) 7π
∫17. sin8 x cos2 xdx =
0 512
1) π 2) 3π [EAMCET 2001]
512 512
Ans: 4
π/2
∫Sol: sin8 x cos2 xdx
0
= 7 .5. 3. 1 . 1 . π = 7π
10 8 6 4 2 2 512
1
18. ∫ (ax3 + bx) dx = 0 for ;
−1
Jpacademy 2) a > 0 and b > 0 only Definite Integration
1) any values of a and b [EAMCET 2000]
[EAMCET 2000]
3) a > 0 and b < 0 only 4) a < 0 and b < 0 only
[EAMCET 2000]
Ans: 1
Sol: ax3 + bx is odd function
1
∴ ∫ (ax3 + bx) dx = 0
−1
for any values of ‘a’ and ‘b’
⎛ 10 −2n ⎞⎛ 10 2 n +1 ⎞
⎜ xdx ⎟ + ⎜ ⎟
∑ ∫ ∑ ∫19. sin 27
sin 27 xdx
⎝ n=1 2n−1 ⎠ ⎝ n=1 2n ⎠
1) 272 2) – 54 3) 54 4) 0
Ans: 4
Sol: sin27x is odd function
∫20. 1 x dx =
0
(1− x )5/4
1) 16 2) 3 3) −3 4) −16
3 16 16 3
Ans: 4
1 x 1 1− x 1 1− x
0 0 0 x5/4
(1− x )5/4
∫ ∫ ∫Sol: dx = )5 / 4 dx ⇒ dx
⎡⎣(1 ⎤
− 1 − x ⎦
∫= 1 ⎛ 1 − 1 ⎞ dx = −16
0 ⎜⎝ x5/4 x1/ 4 ⎟⎠ 3
21. If f(x) is integrable on [0, a] then ∫a f (x) =
(a − x) dx
0 f (x)+f
1) 0 2) 1 3) a 4) a/2
Ans: 4
Sol: I = a f f (x) − x) dx ………………(1)
(x)+f (a
∫
0
⇒ I = a f ( f( a − x) ( x ) dx …………..(2)
x )+f
∫ a−
0
(1) + (2)
∫⇒ 2I = a I dx ⇒ I = a
02
Jpacademy Definite Integration
22. lim ⎡ 1 + 1 2 + ..... + 1 n ⎤ [EAMCET 2000]
⎢⎣ 2n +1 2n + 2n + ⎦⎥
n→∞
1) loge ⎛1⎞ 2) loge ⎛ 2⎞ 3) loge ⎛ 3⎞ 4) log e ⎛ 4 ⎞
⎝⎜ 3 ⎟⎠ ⎜⎝ 3 ⎟⎠ ⎜⎝ 2 ⎟⎠ ⎝⎜ 3 ⎟⎠
Ans: 3
Sol: lim ⎡ 1 + 1 2 + ..... + 1 n ⎤
⎣⎢ 2n +1 2n + 2n + ⎦⎥
n→∞
∑= n ⎛ 1 ⎞
lim r =1 ⎝⎜ 2n + r ⎠⎟
n→∞
∑n 1
= lim ⎛ r ⎞
n→∞ r =1 ⎜⎝ n ⎟⎠
n 2 +
∫= 1 dx = ⎡⎣log (2 + x )⎦⎤10 = loge ⎛ 3 ⎞
0 2+x ⎜⎝ 2 ⎟⎠
DDD
Jpacademy DIFFERENTIAL EQUATIONS
PREVIOUS EAMCET BITS
1. The solution of the differential equation dy = sin (x + y) tan ( x + y) −1 is [EAMCET 2009]
dx
1) cos ec( x + y) + tan (x + y) = x + c 2) x + cos ec (x + y) = c
3) x + tan (x + y) = c 4) x + sec (x + y) = c
Ans: 2
Sol: Let x + y = v
1+ dy = dv
dx dx
we have, dv −1 = sin v tan v −1
dx
dv = sin v tan v
dx
∫ ∫dv = sin2 v ⇒ cos v dt = dx
sin 2 v
dx cos2 v
− 1 =x+c
sin v
∴ cosec(x + y) + x = c
2. The differential equation of the family y = aex + bxex + cx2ex of curves, where a, b, c arbitrary
constants, is [EAMCET 2009]
1) y′′′ + 3y′′ + 3y′ = 0 2) y′′ + 3y′′ − 3y′ = 0
3) y′′′ − 3y′′ − 3y′ + y = 0 4) y′′′ − 3y′′ + 3y′ − y = 0
Ans: 4
Sol: y = aex + bxex + cx2ex
( )y = a + bx + cx2 ex
d.b.s.w.r.t ‘x’
( )y′ = a + bx + cx2 ex + ex (b + 2cx)
y′ = y + ex (b + 2cx)
y′′ = y′ + ex (2cx) + (b + 2cx) ex
y′′ = y′ + y′ − y + 2cxex
84
Jpacademy Differential Equations
y′′ = 2y′ − y + 2cxex [EAMCET 2008]
y′′′ = 2y′′ − y′ + 2cex
y′′′ = 2y′′ − y′ + [y′′ − 2y′ + y]
∴ y′′′ − 3y′′ + 3y′ − y = 0
3. The solution of the differential equation dy = x − 2y +1 is
dx 2x − 4y
1) (x − 2y)2 + 2x = c 2) (x − 2y)2 + x = c
3) x−y = log ⎛ cx ⎞ 4) (x − 2y) + x2 = c
⎜ y ⎟
⎝ ⎠
Ans: 1
Sol: Put x − 2y = z .
