DBM2013 Engineering Mathematics 2 Chapter 3 Integration
Solve the following integral.
1. (x 4x − 2) dx
+1)(2x
2. 1 dx
x2 (1 − 4x)
Solution:
1. (x 4x − 2) dx
+1)(2x
4x = A + B Proper fraction :
(x +1)(2x − 2) (x +1) (2x − 2) Linear Factor
4x = A(2x − 2) + B(x +1)
When x = −1,
4(−1) = A(2(−1) − 2) + B(−1+1), so A = 1
When x = 1,
4(1) = A(2(1) − 2) + B(1+1), so B = 2.
Substitute the value of A and B. Integral of reciprocal
4x = 1 + 2 function
(x +1)(2x − 2) (x +1) (2x − 2)
4x dx = 1+ 2 dx
(x +1)(2x − 2) (x +1) (2x − 2)
= (x +1) −1 dx + 2 (2x − 2) −1 dx
= ln (x +1) + 2 ln (2x − 2) + c
1 2
= ln (x +1) + ln (2x − 2) + c
2. 1 dx
x2 (1 − 4x)
Proper fraction:
Repeated Linear Factor
JMSK, PUO Page 179
DBM2013 Engineering Mathematics 2 Chapter 3 Integration
1 = A+ B + C
x 2 (1 − 4x) x x 2 1 − 4x
1 = A(x)(1 − 4x) + B(1 − 4x) + C(x 2 )
When x = 0 , B = 1
When x = 1 , C = 16
4
Expand :1 = Ax - 4Ax2 + B - 4Bx + Cx 2
Compare x : 0 = A - 4B, B = 1
Then, A = 4
1 = 4 + 1 + 16
x 2 (1 − 4x) x x 2 1 − 4x
1 dx = 4 dx + 1 dx + 16 dx
x2 (1− 4x) x x2 1− 4x
= 4 x−1 dx + x−2dx +16 (1− 4x)−1 dx
= 4 ln x − x −1 + 16 ln (1− 4 x) + c
−4
1 dx = 4 ln x − 1 − 4 ln (1 − 4x) + c
x2 (1− 4x) x
EXERCISE 9: Page 180
JMSK, PUO
DBM2013 Engineering Mathematics 2 Chapter 3 Integration
Solve the following integral.
a) x x +1 dx b) (3x x+3 + 1) dx
(x − 2) + 2)(x
c) 6 dx d) 3x − 5 dx
x2 −1 x2 − x − 2
JMSK, PUO Page 181
DBM2013 Engineering Mathematics 2 Chapter 3 Integration
e) x (x 10 + 3) dx f) 3x − 2 dx
+1) (x x3 − x2
JMSK, PUO Page 182
DBM2013 Engineering Mathematics 2 Chapter 3 Integration
g) (x x+3 + 7) dx x2 + x −1
+ 1)2 (x
h) x (x2 −1) dx
JMSK, PUO Page 183
DBM2013 Engineering Mathematics 2 Chapter 3 Integration
3.10 Techniques of integration
3.10.1 Area of the graph by using integration along x-axis or y-axis.
Area between a curve and the x-axis Area between a curve and the y-axis
JMSK, PUO Page 184
DBM2013 Engineering Mathematics 2 Chapter 3 Integration
y
y
b
ab x a x
Formula: = ∫ ( ) Formula: = ∫ ( )
Example 14: Page 185
JMSK, PUO
DBM2013 Engineering Mathematics 2 Chapter 3 Integration
Find the area bounded by the graph and x-axis b) y
Solution:
y
a)
x 13 x
12 Fig 12.2b
Fig 12.2a 2
a) Shaded area = 12 x2 dx = x3 1 = 8−1 = 7 unit2
2 6 66 6
1 3 3
2
( )b) 3 2x 2 =4
Shaded area = 1 3 3 27 −1 unit2 = 5.59 unit2
2x dx =
2 1
Example 15:
Find the area bounded by the graph of y = x2 and the x-axis on [0, 2]
Solution:
b
We have A= f (x)dx , then
a
2 2 x 2 dx
f (x)dx =
A =
00
= x3 2 = 8 unit2
3 0 3
Example 16:
JMSK, PUO Page 186
DBM2013 Engineering Mathematics 2 Chapter 3 Integration
Find the area bounded by the graph of y = x2 + 2x and the x-axis on [-2, 2]
Solution:
Area of region A Area of region B
AA = 0 (x2 + 2x) dx AB =2 (x2 + 2x) dx
−2 0
= x3 + 2x2 0 = x3 + 2x2 2
2 2
3 −2 3 0
(0) 3 (−2) 3 (2) 3 (0) 3
3 3
= + (0) 2 − + (−2) 2 = + (2) 2 − + (0) 2
3 3
= −4 = 20 unit 2
3 3
= 4 unit 2
3
Therefore, total area bounded by the graph is,
AT = AA + AB
= 4 + 20
33
= 8 unit 2
Example 17: Page 187
Find the area of the shaded region.
