CHOW QS015l2
CHOON
WOOIARAHAN KEPADA CALON:
Kertas soalan ini mengandungi 10 soalan.
Jawab semua soalan.
Semua jawapan hendaklah ditulis pada buku jawapan yang disediakan. Gunakan muka surat
baru bagi nombor soalan yang berbeza.
Markah penuh yang diperuntukkan bagi setiap soalan atau bahagian soalan ditunjukkan
dalam kurungan pada penglrujung soalan atau bahagian soalan.
Semua langkah kerja hendaklah ditunjukkan dengan jelas.
Kalkulator saintifik yang tidak boleh diprogramkan sahaja yang boleh digunakan.
Jawapan berangka boleh diberi dalam bentuk ?E, e, st)rd, pecahan atau sehingga tiga angka
bererti, di mana-mana yang sesuai, kecuali jika dinyatakan dalam soalan.
2
101
CHOW QSo15/2
CHOON
WOOIINSTRUCTIONS TO CANDIDATE:
This question paper consists of I0 questions.
Answer all questions.
All answers must be written in the answer booklet provided. Use a new page for each
question.
The fuII marks for each question or section are shown in the bracket at the end of the question
or section.
All steps must be shown clearly.
Only non-programmable scientific calculators can be used.
Numerical answers may be given in the form of tT, e, surd, fractions or up to three significant
figures, where appropriate, unless stated otherwise in the question.
3
102
QSo15/2
SENARAI RUMUS MATEMATIK
Trigonometri
I I+Sln (Z* A)= sin cos .B cos sin B
CHOW (ex a) = cos A cos B + sinl sin B
CHOON
WOOItan(A*B) = tanA + tanB
1 + tanAtanB
sinA+sin,B: 2rioA+ B B
"orA*
sinA -sin.B : 2 "r"A* B *inA- B
Icos * cos B:2 "orA* u "orA- B
lcos - cos.B : -2 rioA* B "inA- I
sin2A=2sinAcosA
cos 2A = cos2l -sinz A
= 2 coszA-l
= l-Zsin2 A
tan2A = 2 tanA
l-lrrfi A
sinz A = l-cos2A
2
cos'A = l+cos2A
2
4
103
QS01sl2
LIST OF MATHEMATICAL FORN{ULAE
Trigonometry
IB +sin (l +,8) = sin ,{ cos
cos sin .B
CHOW cos (,atB)= cosAcosB + sinl sinB
CHOON
WOOItan(A* B)= tanA + tanB
1 + tanAtanB
sinA +sin B : z B B
"inA+22 "orA-
sinl - sinB: z B B
"orA*22 "inA-
cosl * cos.B :2 "orA*2.F2 "orA-,8
cosl -cos B = -2 rioA+ B rroA- B
sin2A=2sinAcosA
cos 2A = cos2 A-sin2 A
= 2 cos2 A-l
=l-2sin2 A
tan 2A = 2tanA
-l---t-a--n---'-A--
s.tn1'A. 1-cos2A
2
CO1S-I= l+cos2A
2
-
5
104
QS015/2
SENARAI RUMUS MATEMATIK
Pembezaan
f(.) f'(*)
kotx -kosek2 x
sekx sekxtanx
kosek.:r - kosek x kot x
CHOW
CHOON Jika x = f {t) dat y= s(/) maka *= #"*
WOOI
d(dv\
dd'xyz-AIdAx )
dt
Sfera V =14"n2r3 S = 4nr'
J
Kon membulat tegak 't = 'fi rs
V =! nr2h
Silinder membulat tegak J S = 2nrh
V = nr2h
a -r'.\ ''...
6
105
QSo1sl2
LIST OF MATHEMATICAL FORMULAE
Differentiation
f(.) f'(*)
cotx -cosec2x
sec .r sec x tan x
CHOW
CHOON cosecx -cosecxcotx
WOOI
If x= f(t) ana t = s(t), then !dx= 1dt"*dx
d(dv\
adzy ir\d- )
dx
dxz=
Sphere V=!n'3 S=4nr2
Right circular cone V =: *r2h =$ TE rs
Righteircularcylinder V=nr2h S=2*rh
7
106
QSo15/2
I :!:1LUngkapkan (rx5':-'4)(x+2) dalam benrukpecahan separa.