Then 1− 2 dy = dz ⇒ 2 dy =1− dz ⇒ dy = 1 ⎝⎛⎜1 − dz ⎞
dx dx dx dx dx 2 dx ⎠⎟
dy = x − 2y +1 ⇒ 1 ⎝⎛⎜1 − dz ⎞ = z +1 ⇒1− dz = 1+ 1
dx 2x − 4y 2 dx ⎠⎟ 2z dx z
⇒ dz = −1 ⇒ zdz = −dx ⇒ z2 = −x + c / 2 ⇒ z2 = −2x + c ⇒ (x − 2y)2 + 2x = c
dx z 2
4. The solution of the differential equation dy − y tan x = ex sec x is [EAMCET 2008]
dx
1) yex cos x + c 2) y cos x = ex + c 3) y = ex sin x + c 4) y sin x = ex + c
Ans: 2
Sol: I.F = e∫Pdx = e∫−tan xdx = cos x
∫ ∫The solution is y cos x = ex sec x cos xdx = exdx = ex + c ⇒ y cos x = ex + c
( )5. The solution of the differential equation xy2dy − x3 + y3 dx = 0 is [EAMCET 2008]
1) y3 = 3x3 + c 2) y3 = 3x3 log (cx ) 3) y3 = 3x3 + log (cx ) 4) y3 + 3x3 = log (cx)
Ans: 2
Sol: Put y = vx. Then dy = ν + dν
dx dx
( )xy2dy − x3 + y3 dx = 0 ⇒ dy = x3 + y3 ⇒ ν + x dv = x3 + x3v3 ⇒ v + x dv = 1 + v
dx xy2 dx x3ν2 dx v2
⇒ x dν = 1 ⇒ ν2dν ⇒ dx = ν3 = log x + log c
dx ν2 x3
85
Jpacademy Differential Equations
⇒ ν3 = 3log (cx) ⇒ y3 = 3log (cx)
x3
∴ y3 = 3x3 log (cx)
6. The differential equation obtained by eliminating the arbitrary constants a and b from
xy = aex + be−x is [EAMCET 2007]
1) x d2y + 2 dy − xy = 0 2) d2y + 2y dy − xy = 0
dx2 dx dx2 dx
3) x d2y + 2 dy − y = 0 4) d2y + dy − xy = 0
dx2 dx dx2 dx
Ans: 1
Sol: xy = aex + be−x
⇒ xy1 + y = aex − be−x [EAMCET 2007]
xy2 + y1 + y1 = aex + be−x
∴ xy2 + 2y1 − xy = 0
7. The solutions of ( x + y +1) dy = 1 is
dx
1) y = ( x + 2) + cex 2) y = − ( x + 2) + cex 3) x = − ( y + 2) + cey 4) x = ( y + 2)2 + cey
Ans: 3
Sol: Put x + y + 1 = z ⇒ dy = dz −1
dx dx
(x + y + 1) dy = 1⇒ z ⎛ dz −1⎞⎠⎟ =1
dx ⎜⎝ dx
⇒ dz =1+ 1 ⇒ ∫ z z dz = ∫ dx
dx z +1
⇒ z − log (z +1) = x + c
x + y +1 = x + log ( x + y + 2) + c
y = log (x + y + 2) + log c
⇒ x + y + 2 = cey
8. The solution of dy = y2 is [EAMCET 2007]
dx xy − x2 4) e−y/ x = ky
1) ey/ x = kx 2) ey/ x = ky 3) e−y/ x = kx
Ans: 2
86
Jpacademy Differential Equations
Sol: Put y = vx
dy = y2 ⇒ V + x dV = V2
dx xy − x2 dx V −1
⇒ ∫ V −1 dV = ∫ 1 dx
V x
⇒ V − log V = log x + log c
⇒ V = log (cVx)
∴ cy = ey/ x 3) ex+y + x + c = 0 [EAMCET 2007]
4) ex+y − x + c = 0
9. The solution of dy +1 = ex+y is
dx [EAMCET 2006]
1) e−(x+y) + x + c = 0 2) e−(x+y) − x + c = 0
Ans: 1
Sol: Put x + y = z ⇒ 1+ dy = dz
dx dx
∫ ∫dz = ez ⇒ e−zdz = dx
dx
−e−z = x + c ⇒ e−(x+y) + x + c = 0
( )10. The solution of x2 + y2 dx = 2xy dy is
( ) ( )1) c x2 − y2 = x 2) c x2 + y2 = x ( )3) c x2 − y2 = y ( )4) c x2 + y2 = y
Ans: 1
Sol: Homogeneous differential equation
Put y = V ⇒ V + V′x = 1+ V2
x 2V
⇒ ∫ 2V dV = ∫ dx ⇒ − log 1 − v2 = log x + log c
1− V2 x
( )Solving c x2 − y2 = x
( )11. The solution of 1+ x2 dy + 2xy − 4x2 = 0 is [EAMCET 2006]
dx
( )1) 3x 1+ x2 = 4x3 + c ( )2) 3y 1+ x2 = 4x3 + c
( )3) 3x 1− x2 = 4x3 + c ( )4) 3y 1− x2 = 4x3 + c
Ans: 2
Sol: dy + ⎛ 2x ⎞ y = 4x2
dx ⎝⎜ 1+ x2 ⎟⎠ 1+ x2
87
Jpacademy Differential Equations
Linear differential equation dy + P ( x) y = Q ( x)
[EAMCET 2006]
dx 4) 1 = cx − y log x
= e∫ pdx = 2x dx =1+ x2 y
[EAMCET 2005]
I.F e ∫ 1+ x 2
4) 2x + y + c
4x2
1+ x2 [EAMCET 2005]
( ) ( )∫y. 1+ x2 4) 3co s x + c
= 1+ x2 dx
( )y. 1+ x2 = 4x3 + c
3
( )3y 1+ x2 = 4x3 + c
12. The solution of dx + x = x2 is
dy y
1) 1 = cx − x log x 2) 1 = cy − y log y 3) 1 = cx + x log y
yx x
Ans: 2
Sol: ------
13. dx + dy = (x + y)(dx − dy) ⇒ log (x + y) =
1) x + y + c 2) x + 2y + c 3) x − y + c
Ans: 3
Sol: dx + dy = dx − dy
x+y
∫ d(x + y) = ∫ dx −∫ dy
(x + y)
log (x + y) = x − y + C
14. x2y − x3 dy = y4 cos x ⇒ x3y−3 =
dx
