⌦ 43
⌦
Ä· ¦¦¤¸É 6
1. ¡·µ¦µªµn ªµ¤´¤¡´ r°n ÅʸÁ} ¢{ r ´ ®¦º°Å¤n
1.^(1,2),(2,3),(3,4),(5,6)` °………………….
2. ^(1,2),(3,4),(3,7),(4,3)` °………………….
3. ^(2,4),(3,4),(3,4),(5,6)` °………………….
4. ^(2,4),(4,6),(6,8),(7,8)` °………………….
5. ^(2,1),(3,1),(5,1),( 1,1)` °………………….
2. Ä®o ´ Á¦¸¥¡· µ¦µªnµªµ¤¤´ ¡´ rn°ÅÊÁ¸ }¢{ r ´®¦º°Å¤n
1. ®¯(x,y)/ y 1 ¿¾½ °………………….
x
2. ^(x,y)/ x y2 1` °………………….
3. ^(x,y)/ y x2 5` °………………….
4. ^(x,y)/ x y2` °………………….
5. ®¯(x,y)/ y x 1 1¿¾½ °………………….
6. ^(x,y)/ y 2 x` °………………….
7. ^(x,y)/ x y2 2x` °………………….
3. Ä®o ´ Á¦¥¸ ¦» ªµ¤®¤µ¥
°ªµ¤¤´ ¡´ rÉÁ¸ }¢{ r ´ ¨³ªµ¤´¤¡´ r¸ÅÉ ¤Án }¢{ r´
…………………………………………………………………………………………………………..
…………………………………………………………………………………………………………..
…………………………………………………………………………………………………………..
…………………………………………………………………………………………………………..
…………………………………………………………………………………………………………..
…………………………………………………………………………………………………………..
…………………………………………………………………………………………………………..
…………………………………………………………………………………………………………..
…………………………………………………………………………………………………………..
…………………………………………………………………………………………………………..
…………………………………………………………………………………………………………..
44 ⌫ ⌫ ⌦
⌫
⌦ 45
⌦
4. ¦³ªµ¦´µ¦Á¦¸¥¦o¼
1. ¦Â¼ ¨³´ Á¦¸¥ªªµ¤¦¼oÁ¦º°É ÃÁ¤Â¨³Á¦r
°ªµ¤¤´ ¡´ r
2.¦¼ ¦» ªµn ªµ¤´¤¡´r Áɸ } ¢{ r´ ÃÁ¤
°ªµ¤¤´ ¡´r³Á¦¥¸ ªnµÃÁ¤
°¢{r ´
¨³Á¦r
°ªµ¤´¤¡´r³Á¦¥¸ ªnµÁ¦
r °¢{r´
3. ¦¼ ε®Ã¥r°n ÅÄ¸Ê ®o ´ Á¦¥¸ ®µÃÁ¤Â¨³Á¦r
°¢{ r´
A = {1 , 2 , 3}
µÎ ° ÃÁ¤º° A Á¦r °º {a,b}
B = {a , b , c , d}
A = {1 , 2 , 3 , 4 , 5} ε° ÃÁ¤°º A Á¦r°º B
B = {a , b , c , d}
A = {1 , 2 , 3 , 4} ε° ÃÁ¤º° A Á¦r º° {a,b,c,d}
B = {a , b , c , d , e}
A = {1 , 2 , 3 , 4} ε° ÃÁ¤º° A Á¦r º° B
B = {a , b , c , d }
4. µÃ¥r ª´ °¥nµÄ®o´ Á¦¥¸ ¡· µ¦µµ¦´ ¼¦n ³®ªµn ¤µ·
°Á A ¨³¤µ·
°Á B
¨³°ÃÁ¤Â¨³Á¦
r °¢{ r´
6. ¦¼Â¨³´Á¦¸¥nª¥´ ¦» Ä®oŪo nµÃÁ¤
°¢{r´ °º Á A ¨³Á¦r
°¢{ r´ Á}
´Á
°Á B ɹ Á¦¸¥ªµn ¢{ r ´ µ A Å B ¨³Äo ´¨´¬rªo ¥ f : AoB
7. Ä®o ´ Á¦¸¥«¹ ¬µÁ¡·É¤Á¤· µÄªµ¤¦¼É¸ 7
8. Ä®o´ Á¦¥¸ f´¬³Ã¥µÎ  f ®´ µÄ· ¦¦¤É¸ 7
5. ®¨nµ¦Á¦¥¸ ¦¼o
1. 夦¼oɸ 7
2. Ä·¦¦¤¸É 7
3. ®o°¤» æÁ¦¥¸
4. Internet
46 ⌫ ⌫ ⌦
⌫
6. ¦³ªµ¦ª´Â¨³¦³Á¤· ¨
1. ¦³Á¤· ¨µµ¦ÎµÂ f ®´
2. ¦³Á¤·¨µµ¦µÎ °
7. ´¹ ®¨´µ¦°
……………………………………………………………………………………………………………….
……………………………………………………………………………………………………………….
……………………………………………………………………………………………………………….
……………………………………………………………………………………………………………….
……………………………………………………………………………………………………………….
……………………………………………………………………………………………………………….
……………………………………………………………………………………………………………….
……………………………………………………………………………………………………………….
……………………………………………………………………………………………………………….
8. ·¦¦¤Á°Â³
……………………………………………………………………………………………………………….
……………………………………………………………………………………………………………….
……………………………………………………………………………………………………………….
……………………………………………………………………………………………………………….
……………………………………………………………………………………………………………….
……………………………………………………………………………………………………………….
……………………………………………………………………………………………………………….
……………………………………………………………………………………………………………….
……………………………………………………………………………………………………………….
……………………………………………………………………………………………………………….