[6 markah)
Nilaikan yang berikut (ika wujud):
(a) h.xa-d+.-x-2-'--+l-*-4_i-x-Z---l1--2i-.
n.xa+.ld11--.-XJ;
CHOW [4 markah]
CHOON 13 markahl
WOOI
Cari terbitan untuk fungsi berikut: 13 markahl
14 morkahl
(a) .f (x) =sshE7;T.
O) "f (x)= e2.ln(3x+4).
Diberi cosec'itr-cot x = 3, tunjukkan bahawa cotzx-cotx-2 = 0.
Seterusnya, selesaikan persamaan cosec'x-cot,r = 3 untuk 0 -< x < n.
16 markahl
8
107
QSo15l2CHOW I
CHOON 16 marlcsl
I - f.Expr*r, (,xt"I'-41),0(x,'+* 2) in the form of partial fractions.WOOI
14 marlcsl
2 Evaluate the following (if exist):
[3 marla]
\a) XH-x2 +4x-12
13 marl<sl
ft) ti*1-G. [4 markah]
:-+l 1- X
16 marksl
3 Find the derivative of the following functions:
(a) .f(*)=qs1''E;.
(b) .f (x) = e2'ln{3x+4).
4 Given cosec'x-cotx=3, showthat cot2r- catx-2=0.
Henca, solve the equation cosec'x-cotx:3 for 0 1x1tt.
9
108
QS015/2
Polinomial P(x) = 2xa +ax3 +bx'-l7x+c dengan a, b dan c adalahpemalar,
mempunyai faktor (x + 2) dan (r - 1) . Apabila P(x) dibahagikan dengan (x + 1),
bakinya adalah 8. Cari nilai bagi a, b dan c. Seterusny4 faktorkan P(x)
selengkapnya dan nyatakan pensifarnya.
19 markahl
CHOW
CHOON*uffi.6 (a) Nilaikan r-+-6 5x + I
WOOI
14 markah)
5- p*, -2 < x<-l
-l<x<2
(b) Diberi x'+ px+q,
x>2.
^rr={ x'-4
x-2'
(i) Cari nilai p dan q jika tungsi /(x) adalah selanjar untuk semua nilai
nyatabagi x.
f6 markohT
(iD Lakarkan graf f (x) menggunakan nilai p dan q ymgdiperoleh
dalam bahagian (i).
t3 rnarkahl
10
109
QS015/2
5 Apolynomial P(x) =2x4 +ax3 +bxz -17x+c where a, b and c areconstants,
has factors (x + 2) and (x - 1). When P(x) is divided by (x + 1), the remainder is 8.
Find &e values of a, b and c. Hence, factorize P(x) completely and state its zeroes.
19 marl<sl
CHOWG (a) u^WEvaluate .t-+-6 5X + I .
CHOON
WOOI 14 marlrs)
5-p*, -2<x<-l
(b) Given f(x)= x'+ px+q, -l<x32
x'-4 x>2.
x-2'
(i) Find the values of p and q lt f (x) is continuous for all real values
of x.
16 marl<sl
(ii) Sketch the graph of f (x) using the values p Md q obtained
inpart (i).
13 marksl
11
110
QSo15/2
Suatu lengkung diberi oleh persamaan berparameter
x=t--tl,1t !=t+-.
4(a) Cur, o* dalam sebutan /.
#dx
CHOW
CHOON 17 markahl
WOOI
(b) Dapatkan koordinat titik pegun bagi lengkung tersebut dan tentukan sifat titik
tersebut.
[6 markah]
(a) 1=-L8 Iika y2 -zyJfu*1+x2 =0, tu-nrrjJuBkukLaBnrbvaqhra*wvras &c- JQ+ rt.
16 markahl
(b) Air mengalir dengan kadar tetap 36trcm3s-' ke dalam suatu kon membulat
tegak yang terbalik dengan sudut sopara menegak 45o.
(i) Cankadar peningkatan kedalaman air apabila ketinggian air
adalah 3 cm.
14 marlahl
(ii) Cari masayang diambil apabilaketinggian air adalah 18 cm.
13 markahl
12
111
QSo15l2
7 A curve is given by the parametric equations
x=t--1, 1 l=t+-'
t
(a) Find dy *rd d'4 in terms of ,.
dx dx'
CHOW
CHOON 17 ntarksl
WOOI
(b) Obtain the coordinates of the stationary points of the curve and determine the
nature of the points.
16 marksl
8 (a) If y2 -2y (l+x2) +x2 = 0, show that dy_ *
dx- JG+rt'
f6 marl<sl
(b) Water is running at a steady rate of 36rrcm3s-r into a right inverted circular
cone with a semi-vertical angle of 45o.