1) sinx 2) 2sin x + c 3) 3sin x + c
Ans: 3
Sol: x2y − x3 dy = y4 cos x
dx
x2ydx − x3dy = cos x
y4dx
= x2 dx − x3 dx = cos xdx
y3 y4
∫⇒ d ⎛ x3 ⎞ = 3sin x + C
⎜ y3 ⎟
⎝ ⎠
88
Jpacademy3x3 3x3 Differential Equations
∫ ∫⎛y3 dx − y4 dy ⎞ = 3cos xdx [EAMCET 2005]
⎜ ⎟
⎝ ⎠
⇒ x3 = 3sin x +C
y3
15. Observer the following statements :
I. dy + 2xydx = 2e−x2 ⇒ yex2 = 2x + C
II. ye2 2x = c ⇒ dx = 2e−x2 − 2xy dy
Which of the following is a correct statements
1) Both I and II are true 2) Neither I nor II is true
3) I is true , II is false 4) I is false, II is true
Ans: 3
Sol: dy + 2x.y = 2e−x2
dx
which is linear differential equation
I.F = e∫ 2xdx = ex2
∫y.ex2 = 2.e−x2 ex2 dx = 2x + C True. ∴ I is true, II is false
16. dy = y + x tan y / x ⇒ sin y = [EAMCET 2005]
dx x x [EAMCET 2004]
1) cx2 2) cx 3) cx3 4) cx4
Ans: 2
Sol: Put y = V ⇒ dy = V + x dv
x dx dx
V + x. dv = V + TanV
dx
∫ dv =∫ dv
tan V x
log sin V = log Cx
sin ⎛ y ⎞ = Cx
⎜⎝ x ⎠⎟
( )17. Integrating factor of x + 2y3 dy = y2 is
dx
⎛1⎞ −⎛⎜ 1 ⎞ 4) −1
⎜⎟ ⎟ y
2) e ⎝ y ⎠
1) e⎝ y ⎠ 3) y
Ans: 1
89
Jpacademy Differential Equations
Sol: dx = x + 2y
dy y2
dx + x ⎛ − 1 ⎞ = 2y
dy ⎜ y2 ⎟
⎝ ⎠
e∫− 1 dy 1
y2
I.F = = ey
18. y = Aex + Be2x + Ce3x satisfies the differential equation [EAMCET 2004]
1) y′′′ − 6y′′ + 11y′ − 6y = 0 2) y′′′ + 6y′′ + 11y′ − 6y = 0
3) y′′′ − 6y′′ −11y′ − 6y = 0 4) y′′′ − 6y′′ −11y′ + 6y = 0
Ans: 1
Sol: y′′′ − (1+ 2 + 3) y′′
+ (1.2 + 2.3 + 3.1) y′ −1.2.3y = 0
19. Observe the following statements : [EAMCET 2004]
A : Integrating factor of dy + y = x2 is ex
dx
R : Integrating factor of dy + P ( x) y = Q ( x ) is e∫P(x)dx
dx
Then the true statement among the following is
1) A is true, R false 2) A is false, R is true
3) A is true, R is true, R ⇒ A 4) A is false, R is false
Ans: 3
Sol: I.F of dy + y = x2 is e∫1dx = ex
dx
20. The differential equation of the family of parabola with focus at the origin and the X-axis as axis
is [EAMCET 2003]
1) y ⎛ dy ⎞2 + 4x ⎛ dy ⎞ = 4y 2) − y ⎛ dy ⎞2 = 2x dy −y
⎜⎝ dx ⎠⎟ ⎜⎝ dx ⎟⎠ ⎜⎝ dx ⎟⎠ dx
3) y ⎛ dy ⎞2 + y = 2xy dy 4) y ⎛ dy ⎞2 + 2xy ⎛ dy ⎞ + y = 0
⎝⎜ dx ⎟⎠ dx ⎜⎝ dx ⎠⎟ ⎜⎝ dx ⎟⎠
Ans: 2
Sol: Focus = (0, 0); directrix is x+ a = 0
Equation of the parabola is y2 = a(2x + a)
90
Jpacademy2ydy=2a ⇒ a = yy1 Differential Equations
dx [EAMCET 2003]
[EAMCET 2003]
y2 = 2xyy1 + y2y12
⇒ y2 = y ⎣⎡2xy1 + yy12 ⎦⎤
⇒ y = 2xy1 + yy12
⇒ −yy12 = 2xy1 − y
⇒ − y ⎛ dy ⎞2 = 2x ⎛ dy ⎞ − y
⎜⎝ dx ⎟⎠ ⎝⎜ dx ⎟⎠
21. Solution of dy = x log x2 + x is
dx sin y + y cos y
1) y sin y = x2 log x + c 2) y sin y = x2 + c
3) y sin y = x2 + log x + c 4) y sin y = x log x + c
Ans: 1
Sol: dy = x log x2 + x
dx sin y + y cos y
⇒ sin ydy + y cos ydy = x log x2dx + xdx
Integrating on both sides y sin y = x2 log x2 + C
( )22. The general solution of y2dx + x2 − xy + y2 dy = 0 is
1) tan −1 ⎛ x ⎞ + log y + c = 0 2) 2 tan−1 ⎛ x ⎞ + log y + c = 0
⎜ y ⎟ ⎜ y ⎟
⎝ ⎠ ⎝ ⎠
( )3) log y + x2 + y2 + log y + c = 0 4) 2 sinh−1 ⎛ x⎞ + log y + c = 0
⎜ ⎟
⎝ y ⎠
Ans: 1
Sol: dy = −y2
dx x2 − xy + y2
Put y = vx
91
Jpacademy Differential Equations
v + x dv = x2 −v2x2 = −v2
dx − vx2 + v2 x2 1− v + v2
( )dx = − 1 − v + v2 dv
x v 1+ v2
log xv = tan−1 v + c
log y = tan −1 ⎛ y ⎞ + c
⎜⎝ x ⎟⎠
⇒ log y + tan −1 ⎛ x ⎞ + c = 0
⎜ y ⎟
⎝ ⎠
23. Order of the differential equation of the family of all concentric circles centered at (h, k) is
[EAMCET 2002]
1) 1 2) 2 3) 3 4) 4
Ans: 1
Sol: ( x − h )2 + ( y − k)2 = r2
Centre (h, k) is fixed
Radius = r is a variable
Hence order is 1
24. The solution of dy + y = 1 is [EAMCET 2002]
