The words you are searching are inside this book. To get more targeted content, please make full-text search by clicking here.

Organic Chemistry Some Basic Principles and Techniques

Discover the best professional documents and content resources in AnyFlip Document Base.
Search
Published by mkumar, 2019-01-31 02:07:51

Organic Chemistry Some Basic Principles and Techniques

Organic Chemistry Some Basic Principles and Techniques

Keywords: Organic Chemistry Some Basic Principles and Techniques

ABYSS Learning

ELECTROPHILIC AROMATIC SUBSTITUTION REACTION

 Introduction :

Aromatic hydrocarbons are known generally as arenes. An aryl group is one derived from an arene by removal
of a hydrogen atom and its symbol is Ar—. Thus, arenes are designated ArH just as alkanes are designated
RH.

The most characteristic reactions of benzenoid arenes are the substitution reactions that occur when they react
with electrophilic reagents. These reactions are of the general type shown below.

Ar – H + E – A  Ar – E + H – A

+E – A E
+H– A

The electrophiles are either a positive ion (E+) or some other electron- deficient species with a large partial

positive charge. For example, benzene can be brominated when it reacts with bromine in the presence of
FeBr3. Bromine and FeBr3 react to produce positive bromine ions, Br+. These positive bromine ions act as
electrophiles and attack the benzene ring, replacing one of the hydrogen atoms in a reaction that is called an

electrophilic aromatic substitution (EAS).

Electrophilic aromatic substitutions allow the direct introduction of a wide variety of groups into an aromatic
ring, and because of this they provide synthetic routes to many important compounds. The five electrophilic
aromatic substitutions that we shall study in this chapter are outlined in figure.

X2, FeX3 X
(x=Cl,Br) + HX Halogenation

HONO2 NO2 + H2O Nitration
H2SO4

SO3 SO3H Sulfonation
H2SO4

(RCl, AlCl3) R +HCl Friedel -Crafts Alkylation
O
O (R can rearrange)
Cl C—R +HCl Friedel-Crafts Alkylation

R , AlCl3

Electrophilic Aromatic Substitution Reactions

( 1 ) A GENER AL MECHANISM FOR ELECTROPHILIC AROMATIC SUBSTITUTION :

Benzene is susceptible to electrophilic attack primarily because of its exposed -electrons. In this respect
benzene resembles an alkene, for in the reaction of an alkene with an electrophilic the site of attack is the
exposed  bond.

We saw in however, that benzene differs from an alkene in a very significant way. Benzene's closed shell of
six  electrons gives it a special stability. So although benzene is susceptible to electrophilic attack, it undergoes
substitution reactions rather than addition reactions. Substitution reactions allow the aromatic sextet of 
electrons to be regenerated after attack by the electrophile was occurred. We can see how this happens of
we examine a general mechanism for electrophilic aromatic substitution.
Once the electrophilic, E+ is generated in the reaction, it enters into some kind of a weak interaction with the
 cloud of benzene ring leading to the formation of a  - complex. This  - complex is a donor-acceptor type
of a complex, benzene being the donor and electrophile, the acceptor. These adducts are known as charge

www.abyss.net.in

ABYSS Learning

transfer complexes. In the complex that benzene forms with bromine, it has been shown that the halogen
molecule is located centrally and at right angles to the plane of the benzene ring.

+ E+ (Fast) E

+E E E
H H H

Step I (slow) + +

In step 1 the electrophile takes two electrons of the six- electron  system to form a  bond to one carbon
atom of the benzene ring. Formation of this bond interrupts the cyclic system of  - electrons, because in the
formation of the arenium ion the carbon that forms a bond to the electrophile becomes sp3 hybridized and
therefore, no longer has an available p-orbital. Now only five carbon atoms of the ring are still sp2 hybridized
and still have p-orbitals. A calculated electrostatic potential map for the arenium ion formed by electrophilic
addition of bromine to benzene indicates that positive charge is distributed in the arenium ion ring (figure) just
as was shown in the contributing resonance structures.

In step 2 a proton is removed from the carbon atom of the arenium ion that bears the electrophile. The two
electrons that bonded this proton to carbon becomes a part of the  system. The carbon atom that bears the
electrophile becomes sp2 hybridized again and a benzene derivative with six fully delocalized  electrons is
formed. We can represent step 2 with any one of the resonance structures for the arenium ion.

+E (Fast) E
H + H–A

(The proton is removed by any of the bases present, for example, by the anion derived from the electrophile).

Kekul'e structure are more apropriate for writing mechanisms such as electrophilic aromatic substitution because
they permit the use of resonance theory, it can be described however, using the modern formula for benzene
in the following way.

Step I E

K1 + H + : A– (Slow step)

K 1

Arenium ion

E E
+ E – A (Fast step)
Step II + H – k2 

Where k1 and k–1 is the rate constant of the forward and backward reactions in step-I, k2 is the rate constant
of the step-II.

There is firm experimental evidence that the arenium ion is a true intermediate in electrophilic substitution
reactions. It is not a transition state. This means that in a free energy diagram (figure shown below) the arenium
ion lies in an energy valley between two transition states.