(, Find the rate of increasing in water depth when the water level is 3 cm.
14 marl<sl
(ii) Find the time taken when the depth of the water is 18 cm.
[3 marlts)
13
112
QSo15/2
9 (a) TentukannilaibagiRdan a, dengan ^R>0 dan 0o<a<90" supaya
3sin d - 4cosg = ft sin(d - a).
14 marlmhl
(b) Seterusnya, selesaikan persamaan 3sin0-4cos0 =2 bagi 0o< I < 360o.
14 markahl
CHOW
CHOON(c) Berdasarkan jawapan daripada bahagian (b), cari rulai 0 bagi 0o < e <36A"
WOOI
supaya f (0)=*nA j|;s,+t5 adalah minima.
Seterusnya, cari nilai minima bagi f .
13 markah)
10 (a) tCari nilai jika kecerunan bagi lengkun gan xu + fuz y *2y2 = 0 pada
titik (-11) adalah -3.
15 markahl
(b) ti"
Diberi Y=.l+cosx
(i) Cari L dun d'!, dalam sebutan x.
dx
dx'
15 markahl
(ii) Seterusnya, tunjukkan *dx-- ytd4x--(\d4x\)' = o
15 markah)
KERTAS SOALAN TAMAT
14
113
QS015/2
9 (a) Determine the values of R and a, where .R > 0 and 0" < a <90o so that
3sind - 4cosd = Rsin(d - a).
14 marksl
(b) Hence, solvetheequation 3sis0-4cosd=2 for 0o <0<360".
CHOW 14 marks)
CHOON
WOOI(c) From the answer obtained in part (b), find the value of 0 for 0 < 0 < 360o
so that f (g\= 1 is minimum.
' 3sin6-4cosd+15
/.Hence, find the minimum value of
13 marksl
10 (a) Findthevalue of &if the slope of the curve x1 +!ac'y-2y' =0 at
thepoint (-t,t) is -3.
l5 marlal
(b) th'
Given "y= rl+cosx
(i) * #Find ""u in terms of x.
(ii) "*Hence, show #-r#-(*)'=0. 15 marlal
15 markahf
END OF QUESTION PAPER
15
114
PSPM
MATRICULATION MATHEMATICS
QS015
2014/2015
115
QS015/1 QSo15/1
Mahematix
Paperl Matematik
ISemester Keftas 1
Session 2014/2015 Semester I
2 hours
Sesi 2014/2015
2 iam
KF.ME,NTE,RtAN
PENDIDIKAN
MATAYSIA
CHOW
BAHAGIAN MATRIKULASICHOON
WOOI
M4TRICU- TTON DIVBION
PEPERIKSMN SEMESTER PROGMM MATRIKULASI
IT UTNCULAfiON PROGRAIUIME EXAMINATION
MATEMATIK
Kertas L
2 jam
JANGAN BUIG KERTAS SOALAN INISEHINGGA DIBERITAHU.
N NOTOPEN IHISQUESI/ON PAPERUNNLYOU ARETOLD IODOSO.
Kertas soalan ini mengandungi 13 halaman bercetak.
This question papermrsfs of13 pnhfedp4ges.
@ Bahagian Matrikulasi
116
CHOW QSo15/1
CHOON
WOOIINSTRUCTIONS TO CANDIDATE:
This question paper consists of 10 questions.
Answer all questions.
All answers must be written in the answer booklet provided. Use a new page for each
question.
The full marks for each question or section are shown in the bracket at the end of the question
or section.
All steps must be shown clearly.
Only non-programmable scientific calculators can be used.
Numerical answers may be given in the form of fi, e, swd, fractions or up to three significant
figures, where appropriate, unless stated otherwise in the question.
3
117
QS01s/1
LIST OF MATHEMATICAL FORMULAE
Quadratic equation ax' + bx + c = 0'.
*--ott[o'-+*
2a
Arithmetie series:
T,=o+(n-a)d
CHOW
CHOON s,=;Ba+@-a)dl
WOOI
Geometric series:
Tn = arn-l
s,=ff,r*r
Sum to infinity:
S''-=14-r .rl <l
'
Binomial expansion:
(a + b)' = on +(i).".(;)o'u' + .(i)"-'u' + + b' ,
where neN *d [f'r)/ - (n n''
- r)tr
r.