dx 3 4) 3y = c + c−x / 3
1) y = 3 + cex / 3 2) y = 3 + ce−x / 3 3) 3y = c + ex / 3
Ans: 2
Sol: dy + y = 1 ⇒
dx 3
Integrating factor : I.F = e∫ 1 dx = ex /3
3
∫Solution yex / 3 = ex / 3dx
yex / 3 = 3ex / 3 + C
y = 3 + Ce−x / 3
25. y + x2 = dy has the solution [EAMCET 2002]
dx
2) y + x + 2x2 + 2 = cex
1) y + x2 + 2x + 2 = cex
3) y + x + x2 + 2 = ce2x 4) y2 + x + x2 + 2 = ce2x
Ans: 1
Sol: y + x2 = dy
dx
92
Jpacademy Differential Equations
dy − y = x2
dx [EAMCET 2002]
I.F = e∫ −1dx = e−x 4) y1/ 3 − x1/ 3 = c
∫Solution ye−x = x2e−xdx [EAMCET 2001]
( )ye−x = −e−x x2 + 2x + 2 + C
y + x2 + 2x + 2 = Cex
dy ⎛ y ⎞1/ 3
dx ⎜⎝ x ⎟⎠
26. The solution of = is
1) x2 / 3 + y2 / 3 = c 2) y2 / 3 − x2 / 3 = c 3) x1/ 3 + y1/ 3 = c
Ans: 2
Sol: dy = y1/ 3 ⇒ y −1/ 3dy = x −1/ 3dx
dx x1/ 3
∫ ∫y−1/ 3dy = x−1/ 3dx
3 ⎡⎣y2 / 3 − x2/3 ⎦⎤ = C1
2
⇒ y2/3 − x2/3 = C
27. The solution of xdx + ydy = x2 ydy − xy2dx is
( )1) x2 −1 = c 1 + y2 ( )2) x2 + 1 = c 1 − y2
( )3) x3 −1 = c 1+ y3 ( )4) x3 +1 = c 1− y3
Ans: 1
Sol: xdx + ydy = x2ydy − xy2dx
x (1+ y2 ) dx = −y(1− x2 ) dy
−x dx = y dy
1− x2 1+ y2
∫ x = ∫ 1 y dy
dx + y2
x2 −1
⇒ log (x2 −1) = log (1 + y2 ) + log c
( )∴x2 −1 = c 1 + y2
28. The solution of x2 + y2 dy = 4 is 3) x3 + y3 = 3x + c [EAMCET 2001]
dx 4) x3 + y3 = 12x + c
1) x2 + y2 = 12x + c 2) x2 + y2 = 3x + c
Ans: 4
93
Jpacademy Differential Equations
Sol: x2 + y2 dy = 4
dx
( )4 − x2 dx = y2dy
∫ (4 − x2 )dx = ∫ y2dy
x3 + y3 = 12x + c
29. The solution of dy + y = ex is [EAMCET 2001]
dx 4) 2ye2x = 2ex + c
1) 2y = e2x + c 2) 2yex + ex + c 3) 2yex = e2x + c
Ans: 3
Sol: dy + y = ex
dx
P = 1; Q = x
I.F is e∫pdx = ex
∫y.ex = ex .ex + c ⇒ 2yex = e2x + c
30. If c is a parameter, then the differential equation whose solution is y = c2 + c [EAMCET 2000]
x
1) y = x4 ⎛ dy ⎞ − x ⎛ dy ⎞2 2) y = x 4 ⎛ dy ⎞2 + x ⎛ dy ⎞
⎜⎝ dx ⎟⎠ ⎝⎜ dx ⎟⎠ ⎝⎜ dx ⎠⎟ ⎝⎜ dx ⎠⎟
3) y = x4 ⎛ dy ⎞2 − x ⎛ dy ⎞ 4) y = x 4 ⎛ d2y ⎞ − x ⎛ dy ⎞
⎝⎜ dx ⎠⎟ ⎝⎜ dx ⎠⎟ ⎜ dx 2 ⎟ ⎜⎝ dx ⎟⎠
⎝ ⎠
Ans: 3
Sol: y = c2 + C ⇒ dy = −C
x dx x2
⇒ C = −x2 dy
dx
y = ⎛ −x 2 dy ⎞2 + 1 ⎛ − x 2 dy ⎞
⎝⎜ dx ⎟⎠ x ⎜⎝ dx ⎟⎠
⇒∴ y = x4 ⎛ dy ⎞2 − x ⎛ dy ⎞
⎜⎝ dx ⎠⎟ ⎜⎝ dx ⎠⎟
31. The equation of curve passing through the origin and satisfying the differential equation
dy = ( x − y)2 is [EAMCET 2000]
dx
1) e2x (1 − x + y) = (1 + x − y) 2) e2x (1 + x − y) = (1 − x + y)
3) e2x (1 − x + y) = − (1 + x + y) 4) e2x (1 + x + y) = (1 − x + y)
94
Jpacademy Differential Equations
Ans: 1
Sol: dy = (x − y)2 Let x − y = t
dx
⇒ dy = 1 − dt
dx dx
1− dt = t2 ⇒ dx = dt
dx 1− t2
⇒ ∫ dx =∫ (1 dt )
− t2
x = 1 loge ⎛1+ t ⎞ ⇒ 2x = log ⎛1+ t ⎞
2 ⎝⎜ 1 − t ⎠⎟ ⎝⎜ 1 − t ⎠⎟
⇒ e2x = 1+ t
1− t
∴ e2x (1 − x + y) = (1 + x − y)
777
95
Jpacademy INDEFINITE INTEGRATION
PREVIOUS EAMCET BITS
1. ∫ ( x dx + 3 [EAMCET 2009]
+1) 4x
1) tan−1 4x + 3 + c 2) 3 tan−1 4x + 3 + c 3) 2 tan−1 4x + 3 + c 4) 4 tan−1 4x + 3 + c
Ans:
x = t2 −3 1 tdt
4 2
Sol: 4x + 3 = t2 = ∫ ⎛ t 2 − 3 ⎞
⎜ 1⎟
⎝ 4 + t
⎠
∫ ( )= 2
4dx = 2tdt t2 + dt = 2 tan−1 t + c = 2 tan −1 4x + 3 + c
t
dx = 1 tdt
2
2. ∫ ⎛ 2 − sin 2x ⎞ ex dx [EAMCET 2009]
⎜⎝ 1− cos 2x ⎟⎠
1) −ex cot x + c 2) ex cot x + c 3) 2ex cot x + c 4) −2ex cot x + c
Ans: 1
⎛ 2 − 2sin x cos x ⎞
⎝⎜ 2 sin 2 x ⎟⎠
( )∫ ∫Sol:
e x dx = cos ec2x − cot x exdx
= ∫ ex ⎣⎡(− cot x) + cos ec2x⎦⎤ dx
ex (− cot x) + c ⎡⎣∵ ∫ ex ⎣⎡f ( x) + f ′(x)⎦⎤ dx = exf (x) + c⎤⎦
∫3. If In = sinn xdx then nIn − (n −1) In−2 = [EAMCET 2009]
1) sinn−1 x cos x 2) cosn−1 x sin x 3) – sinn−1 x cos x 4) − cosn−1 x sin x
Ans: 1
∫Sol: sinn−1 x sin x
In = dx
uv
