The words you are searching are inside this book. To get more targeted content, please make full-text search by clicking here.

บทเรียนความสัมพันธ์ฟังก์ชัน ม.4

Discover the best professional documents and content resources in AnyFlip Document Base.
Search
Published by mr.tj1994, 2022-05-12 13:47:42

บทเรียนความสัมพันธ์ฟังก์ชัน ม.4

บทเรียนความสัมพันธ์ฟังก์ชัน ม.4

     ⌦    
   ⌦   ⌫    
  ⌦   ⌫ ⌦ 

371.95 ­Îµœ´„еœÁ¨…µ›„· µ¦­£µ„µ¦«„¹ ¬µ
­ 691 Ÿ Ÿœ„µ¦‹—´ „µ¦Á¦¥¸ œ¦¼o Á¦°Éº Š ‡ªµ¤­¤´ ¡´œ›Âr ¨³¢{Š„r œ´ ®¨„´ ­˜¼ ¦¨—¦³¥³Áª¨µÁ¦¥¸ œ

­Îµ®¦´ Ÿ¤o¼ ‡¸ ªµ¤­µ¤µ¦™¡Á· «¬ —µo œ‡–·˜«µ­˜¦r ¦³—´ ¤›´ ¥¤«„¹ ¬µ˜°œž¨µ¥
„¦»ŠÁ𡲠: 2550

81 ®œµo

ISBN 978-974-559-127-1
1. „µ¦«„¹ ¬µ­µÎ ®¦´ Ÿ¼¤o ‡¸ ªµ¤­µ¤µ¦™¡·Á«¬ - ®¨„´ ­˜¼ ¦
2. „µ¦«„¹ ¬µ­µÎ ®¦´Ÿ¤¼o ¸‡ªµ¤­µ¤µ¦™¡Á· «¬-‡–·˜«µ­˜¦r 3. ºÉ°Á¦°ºÉ Š

Ÿœ„µ¦‹—´ „µ¦Á¦¥¸ œ¦o¼ Á¦º°É Š ‡ªµ¤­¤´ ¡œ´ ›r¨³¢Š{ „r œ´ ®¨„´ ­˜¼ ¦¨—¦³¥³Áª¨µÁ¦¥¸ œ­Îµ®¦´Ÿ¤¼o ‡¸ ªµ¤
­µ¤µ¦™¡Á· «¬ —oµœ‡–˜· «µ­˜¦r ¦³—´¤´›¥¤«¹„¬µ˜°œž¨µ¥

­É·Š¡·¤¡r ­„«. °œ´ —´ š¸É 17 /2551
¡·¤¡r‡¦Š´Ê š¸É 1 ¤„¦µ‡¤ 2551
‹µÎ œªœ 1,000 Á¨¤n
‹´—¡¤· ¡rÁŸ¥Â¡¦n ­µÎ œ„´ ¤µ˜¦“µœ„µ¦«¹„¬µÂ¨³¡•´ œµ„µ¦Á¦¥¸ œ¦¼o
­µÎ œ„´ еœÁ¨…µ›·„µ¦­£µ„µ¦«„¹ ¬µ
Ÿ¡o¼ ¤· ¡r 99/20 ™œœ­»Ã…š´¥ Á…˜—»­˜· „¦»ŠÁ𡲠10300
Ú¦. 0-2668-7974 ®¦º° 0-2668-7123 ˜n° 2530
Ú¦­µ¦. 0-2243-1129, 0-2668-7329
Web site: http:// www.onec.go.th ¨³ www.thaigifted.org
¦·¬š´ °°¢ÁŽšÈ ‹Îµ„—´
580 ®¤¼n 8 Ž.¦µ¤°œ· 𦵠34 Â¥„ 1
™.¦µ¤°œ· 𦵠…ªŠšµn ¦oŠ Á…˜µŠÁ…œ „¦»ŠÁ𡲠10230
Ú¦«¡´ šr 0-2943-8373-4 Ú¦­µ¦ 0-2510-7753

‡µÎ œÎµ

˜µ¤šÉ¸¡¦³¦µ´´˜·„µ¦«¹„¬µÂ®nŠµ˜· ¡.«.2542 ¨³Â„oŅÁ¡É·¤Á˜·¤ (Œ´š¸É 2) ¡.«.2545
¤µ˜¦µ 10 ª¦¦‡­¸É „ε®œ—Ä®o„µ¦‹´—„µ¦«¹„¬µ­Îµ®¦´»‡‡¨ŽÉ¹Š¤¸‡ªµ¤­µ¤µ¦™¡·Á«¬˜o°Š‹´——oª¥¦¼žÂš¸É
Á®¤µ³­¤ ×¥‡Îµœ¹Š™¹Š‡ªµ¤­µ¤µ¦™…°Š»‡‡¨œ´Êœ ¨³Äœ¤µ˜¦µ 28 ¥´ŠÅ—o„ε®œ—Ä®o®¨´„­¼˜¦„µ¦«¹„¬µ
­Îµ®¦´»‡‡¨Ž¹ÉФ¸‡ªµ¤­µ¤µ™¡·Á«¬˜o°Š¤¸¨´„¬–³®¨µ„®¨µ¥ šÊ´Šœ¸Ê Ä®o‹´—˜µ¤‡ªµ¤Á®¤µ³­¤…°ŠÂ˜n¨³
¦³—´ ×¥¤»Šn ¡´•œµ‡–» £µ¡ª¸ ˜· …°Š‡» ‡¨Ä®oÁ®¤µ³­¤Â„nª´¥Â¨³«„´ ¥£µ¡

­Îµœ´„еœÁ¨…µ›·„µ¦­£µ„µ¦«¹„¬µ ×¥‡ªµ¤¦nª¤¤º°…°Š¤®µª·š¥µ¨´¥­Š…¨µœ‡¦·œš¦r ª·š¥µÁ…˜
®µ—Ä®n ŗo—εÁœ·œ„µ¦ª·‹´¥œÎµ¦n°Š…¥µ¥Á‡¦º°…nµ¥„µ¦‹´—„µ¦«¹„¬µ­Îµ®¦´Ÿo¼¤¸‡ªµ¤­µ¤µ¦™¡·Á«¬—oµœ
‡–·˜«µ­˜¦r ¦³—´¤´›¥¤«¹„¬µ˜°œž¨µ¥ (Á…˜¡Êºœš¸É„µ¦«¹„¬µ£µ‡Ä˜o že„µ¦«¹„¬µ 2547) ŽÉ¹Š¤¸„¦³ªœ„µ¦
®œ¹ÉŠš­¸É µÎ ‡´ ‡º° „µ¦‹´—šµÎ ®¨´„­¼˜¦¨—¦³¥³Áª¨µÁ¦¸¥œ (Acceleration Program) Áž}œ„µ¦‹´—®¨´„­¼˜¦­Îµ®¦´
Ÿo¼Á¦¸¥œš¸É¤¸‡ªµ¤­µ¤µ¦™¡·Á«¬—oµœ‡–·˜«µ­˜¦r ×¥ž¦´®¨´„­¼˜¦ž„˜·Ä®o„¦³´ čoÁª¨µÁ¦¸¥œÄ®o­´Êœ¨Š
Á®¤µ³­¤„´ «´„¥£µ¡…°ŠŸ¼Áo ¦¥¸ œ ¨³œµÎ Áª¨µš¸ÁÉ ®¨º°¤µÁ¡·¤É ¡¼œž¦³­„µ¦–Är œ¦³—´š¸É„ªoµŠ ¥µ„¨³¨¹„ŽÊ¹Š
„ªnµ®¨´„­¼˜¦ž„˜· š´ÊŠœÊ¸‹³Áž}œ„µ¦nª¥Å¤nÄ®oŸo¼Á¦¸¥œÁ„·—‡ªµ¤ÁÉº°®œnµ¥„µ¦Á¦¸¥œÄœª·µž„˜·š¸ÉÁ…µ­µ¤µ¦™
Á¦¥¸ œ¦Åo¼ —oÁ¦ªÈ „ªnµÁ¡Éº°œ ¦ª¤š´ÊŠÁž}œ„µ¦žj°Š„´œÅ¤nÄ®oÁ„·—‡ªµ¤™—™°¥šµŠ«´„¥£µ¡®¦º°šÎµ¨µ¥«´„¥£µ¡…°Š
˜´ªÁ°Š ­Îµ®¦´„µ¦ª´—¨³ž¦³Á¤·œŸ¨Äœ®¨´„­¼˜¦¨—¦³¥³Áª¨µÁ¦¸¥œ æŠÁ¦¸¥œ‡ª¦Äo¤µ˜¦“µœÁ—¸¥ª„´œ
Á®¤º°œÁ—È„„¨n»¤ž„˜·

Á°„­µ¦Á¨n¤œ¸ÊÁž}œ Ÿœ„µ¦‹´—„µ¦Á¦¸¥œ¦o¼ Á¦ºÉ°Š ‡ªµ¤­´¤¡´œ›r¨³¢{Š„r´œ Ĝ®¨´„­¼˜¦¨—
¦³¥³Áª¨µÁ¦¥¸ œ­µÎ ®¦´ Ÿ¤¼o ¸‡ªµ¤­µ¤µ¦™¡·Á«¬—oµœ‡–·˜«µ­˜¦r ¦³—´ ¤›´ ¥¤«¹„¬µ˜°œž¨µ¥ ޹ŠÉ Áž}œ®œŠ¹É Ĝ
­·Âž—Á¨n¤šÉ¸Å—o‹µ„„µ¦ª·‹´¥œÎµ¦n°Š² —´Š„¨nµª…oµŠ˜oœ ×¥„ε®œ—Ä®o¤¸„µ¦Á¦¸¥œ„µ¦­°œÁ¡¸¥Š 5 £µ‡Á¦¸¥œ
‹µ„ž„˜·ÄoÁª¨µšÊ´Š®¤— 6 £µ‡Á¦¸¥œ Ž¹ÉŠÁœºÊ°®µšÉ¸ž¦µ„’°¥n¼ÄœÁ°„­µ¦Á¨n¤œ¸ÊÁž}œÁ¡¸¥Š˜´ª°¥nµŠÁ¡ºÉ°Áž}œ
œªšµŠÄ®o‡¦¼Ÿo¼­°œ­µ¤µ¦™œÎµÅžÄo­Îµ®¦´„µ¦Á¦¸¥œ„µ¦­°œ šÊ´Šœ¸Ê ‡¦¼Ÿo¼­°œ­µ¤µ¦™œÎµÅžž¦³¥»„˜rčo
ž¦´Áž¨É¸¥œ …¥µ¥ÁœºÊ°®µ ®¦º°Á¨º°„ÁœºÊ°®µ°ÉºœÇ šÉ¸œnµ­œÄ‹ ®¦º°Á®¤µ³­¤„´­£µ¡„µ¦–r…°Š‡¦¼Â¨³
œ´„Á¦¸¥œÄœÂ˜n¨³Ã¦ŠÁ¦¥¸ œÅ—o

Ĝð„µ­œ¸Ê ­Îµœ´„еœÁ¨…µ›·„µ¦­£µ„µ¦«¹„¬µ…°…°‡»–¦°Š«µ­˜¦µ‹µ¦¥r°µ¦·­µ ¦´˜œÁ¡È¦r ¨³
‡–³‹µ„£µ‡ª·µ‡–·˜«µ­˜¦r ‡–³ª·š¥µ«µ­˜¦r ¤®µª·š¥µ¨´¥­Š…¨µœ‡¦·œš¦r Ÿ¼o¦·®µ¦Ã¦ŠÁ¦¸¥œ ‡–³‡¦¼-
°µ‹µ¦¥r ¨³œ´„Á¦¸¥œšÉ¸°¥¼nĜǦŠ„µ¦² ˜¨°—‹œ‡–³‡¦¼‡–·˜«µ­˜¦ræŠÁ¦¸¥œÁ˜¦¸¥¤°»—¤«¹„¬µ „¦»ŠÁš¡²
šÉ¸Á®Èœ‡»–‡nµ…°ŠÁ°„­µ¦œÊ¸ ‹¹ŠÄ®o‡ªµ¤°œ»Á‡¦µ³®r˜¦ª‹­°‡ªµ¤™¼„˜o°Š‹œÁ­¦È‹­¤¼¦–r ­Îµœ´„еœ²
®ª´ŠÁž}œ°¥nµŠ¥·ÉŠªnµ°Š‡r‡ªµ¤¦¼oš¸Éŗo‹µ„„µ¦ª·‹´¥‡¦´ÊŠœÊ¸ ‹³Áž}œž¦³Ã¥œr˜n°„µ¦«¹„¬µ—oµœ‡–·˜«µ­˜¦r…°Š
ž¦³Áš«Åš¥˜°n Ş

(œµ¥°µÎ ¦»Š ‹´œšªµœ·)
Á¨…µ›„· µ¦­£µ„µ¦«¹„¬µ

‡µÎ ¸ÂÊ ‹Š

˜µ¤šÉ¸¡¦³¦µ´´˜·„µ¦«¹„¬µÂ®nŠµ˜· ¡.«. 2542 ¨³šÉ¸Â„oŅÁ¡É·¤Á˜·¤ (Œ´š¸É 2) ¡.«.2545 Ĝ
¤µ˜¦µ 10 (ª¦¦‡ 4) ŗo„ε®œ—Ä®o„µ¦‹´—„µ¦«¹„¬µ­Îµ®¦´»‡‡¨šÉ¸¤¸‡ªµ¤­µ¤µ¦™¡·Á«¬ ˜o°Š‹´——oª¥
¦¼žÂšÉ¸Á®¤µ³­¤Ã—¥‡Îµœ¹Š™¹Š‡ªµ¤­µ¤µ¦™…°Š»‡‡¨œÊ´œ ¨³¤µ˜¦µ 28 ¦³»ªnµ ®¨´„­¼˜¦„µ¦«¹„¬µ
¦³—´˜nµŠÇ ¦ª¤šÊ´Š®¨´„­¼˜¦ „µ¦«¹„¬µ­Îµ®¦´»‡‡¨ŽÉ¹Š¤¸‡ªµ¤­µ¤µ¦™¡·Á«¬˜o°Š¤¸¨´„¬–³®¨µ„®¨µ¥
š´ÊŠœ¸ÊÄ®o‹´—˜µ¤‡ªµ¤Á®¤µ³…°ŠÂ˜n¨³¦³—´ ×¥¤n»Š¡´•œµ‡»–£µ¡¸ª·˜…°Š»‡‡¨Ä®oÁ®¤µ³­¤„´ª´¥Â¨³
«´„¥£µ¡ œ´œÊ

