DBM2013 Engineering Mathematics 2 Chapter 3 Integration
3.0 Definition Of Integration
1) The process of obtaining from y ( a function of x ) is known as differentiation
and the reverse process of obtaining y from is called integration.
Differentiation process
Integration process
2) Integration is divided into two parts which are indefinite integral and definite
integral.
3.1 Indefinite Integrals
Integration of y with respect to x, is denoted by ∫ ( ) .
If = ( ),
The differentiation : = ′( )
The integration : ∫ ′( ) = +
Where c is an arbitrary constant.
Tips!
Note that a function is integrating with respect to the function given and it is not
compulsory to be integrated respect to x only. (See example given)
JMSK, PUO Page 129
DBM2013 Engineering Mathematics 2 Chapter 3 Integration
Basic formulas in integration:
i) a dx = ax + c ; where a is a constant. [Constant rule]
ii) axn dx = axn+1 + c ; where n is an integer, ≠ −1. [Power rule]
n +1
Example 1:
Determine the following integrals::
a) 3 x dx b) −r3 dr c) 6 dk
5
d) xdx e) 2 dx f) 4 3 dm
3x 4 16m
Solution:
a) 3 x dx = 3 x2 + c In indefinite integral, c must be stated. It is
5 5 2 known as an arbitrary constant where the
value is yet to be determined.
= 3 x2 + c
10
b) − r3 dr = − r 4 + c
4
c) 6 dk = 6k + c The given function is integrating with respect to
k, therefore the integration will be in terms of k.
JMSK, PUO
Page 130
DBM2013 Engineering Mathematics 2 Chapter 3 Integration
d) 1
xdx = x 2dx
3 2 Make sure that x is always in index form.
x
= 3 +c
2
= 2 3 + c
3 x2
2 dx = 2x −4 dx
3x 4 3
e)
= 2x −3 + c
3 −3
= 2 +c
− 9x3
f) 3 dm = 3 1 dm
4 16m (16m ) 4
= 3 1 dm
11
(16) 4 m 4
= 3 m − 1 dm
4
2
3
= 3 m4 +c
23
4
3
= 2m 4 + c
JMSK, PUO Page 131
DBM2013 Engineering Mathematics 2 Chapter 3 Integration
3.1.1 Determining the Integration of Algebraic Expressions Involving Operations
∫[ ( ) ± ( ) = ∫ ( ) ± ∫ ( )
Example 2:
Integrate the following equations: c) (4 − x)(5 + 2 x) dx
x4
a) 4x3 +3x2 − 3x + 4 dx
5 d) 2 − 3 + x dx
5x3
b) ( x − 6)2dx
Solution:
a) 4x3 +3x2 − 3x + 4 dx = 4x4 + 3x3 − 3x2 + 4 x + c
5 4 3 25
= x4 + x3 − 3x2 + 4 x + c
25
b) ( x − 6)2dx = ( x2 −12x + 36)dx Integrate terms by terms in
addition or subtraction. If the
= x3 −12 x2 + 36x + c function given is in
3 2 multiplication, the function
must be expanded.
= x3 − 6x2 + 36x + c
3
JMSK, PUO Page 132
DBM2013 Engineering Mathematics 2 Chapter 3 Integration
c) (4 − x)(5 + 2x) dx = 20 + 8x − 5x − 2x2 dx Integrate terms by terms in
x4 x4 addition or subtraction. If the
function given is in division,
= 20 + 3x − 2x2 the function must be
x4 x4 x4 dx simplified.
Tips! Operation
( )= 20x−4 + 3x−3 − 2x−2 dx
= x−3 + x−2 − x−1 + c
20 −3 3 −2 2 −1
= − 20 − 3 + 2 + c
3x3 2x2 x
2 − d) 3 + x dx = 2 − 3x −3 + x dx
5x3 5
= 2x − 3x−2 + x2 + c
(5)(−2) 2
= 2x + 3x−2 + x2 + c
10 2
JMSK, PUO Page 133
DBM2013 Engineering Mathematics 2 Chapter 3 Integration
EXERCISE 1 b) 3 (5 − x)(x + 6) dx
1:
Find the integral for the following:
a) 2x3 + 4x2 + 2x − 5 dx
3
c) 3k 2 +5 4 k −4 dk d) x2 − x + 5 dx
k3 x
JMSK, PUO Page 134
DBM2013 Engineering Mathematics 2 Chapter 3 Integration
(4 − x)(3 − x) ( )f)1
e) x5 dx 5x 10x3 −15 x + x dx
g) 3x2 x3 + 4x2 + 1 dx 2
4 3x 2z + z3
h) dz
z
JMSK, PUO Page 135
DBM2013 Engineering Mathematics 2 Chapter 3 Integration
3.2 Definite Integrals of Algebraic Expressions
3.2.1 Fundamental Theorem of Calculus
b
If x=a to x=b for f (x)dx , then it is written as f (x)dx and it is called definite integral.