(t + ax)' = ! + n(ax). @?b-y * n(n - D@ - 2)-(*I * . .
laxl<t where neZ-orneQ
5
118
QS01il1
I Solve the equation 3' +3G-*) =12.
16 marl<s)
2 Soive the inequality +6-x . -x]--l
CHOW
CHOON 16 marks)
WOOI
[r o ol [r o ol
l, r-l v3 Givenmatrices a=l + I 0 I and B=l z I 0 I where B istheinverseof A.
b L, rj
Find x, "y and e in terms of a and b.
16 marlrsl
4 Using algebraic method. find the least value of n for which the sum of the first n terms
of a geometric series
0.88 + (0.88)'] - (0.88)3 + (0.88)a +...
is greater than half of its sum to infinity.
[7 marlu]
5 (a) State the interval for r such that the expansion for (4 + 3r)i 1, valid.
[2 marksl
(b) *lt1iExpand {+ in ascending power ofx up to the term in 13.
14 marlul
(c) Hence, by substifuting an appropriate value ofx, evaluat. 1S;i correct to three
decimal places.
14 marlcsl
7
119
QSo15/1
6 (a) Given f(*)=2x+l and g(r) =x'+2x-1.
(i) Find (/ - g)(x). [2 marksl
14 marksl
(ii) Evaluate (3s -zf)(t).
CHOW
CHOON(b) EGiven .f (*) =state the domain and range of /(r).
WOOI
Hence, on the same ixes, sketch the graph of /(x) and f-t(x).
16 marlal
7 lr;t z = a+bi be a nonzero complex number.
ft(a) !show that =
14 marks)
O) Show that if i = -2, then z is a complex number with only an imaginary part.
13 marlal
(c) Find the value of a and b if z(2-i) =(i+1)(t+;).
15 marksl
I
120
QSo15/1
8 (a) Solve the following equation le*, +x_l tl= +.
(b) Find the solution set for the inequality 16 marlu)
l7 marlesl
( x+2\ _
2-l
CHOW\x-t-<4)).
CHOON
WOOI
9 Two companies P and Q decided to award prizes to their employees for three work
ethical values, namely punctuality (x), creativity (y)and efficiency (e). Company p
decided to award a total of RM3850 for the three values to 6, 2 and3 employees
respectively, while compary Q decided to award RM3200 for the three values to
4' I and 5 employees respectively. The total amount for all the three prizes is
RMl000.
(a) Construct a system of linear equations to represent the above situation.
13 marksl
(b) By forming a matrix equation, solve this equation system using the elimination
method.
[7 marks\
(c) with the same total amount of money spent by company p and e, is it possible
for company P to award 15 employees for their creativity instead of 2
employees? Give your reason.
13 marla)
11
121
QSo15/1
l0 (a) Determinewhether f(x)=* *O g(x)= T areinversefrurctionof
each other by computing their composite functions.
[5 marks)
(b) Given .{(x)=ln(l-3r).
CHOW
CHOON(1) Determine the domain and range of f (x). Then sketch the graph of
WOOI
f (x).
[6 marks]
(ii) Find /-r(x), if it exists. Hence, state the domain and range of f-t(x).
[4 marks]
END OF QUESTION PAPER
13
122
QS015/2 QS015/2
Mathematia Matematik
Papr2 Kertas 2
ISemester Semester I
Session 2014/2015 Sesi 2014/2015
2 hours
2 jam
KEN,IENTERIAN
PENDIDiKAN
MALAYSIA
CHOW
BAHAGIAN MATRIKULASICHOON
WOOI
M4TRICUATION DIVNION
PEPERIKSMN SEMESTER PROGRAM MATRIKULASI
II,IATNC UIATTON PRrcMMME EXAMINATION
MATEMATIK
Kertas 2
2 jam
JANGAN BUKA KERTAS SOALAN INISEHINGGA DIBERITAHU.
DONOTOPEN THIS QUESflON PAPERUNNLYOU ARE IOLD IODOSO.
Kertas soalan ini mengandungi 15 halaman bercetak.
This quxlbn paperconsisfs of 15 pinted pages.
@ Bahagian Matrikulasi
123
CHOW QS015/2
CHOON
WOOIINSTRUCTIONS TO CANDIDATE:
This question paper consists of 10 questions.
Answer all questions.
All answers must be written in the answer booklet provided. Use a new page for each
question.
The full marks for each question or section are shown in the bracket at the end of the question
or section.
All steps must be shown clearly.
Only non-programmable scientific calculators can be used.