⌦ 47
⌦
48 ⌫ ⌫ ⌦
⌫
⌦ 49
⌦
¢{ r´ ®¹É °n ®É¹
µÎ ®Ä®o f {(m,7), (n,8), (t,9)}
¨³ f {(m,7), (n,8), (t,7)}
³Á®Èªnµ f ¨³ g µn ÁÈ } ¢{r ´ ¥É· Ūµn ´Ê¢{ r´ f ¤¸¤µ·ª´ ®¨´®É¹ ª´
´ n¼´¤µ·´ª®oµÁ¡¥¸ ®¹É ª´ Ánµ´Ê ´¦¼
Df f Rf
m 7
n 8
t 9
ªn ¢{ r ´ g ¤¸ ¤µ·´ª®¨´®¹Éª´ °º 7 ´ ¼n ´¤µ·´ª®µo °´ªº° m ¨³ t
´ ¦¼
Dg g Rg
m
n 7
t 8
9
³Á®È ªµn f ¤¨¸ ´ ¬³
°¢{ r´®É¹ n°®É¹ Ä
³¸É g ŤnĨn ´¬³
°¢{r ´ ®É¹ n°®É¹
¥· µ¤ Ä®o f Á}¢{ r ´
f Á} ¢{r ´®É¹n°®¹É µ A Å B È n°Á¤Éº° f Á} ¢{r ´ µ A Å B 宦´¤µ·
x1 ¨³ x2 ÄÇ Ä A µo f(x1 ) f(x2 ) ¨ªo x1 x2
Á
¸¥Âªo ¥ f ; A 1-1 B
50 ⌫ ⌫ ⌦
⌫
ª´ °¥nµ¸É 3 ε®Ä®o f {(1,7), (2,8), (3,9), (4,8)}
ªµn f ŤnÁ} ¢{r ´ 1 – 1
ª· ¸µÎ ¡·µ¦µÂ£µ¡
° f {(1,7), (2,8), (3,9), (4,8)}
f
17
28
39
4
f ŤnÁ}¢{ r ´ 1 – 1 Á°Éº µ¤¸ (2,8) f ¨³ (4,8) f ɹ ¤µ· ª´ ®¨´ º° 8
Á®¤°º ´ Ân ¤µ· ´ª®µo µn ´ º° 2 z 4
ª´ °¥nµÉ¸ 4 µÎ ®Ä®o f(x) x 1 ªµn f ŤnÁ} ¢{r ´ 1 – 1
ª· ¸µÎ µ¦É¸ ³Âªµn f ŤnÁ}¢{ r´ 1 – 1 Á¦µo°®µ x1 ¨³ x2 ¸É x1 ŤnÁµn ´ x2
ÂnεĮo f(x1 ) ¨³ f(x2 ) ¤¸µn Áµn ´
Á¨º° x1 ¨³ x2 ɤ¸ ¸nµ¤¼¦rÁnµ´ Án x1 2 ¨³ x2 2
oµ x1 2 ¨oª f(x1 ) f(2) 2 1 2 1 3
µo x2 2 ¨ªo f(x2 ) f( 2) 2 1 2 1 3
³Á®È ªnµ¤¸ n°¼ ´´ (2,3) ¨³ ( 2,3) °¥n¼Ä f Ân 2 z 2
´´Ê f ŤÄn ¢n {r´ 1 – 1
´ª°¥µn ɸ 5 ¡· ¼ ªr nµ f Á} ¢{r ´ 1 – 1 Á¤Éº° f(x) 3x 4
ª· ¸Îµ Ä®o f(x1) f(x2 )
³Åªo µn 3x1 4 3x2 4
µÎ - 4 ª´Ê °
µo
³Åo 3x1 4 ( 4) 3x2 4 ( 4)
3x1 3x2 x2
µÎ 1 ¼ Ê´ °
µo
3
³Åo x1 x2
³Á®È ªµn oµ f(x1 ) f(x2 ) ¨oª x1
´ ´Ê f Á} ¢{ r´ 1 – 1
⌦ 51
⌦
Ä·¦¦¤É¸ 7
1. ¡·µ¦µªnµ
o°ÄÁ} ¢{ r´ µ R ÅÉ´ª¹ R
1. f(x) 9x 4
2. f(x) 3 x 2
3. f (x) 4x2 1
4. f(x) 7x 1
5. f(x) x3
6. f(x) x2 2x 5
7. f(x) 3
8. f(x) x2, x 0
9. f(x) 1
x
10. f(x) x
2. Á
¸¥Á¦ºÉ°®¤µ¥ 9®oµ
o°¸É¼ ¨³ 8 ®oµ
o°¸É·
ε®Ä®o A {1,2,3} , B {4,5} ¨³ C {4,5,6}
………….1) {(1,4),(2,5),(3,5)} Á}¢{ r ´ µ A Åɪ´ ¹ B
………….2) {(1,4),(2,5),(3,5)} Á}¢{r ´µ A Ū´É ¹ C
………….3) {(1,4),(2,4),(3,5)} Á} ¢{r ´ µ A Ŵɪ¹ B
………….4) {(1,4),(2,5),(3,6)} Á} ¢{ r ´µ A Åɪ´ ¹ C
3.