The free energy of activation, G  ) , for the reaction leading from benzene and the electrophile, E+, to the
(1

arenium ion has been shown to be much greater than the free energy of activation, G  ) , leading from the
(2

arenium ion to the final product. This is consistent with what we would expect. The reaction leading from

benzene and an electrophile to the arenium ion is high endothermic, because the benzene ring loses its resonance

energy. The reaction leading from the arenium ion to the substituted benzene, by contrast, is highly exothermic

because in it the benzene ring regains its resonance energy.

www.abyss.net.in

ABYSS Learning

+

+ +

EH +
1

+ EH
2
Potential Energy
EH

G1 G2

E–A E–A
E

Reaction coordinate
Of the above two steps, step 1 the formation of the arenium ion – is usually the ratedetermining step in
electrophilic aromatic substitution.

Step 2, the removal of a proton, occurs rapidly relative to step 1 and has no effect on the overall rate of
reaction.

 Isotope Effects :

The next question which comes up is how do we ascertain the presence of two discrete steps in the mechanism
and also that the formation of  - complex is the rate determining step. Answer to this question can be obtained
from the study of kinetic isotope effect. If the rate of a reaction depends on a step which involves breaking
of a C—H bond, then a kinetic isotope effect (KH/KD) of 6 to 7 is expected. Absence of any significant isotope
effect in aromatic electrophilic substitution (except sulphonation) suggests that the proton is lost in the fast step,
subsequent to rds. We see that the isotope effect study has provided two pieces of important information
regarding the mechanism. Firstly, it has shown that the reaction takes place in two steps and secondly, that
the first step is slower than the second step.

( 2 ) Nitration :

Nitration reaction is generally carried out with a mixture of concentrated nitric acid and sulphuric acid. The
reagents which cause nitration are called nitrating agents.

The various nitrating agents which are commonly employed are :

(a) N2O5 in CCl4 in the presence of P2O5 is used when anhydrous conditions are required.
(b) Ethyl nitrate (C2H5ONO2) is used to carry out nitration in alkaline medium.

(c) In the case of polycyclic hydrocarbons N2O4 and nitronium salts such as N O  BF4– , N O 2 P F6– , N O  S O – ,
2 2 3

 can be used. The electrophile involved in nitration reaction is nitronium ion N O  .
2

 Mechanism :

Generation of electrophile from nitrating agent.

(a) In a mixture of nitric acid and sulphuric acid, an acid base reaction takes place in which nitric acid acts

as the base.

HO–NO2 +H2SO4 

Base H–O–NO2 +HSO4

 NO2 +H2O

H– O – NO2

H2O + H2SO4 H3O+HSO4

HNO3+2H2SO4 NO2 +H3O+ 2 HSO4

www.abyss.net.in

ABYSS Learning

(b) N2O5 in CCl4 when used, results in a spontaneous dissociation reaction.

N2O5  N O   N O –
2 3

(c) With concentrated HNO3 alone

2 HNO3  N O   N O –  H2O
2 3

The electrophile generated in this case is obtained by the behaviour of one nitric acid as the base and
other molecule as the acid, but the equilibrium lies in the reactant side.

( 3 ) Sulphonation :

Sulphonation is another synthetically important reaction. It is often accomplished with concentrated sulphuric
acid or fuming sulphuric acid containing excess of SO3 or chlorosulphonic acid, ClSO2OH.
It is believed that the electrophile varies with the reagent, though in all cases SO3, is involved either free or

along with a carrier, like in H2SO 4 (SO3 + H3O+) or H2S2O7. Sulphur trioxide is generated form sulphuric

acid as follows 2H2SO4  H SO – +H3O+ + SO3. The mechanism of sulphonation of benzene is given
4

below :

O H SO3 SO3H
K1 (Slow)  + SO3 HSOI4–I,,SloHw2SO4 H3IOII,(f,asHt )2O
+S
O O k1

Sulphonation is different from other aromatic electrophilic substitution reactions, Firstly, it is reversible and
secondly, it shows some amount of isotope effect which is totally absent in other cases. Let us have a look
at the potential energy diagram, Fig. of sulphonation reaction to understand these anomalies.

Potential Energy H SO3

+ SO3 +

SO3

+H+

Reaction coordinate

We see that once the  - complexed benzenium intermediate is formed ; the energy barriers on either side
of the intermediate are roughly of the same magnitude. This means that the intermediate can cross over to
the product and can also come back to the reactant. This accounts for a reversible nature. Now, if we have
the deuterated substrate, then the potential energy diagram gets slightly modified (dotted curve). The barrier
to step II becomes higher as it now involves the cleavage of C—D bond. The barrier for step I, on the other
hand, remains the same as it pertains to  - complex formation. The rate of its reverting back to reactants
is higher than its crossover to the product. Therefore, there is a net decrease in the overall rate of sulphonation
for deuterated substrate-it shows a kinetic isotope effect. The loss of proton (Step II) is the slowest step (rds).
The equilibrium in step III lies to the left as aryl sulphonic acids are strong acids.