Numerical answers may be given in the form of tr, e, stJrd, fractions or up to three significant
figures, where appropriate, unless stated otherwise in the question.
3
124
QSo15/2
LIST OF MATHEMATICAL FORMULAE
Trigonometry
Isln (e+ A)= sin,4 cos .B + cos sin.B
CHOW
CHOON (exA)=cos AcosB + sinl sinB
WOOI
tan (A+ B) = tanA * tan B
1 + tanAtanB
sin I + sin B: 2 ,inA+2B2 "orA- B
sinl - sinB: 2 B rinA- B
"orA*22
cosA* cos B:2 B B
"o"A*22 "rrA-
cosA- cos B : -2 rinA+ B ,inA- B
sin2A=2sinAcosA
cos 2A= cos2 A-sin2 A
= 2 cos2 A-l
= l-Zsin2 I
tan 2A= 2tan 4
l-tar," A
sinz A = l-cosZA
2
cos' A = l+cos2A
5
125
QS015/2
LIST OF MATHEMATICAL FORMULAE
Limit
li* si'ft = I
h-+0 h
hlm+0l-cohs fr =0
CHOW
CHOONDifferentiation
WOOI
f(*) "f'(*)
cot x - cosec2,
xsec
sec x tan x
cosecr -cosec xcotx
*"*rf y =g(r) and * = fk), tnen ff=
d(dv\
dd'xv2-AldAx )
dr
Sphere V A nr3 S = 4nr2
=1 =g rE rs
J -,S 2 nrh
Right circular cone Y =! nr2h
3
Right circular cylinder V = nrzh
7
126
QSo15/2
Given that (x-2) is afactot of thepolynomial "f(*)= axt -l}x' +bx-2 where
a and b arc real numbers. lt f (x)is divided by (x + 1) the remainder is -24,
find the values of aand D. Hence, find the remainder when /(x) is divided
by(2x+1).
16 marksl
CHOW2 Solve the equation 2cos2 x -l =sinx for0 I x 12n. Give your answer in terms of a.
CHOON
WOOI 16 marksl
3 Find the relative extremum of the curve ! = x3 -4x2 +4x.
16 marksl
Car X is travelling east at a speed of 80 km/h and car Y is travelling north at 100 km/h
as shown in the diagram below. Obtain an equation that describes the rate of change
of the distance betlr,een the two cars.
Hence, evaluate the rate of change of the distance between the two cars when
car X is 0.15 km and car Y is 0.08 km from P.
Car X
[7 marks)
9
127
QSo15/2
Expand (x+a)(x+ b)' , o and b are real numbers with b > 0. Hence, find the
values of a and b if (x+ a)(x+b)'=*t -3x-2.
-Express #xo -4x'+5x-l in the form of partial fractions.
x'-3x-2
ll2 marksl
CHOW
CHOON(a) Express sin 6x - sin 2x in a product form. Hence, show that[6 marlcsl
WOOI l7 marksl
sin 6x - sin2x + sin 4x = 4 cos 3r sin 2x cos x .
(b) Use the result in (a) to solve
sin 6x - sin 2x + sin 4x = sin 2x cos x
for 0<x<180".
7 Find the limit of the following, if it exists.
-.(a) lx[--f>l-.3-_vrx+q)3J
(b) l.l.m--Z--:x.-l 13 marksl
x+-* *z -g 13 marks)
r ^f 14 marksl
l,
(c) l,xl.m+4x',-l/3X- x_2-4 .
11
128
QSo15t2 x<0
0<x<4
lt+r-,
x>4
8 lr-,Given rhat /(,r)= ]-
lc,
u'here C isaconstant.
CHOW(a) Determine whether /(x) is continuous at x = 0.
CHOON
WOOI 15 marksl
(b) fGiven that (x) is discontinuous at x = 4, determine the values of c.
13 marksl
(c) fFind the vertical asymptote of (x).
14 marksl
13
129
I
QS015/2
9 Consider the parametric equations of the curve
.tr=cos30 and y=sin30, 0<0<2r.
(a) Find 4L and express your answer in terms ofd.
dx
CHOW(b) Find the value ot Ldxf4f x =O 14 marksl
CHOON 14 marksl
WOOI- 44dxz(c) Show ,,nur3 cosa 0 sin?' [5 marksl
15 marksl
*iHence, calculate " 0 =L
ll0 marksf
(a) J;.10 Use the first principle to find the derivative ofg(x) =
(b) Given that ev + xy +ln{l+Zx) =1, x > 0.
lff ffishow that (ev *
*,' (U*)' . rff- =o
#Hence, find the value "f at the point (0,0).
