The words you are searching are inside this book. To get more targeted content, please make full-text search by clicking here.

Algebra linear merupakan bidang matematik yang mengkaji sistem persamaan linear dan penyelesaiaan vektor dan transformasi linear. Matriks dan operasi juga merupakan antara bidang yang berkaitan dengan algebra linear. Aplikasi algebra linear dalam sistem aliran air, gas dan trafik banyak memberi sumbangan kepada kehidupan harian kita. Justeru, tugasan dalam Algebra Linear adalah analisis dan penyelesaian masalah rangkaian trafik. Pelajar perlu mencari lokasi yang sesuai untuk mengutip data dan menentukan kadar arus lalu lintas. Dalam tempoh Perintah Kawalan Pergerakan (PKP), pelajar adalah tidak dibenarkan keluar dari kampus untuk mengutip data untuk tugasan. Justeru itu, satu aplikasi simulasi NeSLA telah digunakan untuk simulasi arus lalu lintas. Pelajar tidak perlu bergerak ke suatu tempat untuk mengutip data lalu lintas. Pelajar yang mengambil kursus Algebra Linear telah berjaya melaksanakan tugasan semasa PKP tanpa bergerak keluar dari rumah untuk pengutip data. Analisis keputusan tugasan pentaksiran berterusan 3 orang pelajar mendapat A+, 12 orang pelajar mendapat A, 1 orang pelajar mendapat B+ dan 2 orang pelajar mendapat B. Keputusan ini menunjukkan NeSLA telah membantu pelajar dalam pelaksanaan tugasan.

Discover the best professional documents and content resources in AnyFlip Document Base.
Search
Published by kok26-77, 2022-06-30 03:15:34

NeSLA

Algebra linear merupakan bidang matematik yang mengkaji sistem persamaan linear dan penyelesaiaan vektor dan transformasi linear. Matriks dan operasi juga merupakan antara bidang yang berkaitan dengan algebra linear. Aplikasi algebra linear dalam sistem aliran air, gas dan trafik banyak memberi sumbangan kepada kehidupan harian kita. Justeru, tugasan dalam Algebra Linear adalah analisis dan penyelesaian masalah rangkaian trafik. Pelajar perlu mencari lokasi yang sesuai untuk mengutip data dan menentukan kadar arus lalu lintas. Dalam tempoh Perintah Kawalan Pergerakan (PKP), pelajar adalah tidak dibenarkan keluar dari kampus untuk mengutip data untuk tugasan. Justeru itu, satu aplikasi simulasi NeSLA telah digunakan untuk simulasi arus lalu lintas. Pelajar tidak perlu bergerak ke suatu tempat untuk mengutip data lalu lintas. Pelajar yang mengambil kursus Algebra Linear telah berjaya melaksanakan tugasan semasa PKP tanpa bergerak keluar dari rumah untuk pengutip data. Analisis keputusan tugasan pentaksiran berterusan 3 orang pelajar mendapat A+, 12 orang pelajar mendapat A, 1 orang pelajar mendapat B+ dan 2 orang pelajar mendapat B. Keputusan ini menunjukkan NeSLA telah membantu pelajar dalam pelaksanaan tugasan.

Keywords: Simulasi,Rangkaian,Algebra Linear

NeSLA

NETWORK SIMULATION
LINEAR ALGEBRA

https://youtu.be/i37x_HQI06M

Kandungan Halaman
Pengiktirafan K-novaC2022 1
Pengiktirafan InoZonS2022 2
Pengiktirafan Hari Guru Negeri Sabah 3
Pengiktirafan myIPO 4
Sijil Perakuan myIPO 5
Perakuan Pakar 6
Perkongsian Antarabangsa 7
Keputusan Peperiksaan 8
Respons Pelajar (Google Form)
Poster NeSLA 10
Manual Pengguna NeSLA 12
Arahan Tugasan Projek 14
Analisis Respons Pelajar 20
Kos Perisian dan Penjimatan 21
Pencapaian Pelajar Selepas Penggunaan 23
NeSLA 24
Contoh Hasil Simulasi Pelajar
Rujukan Kemahiran Sosial 25
26