JMSK, PUO
DBM2013 Engineering Mathematics 2 Chapter 3 Integration
1. 2
2.
Area , A = 1 f ( y) dy
= 2 y 2 dy
1
= y3 2
3
1
(2) 3 (1) 3
3 3
= −
=8−1
33
= 7 unit 2
3
2
Area , A = f ( y) dy
1
= 2 y2 − 4 y + 3) dy
(
1
y3 4y2 2
3 2
= − + 3 y
1
= (2) 3 − 2(2)2 + − (1) 3 − 2(1) 2 +
3(2) 3(1)
3 3
= 2 − 4
3 3
= −2
3
= 2 unit 2
3
Find the area of the shaded region. Page 188
JMSK, PUO
DBM2013 Engineering Mathematics 2 Chapter 3 Integration
Solution:
To find the area of shaded region, we have to sum of the two regions under different
functions.
Area , A = 1 x2 dx + 2 (−x + 2) dx
01
= x3 1 + − x2 + 2
2 2x
3 0
1
= (1)3 − (0)3 + − (2)2 + 2(2) − − (1)2 + 2(1)
3 3 2 2
=1+1
32
= 5 unit 2
6
EXERCISE 10 Page 189
3441:
JMSK, PUO
DBM2013 Engineering Mathematics 2 Chapter 3 Integration
Find the area of the shaded region in each graph below.
1. 2.
JMSK, PUO Page 190
DBM2013 Engineering Mathematics 2 Chapter 3 Integration
3. 4.
JMSK, PUO Page 191
DBM2013 Engineering Mathematics 2 Chapter 3 Integration
5. 6. Find the area bounded by the graph of
y = sin x and the x-axis on [0,2π]
JMSK, PUO Page 192
DBM2013 Engineering Mathematics 2 Chapter 3 Integration
EXERCISE 11
121213123441:
Find the area of the shaded region.
1.
2. Page 193
JMSK, PUO
DBM2013 Engineering Mathematics 2 Chapter 3 Integration
3.
JMSK, PUO Page 194
DBM2013 Engineering Mathematics 2 Chapter 3 Integration
4. Find the area bounded by 2 = − 2 from = 0 and = 3.
EXERCISE 12
3441:
Find the area of the shaded region.
1.
JMSK, PUO Page 195
DBM2013 Engineering Mathematics 2 Chapter 3 Integration
2.
3.10.2 Volume of Revolution
3.10.2.1 Volume generated when the bounded region is revolved along x-axis
Generated Volume, V = b y2 dx
a
Example 19:
Find the volume of the object below revolved along x-axis.
a) b)
JMSK, PUO Page 196
DBM2013 Engineering Mathematics 2 Chapter 3 Integration
Solution:
a) V = b y2 dx b)V = 2 x2 2 dx
a 2
1
V = 2 2x dx
0 V = 1 2 x4 dx
41
2x 2 2
2 0
= x5 2
5
= (2)2 − (0)2 = 1 1
4
= 4 unit 3 = 1 (2)5 − (1)5
20
= 31 unit 3
20
3.10.2.2 Volume generated when the bounded region is revolved along y-axis
Generated Volume, V = b x2 dy
a
Example 20:
Find the volume of the object below revolved along y-axis.
a) b)
JMSK, PUO Page 197
DBM2013 Engineering Mathematics 2 Chapter 3 Integration
Solution:
a) V = b x2 dy b) V = 3 (3 − y) dy
a 0
V = 2 y + 1dy
0 V = − y2 3
3 y 2
y2 2 0
2 y
= + 0 3(3) (3) 2 3(0) (0) 2
2 2
= − − −
(2) 2 (0) 2 + (0)
2 2
= + (2) − = 9 unit 3
2
= 4 unit 3
EXERCISE 13
3441:
1. Find the generated volume when these shaded regions are rotated 3600 around the x-axis
a) b)
JMSK, PUO Page 198
DBM2013 Engineering Mathematics 2 Chapter 3 Integration
2. A region bounded by a curve y2 = x + 1, y-axis and a line x = 4 is rotated 360o around the
x-axis. Find the generated volume in .
3. Find the generated volume when these shaded regions are rotated 3600 around the y-axis.
a) b)
0
-2
JMSK, PUO Page 199
DBM2013 Engineering Mathematics 2 Chapter 3 Integration
4. A sphere is formed when the area bounded by a curve y = 4 − x 2 and the x-axis as shown
below is rotated around the x-axis. Find the volume of the sphere if the radius is 2.
5. Find the generated volume when this shaded region are rotated through 360o around:
a) x-axis b) y-axis
JMSK, PUO Page 200
DBM2013 Engineering Mathematics 2 Chapter 3 Integration
6. Find the generated volume when the shaded region bounded by a straight line y = x , a curve
y2 = x − 2 , a straight line x = 4 and x-axis is rotated 360o around the x-axis.
JMSK, PUO Page 201
DBM2013 Engineering Mathematics 2 Chapter 3 Integration
JMSK, PUO Page 202