a
Fundamental Theorem of Calculus
b
f (x)dx = F(b) − F(a)
a
3.2.2 Properties of Definite Integral
b
For the definite integral f (x)dx , the constant a is known as the lower limit of integration while
a
b is known as the upper limit of the integration.
Properties of Definite Integrals
bb
a) kf (x)dx = k f (x)dx
aa
b bb
b) f (x) g(x)dx = f (x)dx g(x)dx
a aa
ba
c) f (x)dx = − f (x)dx
ab
bc c
d) f (x)dx + f (x)dx = f (x)dx
ab a
JMSK, PUO Page 136
DBM2013 Engineering Mathematics 2 Chapter 3 Integration
3.2.3 Evaluate definite integrals using the properties of definite integrals
Example 3:
1) Evaluate each of the following definite integrals below.
3 0
a) (3x + 5)dx b) (x +1)( x − 3) dx
−1
1
c) 2 4x − x2 + 5x3 dx
1x
Solution:
a)3 (3x + 5)dx = 3x2 3
1 2 + 5x
1
3(3) 2 3(1) 2 + 5(1)
2 2
= + 5(3) −
= 22
00
b) (x +1)( x − 3) dx = ( x2 − 3x + x − 3)dx
−1 −1
0
= ( x2 − 2x − 3)dx
−1
= x3 − x2 − 0
3 2 2 3x
−1
= x3 − x2 0
3 − 3x
−1
= 0 − ( −1)3 − ( −1)2 −
3 3 ( −1)
= −5
3
JMSK, PUO Page 137
DBM2013 Engineering Mathematics 2 Chapter 3 Integration
( )c) 2 4x − x2 + 5x3 dx = 2 4 − x + 5x2 dx
1x
1
= x2 + 5 x3 12
4x − 2 3
= 4(2) − 22 + 5 23 − 4(1) − 12 + 5 13
2 3 2 3
= 85
6
48
2) Given that g(x)dx = 6 and g(x)dx = 10 , find the values of
24
44 4
a) g(x)dx − g(x)dx b) ( g(x) − 2x) dx
28 2
28 8
c) −5g(x)dx + g(x)dx d) k if (kx + g(x))dx = 9
44 4
8
e) g(x) dx
2
Solution:
44
a) g(x)dx − g(x)dx = 6 − (−10)
28
= 16
4 44
b) ( g(x) − 2x) dx = g(x)dx − (2x) dx
2 22
= 6 − 2x2 4
2 2
= 6 − (4)2 − ( 2)2
= 6 − (16 − 4)
= 6 −12
= −6
JMSK, PUO Page 138
DBM2013 Engineering Mathematics 2 Chapter 3 Integration
2 84 8
c) −5g(x)dx + g(x)dx = − −5g(x)dx + g(x)dx
4 42 4
= −(−5)(6) +10
= 30 +10
= 40
8
d) (kx + g(x))dx = 9
4
88
(kx) dx + g(x)dx = 9
44
kx2 8 + 10 = 9
2
4
k (8)2 k (4)2
− +10 = 9
22
32k − 8k = −1
24k = −1
k = −1
24
8
e) g(x) dx
2
48
= g(x) dx + g(x) dx
24
= 6 +10
= 16
JMSK, PUO Page 139
DBM2013 Engineering Mathematics 2 Chapter 3 Integration
EXERCISE 2
1:
1. Evaluate each of the following;
(a)4 3x2 +x+ 1 dx
2 x2
(b) 2 2m3 − 2 dm
1 3m3
1 Page 140
(c) x (x + 3) (x − 3) dx
−2
JMSK, PUO
DBM2013 Engineering Mathematics 2 Chapter 3 Integration
(d) 3 2x − 1 2 dx
1 x
(e)−1 − 3x5 + 3x3 + 2dx
−3 x3
2 4 − x
(f) dx
1x
JMSK, PUO Page 141
DBM2013 Engineering Mathematics 2 Chapter 3 Integration
2. Given that ∫25 ( ) = 6, find the value of ;
5
a) 6 f (x) dx
2
b) 5 5 − f (x)dx
2
5
c) 2 − 3 f (x) dx
d) 5 f (x) + 6 dx
23
JMSK, PUO Page 142
DBM2013 Engineering Mathematics 2 Chapter 3 Integration
3. Given that ∫13 ( ) = 5, ∫35 ( ) = 2 − 7 where m is a constant. If ∫15 ( ) = 4,
find the value of m.