°o İn ÅÁ¸Ê }¢{ r´ 1 – 1
1) f(x) x
2) f(x) x2 1
3) f(x) x 5
4) f(x) 3x 2
5) f(x) x 1
6) f(x) 1
x
7) f(x) x 4
8) f(x) x2
9) f(x) x3
10) f(x) x
52 ⌫ ⌫ ⌦
⌫
µ¦´ µ¦Á¦¸¥¦¼o¸É 8
Á¦ºÉ° ¢{ r ´ ¦³° Ê´ ¤´¥¤«¹¬µe ɸ 4
ª·µ · «µ¦r Áª¨µ 4 ɪ´ ä
¨µ¦Á¦¥¸ ¦o¼ ¸É µ®ª´
µ¤µ¦®µ¢{r´ ¦³°
°¢{ r ´ °¢{r´ ¸É µÎ ®Ä®oÅo
1. » ¦³r µ¦Á¦¥¸ ¦o¼
1. °ªµ¤®¤µ¥
°¢{r ´¦³°Åo
2. °Åªo µn ³®µ¢{r ´¦³°
°¢{ r ´ °¢{ r´¸É µÎ ®Ä®Åo o®¦º°Å¤n
3. ®µ¢{ r ´ ¦³°
°¢{r ´°¢{ r´¸É ε®Ä®Åo o
4. °ÃÁ¤Â¨³Á¦r
°¢{ r ´ ¦³°¸É ε®Ä®Åo o
2. ªªµ¤· ®¨´
gof(x) Á} ¢{ r ´ ɸ¦oµ
ʹĮ¤n Á} ¢{ r ´ µÁ A ÅÁ C Ã¥ ÃÁ¤¤µµ A
¨³Á¦r¤µµ C
Af BgC
3. ÁºÊ°®µµ¦³
¥· µ¤ Ä®o f ¨³ g Á} ¢{ r ´ ¨³ Rf Dg z I ¢{r ´ ¦³°
° f ¨³ g Á
¸¥Â
oª¥ gof ε®Ã¥ (gof)(x) = g(f(x)) µÎ ®¦´» x ɹ f(x) Dg
4. ¦³ªµ¦´µ¦Á¦¥¸ ¦¼o
1. ¦Â¼ ¨³´ Á¦¸¥ªµ¦®µnµ
°¢{r´ f(x)
2. ¦¼ µÎ ®Â£µ¡ ¢{ r´ f ¨³ g Ã¥ÄÂo næn Ä ´¦¼
AB C
1f a g p
2b q
83 c r
3. µÂ£µ¡³Åo f(1) = a , f(2) = c , f(3) = b
g(a) = p , g(b) = p , g(c) = q
g(a) = p g(b) = p g(c) = q
⌦ 53
⌦
µ f ¨³ g ɸ ε®Ä®o ³Åo
g(f(1)) = g(a) = p
g(f(2)) = g(c) = q
g(f(3)) = g(b) = p
4. °µ¦µo ¢{r´
ʹ Ä®¤Án ¦¥¸ ªnµ¢{r´ ¦³° gof ( ø °Á°¢ ) Á}¢{ r´ µ A Å C
(gof)(1) = g(f(1))
(gof)(2) = g(f(2))
(gof)(3) = g(f(3))
´É º° gof = {(1,p),(2,q),(3,p)}
5. ¦¼µÎ ®Â£µ¡¢{ r ´ f ¨³ g Ä®o ´ Á¦¥¸ ®µ gof
Ã¥r ª´ °¥µn
Af B gC
4 79
5 8 10
6
³Åo gof = {(4,9),(5,10),(6,9)}
6. ¦Â¼ ¨³´Á¦¸¥ªn ¥´ ¦» ªµ¤®¤µ¥
°µÎ ªnµ¢{ r ´¦³°
7. ¦Â¼ ¨³´Á¦¥¸ ªÃÁ¤Â¨³Á¦
r °¢{ r´
8. µÃ¥r ª´ °¥nµÄ
°o 2 ¨³ 5 Ä®o ´Á¦¥¸ ®µÃÁ¤Â¨³Á¦r
°¢{ r´ f ¨³ g ¨oª
ªn ¥´ ¡· µ¦µªµn ÃÁ¤
° gof Á}°¥µn Ŧ
9. ¦¼Â¨³´Á¦¸¥nª¥´¦»ªnµ³®µ¢{r´¦³°
°¢{r´°¢{r´¸ÉµÎ ®Ä®oÅo
°¥nµÅ¦
10. Ä®o ´ Á¦¥¸ «¹¬µÁ¡¤É· Á¤· µÄªµ¤¦¼o ¸É 8
11. Ä®o´ Á¦¥¸ f ´¬³Ã¥ÎµÂ f®´ ÄÄ·¦¦¤É¸ 8
54 ⌫ ⌫ ⌦
⌫
5. ®¨n µ¦Á¦¥¸ ¦¼o
1. 夦o¼ ɸ 8
2. Ä· ¦¦¤¸É 8
3. ®°o ¤»Ã¦Á¦¸¥
4. º oµ Internet
6. ¦³ªµ¦ª´Â¨³¦³Á¤· ¨
1. ¦³Á¤· ¨µµ¦µÎ  f ®´
2. ¦³Á¤· ¨µµ¦µÎ °
7. ´ ¹ ®¨´µ¦°
……………………………………………………………………………………………………………….
……………………………………………………………………………………………………………….
……………………………………………………………………………………………………………….
……………………………………………………………………………………………………………….
……………………………………………………………………………………………………………….
……………………………………………………………………………………………………………….
……………………………………………………………………………………………………………….
8. · ¦¦¤Á°Â³
……………………………………………………………………………………………………………….
……………………………………………………………………………………………………………….
……………………………………………………………………………………………………………….
……………………………………………………………………………………………………………….
……………………………………………………………………………………………………………….
……………………………………………………………………………………………………………….
……………………………………………………………………………………………………………….
……………………………………………………………………………………………………………….