In the case of other electrophilic substitutions, in contrast, energy barrier for the first step is much higher than
that for the second step even for a deuterated substrate.

www.abyss.net.in

ABYSS Learning

( 4 ) Halogenation :

Halogenation of an aromatic ring is a synthetically important reaction. It takes place in the presence of varied
reaction condition depending on the reactivity of the aromatic ring. For very reactive aromatic compounds
in polar solvents, the molecular halogens themselves may acts as electrophiles. In the case of nonpolar solvents,
halogenation is catalysed by a Lewis acid like AlCl3, or FeCl3, Reactivity of halogens has the following order,

I2 < Br2 < Cl2
Let us take chlorination as a representative reaction to understand the mechanism of halogenation. Chlorine,
in the presence of AlCl3 or FeCl3 forms a complex, Cl2—AlCl3. This complex can itself be the reactive electrophile
or it may dissociate to give Cl+.

Step 1 : •• AlCl3 

Cl—Cl + AlCl3 Cl—Cl — AlCl3

(anhydrous) H Cl
••
Step 2 :  slow 
Potential Energy
+ Cl — Cl— AlCl3 + AlCl4

Cl H Cl
+ AlCl3 + HCl
Step 3 :  Fast

+ AlCl4

However, there is no significant evidence for the involvement of Cl+ as an electrophile and it is likely that the

complex itself attacks the substrate. In the Cl2—AlCl3 complex, role of the Lewis acid is to polarize the halogen
molecule and weaken the Cl—Cl bond. This lowers the activation energy for the formation of -complex.

H Cl---Cl H Cl---Cl-AlCl3
+
+ H Cl
+

intermediate
H Cl

+–

AlCl4

reactants Cl products
+ Cl2—AlCl3 + HCl + AlCl3

Reaction coordinate

Schematic potential energy diagram for chlorination
of benzene with Cl2(–)and Cl2 AlCl3 (---) as the electrophile

Bromination follows a similar mechanism. As said above, Iodine is weakest of the three halogens and even

in the presence of a Lewis acid, It can halogenate reactive aromatics only. Therefore, in most other cases

iodine-monochloride is used in the presence of Lewis acid, ZnCl2.

– 

Halogenation may be effected by hypohalous acids, HO — X ,also. This is markedly slower than with molecular

–   

halogens as HO– is a poorer leaving group from HO — X ,than, X– is from X — X . The reaction is speeded

in the presence of X–, however, as HO—X is then converted into the more reactive X2, e.g. :

OCl + Cl + 2H   Cl2 + H2O

In the presence of strong acid, however, HO—Hal becomes a very powerful halogenating agent due to the

formation of a highly polarized complex :

www.abyss.net.in

ABYSS Learning

HO—X + H  H2O + X

H2 O— X

The evidence is that this species is the effective electrophile under these conditions and does not support the
further conversion of complex into Hal, i.e. unlike the case with H2O —NO2. F2 reacts vigorously with
benzene, but C—C bond breaking occurs and the reaction is of no preparative significance.

( 5 ) Fridel-Crafts Alkylation :

Alkyl halides react with benzene in presence of aluminium chloride to yield alkyl benzenes. Alkylation of
benzene with alkyl halides in the presence of aluminium chloride was discovered by Charles Friedel and James.
M. Crafts in 1877.

A general equation for a friedel-Crafts alkylation reaction is the following

+R — X AlCl3 R
+HX

Alkyl halides by themselves are insufficiently electrophilic to react with benzene. AlCl3 serves as a Lewis acid
catalyst to enhance the electrophilicity of the alkylating agent. The mechanism for the reaction (shown in the
following steps, with isopropyl chloride as R—X) starts with the formation of carbocation (step I). The carbocation
then acts as an electrophile (step II) and attacks the benzene ring to form an arenium ion. The arenium ion
(Step III) then loses a proton to generate isopropyl benzene. Some times carbocation rearrange to a more
stable carbocation.

Mechanism for the Reaction :

H3C Cl H3C Cl H3C 
CH–C••••l•• + Al CH + AlCl4
Step I +
CH—Cl—Al—Cl H3C

H3C Cl Cl H3C Cl

Step II  CH3  CH3 other canonical forms
+ HC CH3
H
CH3

Step III  CH3 Cl CH3
+ Cl—Al—Cl + HCl + AlCl3
H
CH3 Cl CH3

With R–X is a primary halide, a simple carbocation probably does not form. Instead, the AlCl3 forms a complex
with the alkyl halide and this complex acts as the electrophile. In the complex the carbon halogen bond is

nearly broken and one in which the carbon atom has a considerable +ve charge.

+ C••••l•• –
R—CH2 AlCl3

These complexes are so carbocation like that they also undergo typical carbocation rearrangements.

Friedel-Crafts alkylations are not restricted to the use of alkyl halides and AlCl3. Many other pairs of reagents
that form carbocations (or carbocation like species) may be used as well. These possibilities include the use

of a mixture of an alkene and an acid.

www.abyss.net.in

ABYSS Learning

CH(CH3)2

 CH3 — CH  CH2 O C

propene HF

Isopropyl benzene

A mixture of an alcohol and an acid may also be used.