END OF QUESTION PAPER
15
130
PSPM
MATRICULATION MATHEMATICS
QS015
2013/2014
131
QS015/1 QS015/1
Mathemalix
Paprl Matematik
1Semester
Session 2013/2014 Kertas 1
2 hours
Semester I
Sesi 2013/2014
2iam
CHOW BAHAGIAN MATRIKULASI
CHOON KEMENTERIAN PENDIDIKAN MALAYSIA
WOOI
MATRICUATION DIVBION
MINNIRY OF EDUCATION MAIaffSA
PEPERIKSMN SEMESTER PROGRAM MATRIKULASI
MATRICU-ATTON PROGRAMME EX,4MINATION
MATEMATIK
Kertas 1
2 jam
I JANGAN BUKA KERTAS SOALAN INISEHINGGA DIBERITAHU.
DO NOIOPEN 7H'S QUESTTON PAPER UAINLYOU ARE TAD IO DO SO.
I
Kertas soalan ini mengandungi 13 halaman bercetak.
This quxtion paperconssfs of 13 pinted pages.
@ Bahaglan Matrikulasi
132
CHOW QS015/1
CHOON
WOOIINSTRUCTIONS TO CANDIDATE:
This question paper consists of 10 questions.
Answer all questions.
All answers must be written in the answer booklet provided. Use a new page for each
question.
The full marks for each question or section are shown in the bracket at the end of the question
or section.
All steps must be shown clearly.
Only non-programmable scientific calculators can be used.
Numerical answers may be given in the form of n, e, strtd, fractions or up to three significant
\- figures, wltere appropriate, unless stated otherwise in the question.
133
QS015/1
LIST OF MATHEMATICAL FORMULAE
Quadratic equation m2 +bx+c =0:,
*--ut'[* -+*
2a
CHOWArithmetic series:
CHOON
WTn = o+(n-t)d
OOI
s, =llzo+(n-r)dl
Geometric series:
Tn = arn-\
t,=ffl*l
Sum to infinity:
s. =r_",lrl<t
\- Binomial expansion:
(a+b)'=an +(:)"",.(;)"-,uz + ..+(:)"-,. + ..+bn,
where neN and(:)=@+W
*(t + ax), = t + n(m). t*f * n(n -t)(n - z) (*)' * ...
laxf <t where neZ- or n eQ
134
QS015/1
1 [; -" *. dGiven matrice, ,n=
r,*3l , =1" l.l. the values of c, and,e
looz) [o;,)
"such that AB: 14 .I, where .I is the identity matrix. Hence, determine l-r.
16 marksl
CHOW2 Consider the function f (*)= I + ln x, x) l. Determine -f-t (x) and state its range.
CHOONHence, evaluate f'(3).
WOOI
16 marksl
3 Find the value of x which satisfies the equation
logrx=(log, x)2, x>1.
l7 marksl
4 Solve the equation 22x-2 -T*t =2' -23.
17 marksl
5 #,Given g(x) = - * lwhere fr is a constant.
(a) Find the value of /r if (g. S)(r): r.
(b) Find the value of & so that g(x) is not a one-to-one function. 15 marksl
15 marksl
135
QS015/1
6 f(rt:Given e3' + 4, x e "R.
(a) Find /-r(x).
15 m.arksf
O /(r)On the ffurre axes, skctch the graphs ofCHOWarrd 7-t (x) . State the domain of
CHOON
WOOI"f(x) and ,f-'(;),
16 marlcsl
4-2i 4+2i 2
16 narkd
(b) Given logo2=ril atrd lo&u7=z. Expressr intemsof n and n if
(l4t*txs'*)= z'
16 marksl
136
CHOW QS015/1
CHOON
WOOI8 An osteoporosis patient was advised by a doctor to take enough magnesium,
vitamin D and calcium to improve bone density. In a week, the patient has to take
8 units magnesium, I I units vitamin D and 17 units calcium. The following are three
types of capsule that contains the three essential nutrients for the bone:
Capsule of type P: 2 units magnesium, 1 unit vitamin D and I unit calcium.
Capsule of type Q: I unit magnesium, 2 units vitamin D and 3 units calcium.
Capsule of type R: 4 units magnesium, 6 units vitamin D and l0 units calcium.
yLet x, and z represent the number of capsule oftypes P, Q andR respectively that
the patient has to take in a week.