Pengiktirafan (K-novaC2022)

1

Pengiktirafan (InoZonS2022)

2

Pengiktirafan (Hari Guru Negeri Sabah)

3

Pengiktirafan myIPO

4

Sijil Perakuan myIPO

5

Perakuan Pakar Sains Komputer

6

Perkongsian Melalui VooV Meeting
dengan Pelajar Antarabangsa

7

Keputusan Peperiksaan Algebra Linear

8

Keputusan Peperiksaan Algebra Linear

9

Respons Pelajar terhadap NeSLA (Google Form)

10

Respons Pelajar terhadap NeSLA daripada Google Form

11

Poster NeSLA

12

Poster NeSLA

13

Manual Pengguna NeSLA

14

Manual Pengguna NeSLA

15

Manual Pengguna NeSLA

16

Manual Pengguna NeSLA

17

Manual Pengguna NeSLA

18

Manual Pengguna NeSLA

19

Arahan Tugasan Algebra Linear

20

Analisis Respons Pelajar (Jadual 4.0)

Jadual 4.0

Persepsi pelajar tentang penggunaan perisian SUMO dalam tugasan MTES3103 melalui
inovasi NeSLA

No Item Nilai purata (min)

1 Saya dapat memahami soalan tugasan yang diberi oleh 4.83
pensyarah.

2 Kumpul data tentang arus lalu lintas di setiap jalan sehala 3.72
adalah kerja yang rumit.

3 Menentukan kadar arus lalu lintas di simpang adalah kerja yang 3.67
rumit.

4 Belajar perisian SUMO adalah mudah bagi saya. 3.72

5 Saya dapat membuat penyelesaian yang optimum tentang 4.22
kadar arus lalu lintas secara simulasi menggunakan perisian
SUMO dengan mudah.

6 Saya dapat menerangkan implikasi penyelesaian kadar aliran 4.33
lalu lintas pada lokasi yang dipilih secara simulasi dengan
menggunakan perisian (SUMO, python).

7 Saya bersetuju menggunakan kaedah simulasi rangkaian 4.56
(NeSLA) dalam tugasan ini adalah sangat menarik.

8 Saya bersetuju bahawa Perisian SUMO sangat mudah 3.94
digunakan (User friendly) bagi menentukan kadar alir lalu lintas
secara simulasi.

9 Saya bersetuju bahawa Perisian SUMO dapat membantu saya 4.50
membuat penyiasatan lanjutan berkaitan dengan tugasan ini.

10 Saya bersetuju bahawa Perisian SUMO dapat membantu saya 4.44
membuat penyiasatan lanjutan berkaitan dengan kehidupan
seharian selain tugasan ini.

21

Analisis Respons Pelajar (Jadual5.0)

Jadual 5.0
Kekerapan persetujuan bagi item 2 dan 3

Bil Item STS TS SS S AS Min

2 Kumpul data tentang arus lalu lintas di setiap 1 3 2 6 6 3.72
jalan sehala adalah kerja yang rumit.

3 Menentukan kadar arus lalu lintas di simpang 1 3 1 9 4 3.67
adalah kerja yang rumit.

Jadual 6.0
Kekerapan persetujuan bagi item 4 dan 8

Bil Item STS TS SS S AS Min

4 Belajar perisian SUMO adalah mudah bagi saya. 0 4 5 1 8 3.72

8 Saya bersetuju bahawa Perisian SUMO sangat 0 2 4 5 7 3.94

mudah digunakan (User friendly) bagi menentukan

kadar alir lalu lintas secara simulasi.