In = sinn−1 x (− cos x) − ∫ (n −1)(sin )x n−2 (cos x)(− cos x) dx
∫ ( )In = − sinn−1 x cos x + (n −1) (sin x )n−2 1− sin2 x dx
∫ ∫In = − sinn−1 x cos x + (n −1) sinn−2 xdx − (n −1) sinn xdx
In = − sinn−1 x cos x + (n )−1 In−2 − (n −1) In ⇒ nIn − (n )−1 In−2 = sinn−1 x cos x
Jpacademy Indefinite Integration
4. If ∫ ex ⎛ 1− sin x ⎞ dx = f (x)+c then f (x) = [EAMCET 2008]
⎜⎝ 1− cos x ⎠⎟
1) ex cot ⎛ x⎞ 2) e−x cot ⎛ x ⎞ 3) −ex cot ⎛ x⎞ 4) −e−x cot ⎛ x⎞
⎝⎜ 2 ⎠⎟ ⎝⎜ 2 ⎠⎟ ⎝⎜ 2 ⎟⎠ ⎝⎜ 2 ⎟⎠
Ans:3
⎛ 1− 2sin x cos x ⎞ ⎡1 x x ⎤
⎜ 2 x 2 ⎟ ⎣⎢ 2 2 2 ⎥⎦
ex ⎜ ⎟dx ex cos ec2
⎜ 2 sin 2 ⎟
∫ ∫Sol: = − cot dx
⎝ 2⎠
= ex ⎛ − cot x ⎞ + c ⎡⎣∵∫ ex ⎡⎣f ( x) + f ′(x)⎤⎦dx = exf (x) + c⎦⎤
⎜⎝ 2 ⎠⎟
∴f ( x) = −ex cot x
2
∫5. If In = xnecxdx for n ≥ 1 then c.In + n.In−1 = [EAMCET 2008]
4) xn + ecx
1) xnecx 2) xn 3) ecx
Ans: 1 [EAMCET 2008]
∫Sol: xn ecx 4) tan (xex )
In = . dx
uv
∫ ∫xn n −1. ⎛ ecx ⎞
ecxdx − n.x ⎜ c ⎟dx
⎠
⎝
In = xn ⎛ ecx ⎞ − n I n −1 ⇒ CIn = x n ecx − nIn−1
⎜ ⎟ c
⎝ c ⎠
C.In + nIn−1 = xnecx
6. If ∫ ex (1+ x).sec2 (xex ) dx = f (x) + c then f (x) =
1) (cos xex ) 2) sin (xex ) 3) 2 tan−1 x
Ans: ( )∫ ∫ex (x +1)sec2 xex dx = sec2 tan
Sol: Let xex = t ( )= tan t + c ⇒ tan xex + c
( )x.ex + ex.1 dx = dt
ex ( x +1) dx = dt ∴f (x) = tan (xex )
7. I∫ ex −1 dx =f (x)+c then f(x) is equal to [EAMCET 2007]
ex +1
Jpacademy Indefinite Integration
( ) ( )1) 2log ex +1 3) (2 log ex +1) − x
2) log e2x −1 ( )4) log e2x +1
Ans: 3
∫ ∫ ( )Sol:
= ex + ex − ex −1 dx ⇒ 2ex − ex +1
ex +1 ex +1 dx
2ex ex +1 dx ex
ex + ex +1 ex +
∫ ∫ ∫ ∫= 1 dx − = 2 1 dx − 1dx
= 2 log ex +1 − x + c
∴f (x) = 2log (ex +1) − x
∫8. tan −1 ⎛ 1− x ⎞ = [EAMCET 2007]
⎜⎝⎜ 1+ x ⎠⎟⎟ dx
( )1) 1 x cos−1 x − 1− x2 + c ( )2) 1 x cos−1 x + 1− x2 + c
2 2
( )3) 1 x sin−1 x − 1− x2 + c ( )4) 1 x sin−1 x + 1− x2 + c
2 2
Ans:
Sol: Put x = cos2θ
∫= −1 ⎛ 1 − cos 2θ ⎞ 1 ⎢⎡cos−1 −1 ⎤
⎝⎜⎜ 1 + cos 2θ ⎟⎠⎟ 2 ⎣ 1− x2 .xdx ⎥
tan dx ∫= x.x −
⎦
( )∫= tan−1 tan 2 θ dx 1 ⎡⎢cos−1 1 −2x ⎤
2 ⎣ 2
∫= x.x − 1− x2 dx ⎥
⎦
= ∫ θdx = ∫ 1 cos−1 xdx = 1 ⎢⎣⎡cos−1 x.x − 1 × 2 1 − x 2 ⎤ + c
2 2 ⎦⎥
2
∫= 1 c os−1 x.1.dx = 1 ⎡⎣cos−1 x.x − 1 − x 2 ⎤ + c
2 2 ⎦
9. ∫ sin x + 8cos x dx [EAMCET 2007]
4sin x + 6 cos x
1) x + 1 log 4sin x + 6 cos x + c 2) 2x + log 2sin x + 3cos x + c
2 4) 1 log 4sin x + 6 cos x + c
3) x + 2 log 2sin x + 3cos x + c 2
Ans: 1
∫Sol: a cos x + b sin x dx = ⎛ ac + bd ⎞ x + ⎛ ad − bc ⎞ log (cos x + d sin x) + c
c cos x + d sin x ⎜⎝ c2 + d2 ⎟⎠ ⎜⎝ c2 + d2 ⎠⎟
Jpacademy Indefinite Integration
∫ 8cos x +1.sin x dx = ⎛ 48 + 4 ⎞ x + ⎛ 32 − 6 ⎞ log 6 cos x + 4sin x +c
6 cos x + 4sin x ⎝⎜ 36 +16 ⎟⎠ ⎝⎜ 36 +16 ⎟⎠
= x + 1 log 6 cos x + 4sin x + c
2
10. If ∫ x dx = g(x)+c then g(x) is equal to [EAMCET 2006]
a3 − x3
1) 2 cos−1 x 2) 2 sin −1 ⎛ x3 ⎞ 3) 2 sin −1 ⎛ x3 ⎞ 4) 2 co s−1 ⎛ x ⎞
3 3 ⎜ a3 ⎟ 3 ⎜⎝⎜ a3 ⎟⎠⎟ 3 ⎜⎝ a ⎠⎟
⎝ ⎠
Ans:
∫ ∫Sol: x dx = 1 x / a dx Let x = sin2/3 θ
a3 ⎛⎜1 − x3 ⎞ a ⎛ x ⎞3 a
⎝ a3 ⎟ − ⎝⎜ a ⎠⎟
⎠ 1
∫= 1 (sin θ)1/ 3 × 2a × cos θ dθ dx = a. 2 (sin 2 −1 cos θdθ
3
a 1− sin2 θ (sin θ)1/ 3 3 θ)3
= 2 ∫1.dθ ⇒ 2 θ + c dx = 2a × cos θ dθ
3 3 3
(sin )θ 1/3
= 2 sin −1 ⎛ x3 ⎞ + c
3 ⎝⎜⎜ a3 ⎟⎠⎟
∴g (x) = 2 sin −1 ⎛ x3 ⎞ + c
3 ⎜⎝⎜ a3 ⎟⎠⎟
11. If ∫ x2 dx =f (x)+c then f(x) is equal to [EAMCET 2006]
+ 2x + 2
4) 3 tan−1 ( x +1)
1) tan−1 ( x +1) 2) 2 tan−1 ( x +1) 3) − tan−1 ( x +1)
Ans: 1
Sol: ∫ dx = tan −1 ( x + 1) c
( x + 1)2 + 1
∴f (x) = tan−1 (x +1)
12. Observe the following statements : [EAMCET 2006]
∫A : ⎛ x2 +1⎞ x2 −1 = x2 −1 + c
⎜ ⎟
⎝ x2 ⎠ e x dx ex
∫R : f 1 (x ).ef (x)dx = f ( x) + c , then which of the following is true ?