­Îµœ´„еœÁ¨…µ›·„µ¦­£µ„µ¦«¹„¬µ ‹¹ŠÅ—o‹´—šÎµÃ‡¦Š„µ¦ª·‹´¥œÎµ¦n°ŠÂ¨³¡´•œµÁ—Ȅ¨³Á¥µªœš¸É¤¸
‡ªµ¤­µ¤µ¦™¡·Á«¬¤µ˜Ê´ŠÂ˜nže 2543 Á¡ºÉ°‡oœ®µ¦¼žÂÂ¨³¡´•œµ®¨´„­¼˜¦„µ¦‹´—„µ¦«¹„¬µ­Îµ®¦´Ÿ¼o¤¸
‡ªµ¤­µ¤µ¦™¡·Á«¬Äœ­µ…µª·µ˜nµŠÇ šÊ´Š¦³—´ž¦³™¤Â¨³¤´›¥¤«¹„¬µ Ĝ¨´„¬–³Á¦¸¥œ¦nª¤ÄœÃ¦ŠÁ¦¸¥œ
šÉ´ªÅž ®¦º°š¸ÉÁ¦¸¥„ªnµ School in school Program ץĜže„µ¦«¹„¬µ 2547 ŗo…¥µ¥Ã¦ŠÁ¦¸¥œÁ‡¦º°…nµ¥­n¼
£¼¤·£µ‡Äœ£µ‡Á®œº°Â¨³£µ‡Ä˜o ¦³—´¤´›¥¤«¹„¬µ˜°œž¨µ¥ ŽÉ¹Š„¦³ªœ„µ¦‹´—„µ¦«¹„¬µœ¸ÊÁœoœ„µ¦‹´—
Gifted Education …Ê´œ˜°œÁ¦É·¤˜´ÊŠÂ˜n„µ¦Á­µ³®µÂ¨³‡´—Á¨º°„ ¤¸„µ¦¡´•œµ®¨´„­¼˜¦šÉ¸Äoª·›¸„µ¦¨—¦³¥³Áª¨µ
Á¦¸¥œ (Acceleration Program) Áž}œ„µ¦¥nœ¦³¥³Áª¨µÁ¦¸¥œÄ®oœo°¥¨Š ˜n¥´Š‡ŠÁœÊº°®µÁšnµÁ—·¤‡¦™oªœ˜µ¤
®¨´„­¼˜¦Â„œš¸É„¦³š¦ªŠ«¹„¬µ›·„µ¦„ε®œ— ¨³‹´—šÎµ®¨´„­¼˜¦Á¡·É¤¡¼œž¦³­„µ¦–r (Enrichment
Program) Á¡¤É· Á˜¤· Ä®„o ´ Á—„È „¨»¤n œÊ¸ Ážœ} „µ¦…¥µ¥„·‹„¦¦¤Äœ®¨´„­¼˜¦Ä®„o ªµo ŠÂ¨³¨¹„Ž¹ÊŠ„ªµn šÉ¤¸ ¸Äœ®¨´„­˜¼ ¦
ž„˜· Á¡Éº°ªn ¥„¦³˜oœ» ‡ªµ¤‡—· ¦Á· ¦·É¤­¦oµŠ­¦¦‡r 𴄬³Äœ„µ¦‡·— ª·Á‡¦µ³®r „µ¦Â„ož{®µ „µ¦Äo­˜·ž{µÄœ
„µ¦Ä®oÁ®˜»Ÿ¨ ²¨² Á¤Éº°Ÿ¼oÁ¦¸¥œ­µ¤µ¦™‹®¨´„­¼˜¦ÄœÂ˜n¨³nªŠ´Êœ„n°œ„ε®œ— (Ánœ —oµœ£µ¬µÄoÁª¨µ 3
£µ‡Á¦¸¥œ ‹µ„ 6 £µ‡Á¦¸¥œ®¦º°—oµœ‡–·˜«µ­˜¦r čoÁª¨µ 5 £µ‡Á¦¸¥œ ‹µ„ 6 £µ‡Á¦¸¥œ Áž}œ˜oœ) Áª¨µšÉ¸Á®¨º°
æŠÁ¦¸¥œ®¦º°‡¦¼Ÿ¼o­°œ„È­µ¤µ¦™‹´—®¨´„­¼˜¦…¥µ¥ž¦³­„µ¦–r (Extension Program) ®¦º°Ä®oœ´„Á¦¸¥œšÉ¸¤¸
ž¦³­„µ¦–ršÎµŠµœ¦nª¤„´Ÿ¼oÁ¸É¥ªµ (mentor) Ž¹ÉŠÁž}œª·›¸„µ¦‹´—ަ„¦¤„µ¦«¹„¬µœ°„®¨´„­¼˜¦
š¸É­µ¤µ¦™˜°­œ°Š‡ªµ¤­œÄ‹Â¨³‡ªµ¤­µ¤µ¦™Áž}œ¦µ¥»‡‡¨ Ánœ „µ¦‹´— AP Program (Advanced
Placement Program) ®¦º°Ã‡¦Š„µ¦Á¦¸¥œ¨nªŠ®œoµ š¸ÉÁž}œ„µ¦œÎµÁ°µÁœºÊ°®µÄœ®¨´„­¼˜¦¦³—´°»—¤«¹„¬µ¤µ
Á¦¸¥œÄœ…–³šÉ¸¥´ŠÁ¦¸¥œ°¥n¼Äœ¦³—´¤´›¥¤«¹„¬µ˜°œž¨µ¥ ¨³­µ¤µ¦™Á„ȝ®œnª¥„·˜Åªoŗo Áž}œ˜oœ
œ°„‹µ„œÊ¸ ¥´Š˜o°Šž¦´ª·›¸„µ¦ª´—¨³ž¦³Á¤·œŸ¨˜µ¤­£µ¡‹¦·Š ¤¸„µ¦‹´—­£µ¡Âª—¨o°¤š¸ÉÁ®¤µ³­¤
¨³¤„¸ µ¦¦®· µ¦‹—´ „µ¦šÉ¸Á°º°Ê ˜n°„µ¦‹—´ „µ¦«¹„¬µÄ®o„´ Á—È„„¨¤n» œÊ—¸ oª¥

Ÿœ„µ¦‹´—„µ¦Á¦¸¥œ¦¼oÁ¨n¤œ¸Ê Áž}œ®œ¹ÉŠÄœ 18 Á¨n¤ šÉ¸Äož¦³„°„µ¦Á¦¸¥œ„µ¦­°œª·µ‡–·˜«µ­˜¦r
¦³—´¤´›¥¤«¹„¬µ˜°œž¨µ¥ ­Îµ®¦´Ÿ¼o¤¸‡ªµ¤­µ¤µ¦™¡·Á«¬ Ĝ®¨´„­¼˜¦¨—¦³¥³Áª¨µÁ¦¸¥œ(Acceleration
Program) ×¥„ε®œ—Ä®o¤¸„µ¦Á¦¸¥œ„µ¦­°œÁ¡¸¥Š 5 £µ‡Á¦¸¥œ (ž„˜·ÄoÁª¨µšÊ´Š®¤— 6 £µ‡Á¦¸¥œ)
…°ŠÃ¦ŠÁ¦¸¥œšÉ¸Á…oµ¦nª¤Ã‡¦Š„µ¦² Á…˜¡ºÊœšÉ¸„µ¦«¹„¬µ£µ‡Ä˜o ץ˜n¨³Ã¦ŠÁ¦¸¥œ‹³ÄoŸœ„µ¦‹´—„µ¦Á¦¸¥œ¦¼o
¦nª¤„´œ ˜n°µ‹‹³¤¸¨Îµ—´Äœ„µ¦­°œÂ˜„˜nµŠ„´œ …¹Êœ°¥n¼„´‡ªµ¤Á®¤µ³­¤…°ŠÂ˜n¨³Ã¦ŠÁ¦¸¥œ
(—¼¦µ¥¨³Á°¸¥—Ÿœ„µ¦‹´—„µ¦Á¦¸¥œ¦¼o…°ŠÂ˜n¨³®œnª¥„µ¦Á¦¸¥œÄœ˜µ¦µŠ®œoµ™´—Åž) ­Îµ®¦´„µ¦ª´—¨³
ž¦³Á¤·œŸ¨˜µ¤®¨´„­¼˜¦¨—¦³¥³Áª¨µÁ¦¸¥œ Áž}œ„µ¦ª´—‡ªµ¤¦o¼‡ªµ¤Á…oµÄ‹…°ŠŸ¼oÁ¦¸¥œ ץčo…o°­°
Pre-test ¨³ Post-test š¸É°°„×¥‡–³ª·‹´¥ ¨³°µ‹µ¦¥r¦´Ÿ·—°Ã‡¦Š„µ¦‹µ„˜n¨³Ã¦ŠÁ¦¸¥œ

˜µ¦µŠÂŸœ„µ¦‹´—„µ¦Á¦¸¥œ¦o¼…°Š®¨´„­˜¼ ¦¨—¦³¥³Áª¨µÁ¦¥¸ œ

—µo œ‡–·˜«µ­˜¦r ¦³—´¤´›¥¤«„¹ ¬µ˜°œž¨µ¥

¦³—´ ÁœÊ°º ®µ ‹Îµœªœ æŠÁ¦¸¥œš¸¦É ´Ÿ·—°
‡µ Á…¥¸ œÂŸœ„µ¦‹—´ „µ¦Á¦¸¥œ¦¼o

´¤›¥¤ ¹«„¬µ ež ¸Éš 4 1. ÁŽ˜ 10 æŠÁ¦¥¸ œ‹¯» µ£¦–¦µªš· ¥µ¨¥´ ‹.­˜¼¨
£µ‡Á ¸¦¥œ ¸Éš 2 £µ‡Á ¸¦¥œ ɸš 1 2. „µ¦Ä®Áo ®˜Ÿ» ¨ 6 æŠÁ¦¸¥œ¡»œ¡œ· ¡š· ¥µ‡¤
3. ˜¦¦„«µ­˜¦r 24 æŠÁ¦¸¥œ¡»œ¡œ· ¡·š¥µ‡¤
4. ‹µÎ œªœ‹¦·ŠÂ¨³š§¬‘¸‹ÎµœªœÁºÊ°Š˜oœ 38 æŠÁ¦¸¥œ®µ—Ä®ªn ·š¥µ¨¥´
5. Á¦…µ‡–˜· ªÁ· ‡¦µ³®r 38 æŠÁ¦¸¥œÁ˜¦¥¸ ¤°»—¤«¹„¬µ£µ‡Ä˜o
6. ‡ªµ¤­´¤¡œ´ ›r¨³¢Š{ „rœ´ 30 æŠÁ¦¸¥œÁ˜¦¥¸ ¤°—» ¤«¹„¬µ£µ‡Ä˜o
7. ˜¦¸Ã„–¤˜· · 48 æŠÁ¦¸¥œ¦¼ –³¦µÎ ¨¹„ ¨³¤®µª·¦µª»›
8. „ε®œ—„µ¦ÁŠ· Á­œo 6 æŠÁ¦¥¸ œ¤®µª·¦µª›»

¦ª¤ 200

´¤›¥¤ ¹«„¬µ ež ¸Éš 5 9. ¢Š{ „r ´œÁ°„ŽÃr žÁœœÁ¥¸ ¨Â¨³¨°„µ¦·š¹¤ 27 æŠÁ¦¸¥œÁ˜¦¥¸ ¤°»—¤«¹„¬µ£µ‡Ä˜o
£µ‡Á ¸¦¥œ ¸Éš 2 £µ‡Á ¸¦¥œ ɸš 1 10. Á¤š¦·„ŽÂr ¨³—Á¸ š°¦r¤œ· œ´ šr 20 æŠÁ¦¸¥œ­¦» µ¬‘¦›r µœ¸
11. Áª„Á˜°¦r 2 ¨³ 3 ¤˜· · 36 æŠÁ¦¸¥œ¡œ» ¡š· ¥µ‡¤
12. ‹µÎ œªœÁŠ· Žo°œÂ¨³­¤„µ¦¡®»œµ¤ 24 æŠÁ¦¥¸ œ¤®µª·¦µª›»

13. 𧬑„¸ ¦µ¢ 15 æŠÁ¦¥¸ œ¼¦–³¦Îµ¨„¹

14. ¨µÎ —´Â¨³°œ„» ¦¤ 38 æŠÁ¦¸¥œ®µ—Ä®nªš· ¥µ¨¥´

15. ¨·¤˜· …°Š¢{Š„rœ´ °œ¡» œ´ ›…r °Š¢Š{ „rœ´ ¨³ 40 æŠÁ¦¸¥œ‹¯» µ£¦–¦µª·š¥µ¨¥´ ‹.­˜¨¼

„µ¦°œ· ˜·Á„¦—

¦ª¤ 200

16. „µ¦Á¦¥¸ Š­´ Áž¨¥¸É œÂ¨³„µ¦‹´—®¤¼n 30 æŠÁ¦¸¥œÁ˜¦¥¸ ¤°—» ¤«„¹ ¬µ£µ‡Ä˜o

´¤›¥¤ ¹«„¬µ ež ɸš 6 17. ‡ªµ¤œnµ‹³Ážœ} 20 æŠÁ¦¸¥œ®µ—Ä®nª·š¥µ¨¥´
£µ‡Á ¸¦¥œ ¸Éš 1
18. ­™·˜Â· ¨³‡ªµ¤­¤´ ¡´œ›Ár Š· ¢{Š„r ´œ…°Š…°o ¤¼¨ 50

ƒ „µ¦œµÎ Á­œ°…°o ¤¼¨Â¨³‡nµ„¨µŠ (12 ‡µ) æŠÁ¦¥¸ œ¦¼ –³¦µÎ ¨¹„

ƒ „µ¦„¦³‹µ¥…°Š…o°¤¼¨ (25 ‡µ) æŠÁ¦¸¥œ­¦» µ¬‘¦›r µœ¸

ƒ ‡ªµ¤­´¤¡œ´ ›rÁ·Š¢{Š„rœ´ (13 ‡µ) æŠÁ¦¥¸ œ¡»œ¡œ· ¡š· ¥µ‡¤

¦ª¤ 100

­µ¦´

Á¦°ºÉ Š ®œµo
Ÿœ„µ¦‹—´ „µ¦Á¦¸¥œ¦oš¼ ɸ 1
Á¦°ºÉ Š ‡n¼°œ´ —´ ¨³Ÿ¨‡¼–‡µ¦ršÁ¸ ޏ¥œ 1
ĝ‡ªµ¤¦¼oš¸É 1 3
ĝ„‹· „¦¦¤šÉ¸ 1 5
Ÿœ„µ¦‹´—„µ¦Á¦¥¸ œ¦¼oš¸É 2
Á¦°ºÉ Š ‡ªµ¤­´¤¡´œ›r 6
ĝ‡ªµ¤¦oš¼ ɸ 2 8
ĝ„·‹„¦¦¤šÉ¸ 2 12
Ÿœ„µ¦‹´—„µ¦Á¦¸¥œ¦oš¼ ɸ 3
Á¦º°É Š ×Á¤œÂ¨³Á¦œ‹r…°Š‡ªµ¤­¤´ ¡´œ›r 13
ĝ‡ªµ¤¦o¼š¸É 3 15
ĝ„·‹„¦¦¤šÉ¸ 3 19
Ÿœ„µ¦‹—´ „µ¦Á¦¥¸ œ¦šo¼ ɸ 4
Á¦ºÉ°Š °œ· Áª°¦­r …°Š‡ªµ¤­¤´ ¡´œ›r 20
ĝ‡ªµ¤¦šo¼ ¸É 4 22
ĝ„·‹„¦¦¤š¸É 4 26
Ÿœ„µ¦‹—´ „µ¦Á¦¥¸ œ¦o¼š¸É 5
Á¦Éº°Š „¦µ¢…°Š‡ªµ¤­¤´ ¡´œ›r 27
ĝ‡ªµ¤¦¼ošÉ¸ 5 29
ĝ„‹· „¦¦¤šÉ¸ 5 36
Ÿœ„µ¦‹´—„µ¦Á¦¥¸ œ¦¼šo ɸ 6
Á¦°ºÉ Š ‡ªµ¤®¤µ¥…°Š¢{Š„r ´œ 39
Äĝ‡‡ªªµµ¤¤¦¦oš¼ oš¼ ¸É 6¸É 6 41
ĝ„·‹„¦¦¤šÉ¸ 6 43
Ÿœ„µ¦‹—´ „µ¦Á¦¸¥œ¦o¼šÉ¸ 7
Á¦°Éº Š ¨´„¬–³…°Š¢{Š„r ´œ 44
ĝ‡ªµ¤¦šo¼ ¸É 7 47
ĝ„‹· „¦¦¤šÉ¸ 7 51