JMSK, PUO Page 143
DBM2013 Engineering Mathematics 2 Chapter 3 Integration
3.3 Integral of Reciprocal Function
3.3.1 Perform Integrals of Indefinite Reciprocal Function
Formula of integration of reciprocal function:
) ∫ = | | +
) ∫ = × | + | +
+
Example 4:
Integrate the following:
a) 1 dx b) 3 dx
5x 5x
c) dx 3 d) 8 + 2 dt
5x + −16t
Solution:
a) 1 dx = 1 1 dx b) 3 dx = 3 1 dx
5x 5 x 5x 5 x
= 1 ln x + c = 3 ln x + c
5 5
c) dx 3 = 1 3 dx d) 8 + dt = 8 1 + dt
5x + 5x + −16t 2 −16t 2
= 1 ln 5x + 3 + c
5
JMSK, PUO Page 144
DBM2013 Engineering Mathematics 2 Chapter 3 Integration
= 8 1 ln −16t + 2 + c
−16
= − 1 ln −16t + 2 + c
2
3.3.2 Evaluate integrals of definite reciprocal function
Example 5:
Evaluate the value for each function.
a) −3 1 dx 1 2 dx
−4 x
b) 0 4 + 2x
c) 2 3 + 4x dx 5 3 dt
1x
d) 1 2t − 3
Solution:
−3 1 12 1
dx
b)
a) 1 dx
dx = 2
−4 x 0 4 + 2x 0 4 + 2x
= ln x −3 Ignore = 2 1 ln 4 + 2x 1
−4 negative 2 0
= ln − 3− ln − 4 =ln 4 + 2x 1
= ln 3− ln 4 0
= 1.0986 −1.3863 = ln 4 + 2(1) − ln 4 + 2(0)
= −0.2877
= ln 6 − ln 4
= 1.7918 −1.3863
= 0.4055
c) 2 3 + 4x dx 3 5 1
1x
dt = 3
5 1 2t − 3 dt
d)
1 2t − 3
JMSK, PUO Page 145
DBM2013 Engineering Mathematics 2 Chapter 3 Integration
= | x | + 4x2 2 3 1 5
3 ln 2 −1 2 1
= ln 2t − 3
= 2
3ln | x | +2x 2 −1
= 3ln 2 + 2(2)2 − 3ln 1 + 2(1)2 = 3 ln 2(5) − 3 − 3 ln 2(1) − 3
2 2
= 10.0794 − 2
= 8.0794 = 3 ln 7 − 3 ln − 1
2 2
= 2.9189 − 0
= 2.9189
EXERCISE 3
1:
1. Integrate the following.
a) dx b) 1 dx
− 3x 2x + 5
c) 2 4 dx d) 6 dx
4x + 6 − 24x
e) 3 − (x 7 2) dx
(x −1) +
JMSK, PUO Page 146
DBM2013 Engineering Mathematics 2 Chapter 3 Integration
2. Evaluate the value for each function.
2 2 dx
−1 2x + 3
a)
b) 3 3 dx Page 147
1 x−4
JMSK, PUO
DBM2013 Engineering Mathematics 2 Chapter 3 Integration
−1 4 dx
c)
−2 2x − 4
2 4 dt
d) 1 3t + 3
JMSK, PUO Page 148
DBM2013 Engineering Mathematics 2 Chapter 3 Integration
3.4 Integral of Exponent Function
Formula of integration of exponential functions:
1) e x dx = e x + c
2) eax+b dx = 1 eax+b + c
a
= eax+b + c
a
FiEndx:ample 6: ( )b) e2x e3x + ex dx c) 4e x − e5x + 2e3x dx
ex
a) e5−3x dx
Solution:
a ) e5−3xdx = e5−3x + c
−3
JMSK, PUO Page 149
DBM2013 Engineering Mathematics 2 Chapter 3 Integration
( ) ( )b ) e2x e3x + ex dx = e5x + e3x dx
= e5x + e3x + c
53
4e x − e5x + 2e 3 x dx (4 − e4x + 2e2x ) dx
c ) ex =
Simplify terms by terms
= 4x − e4x + 2e2x + c
42
= 4x − e4x + e2x + c
4
EXERCISE 4
3441:
Integrate the following equation:
a) e10xdx b) e3t−2dt
c) e−2xdx 1+ et
d) et dt
e) e3x + e−x f) ex (e2x − e3x ) dx
dx
e2x Page 150
JMSK, PUO
DBM2013 Engineering Mathematics 2 Chapter 3 Integration
g) e5 x e2x − 3 dx
7 e3x
JMSK, PUO Page 151
DBM2013 Engineering Mathematics 2 Chapter 3 Integration
h) (e4x − e−4x )2 dx
3.5 Integral of Trigonometric Function
Formula integration of trigonometric function:
1) ∫ sin( + ) = − 1 + ) × cos( + ) +
(
2) ∫ cos( + ) = 1 + ) × sin ( + ) +
(
3) ∫ sec2( + ) = 1 + ) × tan ( + ) +
(
3.5.1 Perform Integrals of Indefinite Trigonometric Function Page 152
Example 7:
Find:
JMSK, PUO
DBM2013 Engineering Mathematics 2 Chapter 3 Integration
a) sin (5 − 6x) dx b) cos 3x + dx
4
c) sec 2 x dx d) 8 sin 2x dx
2 3
Solution:
a) sin (5 − 6x) dx = − cos (5 − 6x) + c sin 3x +
−6 4
b) cos 3x + dx = +c
= cos (5 − 6x) + c 4 3
6
tan x d) 8 sin 2x dx = 8 sin 2x dx
3 3
c) sec2 x dx = 2 + c
2 1
8 − cos
2 = 3 2 2x + c
= 2 tan x + c
2 = − 4 cos 2x + c
3
3.5.2 Evaluate Integrals of Definite Trigonometric Function
Example 8: 600
Evaluate each of the
Evaluate each of integrals below: b) 5 cos 5x dx c) sin (4t − 3) dt
400 4
a) sin (6t) dt
0.25
Solution:
a) ∫0 . 25 sin (6 )
= [−cos6(6 )] Π Use mode radian(R)
0.25 because the limit is in
= [−cos6(6 )] − [− cos(66(0.25 ))] radian
= −0.167
JMSK, PUO TIPS!!!! Page 153
π=180°
DBM2013 Engineering Mathematics 2 Chapter 3 Integration
Or Use mode degree (D)
because the limit is in
degree
∫ sin(6 )
Page 154
0.25
180°
= ∫ sin (6 )
45°
= [−cos6(6 )] 180°
45°
= [− cos(66(180°))] − [− cos(66(45°))]
= −0.167
b) ∫4600°° 5 cos 5
= [5 sin 5 ]600
5
400
= [sin 5 ]640000
= [sin 5( 60°)] − [sin 5(40°)]
= [sin 300°] − [sin 200°]
= −0.8660 − (−0.3420)
= −0.5240
c) sin (4t − 3) dt
4
JMSK, PUO
DBM2013 Engineering Mathematics 2 Chapter 3 Integration
= [sin (4 − 3)]
4
4
= (sin (4( ) − 3)) − (sin(4(0.245 ) − 3))
4
= −0.0705
EXERCISE 5 b) 6 cos (2x +1) dx
3441:
1. Integrate each of the following:
a) 4 sin (4x + 4) dx
c) 5 − sin (2 − 3x) dx d) 2 sec2 x dx
5
JMSK, PUO Page 155
DBM2013 Engineering Mathematics 2 Chapter 3 Integration
e) sin 3x + cos x dx f) 3 sin 3x + dx
2 2 3
g) 1+ 2x3 − sin (2x) dx h) e2x + sec2 2x dx
4 4
2. Evaluate each of the following: b) sec2 3t dt
a) 50 2cos d
20 4
JMSK, PUO Page 156
DBM2013 Engineering Mathematics 2 Chapter 3 Integration
30
c) 3 3 + cos 4 d d) sin (2x + 3) dx
20
4
3.6 Solve Integration Problem by Substitution
The expressions of the form ( + ) can be integrated by using substitution method.