⌦ 55
⌦
夦o¼ ɸ 8
¢{r´ ¦³°
oµ¤¸¢{r´ °¥nµo°¥®¹É¢{r ´ Á¦µµ¤µ¦¦oµ¢{ r´ Ä®¤Ån o°¸°Á®°º µµ¦ª ¨
¼ ®¦º°®µ¦¢{ r´ º°µ¦Îµ¢{ r´ ¤µ¦³°´ oª¥Á°ºÉ Å
ɸ µÎ ®Ä®o ¢{ r´ Ä®¤nÅ¸É o º° ¢{ r ´
¦³° ɹ¢{r´¦³°¸Ê ³¤¸µµÎ ´ÄÁ¦É°º µ¦®µ°¡» ´ Ãr ¥Äo ¨¼Ãn
·¥µ¤ µÎ ®Ä®o f ¨³ g Á} ¢{r´ ɹ ¢{ r ´ ¦³°
° f ¨³ g
Á}¢{ r´µ {x Df / f(x) Dg } Å¥´Á¦r
° g ¨³
(x, z) gof È °n Á¤º°É ¤¸ y ¹É (x, y) f ¨³ (y, z) g
ª´ °¥nµ¸É 1 ε®Ä®o f {(a,1), (b,2), (c,5)}
g {(1,7), (2,8), (3,9)}
Á°Éº µ (a,1) f ¨³ (1,7) g ´Ê´ (a,7) gof
(b,2) f ¨³ (2,8) g ´ Ê´ (b,8) gof
nª (c,5) f ÂnŤn¤¸ n¼°´ ´ ¸É¤¸ 5 Á} ¡·´ ¦
° g ´´Ê¹Å¤¡n ·µ¦µ
³Åªo µn
gof {(a,7), (b,8)}
´ª°¥µn ɸ 2 µÎ ®Ä®o f(x) 2x 1 ¨³ g(x) x2 2
ª·¸ µÎ ®µ Dgof , Dfog , (gof )( x) ¨³ fog(x)
¡· µ¦µ Dgof ¨³ Dfog
µ¥· µ¤ Dgof {x Df / f(x) Dg }
Ä¸É ¸Ê Df R ¨³ Dg R
´ Ê´ Dgof {x R / 2x 1 R}
R
¨³ Dfog {x Dg / g(x) Dg }
{x R / x 2 2 R}
R
Á°Éº µ¤¸ Dgof ¨³ Dfog ´ ´Ê¤¸ gof ¨³ fog
¡· µ¦µ (gof )( x) g(f(x))
g(2x 1) Á¡¦µ³ f(x) 2x 1
(2x 1) 2 2 Á¡¦µ³ g(x) x2 2 ®¦º°
g(A) A2 2 Á¤É°º A 2x 1
(4 x 2 4 x 1) 2
4x2 4x 1
¡· µ¦µ (fog)( x) f ( g( x))
f(x2 2) Á¡¦µ³ g(x) x2 2
2(x2 2) 1 Á¡¦µ³ f(x) 2x 1 ®¦°º
f(A) 2A 1 Á¤°Éº A x2 2
(2x 2 4 1)
2x2 3
56 ⌫ ⌫ ⌦
⌫
⌦ 57
⌦
µ¦´µ¦Á¦¥¸ ¦o¼ ¸É 9
Á¦º°É ¢{ r´ °·Áª°¦r Ê´ ¤´ ¥¤«¹ ¬µe ɸ 4
ª·µ · «µ¦r Áª¨µ 2 ɪ´ ä
¨µ¦Á¦¸¥¦o¼ ¸Éµ®ª´
®µ¢{ r´ °·Áª°¦r ¨³Á
¸¥¦µ¢
°¢{ r ´ °·Áª°¦rÅo
1. »¦³r µ¦Á¦¥¸ ¦o¼
1. ®µ°· Áª°¦r
°¢{ r´ ¸É ε®Ä®Åo o
2. °ªµ¤®¤µ¥
°¢{r ´°· Áª°¦r Åo
3. °Åªo nµ¢{ r ´¸É ε®Ä®¤o ¸¢{r ´ °·Áª°¦r®¦°º Ťn
4. ®µÃÁ¤Â¨³Á¦
r °¢{ r ´ °·Áª°¦r Åo
5. Á
¸¥¦µ¢
°¢{r ´ °· Áª°¦r Åo
2. ªªµ¤·®¨´
oµµÎ ®¢{r´ Ä®oµ¤µ¦®µ°· Áª°¦r
°¢{ r´ Åo °n ·Áª°¦r
°¢{r´ ŤnµÎ Á} °o
Á} ¢{ r´ Á¤°Å ³Á¦¥¸ °· Áª°¦r
°¢{r ´¸ÉÁ} ¢{r ´ ªnµ ¢{ r´ °· Áª°¦r ( Inverse Function )
3. Á°Êº ®µµ¦³
µo µÎ ®¢{ r´Ä®oµ¤µ¦®µ°· Áª°¦r
°¢{r´Åo °n ·Áª°¦r
°¢{r ´ Ťn εÁ} o°
Á}¢{r ´ Á¤°Å ³Á¦¥¸ °· Áª°¦r
°¢{r´¸ÉÁ} ¢{r ´ªµn ¢{ r´ °·Áª°¦r ( Inverse Function )
§¬¸ Ä®o f Á}¢{ r´ f 1 Á} ¢{r ´ °· Áª°¦r Ȱn Á¤ºÉ° f Á}¢{r ´ 1-1
4. ¦³ªµ¦´ µ¦Á¦¸¥¦o¼
1. ¦¼Â¨³´ Á¦¥¸ ª°· Áª°¦r
°ªµ¤¤´ ¡´r
2. ¦¼µÎ ®Ã¥r´ª°¥µn Ä®o ´ Á¦¥¸ ®µ°·Áª°¦r
f = {(1,2),(2,3),(3,4)}