Ÿœ„µ¦‹—´ „µ¦Á¦¥¸ œ¦o¼šÉ¸ 8 52
Á¦É°º Š ¢{Š„r´œž¦³„° 55
ĝ‡ªµ¤¦¼ošÉ¸ 8 56
ĝ„‹· „¦¦¤š¸É 8
Ÿœ„µ¦‹´—„µ¦Á¦¸¥œ¦¼oš¸É 9 57
Á¦É°º Š ¢{Š„r œ´ °œ· Áª°¦­r 60
ĝ‡ªµ¤¦oš¼ ɸ 9 64
ĝ„‹· „¦¦¤šÉ¸ 9
Ÿœ„µ¦‹—´ „µ¦Á¦¥¸ œ¦š¼o ¸É 10 66
Á¦Éº°Š ¡¸‡–·˜…°Š¢{Š„r ´œ 69
ĝ‡ªµ¤¦o¼š¸É 10 72
ĝ„‹· „¦¦¤š¸É 10 73
˚¥rÁ­¦·¤š„´ ¬³



⌦ 1
⌦

Ÿœ„µ¦‹—´ „µ¦Á¦¸¥œ¦¼ošÉ¸ 1

Á¦ºÉ°Š ‡n°¼ œ´ —´ ¨³Ÿ¨‡–¼ ‡µ¦ršÁ¸ Ž¥¸ œ ´Êœ¤›´ ¥¤«„¹ ¬µžše ¸É 4
ª·µ ‡–·˜«µ­˜¦r Áª¨µ 2 ª´É äŠ

Ÿ¨„µ¦Á¦¸¥œ¦š¼o ¸‡É µ—®ª´Š
­µ¤µ¦™®µŸ¨‡¼–‡µ¦rš¸ÁŽ¥¸ œ…°ŠÁŽ˜­°ŠÁŽ˜š¸É„ε®œ—Ä®oŗo

1. ‹—» ž¦³­Š‡„r µ¦Á¦¸¥œ¦o¼
1. Á…¸¥œŸ¨‡¼–‡µ¦šr ¸Áޏ¥œ…°ŠÁŽ˜­°ŠÁŽ˜š„ɸ 宜—Ä®Åo —o
2. °„‹Îµœªœ­¤µ„· …°ŠÁŽ˜šÉ¸Áž}œŸ¨‡–¼ ‡µ¦ršÁ¸ ޏ¥œ…°ŠÁŽ˜­°ŠÁŽ˜šÉ¸„µÎ ®œ—Ä®Åo —o

2. œª‡ªµ¤‡·—®¨„´
1. Ÿ¨‡–¼ ‡µ¦ršÁ¸ Ž¥¸ œ AuB ‡°º ÁŽ˜…°Š‡n¼°´œ—´ (a, b) ×¥šÉ¸ a  A ¨³ b  B ÁŽ˜ AuB

Áž¦¸¥Å—„o ´ Á°„£¡­¤´ ¡´š›…r °ŠÁŽ˜…°Š‡ªµ¤­¤´ ¡´œ›r
2. ‡ªµ¤­¤´ ¡´œ›‹r µ„ A Ş B ‡°º ­´ÁŽ˜…°Š AuB ­ÉŠ· š­¸É ε‡´Äœ„µ¦„µÎ ®œ—‡ªµ¤­´¤¡œ´ ›‡r º°

„‘Äœ„µ¦‹´ ‡¦n¼ ³®ªµn Š­¤µ„· ˜´ª®œµo ¨³­¤µ·„˜ª´ ®¨Š´ …°Š‡¼°n œ´ —´ Ĝ‡ªµ¤­¤´ ¡œ´ ›r
3. „µ¦«„¹ ¬µ‡ªµ¤­´¤¡œ´ ›rė„Șµ¤ ˜°o Š­œÄ‹…°Á…˜…°Š­¤µ·„˜´ª®œoµ…°Š‡°¼n œ´ —´ Ĝ‡ªµ¤­´¤¡œ´ ›r

¨³…°Á…˜…°Š­¤µ·„˜ª´ ®¨´Š…°Š‡¼n°´œ—´Äœ‡ªµ¤­¤´ ¡œ´ ›r

3. ÁœÊ°º ®µ­µ¦³
‡n¼°´œ—´ (Ordered pairs) ®¤µ¥™¹Š„µ¦‹´‡­n¼ ·ÉŠ…°Š­°Š­ŠÉ· ×¥™°º ¨µÎ —´Áž}œ­µÎ ‡´
™oµ a, b Ážœ} ­É·Š…°Š­°Š­É·Š ‡n°¼ œ´ —´ a, b Á…¸¥œÂšœ—ªo ¥ (a, b)
Á¦¸¥„ a ªµn ­¤µ·„˜´ª®œµo ¨³Á¦¸¥„ b ªnµ­¤µ·„˜ª´ ®¨Š´

šœ·¥µ¤ „µ¦Ášµn „œ´ …°Š‡°n¼ œ´ —´
(x, y) (a, b) „˜È n°Á¤Éº° x a ¨³ y b

šœ¥· µ¤ Ÿ¨‡–¼ ‡µ¦ršÁ¸ Ž¥¸ œ…°ŠÁŽ˜ A ¨³ÁŽ˜ B ‡º°ÁŽ˜…°Š‡°¼n ´œ—´ (a, b)
š´ÊŠ®¤— ×¥š¸É a  A ¨³ b  B
Ÿ¨‡¼–‡µ¦rš¸Áޏ¥œ…°ŠÁŽ˜ A ¨³ÁŽ˜ B Á…¸¥œÂšœ—ªo ¥ AuB

2 ⌫ ⌫  ⌦
 ⌫         

4. „¦³ªœ„µ¦‹—´ „µ¦Á¦¸¥œ¦o¼
1. ‡¦¼Ä®œo ´„Á¦¥¸ œnª¥„œ´ ¥„˜ª´ °¥nµŠ„µ¦‹´ ‡¼n¦³®ªµn Š­ÉŠ· ­°Š­·ÉŠšÉ¡¸ Äœ¸ª˜· ž¦³‹Îµªœ´ ¨ªo Á…¥¸ œ˜´ª°¥µn Š

œ´œÊ ĜªŠÁ¨È (....) ץĮočÁo ‡¦°ºÉ Š®¤µ¥, ¦³®ªnµŠ­·ŠÉ šÊŠ´ ­°Šœ´œÊ ¨³°„œ„´ Á¦¸¥œªnµ œ‡É¸ °º ˜´ª°¥µn Š…°Š‡n°¼ œ´ —´
2. Ä®œo „´ Á¦¸¥œ«„¹ ¬µÁ¡·É¤Á˜¤· ‹µ„ĝ‡ªµ¤¦¼ošÉ¸ 1
3. œ„´ Á¦¸¥œÂ¨³‡¦¼nª¥„œ´ ­¦ž» „µ¦®µŸ¨‡–¼ ‡µ¦šr Á¸ ޏ¥œ…°ŠÁŽ˜­°ŠÁŽ˜
4. Ä®œo „´ Á¦¥¸ œšµÎ  „f ®´—‹µ„ĝ„‹· „¦¦¤šÉ¸ 1

5. ®¨nŠ„µ¦Á¦¥¸ œ¦¼o
1. ĝ‡ªµ¤¦šo¼ ¸É 1
2. ĝ„‹· „¦¦¤šÉ¸ 1
3. ®°o Š­¤—» æŠÁ¦¸¥œ

6. „¦³ªœ„µ¦ª´—¨³ž¦³Á¤œ· Ÿ¨
1. ž¦³Á¤·œŸ¨‹µ„„µ¦šÎµÄ„·‹„¦¦¤
2. ž¦³Á¤œ· Ÿ¨‹µ„„µ¦šÎµÂš—­°

7. œ´ š„¹ ®¨Š´ „µ¦­°œ
……………………………………………………………………………………………………………….
……………………………………………………………………………………………………………….
……………………………………………………………………………………………………………….
……………………………………………………………………………………………………………….

8. „‹· „¦¦¤Á­œ°Âœ³
……………………………………………………………………………………………………………….
……………………………………………………………………………………………………………….
……………………………………………………………………………………………………………….
……………………………………………………………………………………………………………….

⌦ 3
⌦

ĝ‡ªµ¤¦o¼šÉ¸ 1

Ĝ¸ª·˜ž¦³‹µÎ ª´œ Á¦µ˜o°ŠÁ„¥É¸ ª…°o Š„´„µ¦‹´ ‡¼n¦³®ªnµŠ­·ÉŠ…°Š 2 ­·Éа¥¼nÁ­¤° Áœn „µ¦ŽÊ°º ­·œ‡oµ
¤„¸ µ¦‹´ ‡¼n¦³®ªnµŠ­·œ‡oµšÉޏ ºÊ°„´¦µ‡µ Ĝª· µ‡–·˜«µ­˜¦Är o “ ‡¼°n œ´ —´ ” ­—Š„µ¦‹´ ‡¦¼n ³®ªµn Š­ÉŠ· 2 ­ÉŠ·

‡¼°n œ´ —´
œ´„Á¦¥¸ œ¡‹· µ¦–µ­™µœ„µ¦–˜r n°ÅžœÊ¸
¦¬· š´ Ÿ¨˜· ³®¤É¸­µÎ Á¦È‹¦ž¼ ¥®¸É °o ®œŠ¹É ˜ŠÊ´ ¦µ‡µ…µ¥³®¤­¸É µÎ Á¦‹È ¦ž¼ ްЍ³ 5 µš
™oµ­œÄ‹„µ¦‹´ ‡¦¼n ³®ªnµŠ‹µÎ œªœ³®¤„ɸ ´ ¦µ‡µ³®¤¸É —Š´ ˜µ¦µŠ

‹Îµœªœ³®¤É¸ (ްŠ) ¦µ‡µ³®¤¸É

15

2 10

3 15

4 20

5 25

6 30

„µ¦‹´‡¦¼n ³®ªµn Š‹Îµœªœ³®¤¸„É ´¦µ‡µ Á…¸¥œÂ­—ŠÄœ¦ž¼ ‡n°¼ œ´ —´Å——o Š´ œÊ¸ (1,5), (2,10), (3,15),

(4,20), (5,25), (6,30)

(1,5) °nµœªnµ ‡¼°n ´œ—´®œÉй ®µo ¤¸ 1 Áž}œ­¤µ·„˜ª´ ®œoµ ¨³ 5 Áž}œ­¤µ„· ˜ª´ ®¨Š´
×¥…o°˜„¨ŠÄ®­o ¤µ„· ˜ª´ ®œoµÂšœ‹Îµœªœ³®¤É¸ ¨³­¤µ·„˜´ª®¨Š´ 𜦵‡µ³®¤¸É Áœn (4,20)
®¤µ¥™Š¹ ³®¤É¸ 4 ްР¦µ‡µ 20 µš —Š´ œœÊ´ ( 4,20 ) „´ ( 20,4) ¥°n ¤Å¤nčn‡°n¼ œ´ —´ Á—¥¸ ª„œ´
­·ŠÉ ­Îµ‡´Äœ„µ¦Ážœ} ‡¼n°´œ—´‡°º ˜o°ŠÁžœ} ‡n¼Â¨³¤¸°œ´ —´ Ĝª·µ‡–·˜«µ­˜¦Ár ¤ºÉ°„¨nµª™¹Š‡°n¼ ´œ—´ Ĝ
„¦–š¸ ´ªÉ Şč­o ´ ¨„´ ¬–r (x, y) ×¥ x Áž}œ­¤µ„· ˜ª´ ®œµo ¨³ y Áž}œ­¤µ·„˜ª´ ®¨Š´

™oµ a z b ¨ªo (a, b) ¨³ (b, a) ŤÁn ž}œ‡¼°n ´œ—´ Á—¥¸ ª„œ´

‡n¼°´œ—´ ­°Š‡‹n¼ ³Ášnµ„œ´ Áž}œÅž˜µ¤šœ¥· µ¤—´Šœ¸Ê

(x, y) (a, b) „Ș°n Á¤°ºÉ x a ¨³ y b

4 ⌫ ⌫  ⌦
 ⌫         

Ÿ¨‡¼–‡µ¦ršÁ¸ Ž¥¸ œ
Ä®o A ^1,2,3` ¨³ B ^2,4`
™µo Á…¥¸ œ‡¼°n œ´ —´ ץĮ­o ¤µ·„˜ª´ ®œoµÁžœ} ­¤µ„· …°Š A ¨³­¤µ„· ˜ª´ ®¨´ŠÁž}œ­¤µ„· …°Š B ‹³
Á„—· „µ¦‹´‡¼Ån —šo ´ŠÊ ®¤— 6 ‡n¼

­¤µ„· …°ŠÁŽ˜ A ­¤µ·„…°ŠÁŽ˜ B ‡n°¼ œ´ —´
2 (1,2)
1 4 (1,4)
2 (2,2)
2 4 (2,4)
2 (3,2)
3 4 (3,4)

ÁŽ˜…°Š‡n°¼ œ´ —´ š´ŠÊ ®¤—‡º°
^(1,2), (1,4), (2,2), (2,4), (3,2), (3,4)`

Á¦¸¥„ÁŽ˜œª¸Ê nµŸ¨‡¼–‡µ¦šr Á¸ ޏ¥œ…°ŠÁŽ˜ A ¨³ÁŽ˜ B
Á…¥¸ œÂšœ—ªo ¥ AuB

ϫσ ༡ AuB ^(1,2), (1,4), (2,2), (2,4), (3,2), (3,4)`

˜´ª°¥nµŠ Ä®o A ^1,3,5` ¨³ B ^2,4`

‹ŠÁ…¸¥œ AuB , BuA , AuA ¨³ BuB Â‹„Â‹Š­¤µ„·

ª·›š¸ ε AuB {(a, b) / a  A š b  B}

—´Šœ´œÊ AuB ^(1,2), (1,4), (3,2), (3,4), (5,2), (5,4)`

BuA {(a, b) / a  B š b  A}

—´ŠœÊœ´ BuA ^(2,1), (2,3), (2,5), (4,1), (4,3), (4,5)`

AuA {(a, b) / a, b  A}

—´Šœ´œÊ AuA ^(1,1), (1,3), (1,5), (3,1), (3,3), (3,5), (5,1), (5,3), (5,5)`

BuB {(a, b) / a, b  B}

—´ŠœÊœ´ BuB ^(2,2), (2,4), (4,2), (4,4)`

⌦ 5
⌦

ĝ„·‹„¦¦¤šÉ¸ 1

1. Ä®o A ^1,2` , B ^10,20` ‹Š®µ Au B ¨³ B u A ¨³‹Îµœªœ­¤µ„· …°Š Au B
¨³ B u A ÁŽ˜ Au B Ášnµ„´ÁŽ˜ B u A ®¦°º ŤÁn ¡¦µ³Á®˜Ä» —