Consider (2x − 3)5dx
Steps Illustrations
JMSK, PUO Page 157
DBM2013 Engineering Mathematics 2 Chapter 3 Integration
1. Find a suitable substitution u= (2x -3)
2. Differentiate u with respect to x
3. Determine the suitable differentiation. du = 2
4. Substitue the function with u. dx
5. Integrate u.
6. Substitute again = (2 − 3). du = dx
2
u5 du
2
u6 + c
62
y = (2x − 3)6 + c
12
For linear substitution such as (2x +1)3 dx and 2 dx , we can solve these questions
3(8 − x)4
by using a formula:
(ax + b)ndx = (ax + )b n+1 +c
a( n + 1)
Example 9: c) (2x)(5 + x2 )4 dx e) 8cos xesin xdx
Solve the integral below:
Page 158
a) (4 + 2x)3dx
JMSK, PUO
DBM2013 Engineering Mathematics 2 Chapter 3 Integration
b) (6 2 x )4 dx d) 4x3 sec2 x4dx ( )1
+2
f) x x2 + 2 3 dx
0
Solution:
a) (4 + 2x)3dx
By using substitution method,
u = 4+ 2x (4 + 2x)3dx = u3 du
du = 2 ; du = dx 2
dx 2
= 1 u 3 (du )
2
= 1 u4 + c
2 4
= 1 (4 + 2x)4 + c
8
By using formula,
(4 + 2x)3dx = (4 + 2x)4 + c
4(2)
= (4 + 2x)4 + c
8
b) (6 2 x )4 dx
+2
By using substitution method,
u = 6 + 2x (6 2 dx = 2 du
u4 2
+ 2x)4
du = 2 ; du = dx = u−4du
dx 2
= u −3 + c = 3(6 −1 + c
−3
+ 2x)3
By using formula,
JMSK, PUO Page 159
DBM2013 Engineering Mathematics 2 Chapter 3 Integration
(6 2 x )4 dx = 2 (6 + 2 )−4 dx
+2
x
= 2 (6 + 2x)−3 + c = 3(6 −1 + c
(2)(−3)
+ 2x)3
c) (2x)(5 + x2 )4 dx ( )(2x) 5 + x2 4 dx = ( 2x )u4 du = u4du
2x
By using substitution method,
u = 5+ x2 = u5 +c
5
du = 2x
dx ( )= 5 + x2 5 + c
du = dx 5
2x
d) 4x3 sec2 x4dx 4x3 sec2 x4dx = 4x3 sec2 u du
4x3
By using substitution method, = sec2 udu
= tanu + c
u = x4 = tan x4 + c
du = 4x3
dx
du = dx
4x3
e) 8cos xesin xdx 8cos xesin xdx = 8cos xeu du
cos x
By using substitution method,
u = sin x = 8 cos xe u du
cos x
du = cos x
dx = 8eu du
du = dx
cos x = 8eu + c = 8esin x + c
( )1 Page 160
f) x x2 + 2 3 dx
0
JMSK, PUO
DBM2013 Engineering Mathematics 2 Chapter 3 Integration
By using substitution method, ( ) 1 x x2 + 2 3 dx = 1 xu 3 du
u = x2 + 2
0 0 2x
du = 2x ; du = dx
dx 2x
= 1 1 u3 du
20
= 1 u 4 1
8 0
1( )= x2 4 1
8 +2 0
= 1 (1 + 2)4 − (2)4
8
= 1 (81 −16)
8
= 65
8
TIPS!
It is recommended to use substitution method in
multiplication and division which cannot be
simplified to a single function.