³Åo f 1 = {(2,1),(3,2),(4,3)}
58 ⌫ ⌫ ⌦
⌫
g = {(1,2),(2,3),(3,2)}
³Åo g 1 = {(2,1),(3,2),(2,3)}
h = {(1,2),(3,2),(4,1)}
³Åo h 1 = {(2,1),(2,3),(1,4)}
3. µÃ¥r ª´ °¥nµÄ®o´ Á¦¥¸ ¡· µ¦µªnµ°·Áª°¦r
° f , g ¨³ h Á} ¢{ r´ ®¦°º Ťn
4. ¦¼°ªµn f 1 Á¦¸¥¢{r ´ °· Áª°¦r
5. ¦Â¼ ¨³´Á¦¸¥nª¥´ ¦»ªµ¤®¤µ¥
°¢{r´ °· Áª°¦r
6. ¦¼Îµ®Ã¥r´ª°¥nµÄ®o´ Á¦¸¥¡·µ¦µ Án
f = {(3,2),(4,3),(5,1)}
g = {(4,1),(5,3),(6,2)}
h = {(2,3),(3,5),(4,1)}
µÃ¥r ´ª°¥nµÄ®o ´Á¦¥¸ °µÎ µ¤n°Å¸Ê
1. ¢{ r ´ Ä
o°ÄÁ} ¢{ r ´ 1-1
2. ¢{ r´Ä¤É¸ ¢¸ { r ´°· Áª°¦r
7. ¦Â¼ ¨³´ Á¦¥¸ nª¥´ ¦»ªnµ¢{r ´ ¤É¸ ¨¸ ´ ¬³°¥µn Ŧ¤¸É ¸¢{r ´ °· Áª°¦r
8. ¦Â¼ ¨³´ Á¦¥¸ ªÃÁ¤Â¨³Á¦r
°¢{r´
9. ¦¼µÎ ®Ã¥rª´ °¥nµ
f = {(3,2),(4,3),(5,1)}
g = {(4,1),(5,3),(6,2)}
µÃ¥r ª´ °¥nµÄ®o ´ Á¦¥¸ ®µ°· Áª°¦r
³Åo f 1 = {(2,3),(3,4),(1,5)}
g 1 = {(4,1),(5,3),(6,2)}
10. Ä®o ´ Á¦¥¸ ªn ¥´®µÃÁ¤Â¨³Á¦r
³Åo Df = {3,4,5} ¨³ Df 1 = {1,2,3}
Rf = {1,2,3} ¨³ Rf 1 = {3,4,5}
11. µ
°o 10 ¦¼Â¨³´Á¦¥¸ nª¥´ ¦»
³Åo = RDf f 1 ¨³ = DRf f 1
12 ¦Â¼ ¨³´ Á¦¥¸ ª¦µ¢
°ªµ¤¤´ ¡´ r
¦¼µÎ ®Ã¥r ª´ °¥nµ Án
f = {(1,2),(2,3),(3,5)}
Ä®o´ Á¦¸¥®µ f 1
³Åo f 1 = {(2,1),(3,2),(5,3)}
⌦ 59
⌦
Ä®o ´ Á¦¸¥Á
¥¸ ¦µ¢
° f ¨³ f 1 ¨¦³µ¡· ´ µ³Åo ´ ¦¼
y y=x
5
f
4
f 1
3
2
1
0 12 345 x
13. Ä®o´ Á¦¸¥«¹¬µÁ¡É·¤Á¤· µÄªµ¤¦¼o ¸É 9
14. f´ ¬³Ã¥Ä®o ´Á¦¸¥ÎµÂ f®´ µÄ·¦¦¤É¸ 9
5. ®¨n µ¦Á¦¸¥¦¼o
1. 夦o¼¸É 9
2. Ä·¦¦¤¸É 9
3. ®°o ¤»Ã¦Á¦¥¸
4. ºo µ Internet
6. ¦³ªµ¦ª´Â¨³¦³Á¤· ¨
1. ¦³Á¤· ¨µµ¦ÎµÂ f®´
2. ¦³Á¤· ¨µµ¦µÎ °
7. ´ ¹®¨´ µ¦°
……………………………………………………………………………………………………………….
……………………………………………………………………………………………………………….
……………………………………………………………………………………………………………….
8. ·¦¦¤Á°Â³
……………………………………………………………………………………………………………….
……………………………………………………………………………………………………………….
……………………………………………………………………………………………………………….
60 ⌫ ⌫ ⌦
⌫
夦o¼ ɸ 9
⌦ 61
⌦
62 ⌫ ⌫ ⌦
⌫
⌦ 63
⌦
64 ⌫ ⌫ ⌦
⌫
Ä· ¦¦¤¸É 9
1. µÎ ®¢{ r ´ f ®µ°· Áª°¦r
°¢{ r´ n°Å¡Ê¸ ¦o°¤Ê´ Á
¥¸ ¦µ¢
1. f (x) 5x 1
2. f (x) 3
3. f (x) x2 1
4. f (x) (x 2)2
5. f (x) 4 3x
6. f (x) x 1
x2 1
7. f (x)
x
8. f (x) x2 ,0 d x d1
3
9. f (x)
x
10. f (x) 16 x2 ,0 d x d 4
2. µ
°o 1 °·Áª°¦r
°¢{ r ´ Ä
o°Äµo Á¸É }¢{ r ´
° …………………………………………………………………………………..