2. Ä®o A ^1,2,3` , B ^3,4,5` ¨³ C ^2,4` ‹Š®µÁŽ˜˜n°ÅžœÂʸ ¨³¦³»ÁŽ˜šÉ¸Ášnµ„´œ
2.1 Au (B ˆ C)

2.2 (A u B) ˆ (A u C)

2.3 Au (B ‰ C)

2.4 (A u B) ‰ (Au C)

2.5 Au (B C)

2.6 (A u B) (A u C)
3. ¦µo œ…µ¥…oµªÂ„Цµ‡µž¦³®¥´— ¤„¸ ´ …µo ª­°Šž¦³Á£šÄ®Áo ¨°º „‡º°Â„ŠÂ¨³Ÿ´—Ÿ´„ ™µo ¦oµœÂ®nŠœÊ¤¸ ¸
„Š 4 œ—· ‡°º „ŠÁ…¥¸ ª®ªµœ „Š®¤¼ÁšÃ¡ „Š…¸ÁÊ ®¨„È „Š­o¤ ¨³¤¸Ÿ´—Ÿ´„ 2 œ·—‡°º Ÿ—´ Ÿ„´ o»Š Ÿ—´ ‡³œµo
¨„¼ ‡oµ…°Š¦oµœ…oµªÂ„Š‹³Á¨°º „­ŠÉ´ „´…oµª ŽŠÉ¹ ž¦³„°—ªo ¥Â„ŠÂ¨³Ÿ´—Ÿ´„°¥µn Ѝ³®œ¹ŠÉ œ—· ŗ„o ɸ 

6 ⌫ ⌫  ⌦
 ⌫         

Ÿœ„µ¦‹—´ „µ¦Á¦¸¥œ¦oš¼ ¸É 2

Á¦ºÉ°Š ‡ªµ¤­¤´ ¡œ´ ›r ´Êœ¤´›¥¤«„¹ ¬µžše ¸É 4
ª·µ ‡–·˜«µ­˜¦r Áª¨µ 2 ´ÉªÃ¤Š

Ÿ¨„µ¦Á¦¥¸ œ¦šo¼ ‡É¸ µ—®ª´Š
­µ¤µ¦™Á…¸¥œ‡ªµ¤­¤´ ¡´œ›r˜µ¤ÁŠ°Éº œÅ…š„ɸ µÎ ®œ—Ä®Åo —o

1. ‹»—ž¦³­Š‡r„µ¦Á¦¸¥œ¦¼o
1. Á…¥¸ œ‡ªµ¤­¤´ ¡´œ›˜r µ¤ÁŠÉ°º œÅ…š¸É„µÎ ®œ—Ä®oŗo
2. °„‡ªµ¤®¤µ¥…°Š‡ªµ¤­¤´ ¡œ´ ›r‹µ„ A Ş B ŗo
3. °„‡ªµ¤®¤µ¥…°Š‡ªµ¤­´¤¡œ´ ›Är œ A ŗo

2. œª‡ªµ¤‡—· ®¨´„
‡ªµ¤­¤´ ¡œ´ ›r®¤µ¥™¹Š ÁŽ˜…°Š‡°n¼ œ´ —´ ×¥š‡É¸ ¼n°´œ—´š°É¸ ¥n¼ÄœÁŽ˜Á—¥¸ ª„œ´ ®¦°º 2 ÁŽ˜œ´Êœ‹³¤¸

‡ªµ¤­¤´ ¡œ´ ›rÁ„¥¸É ª…°o Š„´œ£µ¥Ä˜„o ‘Á„–”°r ¥µn ŠÄ—°¥nµŠ®œŠÉ¹

3. Áœ°ºÊ ®µ­µ¦³
1. ‡ªµ¤­´¤¡œ´ ›r®¤µ¥™¹Š ÁŽ˜…°Š‡n¼°œ´ —´ ×¥šÉ¸‡n¼°´œ—´ š°¸É ¥¼Än œÁŽ˜Á—¸¥ª„´œ®¦º° 2 ÁŽ˜œœÊ´ ‹³¤¸

‡ªµ¤­´¤¡´œ›rÁ„É¥¸ ª…°o Š„œ´ £µ¥Ä˜o„‘Á„–”°r ¥nµŠÄ—°¥µn Š®œÉ¹Š
2. r Ážœ} ‡ªµ¤­¤´ ¡´œ›r‹µ„ A Ş B „˜È n°Á¤°Éº r Ážœ} ­´ ÁŽ˜…°Š AuB
3. r Áž}œ‡ªµ¤­´¤¡´œ›Är œ A „˜È °n Á¤Éº° r Áž}œ­´ÁŽ˜…°Š A uA

4. „¦³ªœ„µ¦‹—´ „µ¦Á¦¥¸ œ¦¼o
1. ‡¦¼¥„˜´ª°¥nµŠºÉ°…°Šœ´„Á¦¸¥œ­°Š‡œÄ—ÇĜ®o°ŠÁ¦¸¥œ…¹Êœ¤µ ¨oªÄ®onª¥„´œ¡·‹µ¦–µ®µ‡ªµ¤

Á„¥¸É ª…o°Š„œ´ ¦³®ªµn Їœš´ÊŠ­°Š Áœn “Ážœ} Á¡º°É œ„´œ” “­Š¼ „ªnµ” “Á˜¥Ê¸ „ªµn ” ²¨² ‹µ„œœÊ´ ¥„˜ª´ °¥nµŠ
Áž}œ‹µÎ œªœ­°Š‹Îµœªœ Áœn 4 „´ 2 ¨ªo Ä®œo ´„Á¦¥¸ œªn ¥„´œ¡·‹µ¦–µªµn ‹µÎ œªœšŠ´Ê ­°ŠÁ„ɸ¥ª…°o Š„œ´
°¥µn ŠÅ¦µo Š ŽÉй °µ‹°°„¤µ®¨µ¥Ç  Áœn “4 ¤µ„„ªµn 2” “4 Ášµn „´ 2 ‡¼– 2” ®¦°º “ 2
Áž}œ‡µn ¦µ„š¸É­°ŠšÉÁ¸ žœ} ª„…°Š 4”

⌦ 7
⌦

2. ‡¦¼­¦»žÄ®œo „´ Á¦¸¥œÁ…µo ċªµn ‡ªµ¤­¤´ ¡´œ›rÁ„—· ‹µ„­ŠÉ· ­°Š­ÉŠ· Á„¥É¸ ª…o°Š„´œ£µ¥Ä˜„o ‘Á„–”°r ¥µn Š
ė°¥µn Š®œ¹ÉŠ ¨³­·ŠÉ ­°Š­·ÉŠœ´œÊ ‹³Á…¥¸ œÁžœ} ‡°¼n ´œ—´ ŗÁo ­¤° ¡¦°o ¤šÊ´Š¥„˜ª´ °¥nµŠÄ®oœ„´ Á¦¥¸ œ—¼

3. Ä®œo „´ Á¦¸¥œ¥„˜ª´ °¥nµŠ‡ªµ¤­´¤¡´œ›¦r ³®ªµn Š x „´ y Áœn x > y , y = x + 1 , y = x 2 ²¨²
¨³Ä®o®µ‡¼°n œ´ —´ ( x, y ) š­É¸ °—‡¨°o Š„œ´ £µ¥Ä˜oÁаºÉ œÅ…—Š´ „¨nµª ¨ªo ‡¦¼ °„œ´„Á¦¸¥œªnµ ÁŽ˜…°Š‡°¼n ´œ—´
Á®¨µn œ´œÊ Á¦¥¸ „ªµn ‡ªµ¤­¤´ ¡´œ›r

4. ‡¦¼¥„˜´ª°¥nµŠ‡ªµ¤­´¤¡´œ›rš¸ÉÁž}œ‡ªµ¤­´¤¡´œ›r‹µ„ A Ş B ¨³š¸ÉÁž}œ‡ªµ¤­´¤¡´œ›rĜ A
¨oªÄ®oœ´„Á¦¥¸ œnª¥„´œ­¦»ž¨„´ ¬–³­µÎ ‡´ …°Š‡ªµ¤­´¤¡œ´ ›‹r µ„ A Ş B ¨³‡ªµ¤­´¤¡œ´ ›Är œ A

5. Ä®oœ„´ Á¦¥¸ œ«¹„¬µÁ¡·É¤Á˜¤· ‹µ„ĝ‡ªµ¤¦oš¼ ɸ 2
6. Ä®œo „´ Á¦¸¥œšÎµÂ f„®´—‹µ„ĝ„·‹„¦¦¤š¸É 2

5. ®¨nŠ„µ¦Á¦¸¥œ¦¼o
1. ĝ‡ªµ¤¦š¼o ɸ 2
2. ĝ„·‹„¦¦¤š¸É 2
3. ®o°Š­¤»—æŠÁ¦¥¸ œ

6. „¦³ªœ„µ¦ª—´ ¨³ž¦³Á¤·œŸ¨
1. ž¦³Á¤œ· Ÿ¨‹µ„„µ¦šÎµÂ „f ®´—
2. ž¦³Á¤œ· Ÿ¨‹µ„„µ¦šÎµÂš—­°

7. ´œš„¹ ®¨Š´ „µ¦­°œ
……………………………………………………………………………………………………………….
……………………………………………………………………………………………………………….
……………………………………………………………………………………………………………….
……………………………………………………………………………………………………………….

8. „‹· „¦¦¤Á­œ°Âœ³
……………………………………………………………………………………………………………….
……………………………………………………………………………………………………………….
……………………………………………………………………………………………………………….
……………………………………………………………………………………………………………….

8 ⌫ ⌫  ⌦
 ⌫         

ĝ‡ªµ¤¦š¼o ɸ 2

šœ·¥µ¤…°Š‡ªµ¤­¤´ ¡œ´ ›r
Ĝ¸ª·˜ž¦³‹µÎ ªœ´ ¨³Äœ‡–˜· «µ­˜¦r Á¦µ¤„´ ¡­™µœ„µ¦–rš¸É­—Їªµ¤­´¤¡œ´ ›r¦³®ªµn Š­¤µ„·

…°ŠÁŽ˜ 2 ÁŽ˜°¥n¼Á­¤° Ánœ ¦·¬š´ ¦´Á®¤µž¼ ¨°È „ž¼™œœÂ®nŠ®œÉ¹Š ¦´Á®¤µž¼¨È°„™œœ—ªo ¥¦µ‡µ 600 µš
˜n°˜µ¦µŠÁ¤˜¦ ­µÎ ®¦´¡œÊº š¸É 50 ˜µ¦µŠÁ¤˜¦…ʹœÅž ­™µœ„µ¦–œr Â¸Ê ­—Їªµ¤­´¤¡´œ›¦r ³®ªµn Š…œµ—…°Š
¡ºÊœš¸Éš¸‹É ³ž¼ ¨È°„ž¼™œœ„´‡µn čo‹µn ¥šÉ¸˜o°Š‹nµ¥Ä®Ÿo ¦o¼ ´ Á®¤µ ™µo „µÎ ®œ—…œµ—¡œºÊ š¸É ¥°n ¤¦³»‡nµÄo‹µn ¥Å—o —Š´
­—ŠÄœ˜µ¦µŠ

¡ÊºœšÉ¸(˜µ¦µŠÁ¤˜¦) ‡nµÄ‹o µn ¥(µš)
50 30,000
60 36,000
70 42,000
80 48,000

„µ¦‹´‡¼n¦³®ªnµŠ¡ºÊœšÉ¸Â¨³‡nµÄo‹nµ¥Äœ„µ¦ž¼¨È°„ž¼™œœ Á…¸¥œÂ­—ŠÄœ¦¼ž‡¼n°´œ—´Å—o ‡º°

( 50, 30,000 ), ( 60 , 36,000 ), ( 70, 42,000 ), ( 80, 48,000 )
œ°„‹µ„œ¸Ê °µ‹Â­—Їªµ¤­¤´ ¡´œ›¦r ³®ªµn Š¡Êœº š¸ÂÉ ¨³‡µn č‹o nµ¥Äœ„µ¦ž¼¨È°„ž¼™œœ—oª¥­¤„µ¦Å—o

×¥„ε®œ—˜ª´ ž¦­°Š˜´ªÂž¦Âšœ­ÉŠ· šÁ¸É ¦µœÎµ¤µ‹´‡„n¼ ´œ ™oµÄ®o x šœ¡Êœº ššÉ¸ ɸ‹³ž¼ ¨°È „ž™¼ œœ ®œªn ¥Ážœ}
˜µ¦µŠÁ¤˜¦ ¨³ y šœ‡µn č‹o µn ¥Äœ„µ¦ž¼ ¨È°„ž¼™œœ ‹³¡ªnµ

y 600 x Á¤°ºÉ x t 50

‡ªµ¤­¤´ ¡œ´ ›rÁžœ} Á¦É°º Š­µÎ ‡´…°Š‡–·˜«µ­˜¦r Ĝ‡–˜· «µ­˜¦¤r ´„„¨µn ª™Š¹ „µ¦Á„¥¸É ª…°o Š„´œ¦³®ªnµŠ
­¤µ·„…°ŠÁŽ˜ 2 ÁŽ˜£µ¥Ä˜o„‘Á„–”rŽŠ¹É °¥Än¼ œ¦ž¼ ­¤„µ¦®¦°º °­¤„µ¦ ‡ªµ¤­´¤¡´œ›Ár žœ} ÁŽ˜ŽŠ¹É ¤­¸ ¤µ„·
Áž}œ‡¼°n ´œ—´

šœ·¥µ¤…°Š‡ªµ¤­¤´ ¡œ´ ›Ár žœ} —´ŠœÊ¸

r Ážœ} ‡ªµ¤­¤´ ¡´œ›r‹µ„ A Ş B „Ș°n Á¤°ºÉ r Áž}œ­´ÁŽ˜…°Š AuB

‹µ„šœ¥· µ¤ ‹³Á®Èœªµn ‡ªµ¤­¤´ ¡œ´ ›rÁž}œÁŽ˜ŽŠÉ¹ ¤­¸ ¤µ·„Ážœ} ‡¼°n œ´ —´ „µ¦Á…¸¥œ‡ªµ¤­¤´ ¡œ´ ›r‹Š¹
Á…¸¥œÄœ¦¼žÁŽ˜…°Š‡n¼°´œ—´ ×¥Á…¥¸ œÂÂ‹„Â‹Š­¤µ„· ®¦°º °„ÁŠÉº°œÅ……°Š­¤µ·„„ÅÈ —o