EXERCISE 6 Page 161
3441:
1. Integrate each of the following below by using substitution method:
JMSK, PUO
DBM2013 Engineering Mathematics 2 Chapter 3 Integration
( )a) 5x2 5x3 + 5 5 dx b) 39xx32++55xdx
c) 2x x2 − 3 dx d) 3 (2 1 3)4 dx
x+
e) ex(ex − 2 )3dx f) 3x2 ex3 dx
JMSK, PUO Page 162
DBM2013 Engineering Mathematics 2 Chapter 3 Integration
g) sin x cos2 x dx h) 2 tan (4z + 2)dz
2. Evaluate the following integrals: Page 163
JMSK, PUO
DBM2013 Engineering Mathematics 2 Chapter 3 Integration
( )a) 2 3x2 x3 − 3 2 dx
0
b) 0 2t 2 1− 4t 3 dt
−2
c) 6 3 dx
1
(3 + x)4
JMSK, PUO Page 164
DBM2013 Engineering Mathematics 2 Chapter 3 Integration
2 3k 2 + 4
d) 1 k 3 + 4k dk
3.7 Integral of Inverse Trigonometric Function Page 165
3.7.1 Formula of the Integrals of Inverse Trigonometric Function
JMSK, PUO
DBM2013 Engineering Mathematics 2 Chapter 3 Integration
INTEGRATION OF INVERSE TRIGONOMETRIC FUNCTIONS
1 du = sin −1 u + c a 1 du = 1 sec−1 u + c
a2 −u2 u u2 − a2 a a
− 1 du = cos−1 u + c − 1 du = 1 cos ec−1 u + c a a
a2 −u2 a u u2 −a2
a2 1 u2 du = 1 tan−1 u + c − a2 1 u2 du = 1 cot −1 u + c
+ a a + a a
Note that, to use these formulas, we have to consider the denominator of the function.
If the denominator of the function has only two terms (means that one term is the constant and
another term is the function in term of x ), we can directly choose the value of 2 and 2.
*We have to select the constant as a2 and the function in term of x as u 2 .
If the denominator is quadratic function, we have to factorize the function first. So, we can use
completing the square method.
Completing the square method Page 166
If ax2 + bx + c = 0 , where a = 1,
Then, ax2 + bx + b 2 + c − b 2 = 0
2 2
3.7.2 Perform Integrals of Indefinite Inverse Trigonometric Function
Example 10:
JMSK, PUO
DBM2013 Engineering Mathematics 2 Chapter 3 Integration
Integrate the following functions. 2. dx 3. 1
9x2 − 5 dx
1. −1 dx x
5 + 4x − x2
9− 4x2
Solution: 2) dx
9x2 − 5
1) −1 dx x
9− 4x2 Let a2 = 5
Let a 2 = 9
a= 5
a= 9=3
u2 = 4x2 u2 = 9x2
u = 4x2 = 2x u = 9x2 → x=u
du = 2 u = 3x 3
dx dx = du
dx = du
3
2
−1 dx = −1 du
9 − 4x2 a2 −u2 2
= 1 −1 du 1 dx = 1 du
2 a2 −u2 x 9x2 −5 u2 −a2 3
u
= 1 cos −1 u + c 3
2a
= 1 cos −1 2x + c = 1 dx
23
u u2 −a2
= 1 sec−1 u + c
aa
= 1 sec−1 3x + c
55
3. 1 dx
5 + 4x − x2
JMSK, PUO Page 167
DBM2013 Engineering Mathematics 2 Chapter 3 Integration
Completing the square : 5 + 4x − x2 = − x2 − 4x − 5
= − 4x + − 4 2 − 5 − − 4 2
−x2
2 2
= − x2 − 4x + (− 2)2 − 5 − (− 2)2
= − (x − 2)2 − 9
= −(x − 2)2 + 9
1 x2 dx = 1 dx
5+ 4x −
− (x − 2)2 + 9
Let a2 = 9 u 2 = (x − 2)2
a= 9 u = (x − 2)2
a=3 u= x−2
dx = du
1 x2 dx = 1 dx
5+ 4x −
− (x − 2)2 + 9
= 1 du
−u2 + a2
= sin −1 u + c
a
= sin −1 x − 2 + c
3
EXERCISE 7 Page 168
3441:
JMSK, PUO
DBM2013 Engineering Mathematics 2 Chapter 3 Integration
Integrate the following functions. 2. − 3 dx
25 − 5x2
1
1. dx
1− 4x2
3. − ex dx 4. sec2 x dx
49 + e2x tan2 x +131
− dx 6. 4
dx
5.