+ HO 60C 

B F3

( 6 ) Friedel-crafts Acylation :

The group is called an acyl group and a reaction whereby an acyl group is introduced into a compound is called
an acylation reaction.

The Friedel-Crafts acylation reaction is an effective means of introducing an acyl group into an aromatic ring.
The reaction is often carried out by treating the aromatic compound with an acyl halide.

+ H3C O O
Cl AlCl3  CH2–CH3

+ HCl

Acyl chlorides (also called acid chlorides) are early prepared by treating carboxylic acids with thionyl chloride
(SOCl2) or phosphorous pentachloride (PCl5).

H3C OH H3C Cl

+ SOCl2 80C + SO2 + HCl
O O

Friedel-Crafts acylations can also be carried cut using carboxylic acid anhydrides. eg.

O

O C CH3 O
O AlCl3 
H3C + H3C OH
+ O

H3C

 Mechanism of the Reaction :

In most Friedel-Crafts acylation reactions the electrophile appears to be an acylium ion formed from an acyl
halide in the following way.

Step I O O
R—C—C••••l••+ AlCl3


R—C—Cl – AlCl3

Step II O  O••••+ AlCl4

 R—C

H3C—C—Cl— AlCl3



R—C O

www.abyss.net.in

ABYSS Learning

Step III  R
H
R—C O 
O

+

Step IV R R
H O

O +HCl + AlCl3
+ + AlCl4 

R R
O•••• O— AlCl3

–Cl – 
+ AlCl3
Step V

In the last step, AlCl3 (a Lewis acid) forms a complex with the ketone (a Lewis base). After the reaction is over,
treating the complex with water liberates the ketone.

R R
C6H5
 AlCl3+ 2H2O  O + Al(OH)3+ 3HCl

O

C6H5

 Limitations of Friedel - Crafts Reactions :

Several restrictions limit the usefulness of Friedel- Crafts reactions.

(a) When the carbocation formed from an alkyl halide, alkene, or alcohol can rearrange to a more stable
carbocation, it usually does so and the major product obtained from the reaction is usually the one from
the more stable carbocation.

When benzene is alkylated with butyl bromide, for example, some of the developing butyl cations rearrange

by a hydride shift-some developing 1° carbocations (see following reactions) become more stable 2°

carbocations. The benzene reacts with both kinds of carbocations to form both butylbenzene and sec-

butylbenzene. H
H3C
Br AlCl3 H3C +  [–AlCl3 Br] H3C 
CH2---Br---AlCl3
CH3

–AlCl3 –H
–HBr

H2C—CH2-CH2-CH3 H3C—CH–CH2-CH3

minor major

(b) An aromatic ring less reactive than that of halobenzene don't undergo Friedal Craft's reaction. Aromatic

ring containing - NH2, –NHR, –NR2, groups does not undergo friedal craft's alkylation due to formation
of anilinum complex which is meta directing and has more electron withdrawing power than halogen

in benzene ring.

www.abyss.net.in

ABYSS Learning

H H
+
H—N:
H—N—AlCl3
+ AlCl3
Meta directing group
and does not go

Friedal Craft's reaction

(c) Friedel-Crafts reactions do not occur when powerful electron-withdrawing groups are present on the

aromatic ring or when the ring bears an –NH2, –NHR or –NR2 group. This applies to both alkylations
and acylations.

NO2 +O C OH
N(CH3)3

These do not undergo Friedel -Crafts reactions

(d) Aryl and vinylic halides cannot be used as the halide component because they do not form carbocations
readily.

Cl

No reaction

AlCl3

No reaction

Cl

(e) Polyalkylations often occur - Alkyl groups are electron releasing groups, and once one is introduced into
the benzene ring it activates the ring towards further substitution.

CH(CH3)2 CH(CH3)2

H3C BF3  +

+ CHOH 60C

H3C 24% Isopropyl benzene

CH(CH3)2

14% diisopropylbenzene

Polyacylations are not a problem in Friedel-Crafts acylations however. The acyl group (RCO–) by itself

is an electron-withdrawing group, and when it forms a complex with AlCl3 in the last step of the reaction,
it is made even more electron withdrawing. This strongly inhibits further substitution and makes

monoacylation easy.

( 7 ) Orientation and reactivity in electrophilic aromatic substitution :

In the case of benzene we get just one monosubstituted product in electrophlic aromatic substitution as all the
positions are equivalent. However, for substitution in a compound which already has a group attached to the

www.abyss.net.in

ABYSS Learning

ring, three disubstituted products, (1, 2), (1, 3) (1, 4) commonly called ortho, meta and para meaning next
to, between and opposite respectively are possible. These are abbreviated as o, m and P.

Y

Y YY
E

E   ++ E

1, 2 ortho E 1, 4

1, 3 meta

Para

 Reactivity :

We have now seen that certain groups activate the benzene ring toward electrophilic substitutions, while other
groups deactivate the ring. We mean that an aromatic compound with an activating group reacts faster in
electrophilic substitutions than benzene. When we say that a group deactivates the ring, we mean that an
aromatic compound with a deactivating group reacts slower than benzene.