⌦ 9
⌦

10 ⌫ ⌫  ⌦
 ⌫         

⌦ 11
⌦

12 ⌫ ⌫  ⌦
 ⌫         

ĝ„·‹„¦¦¤šÉ¸ 2

1. „ε®œ— A ^1,2,3,4` ‹ŠÁ…¸¥œ‡ªµ¤­´¤¡´œ›˜r n°ÅžœÊ¸ Â‹„Â‹Š­¤µ·„¨³Â­—Š„¦µ¢

…°Š‡ªµ¤­¤´ ¡œ´ ›Är œÁŽ˜ A

1.1 r1 ^(x, y)  A u A / y x 1`
1.2 r2 ^(x, y)  A u A / y ! x 1`
1.3 r3 ^(x, y)  Au A / y x 1`
1.4 r4
1.5 r5 ^(x, y)  A u A / y d x`
^(x, y)  A u A / y t 5 x`

1.6 r4 ˆ r5
2. ˜µ¦µŠÂ˜¨n ³˜µ¦µŠ˜n°Åžœ¸Ê ­—Ї¼n°œ´ —´µŠ‡¼°n ´œ—´ šÉÁ¸ ž}œ­¤µ„· …°Š‡ªµ¤­¤´ ¡œ´ ›r ¨³˜µ¤

¨µÎ —´ ŽŠÉ¹ Ážœ} ‡ªµ¤­´¤¡´œ›Är œ A ¨³ A ^0,1,2,3,...`

1) ‹ŠšµÎ ˜µ¦µŠÄ®­o ¤¦¼ –r

2) ®µ­¤„µ¦šÄ¸É o°›· µ¥‡ªµ¤­´¤¡´œ›r—Š´ „¨nµª

3) Á…¥¸ œÁŽ˜…°Š‡ªµ¤­´¤¡´œ›Âr °„ÁŠÉº°œÅ……°Š­¤µ·„ÄœÁŽ˜

2.1

X0 1 2 3 8 20 100

Y 0 7 14 21 28

2.2
X 0 1 2 3 4 8 20 100
Y6 7 8 9

2.3
X 0 1 2 3 4 8 20 100
Y1 3 5 7

2.4
X 0 1 2 3 4 6 20 100
Y 1 2 5 10 17

3. ‹ŠÁ…¥¸ œ„¦µ¢…°Š‡ªµ¤­¤´ ¡œ´ ›r˜°n Şœ¸Ê

^ `3.1 r1 (x, y)  I u I / y x2 1

3.2 r2 ^(x, y)  I u I / y 2x 3`

3.3 r3 ^(x, y)  I u I / y x 1`

⌦ 13
⌦

Ÿœ„µ¦‹—´ „µ¦Á¦¥¸ œ¦š¼o ɸ 3

Á¦É°º Š ×Á¤œÂ¨³Á¦œ‹r…°Š‡ªµ¤­´¤¡œ´ ›r ´Êœ¤´›¥¤«„¹ ¬µžše ¸É 4
ª·µ ‡–˜· «µ­˜¦r Áª¨µ 2 Éª´ äŠ

Ÿ¨„µ¦Á¦¸¥œ¦šo¼ ɸ‡µ—®ªŠ´
­µ¤µ¦™°„œ·¥µ¤‡Îµªµn ×Á¤œ ¨³Á¦œ‹r
­µ¤µ¦™®µÃ—Á¤œÂ¨³Á¦œ‹…r °Š‡ªµ¤­´¤¡´œ›rš„¸É µÎ ®œ—Ä®Åo —o

1. ‹—» ž¦³­Š‡r„µ¦Á¦¸¥œ¦¼o
1. ®µÃ—Á¤œ…°Š‡ªµ¤­¤´ ¡´œ›šr ¸„É 宜—Ä®oŗo
2. ®µÁ¦œ‹…r °Š‡ªµ¤­´¤¡œ´ ›šr „¸É µÎ ®œ—Ä®Åo —o

2. œª‡ªµ¤‡—· ®¨´„
„µ¦«¹„¬µ‡ªµ¤­¤´ ¡´œ›Är —„Șµ¤ ˜°o Š­œÄ‹…°Á…˜…°Š­¤µ„· ˜ª´ ®œoµ…°Š‡¼°n ´œ—´Äœ‡ªµ¤­´¤¡œ´ ›r

¨³…°Á…˜…°Š­¤µ„· ˜ª´ ®¨´Š…°Š‡¼n°œ´ —´Äœ‡ªµ¤­´¤¡œ´ ›r

3. ÁœÊ°º ®µ­µ¦³
Ä®o r Ážœ} ‡ªµ¤­´¤¡œ´ ›r‹µ„ A Ş B
×Á¤œ…°Š r Á…¥¸ œÂšœ—ªo ¥ Dr ‡°º ÁŽ˜…°Š­¤µ„· ˜´ª®œµo …°Šš„» ‡n°¼ œ´ —´ Ĝ r
D1 = {x / XA ¨³ (x , y)  r }
Á¦œ‹…r °Š r Á…¥¸ œÂšœ—ªo ¥ Rr ‡°º ÁŽ˜…°Š­¤µ·„˜ª´ ®¨Š´ …°Šš„» ‡n°¼ ´œ—´Äœ r
R1 = {y / XB ¨³ (x , y)  r}

4. „¦³ªœ„µ¦‹—´ „µ¦Á¦¸¥œ¦¼o
1. ‡¦Ä¼ ®oœ´„Á¦¥¸ œªn ¥„´œ¥„˜ª´ °¥nµŠ‡ªµ¤­´¤¡œ´ ›šr ɸÁ…¥¸ œÄœ¦¼žÁŽ˜ÂÂ‹„Â‹Š­¤µ·„®¨µ¥Ç ˜ª´ °¥µn Š
2. Ä®oœ„´ Á¦¥¸ œÁ…¥¸ œÁŽ˜Ä®¤n ×¥ÁŽ˜š¸®É œŠÉ¹ Áž}œÁŽ˜…°Š­¤µ„· ˜´ª®œoµ…°ŠÂ˜n¨³‡¼°n ´œ—´ ¨³ÁŽ˜

šÉ­¸ °ŠÁž}œÁŽ˜…°Š­¤µ·„˜´ª®¨Š´ …°ŠÂ˜¨n ³‡¼°n œ´ —´
3. ‡¦¼ °„Ä®œo „´ Á¦¸¥œš¦µªµn ÁŽ˜šÉ¸®œŠÉ¹ Á¦¥¸ „ªnµ ×Á¤œ…°Š‡ªµ¤­´¤¡´œ›r Á…¸¥œÂšœ—ªo ¥ Dr

¨³ÁŽ˜šÉ­¸ °ŠÁ¦¸¥„ªnµ Á¦œ‹…r °Š‡ªµ¤­´¤¡´œ›r Á…¸¥œÂšœ—oª¥ Rr

14 ⌫ ⌫  ⌦
 ⌫         

4. œ„´ Á¦¸¥œnª¥„´œ­¦ž» œ¥· µ¤…°ŠÃ—Á¤œÂ¨³Á¦œ‹r…°Š‡ªµ¤­´¤¡´œ›r
5. Ä®œo ´„Á¦¸¥œ«„¹ ¬µÁ¡¤·É Á˜¤· „µ¦®µÃ—Á¤œÂ¨³Á¦œ‹r…°Š‡ªµ¤­´¤¡´œ›Âr °„ÁŠÉ°º œÅ……°Š­¤µ·„
‹µ„ĝ‡ªµ¤¦¼ošÉ¸ 3
6. Ä®oœ„´ Á¦¥¸ œ „f š„´ ¬³Ã—¥šÎµÂ f„®´—‹µ„ĝ„‹· „¦¦¤š¸É 3

5. ®¨nŠ„µ¦Á¦¸¥œ¦o¼
1. ĝ‡ªµ¤¦¼oš¸É 3
2. ĝ„‹· „¦¦¤šÉ¸ 3
3. ®o°Š­¤—» æŠÁ¦¸¥œ
4. ­º‡oœšµŠ Internet

6. „¦³ªœ„µ¦ª´—¨³ž¦³Á¤œ· Ÿ¨
1. ž¦³Á¤œ· Ÿ¨‹µ„„µ¦šµÎ ĝ„‹· „¦¦¤
2. ž¦³Á¤œ· Ÿ¨‹µ„„µ¦šµÎ š—­°

7. œ´ š„¹ ®¨Š´ „µ¦­°œ
……………………………………………………………………………………………………………….
……………………………………………………………………………………………………………….
……………………………………………………………………………………………………………….
……………………………………………………………………………………………………………….
……………………………………………………………………………………………………………….

8. „·‹„¦¦¤Á­œ°Âœ³
……………………………………………………………………………………………………………….
……………………………………………………………………………………………………………….
……………………………………………………………………………………………………………….
……………………………………………………………………………………………………………….
……………………………………………………………………………………………………………….

⌦ 15
⌦

ĝ‡ªµ¤¦šo¼ ¸É 3

×Á¤œÂ¨³Á¦œ‹…r °Š‡ªµ¤­¤´ ¡œ´ ›r
„ε®œ— A {1,2,3,4,5,6} B {1,2,3,4}
¨³ r {(x, y)  Au B / y 1 x}

2

Áž}œ‡ªµ¤­¤´ ¡´œ›r‹µ„ A Ş B Á…¸¥œ r Â‹„Â‹Š­¤µ·„Å—o—Š´ œ¸Ê

r {(2,1), (4,2), (6,3)}

¡·‹µ¦–µÁŽ˜…°Š­¤µ„· ˜´ª®œoµ…°Š‡°n¼ œ´ —´Äœ r ‹³Å—Áo Ž˜ {2,4,6} Á¦¸¥„ÁŽ˜œª¸Ê nµ ×Á¤œ
( Domain ) …°Š r

¡·‹µ¦–µÁŽ˜…°Š­¤µ„· ˜´ª®¨´Š…°Š‡¼°n ´œ—´Äœ r ‹³Å—Áo Ž˜ {1,2,3} Á¦¥¸ „ÁŽ˜œª¸Ê µn Á¦œ‹r
( Range ) …°Š r

ÁœºÉ°Š‹µ„ r Ážœ} ‡ªµ¤­¤´ ¡œ´ ›r‹µ„ A Ş B Á…¸¥œ …°Ä®­o Š´ Á„˜ªµn ×Á¤œ…°Š r Ážœ} ­´ÁŽ˜…°Š A
¨³Á¦œ‹…r °Š r Áž}œ­´ ÁŽ˜…°Š B

Ä®o r Áž}œ‡ªµ¤­¤´ ¡´œ›r‹µ„ A Ş B
×Á¤œ…°Š r Á…¸¥œÂšœ—ªo ¥ Dr ‡°º ÁŽ˜…°Š­¤µ„· ˜´ª®œµo …°Šš»„‡¼°n ´œ—´ Ĝ r

D1 = {x / XA ¨³ (x , y)  r}
Á¦œ‹r…°Š r Á…¥¸ œÂšœ—ªo ¥ Rr ‡º°ÁŽ˜…°Š­¤µ·„˜ª´ ®¨Š´ …°Šš„» ‡n°¼ ´œ—´ Ĝ r

R1 = {y / y B ¨³ (x , y)  r}

˜ª´ °¥nµŠš¸É 1 Ä®o r Áž}œ‡ªµ¤­¤´ ¡œ´ ›r “ Áž}œ˜´ªž¦³„°…°Š ” ‹µ„ A {1,2,3,4} Ş
ª·›š¸ ε B {10,15,20,25} ‹Š®µÃ—Á¤œÂ¨³Á¦œ‹…r °Š r
Á…¸¥œ r °„ÁаºÉ œÅ…Å——o ´Šœ¸Ê

r = { (x, y)  Au B / x  A, y  B ¨³ (x , y)  r}
x Ážœ} ˜ª´ ž¦³„°…°Š y ®¤µ¥‡ªµ¤ªnµ x ®µ¦ y ¨Š˜ª´ ¨³ x  A, y  B ‹³Å—oÁŽ˜
r —´ŠœÊ¸

r {(1,10),(1,15)(1,20),(1,25),(2,10), (2,20),(3,15),(4,20)}

×Á¤œ…°Š r ‡º° Dr {1,2,3,4}

Á¦œ‹…r °Š r ‡°º Rr {10 ,15,20 ,25}

16 ⌫ ⌫  ⌦
 ⌫         

⌦ 17
⌦

Á¤ºÉ°¡·‹µ¦–µ„¦µ¢…°Š r ‹³¡ªnµ­µÎ ®¦´ ˜¨n ³‹ÎµœªœÁ˜¤È x šÁɸ ž}œ‹Îµœªœ‡¼n ¥°n ¤¤‹¸ µÎ œªœ

Á˜È¤ y ŽÉ¹Š y 1 x 1 ŗoÁ­¤° —Š´ œœ´Ê D1 = {xI / xA ¨³ (x , y)  r}
R1 = {y / y yB ¨³ (x , y)  r}
2

×Á¤œ…°Š r ‡º°

Á¦œ‹r…°Š r ‡º°

˜ª´ °¥µn Šš¸É 3 „µÎ ®œ—‡ªµ¤­¤´ ¡œ´ ›r r ĜÁŽ˜…°Š‹Îµœªœ‹¦Š· —´Šœ¸Ê
ª·›š¸ µÎ r ^(x, y)  R u R / x 2y 2 0`
‹ŠÁ…¥¸ œ„¦µ¢…°Š r ¨³®µÃ—Á¤œÂ¨³Á¦œ‹…r °Š r
„¦µ¢…°Š r Ážœ} Á­oœ˜¦Š ®µ‡n¼°œ´ —´­°Š‡°n¼ ´œ—´ šÉ¸Ážœ} ­¤µ·„…°Š r ŽŠÉ¹ Ážœ} ‹—» °¥n¼ œ
„œ x ¨³‹—» °¥n¼œÂ„œ y
šœ‡µn y = 0 Ĝ­¤„µ¦ x – 2 y – 2 = 0 ‹³Å—o x = 2

—Š´ œÊœ´ ‹—» œÂ„œ x ‡°º ( 2, 0 )
šœ‡µn x = 0 Ĝ­¤„µ¦ x – 2 y – 2 = 0 ‹³Å—o y = - 1

—´ŠœÊœ´ ‹—» œÂ„œ y ‡°º ( 0, - 1 )

y

(2,0) x
(0,-1)

‹»—š¸ÉÁ¦¥¸ Š˜°n Áœ°Éº Š„´œœÁ­oœ˜¦ŠÁž}œ­¤µ„· …°Š r ‹µ„„¦µ¢

×Á¤œ…°Š r ‡º° D1 = {x / xA ¨³ (x , y)  r}
Á¦œ‹…r °Š r ‡º° R1 = {yB ¨³ (x , y)  r}

…o°­Š´ Á„˜ 1 x 1
­¤„µ¦ x 2y 2 0 Á…¸¥œÄ®¤nŗÁo žœ} y 2
œÉ´œ‡°º r {(x, y)  R u R / y 1 x 1}

2

18 ⌫ ⌫  ⌦
 ⌫         

™µo ŤÅn —Áo …¸¥œ„¦µ¢…°Š r ­µ¤µ¦™®µÃ—Á¤œÂ¨³Á¦œ‹r…°Š r ×¥¡‹· µ¦–µ­¤„µ¦ y 1 x 1
2
¡ªnµ ­Îµ®¦´ ‹µÎ œªœ‹¦·Š x Ä—Ç ¥n°¤¤‹¸ µÎ œªœ‹¦·Š y „¨µn ª‡°º
™µo x = 2 ŗo y = 0
™µo x > 2 ŗo y > 0
™µo x < 2 ŗo y < 0
×Á¤œÂ¨³Á¦œ‹r…°Š‡ªµ¤­¤´ ¡œ´ ›r r ‹Š¹ Ážœ} ÁŽ˜…°Š‹µÎ œªœ‹¦·Š