⌦ 65
⌦
3. ε®¢{r´ f ¡·µ¦µªnµ ¢{r´ f n°Å¸Ê¤¸¢{r´°·Áª°¦r®¦º°Å¤n oµ¤¸ ®µ
f 1 ,Df ,Rf ,D 1 ¨³ R 1
ff
1. f (x) 2x 3
2. f (x) 3 x
3. f (x) x2 9
4. f (x) (x 1)2
5. f (x) 3x2
6. f (x) x 2
x 1
7. f (x)
x 1
8. f (x) x2 , 1 d x d 0
1
9. f (x)
x
10. f (x) 9 x2 ,0 d x d 3
66 ⌫ ⌫ ⌦
⌫
µ¦´µ¦Á¦¥¸ ¦¼o¸É 10
Á¦º°É ¡¸·
°¢{ r´ Ê´¤´¥¤«¹ ¬µe¸É 4
ª· µ · «µ¦r Áª¨µ 4 ´ªÉ ä
¨µ¦Á¦¸¥¦¼o ɸµ®ª´
®µ¡¸ ·
°¢{r´ ¸ÉµÎ ®Ä®Åo o
1. » ¦³rµ¦Á¦¥¸ ¦o¼
1. °ªµ¤®¤µ¥
°¡¸ ·
°¢{r ´Ê´Ân 2 ¢{r ´
ʹÅ
2. ®µ¢{ r´ ¸ÁÉ · µµ¦ª ¨
°¢{ r ´ Åo
3. ®µ¢{ r ´ ɸÁ· µµ¦¼ ®µ¦
°¢{ r ´Åo
4. ®µÃÁ¤Â¨³Á¦
r °¡¸ ·
°¢{r´Åo
2. ªªµ¤·®¨´
µo ¤¸¢{r ´´Ê Ân®É¹¢{ r ´
¹Ê Å Á¦µ°µÎµ¢{ r ´ Á®¨nµ¤¸Ê µ¦µo ¢{r ´ Ä®¤Ån o Ã¥µ¦µÎ
nµ
°¢{r ´¤µª ¨ ¼ ®¦º°®µ¦´ ¹É ¤¸Á°Éº Å
µ¤·¥µ¤
3. Á°ºÊ ®µµ¦³
µo ¤¢¸ {r ´´Ê ®n ¹É ¢{ r ´
ʹŠÁ¦µ°µÎµ¢{r´ Á®¨µn ¸¤Ê µ¦oµ¢{r ´ Ä®¤Ån o Ã¥µ¦µÎ
nµ
°¢{ r ´ ¤µª ¨ ¼ ®¦°º ®µ¦´ ɹ ¤¸Áº°É Å
µ¤·¥µ¤°n Åʸ
·¥µ¤ Ä®o f ¨³ g Á} ¢{r´ ¥· µ¤¢{r ´ f g , f g , f g ¨³ f ´ ʸ
g
1. (f g)( x) f(x) g(x)
2. (f g)( x) f(x) g(x)
3. (f g)( x) f(x) g(x)
f f (x) Á¤°Éº g(x) z 0
4. (x) =
g g(x)
åɸ»Ç ¤µ· x ÄÃÁ¤
°¢{ r ´ Ä
o° 1 –
o° 3 ¸°Ê ¥¼n´Ê ÄÃÁ¤
°¢{ r´ f
¨³ g ´É °º »Ç ¤µ· x Df Dg
⌦ 67
⌦
4. ( f )( x) f(x) Á¤É°º g(x) z 0
g g(x)
åɸ »Ç ¤µ· x ÄÃÁ¤
°¢{r ´ f °¥n¼ Ê´ÄÃÁ¤
°¢{ r´ f ¨³ g
g
¸É g(x) z 0 ´É º°»Ç ¤µ· x Df Dg {x / g(x) z 0}
4. ¦³ªµ¦´ µ¦Á¦¸¥¦o¼
1. ¦¼Â¨³´ Á¦¸¥ªnµ
°¢{ r´ f ɸ x
2. ¦¼µÎ ®Ã¥r ´ª°¥µn
f = {(1,2),(2,4),(3,6)}
g = {(1,1),(2,2),(3,3)}
µÃ¥r´ª°¥nµ ³Åo
f(1) = 2 f(2) = 4 f(3) = 6
g(1) = 1 g(2) = 2 g(3) = 3
3. µ
°o 2 ¦¼ µÎ ®Ä®o (f+g)(1) = f(1) + g(1) = 2+1 =3
Ä®o´ Á¦¥¸ ®µ (f+g)(2) ¨³ (f +g)(3)
³Åo f+g = {(1,3),(2,6),(3,9)
4. ¦Â¼ ¨³´ Á¦¸¥¦» ªµ¤®¤µ¥
°¡¸·
°¢{ r´
5. ¦Â¼ ¨³´Á¦¥¸ ªªµ¤®¤µ¥
°¡¸·
°¢{r´
6. µÃ¥r´ª°¥µn
°o 2 ¦¼Ä®o·¥µ¤ f – g
³Åo f – g = {(1,1),(2,2),(3,3)}
7. ¦¼µÎ ®Ã¥r ´ª°¥nµÁ¡·É¤Á·¤Ä®o´ Á¦¥¸ ®µ f+g ¨³ f – g
1. f = {(2,4),(3,6),(4,8)}
g = {(2,3),(3,5),(4,6)}
2. f = {(1,3),(2,5),(3,7)}
g = {(1,2),(2,4),(3,2)}
8. ¦Â¼ ¨³´ Á¦¥¸ ªµ¦ª ¨
°¢{ r ´
9. µÃ¥r ´ª°¥nµ
°o 2 ¦Ä¼ ®o¥· µ¤ f g ¨³ f
g
³Åo f g = {(1,2),(2,8),(3,18)}
f
= {(1,2),(2,2),(3,2)}
g
10. f´¬³Ã¥Ä®o´Á¦¸¥µÎ  f ®´ ÄÄ·¦¦¤
11. ¦¼Â¨³´Á¦¸¥ª¡¸·
°¢{ r´
68 ⌫ ⌫ ⌦
⌫
¦Ä¼ ®Ão ¥r´ª°¥µn
f = {(1,2),(2,4),(3,6),(4,7)}
g = {(2,3),(3,1),(4,2),(5,3)}
Ä®o´ Á¦¸¥®µ f + g
³Åo f + g = {(2,7),(3,7),(4,9)}
Ä®o ´ Á¦¥¸ ®µÃÁ¤Â¨³Á¦
r ° f + g
³Åo Df g = {2,3,4} , Rf g = {7,9}
12. Ä®o ´ Á¦¥¸ «¹ ¬µÁ¡¤·É Á¤· µÄªµ¤¦o¼É¸ 10
13. f ´¬³Ä®o ´ Á¦¥¸ ε f ®´µÄ· ¦¦¤É¸ 10
5. ®¨n µ¦Á¦¥¸ ¦o¼
1. 夦¼o¸É 10
2. Ä·¦¦¤¸É 10
3. ®o°¤»Ã¦Á¦¸¥
4. ºoµ Internet
6. ¦³ªµ¦ª´Â¨³¦³Á¤·¨
1. ¦³Á¤· ¨µµ¦µÎ  f®´
2. ¦³Á¤·¨µµ¦µÎ °
7. ´¹®¨´ µ¦°
……………………………………………………………………………………………………………….