(a) Obtain a system of linear equation to represent the given information and write
[,]
the system in the form of matrix equation AX = B, where X =ltty l.
lz)
13 marks)
(b) Find the inverse of matrix,4 from part (a) by using the adjoint method. Hence,
findthevalues of x,y and z.
[8 marks]
(c) The cost for each capsule of type P, Q andrR are RMl0, RMl5 and RMlT
respectively. How much will the expenses be for 4 weeks if the patient follows
the doctor's advice?
12 marl<s)
11
137
QS015/1
9 (a) In an arithmetic progression, the sum of the first four terms is 46 and the
seventh term exceeds twice of the second term by 5. Obtain the first term and
the common difference for the progression. Hence, calculate the sum of the
first ten even terms of the progression.
16 marl<s)
(b) A ball is dropped from a height of 2 m. Each time the ball hits the floor, it
]bounces vertically to a height that is of its previous height.
4
CHOW
CHOON(i) Find the height of the ball at the tenth bounce.
WOOI
12 marksl
(ii) Find the total distance that the ball will travel before the eleventh
bounce.
15 morksl
10 (a) Find the solution set of lZ -lxl < lx + 31. 18 marlal
(b) If x+1< 0, show that 13 marlcsl
(i) 2x-l<0. 14 marksl
(ii) #,r.
END OF QUESTION PAPER
13
138
QS015/2 QS015,2
Mahematia
Matematik
Papr2
Kertas 2
ISemester
Semester I
Session 201 3/2014
2 hours Sesi 2013/2014
2 jam
BAHAGIAN MATRIKULASICHOW
KEMENTERIAN PENDIDIKAN MALAYSIACHOON
WOOI
M4TRICWTIONDIVNION
MINNIRY OF EDUCANON MAI-4WA
PEPERIKSMN SEMESTER PROGMM MATRIKULASI
MATNC UIANON PROGMMME FX,4MINANON
MATEMATIK
Kertas 2
2 ja,m
I NJANGAN BUKA KERTAS SOALAN INISEHINGGA DIBERITAHU.
NOT OtrN 7HlS 8UES77ON PAPER UAINLYOU ME TUD IO DO SO.
I
Kertas soalan ini mengandungi 19 halaman bercetak.
This question paper oonsrsfs of 19 pinted pages.
O Bahagian Matrikulasi
139
QS015l2
INSTRUCTIONS TO CANDIDATE:
This question paper consists of 10 questions.
Answer all questions.
All answers must be written in the answer booklet provided. Use a new page for each
question.
CHOWThe firll marks for each question or section are shown in the bracket at the end of the question
CHOON
WOOIor section.
All steps must be shown clearly. ;
Only non-programmable scientific calculators can be used.
Numerical answers may be given in the form of r, e, surd, fractions or up to three significant
\- figures, where appropriate, unless stated otherwise in the question.
140
QS(lr5/2
LIST OF' MATHEMATICAL tr'ORMULAE
Trigonometry
sin (l t B) = sin,4 cos B + cos,4 sin B
CHOW I +cos (; t B) = cos cos .B sin,4 sin.B
CHOON
WOOItan(A+.8)= tanA + tan8
1 + tanAtanB
sinl + sinB : 2 rinA+ B ro"A-',
sin,{ - sinB : 2 "orA* B *inA- B
cosl * cos B =2 "orA* B "or4- B
cosr4 - cos B : -2 rinA* B "inA- B
sin 2A=2sinA cosl
cas 2A = cos2 A-stnz A
= 2 cosz A-l
= l-2sinz A
tan 2A = 2tanA
l-tanz A
l-cosZA
gin2 A =
2
l+cos2A
cos' A =
2
141
QS015/2
LIST OF MATHEMATICAL FORMULAE
Differentiation
f(.) f'(*)
cot x )
- cosec"x
CHOW xsec sec x tan x
CHOON
WOOIcosecx -cosecxcotx
If x= f (t) ana t = s(t), then !dx= 4dt*Ldx
d(dv\
dd2xyz=!,aldAx )
Sphere Y=!n'3 S=4nr2
Right circular cone V =: nr2h $ = nrs
3
S =2nrh
Rightcircularcylinder V = r,r2h
142
QS01s/2
I Expr.r,x,f+3x+2 in partial fractions form.