˜´ª°¥nµŠš¸É 4 Ä®o r ^(x, y)  R u R / y 4 `x2 ‹Š®µÃ—Á¤œÂ¨³Á¦œ‹…r °Š r
ª›· ¸šÎµ
Á¦µ°µ‹®µÃ—Á¤œÂ¨³Á¦œ‹r…°Š r ×¥ªÁ· ‡¦µ³®‹r µ„­¤„µ¦ y 4 x2 —´Šœ¸Ê

­Îµ®¦´ ‹Îµœªœ‹¦Š· x Ä—Ç ¥°n ¤¤¸ 4 x2  R

—Š´ œœÊ´ Dr {x / x R}
‹µ„­¤„µ¦ y 4 x2 ‹´—¦¼ž­¤„µ¦œÊĸ ®¤‹n ³Å—o x2 4 y

ÁœÉº°Š‹µ„ x2 t 0

—Š´ œÊœ´ 4 y t 0

œÉ´œ‡º° 4 t y

‹³Å—ªo nµ yd4

Á¡¦µ³Œ³œÊœ´ Rr {y R / y d 4}

˜ª´ °¥nµŠš¸É 5 Ä®o r ^(x, y)  R u R / y x 2 ` ‹Š®µÃ—Á¤œÂ¨³Á¦œ‹…r °Š r
ª›· š¸ µÎ
­µ¤µ¦™®µÃ—Á¤œÂ¨³Á¦œ‹…r °Š r ×¥¡‹· µ¦–µ‹µ„­¤„µ¦ y x 2 —´Šœ¸Ê

­Îµ®¦´‹µÎ œªœ‹¦·Š x Ä—Ç ¥n°¤¤¸ x 2  R

ÁœÉ°º Š‹µ„ x 2 t0

—Š´ œœ´Ê y t 0

×Á¤œ…°Š r ‡º° Dr {x / x R}
Á¦œ‹r…°Š r ‡º° Rr {y R / y t 0}

⌦ 19
⌦

ĝ„·‹„¦¦¤šÉ¸ 3

1. Ä®o A ^x  I / 2 d x d 2` , B ^y  I / 4 d y d 4`

‹Š®µÃ—Á¤œÂ¨³Á¦œ‹…r °Š‡ªµ¤­´¤¡´œ›˜r °n Şœ¸Ê

1.1 r1 ^(x, y)  Au B / y x`
1.2 r2 ^(x, y)  Au B / y x`
1.3 r3 ^(x, y)  Au B / y ! x`

2. ‹ŠÁ…¸¥œ„¦µ¢Â¨³¦³»Ã—Á¤œÂ¨³Á¦œ‹…r °Š‡ªµ¤­´¤¡œ´ ›Är œÁŽ˜ I ˜°n Şœ¸Ê

2.1 r1 ^(x, y)  I u I / x y 2`
2.2 r2
2.3 r3 ^ `(x, y)  I u I / y 2x2 3
2.4 r4 ^ `(x, y)  I u I / x y2
2.5 r5 ^(x, y)  I u I / y x 2`

^(x, y)  I u I / x y `

3. ¦ž¼ ­¸ÁÉ ®¨É¸¥¤Ÿœº Ÿoµ¦¼ž®œÉ¹Š¤¸¡ºÊœš¸É 36 ˜µ¦µŠÁ¤˜¦ ™µo Ä®o d šœ‡ªµ¤¥µª ¨³ w šœ‡ªµ¤„ªoµŠ
…°Š¦¼ž­¸ÉÁ®¨¸¥É ¤Ÿœº Ÿµo œÊ¸ ®œªn ¥Ážœ} Á¤˜¦Â¨³Áž}œ‹ÎµœªœÁ˜¤È ª„ ‹Š®µ‡ªµ¤­´¤¡´œ›r r š¤É¸ ­¸ ¤µ„· Ážœ} ‡n¼
°´œ—´ ( d, w ) ¡¦o°¤š´ŠÊ Á…¸¥œ„¦µ¢…°Š r ¨³¦³Ã» —Á¤œÂ¨³Á¦œ‹…r °Š r

4. ‹Š®µÃ—Á¤œÂ¨³Á¦œ‹…r °Š‡ªµ¤­¤´ ¡´œ›˜r n°ÅžœÊ¸

4.1 r1 ®­(x, y)  R u R / y 2 x 2¾½
¯ 3 ¿
4.2 r2
4.3 r3 ^(x, y)  R u R / y x 1`
^(x, y)  R u R / x
4.4 r4 2`
­®(x, y)  R u R / y
4.5 r5 ¯ 1 x ½¾
4.6 r6 2 ¿
4.7 r7 ^(x, y)  R u R / x
4.8 r8 2y`
4.9 r9 ^(x, y)  R u R / y
`x 1
4.10 r10 ^(x, y)  R u R / y
`9 x2
^(x, y)  R u R / y `x2 3
^(x, y)  R u R / y2
^(x, y)  R u R / y x`
`x3 1

20 ⌫ ⌫  ⌦
 ⌫         

Ÿœ„µ¦‹—´ „µ¦Á¦¸¥œ¦šo¼ ɸ 4

Á¦º°É Š °·œÁª°¦r­…°Š‡ªµ¤­¤´ ¡œ´ ›r Êœ´ ¤´›¥¤«¹„¬µžše ɸ 4
ª·µ ‡–·˜«µ­˜¦r Áª¨µ 2 ´ªÉ äŠ

Ÿ¨„µ¦Á¦¸¥œ¦šo¼ ¸‡É µ—®ª´Š
®µ°·œÁª°¦­r …°Š‡ªµ¤­´¤¡´œ›šr Ʉ¸ µÎ ®œ—Ä®Åo —o

1. ‹—» ž¦³­Š‡r„µ¦Á¦¥¸ œ¦o¼
1. ®µ°·œÁª°¦r­…°Š‡ªµ¤­´¤¡œ´ ›rš„ɸ 宜—Ä®Åo —o
2. ®µÃ—Á¤œÂ¨³Á¦œ‹r…°Š°œ· Áª°¦­r …°Š‡ªµ¤­¤´ ¡´œ›šr „¸É µÎ ®œ—Ä®Åo —o

2. œª‡ªµ¤‡—· ®¨„´
™oµ­¨´˜µÎ ®œnŠ…°Š­¤µ·„˜´ª®œoµ„´­¤µ·„˜´ª®¨´Š…°ŠÂ˜n¨³‡n¼°´œ—´Äœ‡ªµ¤­´¤¡´œ›r‹³

ŗo‡ªµ¤­¤´ ¡œ´ ›rÄ®¤n Á¦¸¥„ªµn °œ· Áª°¦r­…°Š‡ªµ¤­¤´ ¡´œ›r

3. ÁœÊ°º ®µ­µ¦³
1. °œ· Áª°¦r­…°Š‡ªµ¤­´¤¡´œ›r r Á…¥¸ œÂšœ—ªo ¥ r 1 ®¤µ¥™Š¹ ‡ªµ¤­¤´ ¡œ´ ›šr ¸ÉÁ„—· ‹µ„„µ¦­¨´š¸É…°Š

­¤µ·„˜´ª®œµo ¨³­¤µ·„˜ª´ ®¨´ŠÄœÂ˜n‡°¼n œ´ —´šÁ¸É žœ} ­¤µ„· …°Š r
2. ×Á¤œ…°Š°·œÁª°¦r­…°Š‡ªµ¤­¤´ ¡´œ›r Ášnµ„´Á¦œ‹…r °Š‡ªµ¤­¤´ ¡´œ›r¨³Á¦œ‹…r °Š°œ· Áª°¦r­

…°Š‡ªµ¤­¤´ ¡œ´ ›rÁšµn „´ ×Á¤œ…°Š‡ªµ¤­´¤¡œ´ ›r

4. „¦³ªœ„µ¦‹´—„µ¦Á¦¸¥œ¦o¼
1. ‡¦Ä¼ ®oœ„´ Á¦¸¥œªn ¥„œ´ ¥„˜´ª°¥nµŠ‡ªµ¤­¤´ ¡œ´ ›šr ɸÁžœ} ÁŽ˜šÉÁ¸ …¸¥œÂÂ‹„Â‹Š­¤µ·„®¨µ¥Ç ÁŽ˜

¨oªÄ®oœ´„Á¦¸¥œÁ…¸¥œÁŽ˜Á®¨nµœÊ´œÄ®¤n ×¥­¨´šÉ¸¦³®ªnµŠ­¤µ·„‡¼n°´œ—´˜´ª®œoµÂ¨³˜´ª®¨´Š…°Šš»„‡n¼
°œ´ —´ Ĝ˜n¨³ÁŽ˜ ¨oª‡¦¼ °„œ´„Á¦¥¸ œªµn ÁŽ˜…°Š‡°n¼ œ´ —´ šœ¸É „´ Á¦¥¸ œÁ…¥¸ œ…œÊ¹ ¤µÄ®¤nœœÊ´ Á¦¥¸ „ªnµ
°œ· Áª°¦r­…°Š‡ªµ¤­´¤¡´œ›rœ´ÊœÇ Á…¸¥œÂšœ—ªo ¥ r 1

2. œ´„Á¦¸¥œnª¥„´œ­¦ž» œ¥· µ¤…°Š°œ· Áª°¦­r …°Š‡ªµ¤­¤´ ¡´œ›r
3. ‡¦¼ššªœ„µ¦®µÃ—Á¤œÂ¨³Á¦œ‹r…°Š‡ªµ¤­¤´ ¡´œ›r ¨oªÄ®oœ„´ Á¦¥¸ œ®µÃ—Á¤œÂ¨³Á¦œ‹…r °Š
°·œÁª°¦­r …°Š‡ªµ¤­¤´ ¡œ´ ›œr Ê´œÂ¨ªo Áž¦¸¥Áš¸¥„œ´

⌦ 21
⌦

4. Ä®oœ„´ Á¦¥¸ œªn ¥„œ´ ®µ…°o ­¦»žÄ®Åo —ªo nµÃ—Á¤œ…°Š°œ· ª°¦­r …°Š‡ªµ¤­´¤¡´œ›Ár šµn „´ Á¦œ‹…r °Š‡ªµ¤
­¤´ ¡´œ›r¨³Á¦œ‹…r °Š°œ· Áª°¦r­…°Š‡ªµ¤­´¤¡œ´ ›rÁšµn „´Ã—Á¤œ…°Š‡ªµ¤­¤´ ¡´œ›r

5. Ä®œo „´ Á¦¥¸ œ«¹„¬µÁ¡¤É· Á˜·¤‹µ„ĝ‡ªµ¤¦oš¼ ɸ 4
6. Ä®oœ„´ Á¦¸¥œšÎµÂ „f ®´—‹µ„ĝ„·‹„¦¦¤š¸É 4

5. ®¨Šn „µ¦Á¦¸¥œ¦¼o
1. ĝ‡ªµ¤¦šo¼ ɸ 4
2. ĝ„·‹„¦¦¤š¸É 4
3. ®o°Š­¤—» æŠÁ¦¸¥œ

4. Internet

6. „¦³ªœ„µ¦ª´—¨³ž¦³Á¤·œŸ¨
1. ž¦³Á¤·œŸ¨‹µ„„µ¦šµÎ  „f ®—´
2. ž¦³Á¤·œŸ¨‹µ„„µ¦šµÎ š—­°

7. œ´ 𹄮¨Š´ „µ¦­°œ
……………………………………………………………………………………………………………….
……………………………………………………………………………………………………………….
……………………………………………………………………………………………………………….
……………………………………………………………………………………………………………….
……………………………………………………………………………………………………………….
……………………………………………………………………………………………………………….

8. „‹· „¦¦¤Á­œ°Âœ³
……………………………………………………………………………………………………………….
……………………………………………………………………………………………………………….
……………………………………………………………………………………………………………….
……………………………………………………………………………………………………………….
……………………………………………………………………………………………………………….
……………………………………………………………………………………………………………….

22 ⌫ ⌫  ⌦
 ⌫         

ĝ‡ªµ¤¦¼ošÉ¸ 4

°·œÁª°¦r­…°Š‡ªµ¤­´¤¡œ´ ›r
Įo A {0,1,2,3,4,5} , B {0,1,2,3,4,5,6,7,8,9}

¨³ r Áž}œ‡ªµ¤­´¤¡œ´ ›‹r µ„ A Ş B

r {(x, y)  A u B / y 2x}

‹³Å—o r {(0,0), (1,2), (2,4), (3,6), (4,8)}

×Á¤œ…°Š r ‡°º {0,1,2,3,4} Á¦œ‹r…°Š r ‡º° {0,2,4,6,8}

™µo ­¨´˜µÎ ®œnŠ…°Š­¤µ·„˜´ª®œµo „´ ­¤µ„· ˜´ª®¨Š´ …°ŠÂ˜n¨³‡°n¼ œ´ —´ Ĝ r ‹³Å—‡o ªµ¤­´¤¡œ´ ›r

Ä®¤n Á¦¥¸ „ªµn °œ· Áª°¦r­…°Š‡ªµ¤­¤´ ¡œ´ ›…r °Š r Á…¥¸ œÂšœ—oª¥ r 1

r 1 {(0,0), (2,1), (4,2), (6,3), (8,4)}

×Á¤œ…°Š r 1 ‡º° {0,2,4,6,8} Á¦œ‹r…°Š r 1 ‡º° {0,1,2,3,4}
°·œÁª°¦r­…°Š‡ªµ¤­¤´ ¡œ´ ›…r °Š r Áž}œ‡ªµ¤­´¤¡´œ›‹r µ„ B Ş A ¨³Á…¥¸ œ r 1 °„
ÁŠÉ°º œÅ……°Š­¤µ„· —Š´ œ¸Ê

r 1 {(x, y)  B u A / y x }
2

šœ¥· µ¤…°Š°œ· Áª°¦­r …°Š‡ªµ¤­´¤¡´œ›r ‡º°

™oµ r Ážœ} ‡ªµ¤­´¤¡´œ›r‹µ„ A Ş B °œ· Áª°¦r­…°Š‡ªµ¤­´¤¡´œ›…r °Š r
Á…¸¥œÂšœ—ªo ¥ r 1 ‡º°‡ªµ¤­´¤¡œ´ ›r‹µ„ B Ş A ŽÉй Áž}œÁŽ˜šžÉ¸ ¦³„°—ªo ¥‡¼n°œ´ —´ (y, x)
­µÎ ®¦´š»„Ç (x, y)  r œ´Éœ‡º°

r 1 {(y, x) /( x, y)  r}

™oµÁŽ˜…°Š‡ªµ¤­´¤¡´œ›r r Áž}œÁŽ˜°œ´œ˜r ¨³Á…¸¥œÂÂ‹„Â‹Š­¤µ·„ŤnŗoÁnœ

r {(x, y)  R u R / y x2 } „µ¦®µ°œ· Áª°¦­r …°Š‡ªµ¤­¤´ ¡œ´ ›…r °Š r Ä®„o ¦³šÎµÃ—¥­¨´š¸É¦³®ªnµŠ