……………………………………………………………………………………………………………….
……………………………………………………………………………………………………………….
8. · ¦¦¤Á°Â³
……………………………….………………………………………………………………………………
……………………………………………………………………………………………………………….
……………………………………………………………………………………………………………….
⌦ 69
⌦
夦¼oɸ 10
¡¸·
°¢{ r´
oµ¤¸¢{r´ ´Ê Ân®É¹ ¢{ r ´
¹Ê Å Á¦µ°µÎµ¢{r´ Á®¨µn ʤ¸ µ¦µo ¢{ r ´Ä®¤Ån o Ã¥µ¦µÎ
µn
°¢{r´¤µª ¨ ¼ ®¦º°®µ¦´ ¹É ¤Á¸ ɺ°Å
µ¤¥· µ¤n°Åʸ
·¥µ¤ Ä®o f ¨³ g Á}¢{r ´ ¥· µ¤¢{ r´ f g , f g , f g ¨³ f ´Ê¸
g
1. (f g)( x) f(x) g(x)
2. (f g)( x) f(x) g(x)
3. (f g)( x) f(x) g(x)
åɸ»Ç ¤µ· x ÄÃÁ¤
°¢{r´ Ä
o° 1 –
°o 3 °Ê¸ ¥n¼Ê´ ÄÃÁ¤
°¢{r ´
f ¨³ g É´ º°» Ǥµ· x Df Dg
4. ( f )( x) f(x) Á¤Éº° g(x) z 0
g g(x)
Ã¥¸É»Ç ¤µ· x ÄÃÁ¤
°¢{ r´ f °¥n¼ Ê´ ÄÃÁ¤
°¢{r ´
g
f ¨³ g ¸É g(x) z 0 É´º°» Ǥµ· x Df Dg {x / g(x) z 0}
µ¥· µ¤ ³Á®Èªµn °n ¸É ³µÎ µn
°¢{r´¤µª ¨ ¼ ®¦º°®µ¦´ Á¦µ³°o ®µ
ÃÁ¤
°¢{ r´ °¢{ r ´É¸³µÎ ¤µÎµÁ· µ¦ª ¨ ¼ ®¦º°®µ¦´°n Ã¥µÎ Á¡µ³¤µ·É¸
ÎµÊ ´ ¤µÁ}¤µ·
°ÃÁ¤
°¢{ r ´ Ä®¤n µÎ ®¦´ µ¦®µ¦¢{ r ´ Ê´ ¤Á¸ ºÉ°Å
Á¡É·¤Á¤· ªnµ ¤µ· Ä
ÃÁ¤Ä®¤nÊ´ ³°o ŤnεĮo nµ
°¢{ r ´ ¸ÁÉ }ª´ ®µ¦Á} «¼¥r
ª´ °¥nµÉ¸ 1 µÎ ®Ä®o f(x) x 3 2 ¨³ g(x) x 1
ª·¸ ε
®µ (f g)( x) , (f g)( x) , (f g)( x) ¨³ ( f )( x)
g
¡· µ¦µ Df R ¨³ Dg {x R / x t 1}
´Ê´ Df Dg R {x R / x t 1}
{x R / x t 1}
³Åªo nµÃÁ¤
°¢{ r´ Ä®¤n º° {x R / x t 1}
70 ⌫ ⌫ ⌦
⌫
¡· µ¦µ (f g)( x) f(x) g(x)
(x3 2) x 1
¡·µ¦µ x3 2 x 1
(f g)( x) f(x) g(x)
(x3 2) x 1
¡·µ¦µ x3 2 x 1
(f g)( x) f(x) g(x)
(x3 2) x 1
¡· µ¦µ ( f )( x) f(x) Á¤Éº° g(x) z 0
g g(x)
x3 2 Á¤Éº° x 1 ! 0 ®¦º° x ! 1
x 1
ÃÁ¤
° f º° {x R / x ! 1}
g
´ª°¥µn ¸É 2 µÎ ®Ä®o f(x) 1 ¨³ g(x) 2 x ®µ (f g)( x)
ª· ¸ µÎ x 10
¡·µ¦µ Df {x R / x ! 10}
¨³ Dg {x R / x d 2}
³Åªo nµ Df Dg I
Áɺ°µ Df ¨³ Dg Ťn¤¸ ¤µ· ¦ªn ¤´Á¨¥ ´ Ê´ (f g)( x) Áµn ´Áªnµ
´ª°¥µn ɸ 3 µÎ ®Ä®o f(x) 2x 3 ¨³ g(x) x2
ª·¸Îµ
®µ (f g)( 1) , (f g)(0) , (f g)(1) ¨³ ( f )(3)
g
Á°Éº µ Df R ¨³ Dg R ´Ê´ Df Dg R
³Åªo nµ (f g)( 1) f( 1) g( 1)
5 1
4
(f g)( 0) f(0) g(0)
3 0
3
⌦ 71
⌦
(f g)(1) f(1) g(1) 1
( 1) 1
ÃÁ¤
° f R {0}
g
( f )(3) f(3)
g g(3)
3
9
1
3
ª´ °¥µn ɸ 4 µÎ ®Ä®o f {(1,2), ( 1,3), (2,4), (4,3)} ®µ 5f
ª· ¸Îµ ¡·µ¦µ 5f
¢{ r ´ 5f ¤µµ¢{ r´ gf Á¤É°º g º°¢{r´ª´ g(x)
³Á®Èªµn ÃÁ¤
° g º°Á
°Îµª¦· R 5
É´°º Df Dg R {1, 1,2,4} {1, 1,2,4} Df
´ Ê´ 5f {(1,5 u 2), ( 1,5 u 3), (2,5 u 4), (4,5 u 3)}