1) Both A and R are true and R is the correct reason of A
Jpacademy Indefinite Integration
2) Both A and R are true and R is the correct reason of A
3) A is true, R is false 4) A is false, R is true
Ans: 3
∫Sol: R : f 1 ( x ).ef (x)dx ∫A : ⎜⎝⎛1 + 1 ⎞ ⎛ x − 1 ⎞
x2 ⎠⎟ x
e⎝⎜ ⎠⎟dx
Let f(x) = t Let x − 1 = t
x
∫ f 1 (x) dn = dt ⎝⎜⎛1 + 1 ⎞ dx = dt
x2 ⎠⎟
∫ etdt = et + c ∫ etdt = et +c = x−1 +c
ex
= ef (x) + c x2 −1
= e x +c
Here A is true and R is false
13. If ∫ sin x x) dx = f (x) + c [EAMCET 2005]
cos x (1+ cos
1) log 1+ cos x 2) log c os x 3) log sinx 4) log 1+ sinx
cos x 1+ cos x 1+ sin x sin x
Ans: 1
Sol: Let cosx = t
– sinxdx = dt
∫ t −dt ) = ∫ ⎛ −1 + t 1 ⎞ dt
⎝⎜ t + 1 ⎟⎠
(1+ t
= − log t + log | t +1| +c
= log t +1 + c = log 1+ cos x + c
t cos x
∴ f ( x) = log 1+ cos x + c
cos x
∫ ( ) ( )14.
x49 tan−1 x50 dx = K ⎣⎡tan−1 x50 ⎦⎤2 + c , then K = [EAMCET 2005]
1 + x100 4) − 1
1) 1 2) − 1 3) 1 100
50 50 100
Ans:
( )Sol: Let tan−1 x50 = t
Jpacademy 1 2 × 50.x49dx = dt Indefinite Integration
( )1+ x 50 [EAMCET 2005]
∫= x49dx = dt = t dt = 1 × t2 +c ⇒ 1 ⎡⎣ tan −1 50⎤⎦ 2 +c 4) – x tan−1 x
1+ x100 50 50 50 2 100
[EAMCET 2004]
∫15. If sin −1 ⎛ 2x ⎞ dx = f ( x ) − log 1+ x2 +c then f(x) =
⎝⎜ 1+ x2 ⎠⎟ ( )4) 2 tan−1 x +100
1) 2x tan−1 x 2) −2x tan−1 x 3) x tan−1 x [EAMCET 2004]
4) x −1
Ans: 1
1+ x
sin −1 ⎛ 2x ⎞ 2 tan−1 xdx
⎝⎜ 1+ x2 ⎠⎟
∫ ∫Sol: dx =
∫= 2 tan−1 x.1.dx
⎡ −1 1 ⎤
∫ ∫= ⎢⎣ 1+ x2 ⎥⎦
2 tan x. 1.dx − .xdx
= 2x tan−1 x − log 1+ x2 + c
∴f ( x ) = 2x tan−1 x
16. ∫ ( x + dx x + 99 = f (x)+c⇒ f (x) =
100)
1) 2 ( x +100)1/2 2) 3( x +100)1/2 ( )3) 2 tan−1 x + 99
Ans: 3
Sol: Let x + 99 = t2
dx = 2t dt
x +100 = (x + 99) +1 ⇒ t2 +1
dx x + 99 = ∫ 2tdt = 2 tan−1 ( t ) + c
t2 +1
100) t
( )∫( x +
( )= 2 tan−1 x + 99 + c
( )∴f (x) = 2 tan−1 x + 99
17. ∫ 1 3− x2 x2 .exdx = exf ( x ) + c ⇒ f ( x ) =
− 2x +
1) 1+ x 2) 1− x 3) 1+ x
1− x 1+ x x −1
Ans:1
Jpacademy Indefinite Integration
( )∫ ∫Sol:
=− x2 −3 .e x dx ⇒ − x2 −1 − 2 [EAMCET 2004]
4) 2 cot x
( x −1)2 ( x −1)2 exdx
[EAMCET 2003]
= −∫ ⎡ ( x +1)(x − 1) − 2 ⎤ ex dx 4
⎢ ( x −1)2 ⎥ 4) 2 (1+ x)3/2 + c
⎣⎢ ( x −1)2 ⎦⎥
[EAMCET 2003]
∫= ⎡ x +1 − ( 2 ⎤ .ex .dx ⇒ −ex ⎡ x +1⎤ + c 4) xex+x−1 + c
⎢ x −1 ⎥ ⎢⎣ x −1⎦⎥
⎣⎢ x + 1)2 ⎦⎥
= e x ⎛ x +1 ⎞ + c ⇒ f ( x ) = 1 + x
⎜⎝ 1− x ⎠⎟ 1 − x
18. ∫ sin cot x x dx = −f ( x ) + c ⇒ f ( x ) =
x cos
1) 2 tan x 2) – 2 tan x 3) – 2 cot x
Ans: 4
cot x cos ec2 x cot x.cos ec2x dx
x cos cos ec 2 x cot x
∫ ∫Sol: x × dx =
sin
= −∫ cos ec2x dx = −2 cot x + c
cot x
∴f (x) = 2 cot x
∫19. 1+ x + x + x2 dx =
x + 1+ x
1) 1 1+ x + c 2) 2 (1+ x )3/2 + c 3) 1+ x + c
2 3) −xex+x−1 + c
3
Ans:
Sol: = ∫ ( )2 dx
1+ x + x. 1+ x
x + 1+ x
=∫ 1+ x ⎡⎣ 1+ x + x ⎦⎤dx
x + 1+ x
∫= 1+ x dx = 2(1+ )x 3/2 + c
3
∫ ( )20. 1+ x − x−1 ex+x−1dx =
1) (1+ )x ex+x−1 + c 2) ( x )−1 ex+x−1 + c
Ans:
Jpacademy Indefinite Integration
⎝⎜⎛1 − 1 ⎟⎞⎠e x + 1 ⎡⎢⎣⎛⎜⎝1 − 1 ⎞ x + 1 x+ 1 ⎤
∫ ∫Sol: x + x x dx = x ⎠⎟ e x + ⎥dx
xe x ⎦
x+1
Let xe x = t
⎡ x+1 ⎜⎝⎛1 − 1 ⎞ + x+1 ⎤ dx = dt
⎢x.e x x2 ⎟⎠ ⎥
⎣ ex ⎦
x+ 1 ⎛ x − 1 + 1⎟⎠⎞ dx = dt
⎝⎜ x
ex
= ∫1.dt = t + c
x+1
xe x + c
21. ∫ 1− dx sin x = [EAMCET 2002]
cos x −
1) log 1+ cot x + c 2) log 1− tan x + c 3) log 1− cot x + c 4) log 1+ tan x + c
22 2 2
Ans: 3
Sol: ∫ 1 − dx sin x
cos x −
= ∫ 2sin2 dx =∫ dx
x / 2 − 2sin x / 2 cos x / 2
2 sin 2 x ⎣⎢⎡1 − cot x⎤
2 2 ⎥⎦
= ∫ 1 cos ec2 x dx = log 1− cot x +c
2 2 2
x
1− cot
2
22. ∫ 7 + dx x = [EAMCET 2002]
5 cos
1) 1 tan −1 ⎛ 1 tan x ⎞ + c 2) 1 tan −1 ⎛ 1 tan x ⎞ + c
3 ⎜⎝ 3 2 ⎠⎟ 6 ⎜⎝ 6 2 ⎟⎠
3) 1 tan −1 ⎛ tan x ⎞ + c 4) 1 tan −1 ⎛ tan x ⎞ + c
7 ⎝⎜ 2 ⎟⎠ 4 ⎝⎜ 2 ⎠⎟
Ans: 2
Sol: ∫ 7 + dx x
5 cos
Jpacademy 1− tan2 x Indefinite Integration
2 [EAMCET 2002]
use cos x = [EAMCET 2001]
1+ tan2 x
2
∫ ( )sec2 . x dx2 x = 1 ∫ sec2 x dx
tan 2 2 2
12 + 2
6 2 + tan2 x
22
Put tanx/2 = t
= 1 tan −1 ⎛ 1 tan x ⎞ + C
6 ⎜⎝ 6 2 ⎠⎟
∫23. 3x dx =
9x −1
1) 1 log 3x + 9x −1 + c 2) 1 log 3x − 9x −1 + c
log3 log3
3) 1 log 3x − 9x −1 + c 4) 1 log 9x + 9x −1 + c
log9 log3
Ans: 1
∫Sol: 3x dx
9x −1
3x = t ⇒ 3x log 3dx = dt
∫1 dt = 1 3) log 3x + 9x −1 + C
t2 −1
log 3 (log
24. ∫ dx =
x (x +9)
( )1) 2 tan−1 x +C 2) 2 tan −1 ⎛ x ⎞ + C ( )3) tan−1 x + C 4) tan −1 ⎛ x ⎞ + C
3 3 ⎝⎜⎜ 3 ⎟⎠⎟ ⎜⎜⎝ 3 ⎟⎠⎟
Ans: 2
Sol: ∫ dx
x (x +9)
Let x = t2 , dx = 2tdt
⇒ ∫ t ( 2tdt
)t2 + 9
∫= 2 dt = 2 tan −1 ⎛ t ⎞ + C
t2 + 32 3 ⎜⎝ 3 ⎟⎠
Jpacademy Indefinite Integration
= 2 tan −1 ⎛ x ⎞ + C
3 ⎜⎝⎜ 3 ⎟⎠⎟
25. ∫ ( x +1)2 exdx = [EAMCET 2001]
1) xex + c 2) x2ex + c 3) ( x +1) ex + c ( )4) x2 +1 ex + c
Ans: 4
Sol: ∫ ( x +1)2 exdx
∫ (x2 +1+ 2x).exdx
Let f (x) = x2 +1 ⇒ f ′(x) = 2x
∫ ⎣⎡f (x) + f ′(x)⎤⎦ exdx = f (x).ex + c
( )= x2 +1 ex + c
∫26. dx = [EAMCET 2001]
a2 sin2 x + b2 cos2 x
1) 1 tan −1 ⎛ a tan x ⎞ + c 2) tan −1 ⎛ a tan x ⎞ + c
ab ⎝⎜ b ⎟⎠ ⎝⎜ b ⎟⎠
3) 1 tan −1 ⎛ b tan x ⎞ + c 4) tan −1 ⎛ b tan x ⎞ + c
ab ⎝⎜ a ⎟⎠ ⎜⎝ a ⎠⎟
Ans: 1
dx = sec2 xdx sec2 x
a2 sin2 x + b2 cos2 x a2 tan2 x + b2 dx
∫ ∫ ∫Sol: ⇒
a2 sin2 x sec2 x + b2 cos2 x sec2 x
= 1 tan −1 ⎛ a tan x ⎞ + C
ab ⎝⎜ b ⎠⎟
( )∫27. ex 1− cot x + cot2 x dx = [EAMCET 2000]
1) ex cot x + c 2) −ex cot x + c 3) ex cos ec + c 4) −ex cos ec + c
Ans: 2
( )∫Sol: ex 1− cot x + cot2 x dx
( )∫= ex − cot x + cos ecx2 dx
Let f (x) = − cot x ⇒ f ′(x) = cos ec2x
⇒ ∫ ex ⎣⎡f (x) + f ′(x)⎦⎤ dx = exf (x) + c
= −ex cot x + c
Jpacademy Indefinite Integration
∫28. sin 6 x dx = [EAMCET 2000]
cos8 x
1) tan 7x + c 2) tan7 x + c 3) tan 7x + c 4) sec7 x + c
7 7
Ans: 2
sin 6 x tan 6 x sec2 tan7 x ⎡ (x)n ′(x) dx ⎣⎡f ( x )⎦⎤n+1 ⎤
cos8 x ⎢∵ ⎥
∫ ∫ ∫Sol: dx = = + c f f =
xdx 7 ⎣⎢ n +1 ⎦⎥
777
Jpacademy SUCCESSIVE – DIFFERENTIAL
PREVIOUS EAMCET BITS
( ) ( )1. y = easin−1 x ⇒ 1− x2 yn+2 − 2n +1 xyn+1 = [EAMCET 2009]