˜ª´ ž¦ x ¨³ y Ĝ­¤„µ¦ ‹³Å—o°œ· Áª°¦r­…°Š‡ªµ¤­´¤¡´œ›r…°Š r Ĝ˜µn ŠÇ —´Š˜°n Şœ¸Ê

1) r 1 {(x, y)  R u R / x y 2} 2) r 1 {(x, y)  R u R / y x}

3) r 1 {( y, x)  R u R / y x2} 4) r 1 {( y, x)  R u R / x y}

⌦ 23
⌦

˜ª´ °¥nµŠš¸É 1 Ä®o r {(x, y)  R u R / y 2x 3} ‹Š®µ r 1
ª·›¸šÎµ ®µ­¤„µ¦šÉĸ „o 宜—„µ¦‹´ ‡n¼¦³®ªnµŠ x ¨³ y …°Š r 1 —ªo ¥„µ¦­¨´š¸É¦³®ªµn Š
x ¨³ y Ĝ­¤„µ¦…°Š r

­¤„µ¦…°Š r ­¤„µ¦…°Š r 1

y 2x 3 x 2y 3

‹´—¦¼ž­¤„µ¦…°Š r 1 —Š´ œÊ¸

x 2y 3

x 3 2y

—Š´ œÊœ´ r 1 1x 3 y 1 x 3}
„¦µ¢…°Š r 22 22
{(x, y)  R u R / y
{(x, y)  R u R / y 2x 3} Ážœ} Á­oœ˜¦Š ¤‹¸ »—˜´—œÂ„œ x ‡º°

( 3 ,0) ¨³‹—» ˜—´ œÂ„œ y ‡°º (0, 3)

2

ÁœÉº°Š‹µ„ r 1 Ážœ} °·œÁª°¦r­…°Š‡ªµ¤­¤´ ¡´œ›…r °Š r —Š´ œœÊ´ ‹—» (0, 3) ¨³ ( 3,0)

2

°¥n¼ œ„¦µ¢…°Š r 1

y

y=2x-3 y=x

(0, 3) y 1x 3
2 22

(-3,0) x

( 3 ,0)
2

(0,-3)

„¦µ¢…°Š r ¨³ r 1 ‹³­¤¤µ˜¦„´œ Á¤°ºÉ Á𥏠„´ Á­œo ˜¦Š y x „¨nµªŠµn ¥Ç ªnµ ™µo ¡´
„¦³—µ¬˜µ¤ÂœªÁ­oœ˜¦Š y x „¦µ¢…°Š r ¨³ r 1 ‹³š´„´œ­œš·

24 ⌫ ⌫  ⌦
 ⌫         

˜´ª°¥µn ŠšÉ¸ 2 Ä®o r ^(x, y)  R u R / y x 2` ‹Š®µ r 1 ¡¦o°¤šŠ´Ê ¦³Ã» —Á¤œÂ¨³Á¦œ‹r
ª·›š¸ µÎ
­¤„µ¦š„¸É µÎ ®œ— r 1 Á„—· ‹µ„„µ¦­¨´š¦É¸ ³®ªnµŠ x ¨³ y Ĝ­¤„µ¦ y x 2

­¤„µ¦šÉ¸„ε®œ— r 1 ‡º° x y 2

—´ŠœÊœ´ r 1 {(x, y)  R u R / x y 2}

‹µ„­¤„µ¦ x y 2 ‹´—¦¼ž­¤„µ¦Ä®¤‹n ³Å—o

x 2 y

­Îµ®¦´š„» ‹µÎ œªœ‹¦Š· y Ä—Ç y t 0 —Š´ œœ´Ê

ϫσ ༡ x 2 t0
x t 2

×Á¤œ…°Š r 1 {x  R / x t 2}

Á¦œ‹r…°Š r 1 {y / y  R}
‹µ„­¤„µ¦…°Š r 1

x y 2

×¥šœ¥· µ¤…°Š‡nµ­¤¼¦–r Á…¥¸ œ­¤„µ¦…oµŠ˜oœÅ—o—Š´ œ¸Ê

X = y 2 Á¤°ºÉ y t 0
y 2 Á¤°ºÉ y 0

„¦µ¢…°Š‡ªµ¤­¤´ ¡œ´ ›r r 1 Áž}œ—´Šœ¸Ê

y
x = y – 2 Á¤É°º yt 0

(0,2) x

(-2,0)
(0,-2)

x = - y – 2 Á¤Éº° y< 0

⌦ 25
⌦

˜ª´ °¥nµŠš¸É 3 Ä®o r {(x, y)  R u R / y x2 1} ‹Š®µ r 1 ¡¦°o ¤šÊŠ´ ¦³»Ã—Á¤œÂ¨³Á¦œ‹r
ª›· š¸ µÎ
…°Š°·œÁª°¦r­…°Š‡ªµ¤­´¤¡œ´ ›r

­¤„µ¦š¸É„ε®œ— r 1 Á„—· ‹µ„„µ¦­¨´ š¸É¦³®ªµn Š x ¨³ y Ĝ­¤„µ¦ y x2 1
­¤„µ¦šÉ„¸ 宜— r 1 ‡°º x y2 1

x 1 y2

—Š´ œœÊ´ r 1 {(x, y)  R u R / y 2 x 1}

­Îµ®¦´‹Îµœªœ‹¦Š· y Ä—Ç y2 t 0

—Š´ œÊ´œ x 1 t 0 œÉ´œ‡º° x t 1

×Á¤œ…°Š r 1 {x  R / x t 1}

Á¦œ‹…r °Š r 1 {y / y  R}

˜ª´ °¥nµŠšÉ¸ 4 Ä®o r {(x, y)  R u R / y3 x 1} ‹Š®µ r 1 ¡¦°o ¤šŠ´Ê ¦³Ã» —Á¤œÂ¨³Á¦œ‹r
ª›· ¸šµÎ …°Š°·œÁª°¦r­…°Š‡ªµ¤­´¤¡´œ›r
­¤„µ¦š„¸É 宜— r 1 Á„—· ‹µ„„µ¦­¨´ š¦É¸ ³®ªnµŠ x ¨³ y Ĝ­¤„µ¦ y3 x 1
‹³Å—­o ¤„µ¦š„¸É 宜— r 1 ‡º° x3 y 1

x3 1 y
r 1 {(x, y)  R u R / x 3 1 y}

¡·‹µ¦–µ‡°n¼ ´œ—´ µŠ‡¼n…°Š r 1

x -3 -2 -1 0 1 2 3

y x3 1 -26 -7 0 1 2 9 28

‹³Å—ªo nµ {x / x  R}
×Á¤œ…°Š r 1 {y / y  R}
Á¦œ‹r…°Š r 1

26 ⌫ ⌫  ⌦
 ⌫         

⌦ 27
⌦

Ÿœ„µ¦‹´—„µ¦Á¦¸¥œ¦o¼š¸É 5

Á¦ºÉ°Š „¦µ¢…°Š‡ªµ¤­¤´ ¡œ´ ›r ´œÊ ¤´›¥¤«„¹ ¬µžše ¸É 4
ª· µ ‡–·˜«µ­˜¦r Áª¨µ 2 Éª´ äŠ

Ÿ¨„µ¦Á¦¥¸ œ¦š¼o ¸É‡µ—®ªŠ´
­µ¤µ¦™Á…¥¸ œ„¦µ¢…°Š‡ªµ¤­´¤¡œ´ ›rš„ɸ µÎ ®œ—Ä®Åo —o

1. ‹—» ž¦³­Š‡r„µ¦Á¦¥¸ œ¦o¼
­µ¤µ¦™Á…¸¥œ„¦µ¢…°Š‡ªµ¤­´¤¡œ´ ›šr „¸É 宜—Ä®oŗo

2. œª‡ªµ¤‡·—®¨´„
Ĝ¦³Â„œ¤¤» Œµ„­µ¤µ¦™‹´ ‡¼n®œ¹ÉŠ˜°n ®œŠ¹É ¦³®ªnµŠ‡°n¼ œ´ —´…°Š‹µÎ œªœ‹¦·Š (x, y) „´‹—» Ĝ

¦³œµ ץĮo x Áž}œ¡„· —´ ¦„¨³ y Ážœ} ¡„· ´—®¨Š´
Á¤É°º R Áž}œÁŽ˜…°Š‹µÎ œªœ‹¦·ŠÂ¨³‡ªµ¤­¤´ ¡œ´ ›r r Ážœ} ­´ÁŽ˜…°Š R x R „¦µ¢…°Š‡ªµ¤­¤´ ¡œ´ ›r

r ‡°º ÁŽ˜…°Š‹»—Äœ¦³œµ ×¥šÂɸ ˜n¨³‹»—šœ­¤µ„· …°Š‡ªµ¤­´¤¡´œ›r r

3. ÁœÊº°®µ­µ¦³

„¦µ¢…°Š‡ªµ¤­¤´ ¡œ´ ›r Ážœ} ÁŽ˜…°Š‹—» Ĝ¦³œµÃ—¥šÂɸ ˜n¨³‹»—šœ­¤µ·„…°Š‡ªµ¤­¤´ ¡œ´ ›r

×¥¤¸®¨µ¥¦¼žÂ —Š´ œ¸Ê

1) ¦Á· ª–šÂ¸É ¦Áе Ážœ} „¦µ¢…°Š‡ªµ¤­´¤¡´œ›r

2) Á­œo š¹ ­—Šªµn š„» ‹—» œÁ­œo „¦µ¢Ážœ} ­¤µ·„…°Š‡ªµ¤­´¤¡´œ›r

3) Á­oœž¦³ ­—Šªnµ š„» ‹—» œÁ­oœ„¦µ¢Å¤nÁžœ} ­¤µ„· …°Š‡ªµ¤­´¤¡´œ›ršŠÊ´ ®¤—

4) ‹»—š¹ ­—Šªnµ ‹—» œœ´Ê ¦ª¤°¥Ä¼n œ„¦µ¢

5) ‹»—„¨ªŠ ­—Šªnµ ‹—» œœÊ´ Ťn¦ª¤°¥n¼Äœ„¦µ¢

4. „¦³ªœ„µ¦‹—´ „µ¦Á¦¸¥œ¦o¼
1. ‡¦¼Â¨³œ´„Á¦¸¥œnª¥„´œššªœÁ„ɸ¥ª„´¦³œµ‹Îµœªœ ¨³„µ¦„ε®œ—¡·„´—…°Š‹»—ŽÉ¹Š

„ε®œ—×¥‡¼°n œ´ —´ ˜µn ŠÇ œ¦³œµ‹µÎ œªœ
2. Ä®oœ´„Á¦¸¥œ¥„˜ª´ °¥µn Їªµ¤­´¤¡´œ›r r šÉÁ¸ žœ} ­´ ÁŽ˜…°Š R x R Ž¹ÉŠÁ…¥¸ œÄœ¦ž¼ Â‹„‹Š

­¤µ„· Á¤ºÉ° R Ážœ} ÁŽ˜…°Š‹µÎ œªœ‹¦·Š

28 ⌫ ⌫  ⌦
 ⌫         

3. Ä®œo „´ Á¦¥¸ œœÎµ‡n°¼ œ´ —´ŽŠÉ¹ Áž}œ­¤µ„· ĜÁŽ˜œ´ÊœÇ ŞÁ…¥¸ œÂšœ—ªo ¥‹—» œ¦³œµ‹µÎ œªœ ¨ªo
°„œ„´ Á¦¥¸ œªµn ÁŽ˜…°Š‹»—œ¦³œµ‹µÎ œªœ‡º°„¦µ¢…°Š‡ªµ¤­¤´ ¡œ´ ›œr Ê´œ

4. Ä®oœ„´ Á¦¥¸ œ«¹„¬µÁ¡¤É· Á˜·¤‹µ„ĝ‡ªµ¤¦¼oš¸É 5
5. œ´„Á¦¥¸ œšµÎ  f„®´—‹µ„ĝ„‹· „¦¦¤šÉ¸ 5
6. œ„´ Á¦¥¸ œªn ¥„œ´ ­¦»ž­µ¦³­Îµ‡´ …°Š„¦µ¢…°Š‡ªµ¤­´¤¡´œ›r

5. ®¨Šn „µ¦Á¦¸¥œ¦o¼
1. ĝ‡ªµ¤¦š¼o ¸É 5
2. ĝ„‹· „¦¦¤šÉ¸ 5
3. ®o°Š­¤»—æŠÁ¦¥¸ œ
4. ­º ‡œo šµŠ Internet

6. „¦³ªœ„µ¦ª´—¨³ž¦³Á¤·œŸ¨
1. ž¦³Á¤œ· Ÿ¨‹µ„„µ¦šÎµÂ „f ®—´
2. ž¦³Á¤œ· Ÿ¨‹µ„„µ¦šÎµÂš—­°

7. ´œš„¹ ®¨´Š„µ¦­°œ
……………………………………………………………………………………………………………….
……………………………………………………………………………………………………………….
……………………………………………………………………………………………………………….
……………………………………………………………………………………………………………….
……………………………………………………………………………………………………………….

8. „·‹„¦¦¤Á­œ°Âœ³
……………………………………………………………………………………………………………….
……………………………………………………………………………………………………………….
……………………………………………………………………………………………………………….
……………………………………………………………………………………………………………….
……………………………………………………………………………………………………………….