We have also seen that we can account for relative reaction rates by examining the transition state for the rate-
determining steps. Any factor that increases the energy of the transition state relative to that of the reactants
decreases the relative rate of the reaction. It does this because it increases the free energy of activation of the
reaction. In the same way, any factor that decreases the energy of the transition state relative to that of
activation and increases the relative rate of the reaction.

The rate-determining step in electrophilic substitutions of substituted benzene compounds is the step that
results in the formation of arenium ion. We can write the formula for a substituted benzene in a generalized
way if we use the letter S to represent any ring substituent including hydrogen, (if S is hydrogen, the compound
is benzene). We can also write the structure for the arenium ion in the way shown here. By this formula we
mean that S can be in any position -ortho, meta or para - relative to the electrophile, E. Using these conventions,
we can write the rate-determing step for electrophilic aromatic substitution in the following way.

When we examine this step for a large number of reactions, we find that the relative rates of the reactions
depend on whether S withdraws or release electrons. If S is an electron-releasing group (relative to hydrogen),
the reaction occurs faster than the corresponding reaction of benzene. If S is an electron withdrawing group,
the reaction occurs slower than that of beznene.

S S
Reaction is
+E+
+ faster

S releases HE
electrons Arenium ion
is stabilized
S
S
+E+
Reaction is

+ slower

S withdraws HE
electrons Arenium ion
is destabilized

It appears, that the substituent (S) must affect stability of the transition state relative to that of the reactants.

Electron-releasing groups apparently make the transition state more stable, while electron withdrawing grops

make it less stable. that is entirely reasonable, because the transition state resembles the arenium ion, and the

arenium ion is a delocalized carbocation.

www.abyss.net.in

ABYSS Learning

The effects of substituents on the reactivity of a benzene ring toward electrophilic substituion:

Strong activating groups : —NH2, —NHR, —NR2, —OH, —OR.

OO Ortho/para
Moderately activating groups : — NHCR, — OCR, directing

Weakly activating groups :—R, —Ar, —CH=CR2
Weakly deactivating groups :—F, —Cl, —Br, —I

Moderately deactivating groups : —CHO, —COR, —COOR,

—COOH, —COCl Meta
directing


Strong deactivating groups : —CN, —SO3H, — N H3 , — N H2R ,



— NHR2 , — NR3 ,—NO2

( 8 ) HETEROCYCLIC AROMATIC COMPOUND :

This is a class of compounds with aromatic properties, in which one or more of the ring carbons has been
replaced by a heteroatom (an atom other than carbon) such as nitrogen, oxygen or sulphur. Some of these
compounds preserve the six-membered ring and are therefore called benzenoid aromatic. In other, the (4n +2)
-electron reside in a five- membered ring, so these are called non-benzenoid. A key difference between these
two classes of aromatic compounds is that in non-benzenoid heteroaromatic compounds a formally non-
bonding pair of electrons on the heteroatom becomes part of the (4n +2) -electron of the aromatic -system,
whereas in benzenoid aromatic compounds, the non-bonding pairs on heteroatoms are normally separated
from the aromatic system. Here are a few examples :

Benzenoid N N N:
heteroaromatic Pyridine Quinoline
compounds N
Pyrimidine
:
::Benzenoid :N :O: :S:
heteroaromatic
:compoundsH Furan Thiophene
Pyrrole
::
Electrophilic Substitution in Pyridine :
:

::

:

::
In pyridine the attack may takes palce at "3" or "4" position in general.

"3" CH+ E E E E
E+ H H H
H N
N HC+ CH+ 3d
4 H 3a N N
53 3b 3c E
62 HE
CH+ HE HE N
1 HC+ 4d
N
N 4a N
4c
"4" N+
E+ 4b

www.abyss.net.in

ABYSS Learning

At first glance the two sets of resonance structures look quite similar. But notice how in 4b (one of the resonance
structure of the intermediate that results from attack at the 4th position) the valence of nitrogen is left unfilled,
an unfavourable situation not encountered in the intermediate formed by attack at the 3rd position. Again, it
is the electronegativity of the nitrogen that reduces the reactivity of pyridine (relative to benzene) toward
electrophiles.

( 9 ) REACTIONS OF ALKYL BENZENES :
Halogenation of the side chain :
The side chain halogenation of alkyl benzenes takes place in the presence of light or high temperatures. Side
chain halogenation is mostly carried out by using the reagent N-bromosuccinamide (NBS) in the presence of light.

CH3 O CH2Br

+ NBr hv

CCl4

O Benzyl bromide
An alkyl benzene with side chain other than methyl may lead to the formation of more than one products

CH2CH3 CH–CH3

Br2 Br
Heat, light
(I)

CH2–CH2Br

(II)

Product (I) is the only product obtained, and formation of such product can be attributed to mechanism governing

this reaction. Side chain halogenation has a similar mechanism as that of alkanes. It involves the formation

of free radical intermediates. Now if we observe the free radicals formed by attack of bromine free radical on

ethyl benzene, we will find that product (I) involves formation of benzyl free radical and (II) involves formation

of primary free radical.