{(1,10), ( 1,15), (2,20), (4,15)}
72 ⌫ ⌫ ⌦
⌫
Ä·¦¦¤¸É 10
1. µÎ ®Ä®o f {(0,1), (1,3), ( 2,0), (5,4)}
g {( 1,2), (0, 1), ( 2, 3), (5,0)}
®µ f g , f g , f g , f ¨³ ( 3)f
g
2. µÎ ®Ä®o f(x) 5 3x ¨³ g(x) x 2 1
®µ (f g)( x) , (f g)( x) ¨³ ©¨§¨ f ¹¸¸·( x) ®µÃÁ¤Â¨³Á¦
r °¢{r´ Á®¨µn ¸Ê
g
3. µÎ ®Ä®o f(x) 2x 2 5 ¨³ g(x) 4 x 2
®µ (f g)(1) , (f g)( 2) ¨³ ©§¨¨ f ·¹¸¸( 2)
g
4. µÎ ®Ä®o f(x) 5 3x Á¤ºÉ° 4 x d 3 ¨³ g(x) x 1 Á¤º°É 2 d x 5
®µ (f g)( x) , (f g)( x) , (f g)( x) ¨³ §¨¨© f ·¸¸¹( x)
g
5. µÎ ®Ä®o f(x) x 2 4 ¨³ g(x) x 2
®µ f g , f g , f g ¨³ f
g
⌦ 73
⌦
Ã¥Ár ¦¤· ´ ¬³
1. µÎ ® x t 1 ¨³ (fog)( x) 4x 2 8x ¨³ f(x) x2 4
¨ªo g 1 (4) ¤¸µn ¦´
°o Ä
1. 1 2. 2 3. 3 4. 4
2. ε® r {(x, y) R u R / y x 2 4 x 5 Á¤º°É x 2 2x 3 0}
oµÄ®o A = ÃÁ¤
° r ¨³ B = ÃÁ¤
° r 1 ¨ªo A Bc Á}Á¦´
°o Ä
1. ( 1,1] 2. [3,10) 3. (1,3) 4. (1,10)
3. oµ f(x) 2x 3 Á¤Éº° 2 d x d 4 ¨ªo Á¦r
° f( x ) ¤¸ nµ¦´
°o Ä
1. > 2,4@ 2. > 1,11@ 3. >3,11@ 4. >3,4@
4. ε® f(x) x g(x) ¨³ g(x) x f(x) ¨oª ¨©§¨ f ¸¸¹·( x) Áµn ´
°o Ä
g
1. x
1 x 1 x
5. 뵨 f(x) 2. 3. 4.
x 1 x x2
13
2x 1 ¨³ (f 1og)( x) 2x 3 ¨oª (g 1of)( 4) ¤¸ nµ¦´
o°Ä
1.
2x 4
4
13 15 15
6. µÎ ® f(x)
2. 3. 4.
10 4 10
2x3 x A oµ (3,2) Á}»°¥n¼ ¦µ¢ f 1 ¨ªo µn A ¤¸ nµ¦´
o°Ä
1. – 15 2. 15 3. – 54 4. 54
7. ε® (fog)( x) 4x 2 4x 5 ¨³ g 1 (x) x 3 ¨oª f(x) Áµn ´
°o Ä
2
1. x 2 4x 8 2. x 2 8x 10 3. x 2 8x 20 4. x 2 4 x 6
8. oµ f(x) (3 x)(2 x) ¨³ g(x) 1 ¨oªÃÁ¤
° f g º°ÁÄ
°o Ä
x 3
1. I 2. ( f,2] 3. ( 3,2) 4. ( 3,2]
9. Ä®o I Á}Á
°µÎ ªÁȤª ε®Ä®o f {(x, y) / x 2y 12 ¨³ x, y I }
¨ªo fof ÁnµÁÄ
o°Ä
1. {(8,5), (4,4)} 2. {(5,8), (4,4)} 3. {(2,2), (4,4)} 4. {(6,3), (4,4)}
10. ε®Ä®o f(x) x ¨³ g(x) x 2 1 µo A Dgof ¨³ B Dg
1 x
¨ªo A Bc ¦´
o°Ä
1. R { 1,1} 2. ( 1, f) 3. (1 ,1) (1, f) 4. ( 1,1) (1, f)
2
74 ⌫ ⌫ ⌦
⌫
⌦ 75
⌦
เพอ่ื เปน การใชท รพั ยากรของชาตใิ หค มุ คา
หากทา นไมใ ชห นงั สอื เลม นแี้ ลว
โปรดมอบใหผ อู น่ื นำมาใชป ระโยชนต อ ไป
กลมุ พฒั นาการเรยี นรขู องผเู รยี นทม่ี คี วามสามารถพเิ ศษ
สำนกั มาตรฐานการศกึ ษาและพฒั นาการเรยี นรู
สำนกั งานเลขาธกิ ารสภาการศกึ ษา (สกศ.)
99/20 ถนนสโุ ขทยั เขตดสุ ติ กรงุ เทพฯ 10300
โทรศพั ท : 0-2668-7123 ตอ 2530
โทรสาร : 0-2243-1129, 0-2668-7329
เวบ็ ไซต : http://www.onec.go.th
http://www.thaigifted.org