36 − 9(4 − x)2
x 4x2 −13
JMSK, PUO Page 169
DBM2013 Engineering Mathematics 2 Chapter 3 Integration
7. cos x dx
cos 2 x + 1
8. x2 −1 + 3 dx
+ 2x
JMSK, PUO Page 170
DBM2013 Engineering Mathematics 2 Chapter 3 Integration
9. 4x2 1 + 13 dx
+ 8x
3.8 Integration by part
In integration we are able to integrate all the function given except such as the following;
JMSK, PUO Page 171
DBM2013 Engineering Mathematics 2 Chapter 3 Integration
xe3xdx , x2 sinh 5xdx , ln x dx , sin-1x dx
The next formula will enable us to evaluate not only these, but other types of integrals.
u dv = uv − v du
Choose u, dv in such a way that:
1. u is easy to differentiate.
2. dv is easy to integrate.
Sometimes it is necessary to integrate by parts more than once.
Tips!!!
Choose u as a function that can differentiate and dv
will be the function that you need to integrate.
We can choose u by using acronym, I LATE.
I-Inverse trigonometry function
L-logarithmic function
A-Algebraic function
T-Trigonometric function
E-Exponential function
Example 11: Page 172
Evaluate xe4xdx
JMSK, PUO
DBM2013 Engineering Mathematics 2 Chapter 3 Integration
Solution:
Both of the functions are possible choices for dv but we choose e4x as dv as it is the most
complicated part. Thus, let us display this expression as follows:
dv = e4xdx u=x
du = dx
v = e4x
4
Substitute these expressions in by parts formula,
= xe 4x dxxe4x−e 4x dx
4 4
= xe 4x − e 4x + c
4 16
Example 12: Page 173
Evaluate x2e2xdx
JMSK, PUO
DBM2013 Engineering Mathematics 2 Chapter 3 Integration
Solution:
Sometimes it is necessary to use more than once by parts integral until we may integrate single
function as illustrated below.
dv = e2xdx u = x2
du = 2xdx
v = e2x
2
= x2e2xdx x2 e2x − e2x 2x dx
2 2
= x 2e2x − e2x x dx
2
We must again integrate by parts since the expression of the integration is still in multiplication
form.
dv = e2x dx u=x
v = e2x du = dx
2
x 2e2x dx = x 2e2x − e2x x dx
2
x2e2x (x) e2x e2x
2 2 2 dx
= − −
= x 2e2x − xe 2x + e2x + c
2 24
EXERCISE 8 Page 174
3441:
Determine each of the following integrals:
JMSK, PUO
DBM2013 Engineering Mathematics 2 Chapter 3 Integration
a) xe−9xdx b) x sinx dx
c) ln x dx d) 4 ln x dx
ln x f) sin−1 xdx
e) x 2 dx
JMSK, PUO Page 175
DBM2013 Engineering Mathematics 2 Chapter 3 Integration
g) 3x3 cos x dx Page 176
h) ∫ 2 3
JMSK, PUO
DBM2013 Engineering Mathematics 2 Chapter 3 Integration
i) ∫ sin
3.9 Integration involving partial fraction Page 177
Recall...
JMSK, PUO
DBM2013 Engineering Mathematics 2 Chapter 3 Integration
There are two types of fractions; proper fraction and improper fraction.
If we are given a single fraction and we can break it down into sum of easier fraction, so is called
partial fraction.
Types of fraction Types of partial fraction Partial Fraction
Proper fraction 1. Denominator with Linear A+B
Factor, ( x + a )( x + b ) x+a x+b
(numerator <
denominator)
2. Denominator with x A a + (x B
Repeated Linear Factor, +
+ a)2
a. (x + a)2
b. (x + a)3 A + (x B + (x C
+a
x + a)2 + a)3
If the denominator is a quadratic function, ax2 + bx + c or cubic function ax3 + bx2 + cx + d , we
need to change the function into a linear or repeated linear factor.
3.9.1 Solve integrating partial fraction mathematical problem Page 178
Example 13:
JMSK, PUO