• Br
CH–CH3
CH–CH3

CH2CH3 Br2 CH2CH2Br

hv •
CH2–CH2
hv
Br2

The benzyl free radical is more stable than primary free radical because its bond dissociation energy is 19 kcal/
mole less than that of primary free radical.

Order of stability of free-radials.
Benzyl > allyl > 3° > 2° > 1° >CH3  vinyl (from bond dissociation energy data)
Oxidation of side chain :
Although benzene itself is not susceptible to oxidation but side chain attached to the benzene ring undergoes

www.abyss.net.in

ABYSS Learning

oxidation and converts itself into a —COOH group. Oxidation of side chain takes place after substance is
heated for a long time with KMnO4.

R COOH

KMnO4

The above reaction can be used for identifying substitution pattern in aromatic compound. If any compound
gives pthalic acid on heating with KMnO4, then we can infer that it is ortho disubstituted benzene.

R COOH CH3
COOH H3C—C—CH3
R
KMnO4 No reaction
KMnO4

There is no reaction because of the absence of a benzylic hydrogen.

www.abyss.net.in

ABYSS Learning

SOLVED EXA MPLES

E x . 1 Which of the following is not correctly matched :

(A) Hydrolysis of phenyl magnesium iodide – benzene

(B) –Isomer of BHC – lindane

(C) (2n + 4) Rule – aromaticity

(D) Trimerisation of propyne – mesitylene

Sol. (C) The Huckel rule to account for aromaticity is closed ring of (4n + 2) electrons.

E x . 2 Ozonolysis of benzene in vigorous condition yields :

(A) Glyoxal (B) Glycerine (C) Glycol (D) Glycerol

S o l . (A ) Ozonolysis of benzene yields glyoxal. Benzene adds three molecules of ozone and forms benzene triozonide
which on decomposition with water gives three molecules of glyoxal.

C6H6  3O3 C6H6O9
benzene triozonide
benzene ozone

C6H6O9 H2O H C O
benzene trizonide C O
3
H

Glyoxal

E x . 3 Benzene undergoes subsitution reaction more easily than addition because :

(A) It has cyclic structure (B) It has three double bonds

(C) It has six hydrogen atoms (D) Of resonance

Sol. (D) If there were no resonance in benzne,  electrons would have not been delocalised and hence easily
available to undergo addition reactions as in ethylene. Further the subtituted benzene is stable due to
resonance.

Ex.4 Benzene reacts with n-propyl chloride in the presence of anhydrous AlCl3 to give predominantly :

(A) n–Propylbenzene (B) Isopropylbenzene

(C) 3–Propyl–1–chlorobenzene (D) No reaction



Sol. (B) Propyl carbonium ion, CH3CH2 C H2 is primary carbonium ion, it rearranges to the more stable secondary



carbonium ion CH3 C HCH3, which then reacts to form isopropylbenzene.

+ +

CH3 CH CH2 CH3 CH CH3

Ex.5 H
Propyl carbonium ion(1°) Iso Propyl carbonium ion(2°)

Which of the following reactions of benzene does not account for the three ‘C = C’ bonds in the molecule–

[a] Benzene + Br2 FeBr3 bromobenzene + HBr

conc. H2SO4

[b] Benzene + HNO3  nitrobenzene + H2O
[c] Benzene + 3O3  Triozonide

[d] Benzne + 3H2 Ni cyclohexane

(A) a, c (B) b, d (C) b, c, d (D) a, b

Sol. (D) a and b are the electrophilic subsitution reactions and do not account for the C = C bond reaction.

www.abyss.net.in

ABYSS Learning

Ex.6 In which of the following reaction t–butylbenzene is formed :

(A) Benzene + t–butyl chloride AlCl3 (B) Benzene + (CH3)2C = CH2 BF3.HF 

(C) Benzene + t–butyl alcohol H2SO4  (D) All of these

Sol. (D) + CH3 CH3 CH3 CH3
C Cl AlCl3 C CH3
CH3
+ HCl

CH3 CH3
C CH3

CH3 C CH2 BF3.HF 

+

CH3

+ CH3 CH3 CH3 CH3
C OH C CH3
H2SO4 
+ H2O


CH3

E x . 7 The order of reactivity of :

–CH3 (I),    –CH2–CH3 (II),       –CH(CH3)2 (III) and       –C(CH3)3 (IV)

Where  = C6H5

(A) I > II > III > IV (B) IV > III > II > I (C) II > I > III > IV (D) III > II > I > IV

Sol. (A) More are the number of –hydrogen present in the alkyl group attached to the benzene ring more

pronounced will be the hyperconjugation and the benzene ring will be more electron rich and easily

be attacked by an electrophile. –hydrogen in –CH3, –CH2 –CH3, –CH(CH3)2 and –C(CH3)3 respectively
are three, two one and zero.