22

Kos Perisian dan Penjimatan Kos
Percuma melalui Sumber terbuka
Bil Peralatan/Perisian (Open source)
1 Openstreetmap
2 Simulation of Urban MObility (SUMO)
3 Bahasa JAVA
4 Bahasa Python
5 Wolfram Alpha

Jumlah RM11.50

23

Pencapaian Pelajar Selepas Penggunaan NeSLA

Contoh hasil perbincangan pelajar untuk mendapatkan nilai optimum dan menerangkan
implikasi penyelesaian terhadap aliran lalu lintas pada lokasi pilihan

Pelajar Contoh perbincangan penyelesaian pelajar

A+ Penyelesaian optimum diperoleh dengan menentukan kadar arus lalu lintas
yang melalui setiap persimpangan atau nod dengan mempertimbangkan
sistem persamaan linear yang telah dibentuk dan diselesaikan. Oleh itu,

a. Nod A: Kadar arus lalu lintas hendaklah tidak melebihi 17 buah kenderaan
per minit.

b. Nod B: Kadar arus lalu lintas hendaklah tidak kurang daripada 3 buah
kenderaan atau tidak melebihi 15 buah kenderaan per minit.

c. Nod C: Kadar arus lalu lintas hendaklah tidak melebihi 12 buah kenderaan
per minit.

Dalam setiap situasi, kadar arus lalu lintas hendaklah melebihi 0 kerana nilai
negatif memberi tanggapan bahawa kenderaan bergerak melawan arus,
iaitu bukan penyelesaian yang optimum.

A Dalam kes ini , kita harus memikirkan bahawa di Persimpangan Seri Iskandar
ini mempunyai lampu isyarat. Simpang empat ini memerlukan pergerakan
dari semua arah bagi mengelakkan kesesakan lalu lintas yang teruk yang
akan menyebabkan kelewatan masa dan sebagainya. Memandangkan nilai
optimum ditakrifkan sebagai t=4 , maka, bilangan kenderaan yang boleh
bergerak dalam sesuatu masa adalah 1 = 26 , 2 = 0 , 3 = 36 dan 4 = 4.
Ini juga dapat ditakrifkan sebagai nilai minimum bilangan kenderaan yang
dapat dilalui dalam sesuatu masa.

Selain itu, sekiranya pada waktu puncak, pihak yang berkaitan boleh
menaikan nilai t kepada nilai tidak terhingga bagi memastikan tidak berlaku
kesesakan yang teruk pada waktu puncak (peak hour).

B+ Bagi meramalkan bilangan kereta yang bakal keluar masuk melalui rangkaian
aliran di persimpangan 4 Jalan Kuala Lumpur – Tanjung Malim ini, satu nilai
d boleh dipilih. Contohnya, d ialah 50, maka nilai bagi laluan a ialah -13 + 50
= 37, b ialah -8 + 50 = 42 dan c ialah -5 + 50 = 45.

Semasa projek ini dilaksanakan dengan kaedah pemerhatian dan pengiraan
bilangan kenderaan, saya mendapati bahawa laluan a adalah laluan paling
sedikit dilalui manakala laluan d adalah laluan paling kerap dilalui oleh
kenderaan pada masa tersebut. Jika kereta bilangan kereta bertambah pada
laluan d, bilangan kereta pada laluan a, b, dan c juga akan bertambah.

24

Contoh hasil Simulasi Pelajar

Gambarajah 10.0
Hasil Peta sebuah bahagian di dalam Pekan Kanowit, Sarawak daripada
OpenStreetMap (https://www.openstreetmap.org/#map=19/2.09929/112.15688)

Gambar 11.0
Rangkaian lalu lintas di Pekan Kanowit menggunakan SUMO

Gambar 12.0
Arus lalu lintas dibina menggunakan Python Programming Language

Gambar 13.0
Simulasi rangkaian arus lalu lintas dalam bentuk rajah

25

Rujukan Kemahiran Sosial

26


Click to View FlipBook Version