( )1) n2 + n2 yn ( )2) n2 − a2 yn ( )3) n2 + a2 yn ( )4) − n2 − a2 yn
Ans: 3
Sol: y = ea sin −1 ,⇒ y1 = y x a
x 1− x2
( )⇒ 1− x2 y12 = a2y2
( )⇒ 2 1− x2 y1y2 − 2xy12 = 2a2yy1
( )1− x2 y2 − xy1 = a2y ………….(1)
( ) ( )Diff. (1) ‘n’ times using Leibnitz theorem 1− x2 yn+2 − (2n +1) xyn+1 = n2 + a2 yn
2. If y = sin (logc x ) then x2 d2y + x dy = [EAMCET 2008]
dx 2 dx
1) sin (loge x) 2) cos (loge x) 3) y2 4) −y
Ans: 4
Sol: y = sin (log x) ⇒ dy = cos (log x) 1 ⇒ x dy = cos (log x)
dx x dx
⇒ x d2y + dy = − sin (log x) 1
dx 2 dx x
⇒ x2 d2y + x dy = −y
dx 2 dx
( )3. x = cos θ, y = sin 5θ ⇒ 1− x2 d2y − x dy = [EAMCET 2007]
dx2 dx 4) –25 y
1) −5y 2) 5y 3) 25 y
Ans: 4
Sol: dy = −5cos 5θ = −5 1− sin2 5θ
dx sin θ 1− cos2 θ
= −5 1− y2 = y1
1− x2
( ) ( ) ( )1− x2 y12 = 25 1− y2 ⇒ 1− x2 y2 − xy1 = −25y
49
Jpacademy Successive – Differential
4. f (x ) = ex sin x ⇒ f (6) ( x) = [EAMCET 2006]
1) e6x sin 6x 2) −8ex cos x 3) 8ex sin x 4) 8ex cos x
Ans: 2
Sol: f ( x ) = eax sin bx
( ) ( )f n ( x ) = a2 + b2 n/2 .eax sin bx + n tan−1 b / a
a = 1, b = 1, n = 6
6
ex sin
( ) ( )f 6 (x) =
(1 + 1) x + 6 tan−1 (1)
= 8ex sin ⎛ 3π + x ⎞ = −8ex cos x
⎜⎝ 2 ⎟⎠
( )5. d2y =
y = sin−1 x ⇒ 1− x2 dx 2 [EAMCET 2004]
1) −x dy 2) 0 3) x dy 4) x ⎛ dy ⎞2
dx dx ⎜⎝ dx ⎟⎠
Ans: 3
Sol: y = sin−1 x ⇒ y1 = 1
1− x2
( )⇒ 1− x2 y12 = 1
( )⇒ 1− x2 2y1y2 − 2xy12 = 0
( )∴ 1− x2 y2 = xy1
( )6. dn
If In = dx n xn log x , then In − nIn−1 = .... [EAMCET 2003]
4) (n –1)!
1) n 2) n – 1 3) n!
Ans: 4
( )Sol: dn
In = dx n xn log x
y = xn log x ⇒ y1 = xn ⎛ 1 ⎞ + nx n −1 log x
⎝⎜ x ⎟⎠
( y1 )n−1 = nIn−1 + (n −1)!
⇒ In − nIn−1 = (n −1)!
7. If y = aex + be−x + c , where a, b, c are parameters, then y′′′ = [EAMCET 2002]
1) y 2) y′ 3) 0 4) y′′
Jpacademy Successive – Differential
Ans: 2
Sol. y = aex + be−x + c
y′ = aex − be−x ;
y′′ = aex + be−x
y′′′ = aex − be−x
y′′′ = y′
8. If y = a cos (log x) + b sin (log x) , where a, b are parameters, then x2y′′ + xy′ = [EAMCET 2002]
1) y 2) – y 3) 2y 4) –2y
Ans: 2
Sol: y = a cos (log x) + b sin (log x)
xy′ = −a sin (log x) + b cos (log x)
xy′′ + y′ = −aco s (log x) − b sin (log x)
x
⇒ x2y′′ + xy′ = −y
9. If yk is the kth derivative of y with respect to x, y = cos(sinx) then y1 sin x + y2 cos x =
[EAMCET 2001]
1) y sin3 x 2) −y sin3 x 3) y cos3 x 4) −y cos3 x
Ans: 4
Sol: Given y = cos(sinx)
⇒ y1 = − sin (sin x ).cos x
y2 = sin (sin x).sin x − cos2 x.cos (sin x)
∴ y1 sin x + y2 cos x = − sin (sin x ).sin x cos x
+ sin (sin x )sin x.cos x − cos3 x.cos (sin x) = −y cos3 x
( )10.dn
dx n ex sin x = [EAMCET 2000]
1) 2n /2.ex cos ( x + nπ / 4) 2) 2n /2.ex cos ( x − nπ / 4)
3) 2n /2.ex sin ( x + nπ / 4) 4) 2n /2.ex sin ( x − nπ / 4)
Ans: 3
( )Sol: y = eax sin (bx) ⇒ yn = n ⎛ tan −1 b ⎞
a2 + b2 .eax ⎝⎜ a ⎟⎠
sin bx + n
where a = 1, b = 1