Ex.8 Ethylbenzene + Cl2 Light (main) compound is :

(A) o– & p– Chloroethylbenzene (B) 1–Chloroethylbenzene

(C) 2–Chloroethylbenzene (D) m–Chloroethylbenzene

C2H5 Cl
CH CH3
+ Cl2 Light
Sol. (B)

1-Chloroethylbenzene

Ex.9 –CH3 KMnO4  A Soda Lime B

 

Compound B is :

(A) Toluene (B) Benzene (C) Cresol (D) Benzaldehyde

Sol. (B)

www.abyss.net.in

ABYSS Learning

E x . 1 0 Formation of which of the following compound confirms the unsaturation character of benzene :

(A) Cyclohexane (B) Gammexane (C) Triozonide (D) All the above

Sol. (D) Formation of all the three compounds are the result of addition reaction. Hence confirm the unsaturation
nature of benzene.

E x . 1 1 Toluene may be prepared by :

(A) Toluic acid (B) Cresol

(C) Toluene sulphonic acid (D) All the above

Sol. (D) Toluene may be prepared by all the above compounds descrbied earlier.

Ex. 12 Chlorination of toluene in the presence of light and heat followed by treatment with aqueous NaOH
gives :

(A) o–Cresol (B) p–Cresol (C) 2,4–Dihydroxy toluene (D) Benzoic acid

Sol. (D) C6H5CH3 Cl2 C6H5CH2Cl Cl2 C6H5CH2Cl2 Cl2 C6H5CCl3

hv

NaOH NaOH NaOH

C6H5CH2OH C6H5CHO C6H5COOH

www.abyss.net.in

ABYSS Learning

ISOMERISM

The  name  was  given  by  Berzilius.  Two  or  more  than  two  organic  compounds  having  the  same  molecular
formula  and  molecular  weight  but  different  physical  and  chemical  properties  are  called  isomers  and  the
phenomenon  is  called  isomerism.

ISOMERISM

Structural Isomerism Stereoisomerism

Chain Position Ring Chain Functional Metamerism Tautomerism

 Structural  Isomerism  :

S .No. Is om er s C ha r a cter is tics Conditions

1 Chain Isomers The y ha ve  d iffe r e nt size  of  The y ha ve  sa m e  na tu r e  of 
2 Positional Isomers m a in cha in or  sid e  cha in  locant

The y ha ve  d iffe r e nt p osition  The y shou ld  ha ve  sa m e  size  of 
of locant m a in cha in a nd  sid e  cha in a nd 
sa m e  na tu r e  of loca nt

3 Functional Isomers D iffe r e nt na tu r e  of loca nt Cha in a nd  p ositiona l 
isom e r ism  is not consid e r e d 

4 Metamerism D iffe r e nt na tu r e  of a lk yl  The y shou ld  ha ve  sa m e  na tu r e  
group along a polyvalent  of functional group chain & 
fu nctiona l g r ou p p ositiona l isom e r  is ig nor e d

Different position of hydrogen  The two functional isomers 
5 Tautomerism r e m a ins in d yna m ics 
atoms
e q uilib r iu m  with e a ch othe r

1 . Chain  Isomerism  (CI)  :

The  compounds  which  have  same  molecular  formula,  same  functional  group,  same  position  of  functional
group  or  multiple  bond  or  substituent  but  different  arrangement  of  carbon  chain  (different  parent  name  of
compound)  shows  chain  isomerism.

Example  : CH3  CH2 CH2 CH3  CH3  CH CH3 
Butane(4C)
CH3 
2-Methyl propane (3C)

Example  : CH3  CH2 CH CH2  CH2 C CH3
Example  : 1–Butene(4C) CH3 

2-Methyl-1-propene(3C)

CH3  CH2 CH2 CH2  OH CH3  CH CH2 OH

1-Butanol (4C) CH3 
2-Methyl-1-propanol (3C)

www.abyss.net.in

ABYSS Learning

O O
Example  :    CH3 CH2 CH2 CH2 C OH   CH3 CH CH2 C OH

Pentanoic acid CH3
3-Methyl butanoic acid

CH3 O

CH3 C C OH

CH3
2,2-Dimethyl propanoic acid

2 . Position  Isomerism  (PI)  :

The  compounds  which  have  same  molecular  formula,  same  functional  group,  same  parent  carbon  chain  but
different  position  of  functional  group  or  multiple  bond  or  substituents,  shows  position  isomerism.

Example  :  CH2 CH CH2  CH3 CH3 CH CH CH3
But–1–ene But–2–ene

Example  :  CH3 CH2 CH2 CH2 OH CH3 CH2 CH CH3
1–Butanol
OH
2–Butanol

Example  :      CH3 CH2 CH2 CH2 Cl CH3 CH2 CH CH3

1–Chlorobutane Cl
 Example  of  CI  and  PI  : 2–Chlorobutane

( i ) C4H10  have  two  isomers  :  Both  butane  and  isobutane  are  chain  isomers.

Example  :    CH3 CH2 CH2 CH3 CH3 CH CH3

  Butane CH3
          Isobutane

( i i ) C5H12  have  three  isomers  :  All  of  three  structures  are  chain  isomers  because  only  carbon  chain  (parent)
is  different.