⌦ 29
⌦

ĝ‡ªµ¤¦¼šo ɸ 5

„µ¦Á…¸¥œ„¦µ¢…°Š¢{Š„r œ´ ‡ª¦°µ«¥´ ¦¼ž„¦µ¢…°Š¢{Š„r œ´ šÉÁ¸ ¦µš¦µ¤µ„n°œÂ¨ªo —Š´ œ¸Ê
1) ¢Š{ „r´œÁ­oœ˜¦Š

y = ax + b , a > 0

y = ax + b

2) ¢Š{ „r ´œ„ε¨´Š­°Š
y = ax2 , a > 0

(0 , 0)

3) ¢Š{ „rœ´ „µÎ ¨Š´ ­µ¤
y = ax3 , a > 0

y

x

(0 , 0)

30 ⌫ ⌫  ⌦
 ⌫         

4) ¢{Š„r´œ Hyperbola
xy = c , c > 0

y

x
(0 , 0)

5) ¢Š{ „r ´œ‡nµ­´¤¦¼ –r
y= x
y

x
(0 , 0)

6) ¢{Š„rœ´ ¦µ„š¸É 2
y= x
y

x
(0 , 0)

⌦ 31
⌦

„¦µ¢…°Š‡ªµ¤­¤´ ¡´œ›r
Ážœ} ÁŽ˜…°Š‹—» Ĝ¦³œµÃ—¥š¸É˜¨n ³‹—» 𜭤µ„· …°Š‡ªµ¤­´¤¡´œ›r
1) Á­œo š¹ ­—Šªnµš»„‹—» œ„¦µ¢Ážœ} ­¤µ·„…°Š‡ªµ¤­´¤¡œ´ ›r
˜ª´ °¥nµŠ 1) y = x

y
𻄋»—œÁ­œo ˜¦Š y = x
Ážœ} ­¤µ„· …°Š‡ªµ¤­¤´ ¡œ´ ›r

x
(0 , 0)

2) Á­oœž¦³ ®¤µ¥™Š¹ š„» ‹—» œÁ­oœ„¦µ¢ ŤÁn ž}œ­¤µ„· …°Š‡ªµ¤­¤´ ¡œ´ ›r
˜´ª°¥nµŠ 2) y > x

y
𻄋—» Á®œº°Á­œo „¦µ¢
Ážœ} ­¤µ„· …°Š‡ªµ¤­´¤¡œ´ ›r

x

3) ‹—» š¹ ®¤µ¥™Š¹ ‹—» œœÊ´ Ç ¦ª¤°¥nļ œ„¦µ¢
˜ª´ °¥µn Š 3) y t x

y
y t x 𻄋»—œÁ­œo „¦µ¢ ¨³Á®œ°º Á­oœ„¦µ¢
Áž}œ­¤µ„· …°Š‡ªµ¤­´¤¡œ´ ›r

x
(0 , 0)

32 ⌫ ⌫  ⌦
 ⌫         

4) ‹—» „¨µŠ ­—Šªµn ‹—» œœÊ´ Ťn°¥nļ œ„¦µ¢
˜ª´ °¥µn Š 4) y > x

y (1 , 1)  ‡ªµ¤­¤´ ¡œ´ ›r
(1 , 1) x

(0 , 0)

˜´ª°¥nµŠ ‹ŠÁ…¥¸ œ„¦µ¢‡ªµ¤­´¤¡´œ›˜r n°Åžœ¸Ê
1) r = { (x , y)  RxR y = x2 }

y
y = x2

x
(0 , 0)

2) r = { (x , y)  RxR y > x2 }
y

x
(0 , 0)

⌦ 33
⌦

3) r = { (x , y)  RxR y t x2 }
y
y = x2

x
(0 , 0)

4) r = { (x , y)  RxR y < x2 }
y

x
(0 , 0)

5) r = { (x , y)  IxI y = | x | }
y

X X y =|x|

XX
XX
XX

Xx
(0 , 0)

34 ⌫ ⌫  ⌦
 ⌫         

6) r = { (x , y)  RxR | y > | x | }

y

x
(0 , 0)

7) r = { (x , y)  RxR | y t | x | }
y
y = |x|

x

8) r = { (x , y)  IxI | y = - | x | }
y

X x
XX
XX

XX
XX

⌦ 35
⌦

9) r = { (x , y)  IxI | y = - | x | + 2 }

y x

XX
XX
XX
XX
X

(0 , 2)

(0 , 0)

10) r = { (x , y)  IxI y = x2+ 2 }

y
y = x2 + 2

(0 , 2)
x

36 ⌫ ⌫  ⌦
 ⌫         

ĝ„‹· „¦¦¤šÉ¸ 5

⌦ 37
⌦

4. ‹ŠÁ…¸¥œ„¦µ¢…°Š‡ªµ¤­¤´ ¡´œ›r r ={(x,y)RxR|y=x+1}

x -3 -2 -1 0 1 2 3
y9

5. ‹ŠÁ…¸¥œ„¦µ¢…°Š‡ªµ¤­¤´ ¡´œ›r r ={(x,y)RxR|1d x 4}

6. Ä®œo „´ Á¦¸¥œÁ…¥¸ œ„¦µ¢…°Š‡ªµ¤­¤´ ¡´œ›˜r °n ޜʸ
6.1 r ={(x,y)AxA|y=x} Á¤°ºÉ A = {1,2,3,4,5}

6.2 r ={(x,y)AxA|y=x-1} Á¤°Éº A = {3,4,5,6,7}

38 ⌫ ⌫  ⌦
 ⌫         

6.3 r ={(x,y)RxR|y=4x}

6.4 r ={(x,y)RxR|y=x+3}

7. Ä ®oœ„´ Á¦¥¸ œÁ…¸¥œ„¦µ¢…°Š r ¨³ r 1
r = {(-3,-2),(-2,-1),(2,3),(3,4),(4,5)}
r 1 =……………………………………

8. Ä®oœ„´ Á¦¥¸ œÁ…¥¸ œ„¦µ¢…°Š r ¨³ r 1
r = {(x,y)RxR|y=x+3}
r 1 = {(x,y)RxR|y=………}

⌦ 39
⌦

Ÿœ„µ¦‹—´ „µ¦Á¦¸¥œ¦šo¼ ¸É 6

Á¦°Éº Š ‡ªµ¤®¤µ¥…°Š¢{Š„r œ´ ´œÊ ¤›´ ¥¤«„¹ ¬µžše ¸É 4
ª· µ ‡–˜· «µ­˜¦r Áª¨µ 2 ªÉ´ äŠ

Ÿ¨„µ¦Á¦¸¥œ¦š¼o ¸É‡µ—®ªŠ´
­µ¤µ¦™°„Å—oªµn ‡ªµ¤­¤´ ¡œ´ ›rš¸É„µÎ ®œ—Ä®Áo žœ} ¢Š{ „r œ´ ®¦°º Ťn

1. ‹»—ž¦³­Š‡„r µ¦Á¦¸¥œ¦o¼
°„Å—ªo µn ‡ªµ¤­´¤¡´œ›šr ɸ„µÎ ®œ—Ä®oÁžœ} ¢Š{ „rœ´ ®¦º°Å¤n

2. œª‡ªµ¤‡—· ®¨„´
¢Š{ „rœ´ Ážœ} ‡ªµ¤­´¤¡œ´ ›šr ¤É¸ ‡¸ –» ­¤˜´ ·ÁŒ¡µ³ªµn š„» ‡n°¼ œ´ —´šÁ¸É žœ} ­¤µ·„…°Š‡ªµ¤­¤´ ¡œ´ ›r ™oµ¤¸

­¤µ„· ˜´ª®œµo Á®¤º°œ„œ´ ¨ªo ­¤µ„· ˜ª´ ®¨Š´ ˜o°ŠÅ¤n˜µn Š„œ´

3. ÁœÊ°º ®µ­µ¦³
šœ¥· µ¤ ‡ªµ¤­¤´ ¡´œ›r r ‹³Áž}œ¢{Š„r´œ f „Șn°Á¤É°º ™µo ( x , y )  f ¨³ ( x , z )  f ¨oª

y=z

4. „¦³ªœ„µ¦‹—´ „µ¦Á¦¥¸ œ¦¼o
1. ‡¦¼Â¨³œ„´ Á¦¸¥œššªœÁ¦°ºÉ Їªµ¤­´¤¡´œ›r
2. Šn œ´„Á¦¸¥œ„¨»n¤¨³ 5 ‡œ ‡¦„¼ 宜—‡ªµ¤­´¤¡œ´ ›r˜°n Şœ¸Ê Ä®oœ„´ Á¦¥¸ œ¡‹· µ¦–µ‡ªµ¤­¤´ ¡´œ›r

˜n°ÅžœÊ¸

r1 = {(1,2),(2,5),(4,2),(3,4)}

r2 = {(2,1),(5,3),(6,5),(7,3)}

r3 = {(1,2),(1,3),(2,4),(3,5)}

r4 = {(2,1),(3,1),(4,2),(5,3)}

r5 = {(2,3),(3,4),(3,5),(2,5)}

r1 , r2 , r4 Áž}œ¢Š{ „rœ´

r3 ,r5 ŤÁn žœ} ¢{Š„rœ´

3. Ä®oœ„´ Á¦¸¥œ®µ¨´„¬–³¦ªn ¤…°Š‡ªµ¤­´¤¡´œ›ršÉÁ¸ žœ} ¢Š{ „r´œ ¨³‡ªµ¤Â˜„˜nµŠ…°Š‡ªµ¤­´¤¡œ´ ›r

š¸ÅÉ ¤nÁžœ} ¢Š{ „r ´œ

40 ⌫ ⌫  ⌦
 ⌫         

4. ‡¦Â¼ ¨³œ´„Á¦¸¥œ­¦»ž‡ªµ¤®¤µ¥…°Š¢Š{ „r ´œ

5. ‡¦„¼ µÎ ®œ—‡ªµ¤­´¤¡œ´ ›r°„ÁŠ°Éº œÅ…˜n°ÅžœÊ¸

^ `1. r1 (x, y) / y x2

2. r2 ^(x, y) / y 2x 1`

^ `3. r3 (x, y) / y x3
4. r4 ^(x, y) / y x `
^ `5. r5 (x, y) / x y2
^ `6. r6 (x, y) / x2 y2 1

¨ªo Ä®oœ´„Á¦¸¥œÂŠn ‡ªµ¤­¤´ ¡´œ›°r °„Ážœ} 2 „¨¤n» ץĮo °„Á„–”šr ¸ÄÉ Äo œ„µ¦ÂnЇªµ¤

­´¤¡´œ›r Ĝ…–³šš¸É µÎ „‹· „¦¦¤‡¦°¼ µ‹Âœ³œµÎ Ä®oœ„´ Á¦¥¸ œÂnЇªµ¤­¤´ ¡´œ›Ár ž}œ 2 „¨»¤n ‡º° ‡ªµ¤­´¤¡œ´ ›r

Ĝ…o° 1 , 2 , 3 , 4 „´ ‡ªµ¤­´¤¡œ´ ›Är œ…o° 5 , 6

6. ‡¦Â¼ ¨³œ´„Á¦¥¸ œnª¥„œ´ ­¦ž» ¨„´ ¬–³…°Š‡ªµ¤­´¤¡œ´ ›šr ÉÁ¸ žœ} ¢Š{ „r œ´

7. Ä®oœ„´ Á¦¸¥œ«„¹ ¬µÁ¡É¤· Á˜¤· ‹µ„ĝ‡ªµ¤¦¼oš¸É 6

8. Ä®œo „´ Á¦¸¥œšµÎ  „f ®—´ ‹µ„ĝ„‹· „¦¦¤š¸É 6

5. ®¨Šn „µ¦Á¦¥¸ œ¦o¼
1. ĝ‡ªµ¤¦oš¼ ɸ 6
2. ĝ„·‹„¦¦¤šÉ¸ 6
3. ®o°Š­¤—» æŠÁ¦¸¥œ

6. „¦³ªœ„µ¦ª´—¨³ž¦³Á¤œ· Ÿ¨
1. ž¦³Á¤·œŸ¨‹µ„„µ¦šÎµÂ f„®´—
2. ž¦³Á¤·œŸ¨‹µ„„µ¦šµÎ š—­°

7. œ´ 𹄮¨´Š„µ¦­°œ
……………………………………………………………………………………………………………….
……………………………………………………………………………………………………………….
……………………………………………………………………………………………………………….

8. „‹· „¦¦¤Á­œ°Âœ³
……………………………………………………………………………………………………………….
……………………………………………………………………………………………………………….
……………………………………………………………………………………………………………….

⌦ 41
⌦

ĝ‡ªµ¤¦o¼š¸É 6

œª‡·—Á„¥¸É ª„´ ¢{Š„rœ´
Ä®¡o ‹· µ¦–µ‡ªµ¤­´¤¡´œ›r˜°n ޜʸ
Ä®o r1 ‡º°‡ªµ¤­¤´ ¡œ´ ›r…°Š‹µÎ œªœŒ´ …°Š¨°˜Á˜°¦¦r ¸ ¨³¦µ‡µ…µ¥˜°n Œ´…°Š¡°n ‡µo …µ¥ž¨¸„

‡œ®œŠÉ¹

r1 {(1,45), (1,50), (2,90), (2,100 ), (3,135 ), (3,150 ), (4,180 ), (4,200 )}

r2 ‡º°‡ªµ¤­´¤¡´œ›r¦³®ªnµŠ‹ÎµœªœÂŸnœ…°Š„µ¦­ÎµÁœµÁ°„­µ¦Â¨³‡nµ­ÎµÁœµ¦µ‡µ (µš) ˜n°
‹µÎ œªœÂŸœn —´Š˜µ¦µŠ˜°n Şœ¸Ê

‹µÎ œªœÂŸnœ 1 2 3 4 5 6 7 8 9 10 11 12 … 100
¦µ‡µ(µš) 0.50 1.00 1.50 2.00 2.50 3.00 3.50 4.00 4.50 5.00 5.50 6.00 … 50.00

‹³Å—o r2 {(1,0.50), (2,1.00), (3,1.50), (4,2.00),..., (100 ,50.00)}
Á…¥¸ œ…o°¤¨¼ ‹µ„˜µ¦µŠÁžœ} ÁŽ˜Â°„ÁŠºÉ°œÅ… ŗo—Š´ œÊ¸

r2 {(x, y)  I u R / y 0.50 x}

Á¤º°É ¡‹· µ¦–µ‡ªµ¤­´¤¡œ´ ›r r1 ‹³Á®œÈ ªµn ¦µ‡µ…°Š¨°˜Á˜°¦¦r …¸ °Š¡°n ‡µo …µ¥ž¨¸„‡œœœ´Ê Œ´¨³ 45
µšµo Š 50 µšµo Š ‹³Á®œÈ ªµn ¤‡¸ °n¼ œ´ —´ Áœn ( 1, 45) ¨³ ( 1 , 50 ) °¥Ä¼n œ r1 ŽÉ¹Šš´ÊŠ­°Š°œ´ —´ œ¤Ê¸ ­¸ ¤µ·„
˜´ª®œµo Ášµn „´œ‡°º 1 ˜n­¤µ„· ˜´ª®¨Š´ ˜nµŠ„œ´ ‡°º 45 ¨³ 50 ĜšµÎ œ°ŠÁ—¥¸ ª„œ´ ­Îµ®¦´ ‡n°¼ ´œ—´ °œºÉ Ç
¡‹· µ¦–µÂŸœ£µ¡…°Š r1

r1 45
50
1 90
2 100
3 135
4 150
180
200

42 ⌫ ⌫  ⌦
 ⌫         

‹µ„Ÿœ£µ¡ r1 ‹³Á®œÈ ªµn ¤­¸ ¤µ·„˜´ª®œoµµŠ˜ª´ ‹´ ‡„n¼ ´­¤µ„· ˜ª´ ®¨´Š¤µ„„ªµn ®œ¹ÉŠ˜´ª Á¤°ºÉ ¡‹· µ¦–µ
‡ªµ¤­¤´ ¡œ´ ›r r2 ‹³Á®Èœªµn š„» ‡°n¼ œ´ —´ šÉ¸°¥Ä¼n œ r2 ¤¸˜´ª®œoµ˜µn Š„œ´
¡‹· µ¦–µÂŸœ£µ¡…°Š r2

r2 0.50
1.00
1 1.50
2 .
3 .
. 50.00
.
100

¨´„¬–³…°Š‡ªµ¤­¤´ ¡´œ›r r2 Áž}œ¢{Š„r´œ ˜‡n ªµ¤­´¤¡´œ›r r1 ŤÁn ž}œ¢Š{ „r ´œ

šœ¥· µ¤ ¢{Š„rœ´ ‡º°‡ªµ¤­´¤¡œ´ ›šr ¤É¸ ¸‡–» ­¤´˜· ™µo ‡¼°n ´œ—´­°Š‡¼nÄ—Ç ¤­¸ ¤µ·„˜ª´ ®œµo …°Š
‡¼n°´œ—´ Á®¤°º œ„´œÂ¨ªo ­¤µ„· ˜ª´ ®¨Š´ …°Š‡°¼n œ´ —´œÊœ´ ˜o°ŠÅ¤˜n µn Š„´œ


Click to View FlipBook Version