15 marksl
2 Statethevaluesof Rand a suchthat 3sind+6cosd=r?sin(9+a) where R>0
and 0" <a<90". Hence, solve 3sind+6cosd=.rE for 0 <0<180".
16 marksl
CHOW
CHOON\-3(a)Findthevalueofm if ti* T**?t =1.
W
OOI r-+0 4x -8X'
(b) E-6. 13 marl*l
Evaluate rr-ir+n0 X 14 marks)
4 (a) LFind if y =cosec{sin[rn(x+r)]].
13 marksl
tive of y = cos3x and express your answer in the
(b) deriva fObtain the second
simplest form.
[4 marks]
143
CHOW QS015/2
CHOON
WOOI5 A cubic polynomial P(x) has remainders 3 and I when divided by (, - 1) and
(x -2), respectively.
(a) Let Q@) be a linear factor such that P(x) = (x - 1)(x -2)Q$) + ax + p,
where a and B are constants. Find the remainder when P(x) is divided by
(x -t)(x -2).
15 marlcsl
(b) Use the values of a and B frompart (a) to determine Q(x) if the coefficient
of x3 for P(x) is l and P(3)=7. Hence,solvefor x if P(x)=7-3x.
16 marlesl
11
144
QS015/2
6 (a) State the definition of the continuity of a function at a point. Hence, find the
value of d such that
f(x\=[,"'*o' x<o
[3x+5, x>0
CHOW is continuous at x = 0. [5 marl<s]
CHOON
W(b) /A tunction is defined by
OOI
f (x)={;,,_;,, ;:i 13 marksl
14 marksl
/Determine the value(s) of fr if is:
(D continuous for all x e IR.
(ii) differentiable for all x e lR.
13
145
QS015/2
7 (a) *Find the derivative of /(x) = by using the first principle.
(b) Use implicit differentiation to find: [4 marks)
(i) ! x ykrx=e'-!. 13 marksl
frc 15 marksl
(ii) thevalue $+&ciyf x12- I =3 when r=1.
CHOW
I A curve is defined by parametric equationsCHOON
r=ln (l+r), | = e" for / >-1.W
OOI
(a) #Find Le *o interms of t.
16 marksl
O) Show that the curve has only one relative extremum at (0,1) and determine
the nature of the point.
16 marlal
15
146
QS01s/2
(a) A cylindrical container of volume l28n m3 is to be constructed with the same
material for the top, bottom and lateral side. Find the dimensions of the
container that will minimise the amount of the material needed.
16 morl<sl
CHOW(b)Gravelis poured onto a flat ground at the rate of * -' per minute to form a
CHOON
WOOI 20
conical-shaped pile with vertex angle 60o as shown in the diagram below.
Compute the rate of change of the height of the conical pile at the instant
/ = l0 minutes.
l7 marksl
17
147
QS015/2 14 marl<sl
ro (a) show,n"ffiffi=*r(ry)
(b) Use trigonometric identities to verify that
CHOW(D ztan9
CHOON
Wsind: 2
OOI
l+tarr'9'
2
13 marlxl
r-tarf q
(iD cosd =
l+tarr'9'
2
13 marlal
Hence, solvetheequation 3sind+cosd =2 for 0 <e <180'. Giveyour
answers correct to three decimal places.
15 marl<sl
(.*
END OF QUESTION PAPER
19
148
PSPM
MATRICULATION MATHEMATICS
QS015
2012/2013
149
QS01st1 QS015/1
Mathematia
Paprl Matematik
1Semester Kertas 1
Session 2012/2013
2 hours Semester I
Sesi 2012/2013
2 jam
q^GeLf5-J:s
CHOW ==4-::t-6 I :!
CHOON l:-.\
WOOI
BAIIAGIAN MATRIKULASI
KEMENTERIAII PELAJARAN MALAYSIA
I,IATRICU-,ITION DIVBION
MINNTRY OF EDUCATION MAL4YSU
v' PEPERIKSMN SEMESTE R PROG RAM MATRIKULASI
IT UTNC UI-4TTON PRrcRAMME EXAMI|,{ATION
MATEMATIK
Kertas L
2 ja'm
JANGAN BUKA KERTAS SOALAN INISEHINGGA DIBERITAHU.
DO NOT OPEN IFI/S QUESNON PAPER UI{NL YOU ARE TAD IO DO SO.
v
CHOW CHOON WOOI
Kertas soalan inimengandungi 13 halaman bercetak.
This question paper consists of 13 pinted pagx.
@ Bahagian Makikulasi
150