Example  :

CH3 CH2 CH2 CH2 CH3  , CH3 CH2 CH CH3  , CH3
CH3 C CH3
Pentane CH3
        2–Methyl  butane CH3
2,2–Dimethylpropane

(iii) C6H14  has  5  isomers  : (b) CH3 CH2 CH2 CH CH3
(a) CH3CH2CH2CH2CH2CH3 CH3

            Hexane 2–Methyl  pentane

(c) CH3 CH2 CH CH2 CH3 (d) CH3 CH CH CH3

CH3 CH3 CH3
3–Methyl  pentane 2,3–Dimethyl  butane

www.abyss.net.in

ABYSS Learning

CH3  a–b,  b–d,  a–c,  c–d     Chain  Isomers
(e) H3C C CH2 CH3
 b–c,  d–e         Position  Isomers
CH3
2,2–Dimethyl  butane

(i v) C7H16  has  9  isomers Heptane
1. CH3 CH2 CH2 CH2 CH2 CH2 CH3 2–Methylhexane
2. CH3 CH2 CH2 CH2 CH CH3
3–Methylhexane
CH3
3. CH3 CH2 CH2 CH CH2 CH3

CH3
CH3

4. CH3 CH2 CH2 C CH3 2,2–Dimethyl pentane

CH3
CH3

5. CH3 CH2 C CH2 CH3 3,3-Dimethylpentane
CH3

CH3

6. CH3 CH CH CH2 CH3 2,3–Dimethylpentane

CH3

CH3 CH3

7. CH3 CH CH2 CH CH3 2,4–Dimethylpentane

CH2 CH3

8. CH3 CH2 CH CH2 CH3 3–Ethylpentane
CH3

9. CH3 CH C CH3 2,2,3–Trimethylbutane

CH3 CH3

( v ) C3H6Cl2  has  4  isomers  :  Position  of  chlorine  atom  is  different  in  all  the  structure,  so  these  are  position
Isomers.

Cl Cl
1 . H3C CH2 CH Cl 2 . H2C CH2 CH2 Cl

1,1–Dichloropropane 1,3–Dichloropropane

Cl Cl
3 . H3C C CH3 4 . H2C CH CH3

Cl Cl
2,2–Dichloropropane 1,2–Dichloropropane

(vi) C5H11Cl  has  8  isomers

www.abyss.net.in

ABYSS Learning

(vii) C8H10  has  4  aromotic  isomers CH2 CH3

CH3
CH3 ( o , m , p )

( v i i i ) C6H4X2  3  Aromatic  isomers
C6H4XY  3  Aromatic  isomers
C6H3X3  3  Aromatic  isomers
C6H3XYZ 10  Aromatic  isomers

E x . Structures  CH3—CH2—CH CH2  and  CH3 C CH2  are  :–

CH3

S o l . Chain  Isomers

Molecular  formula No.  of  Isomers Molecular  formula No.  of  Isomers
2 18
C4H10 3 C8H18 35
C5H12 5 C9H20 75
C6H14 9 C10H22
C7H16

3 . Ring  chain  isomerism  (RCI)  :
Same  molecular  formula  but  different  mode  of  linking  (open  chain  or  closed  chain)  of  carbon  atoms.

CH3 CH CH2 [open  chain]

C3H6 CH2 [closed  chain  or  ring]

CH2 CH2
They have same molecular formula so they are Ring chain isomers.

E x . Relate  a,b  and  c:– (a)
H3C C CH
C3H4
(b)
CH2 C CH2

(c) CH
CH2 CH

S o l . a–b Functional  Isomers

a–c  ,  b–c  Ring-chain  Isomers,  Functional  Isomers

Special  points  :
 Alkenes  with  cycloalkane  and  alkynes  (Alkadienes)  with  cycloalkenes  show  Ring-chain  Isomerism.
 Ring-chain  Isomers  are  also  Functional  Isomers.

E x . Relate  structures  a,b,c  and  d. (a)  CH3—CH2—C CH (b)  CH2 C CH—CH3
CH3 (d) 

(c) 

S o l . a,  b  Functional  Isomers
a,  c.  Ring-chain  Isomers  and  Functional  Isomers
b,  c  Ring-chain  Isomers  and  Functional  Isomers
a,  d.  Ring-chain  Isomers  and  Functional  Isomers
c,  d.  Chain  Isomers
b,  d.  Ring-chain  Isomers  and  Functional  Isomers

www.abyss.net.in

ABYSS Learning

54 3 2 and 4 32
E x . CH3 CH2 CH2 CH2 CH3 CH2 CH CH3  are  ?

1CN 1CN

Pentanenitrile 2–Methyl butanenitrile

S o l . Molecular  formula  same,  Functional  group  same,  position  of  Functional  group  same  but  different  parent  carbon

atom  chain  so  both  are  Chain  isomers

E x . How  many  minimum  carbons  required  for  Chain  isomerism  and  Position  isomerism  in  alkanes  ?
Sol. 4,  6

E x . How  many  minimum  carbons  required  for  Chain  isomerism  and  Position  isomerism  in  alkenes  ?
Sol. 4,  4

E x . How  many  minimum  carbons  required  for  Chain  isomerism  and  Position  isomerism  in  alkynes  ?
Sol. 5,  4

4 . Functional  Isomerism  :-

Same  molecular  formula  but  different  functional  groups.
Following  compounds  show  Functional  isomerism,  as  they  have  same  molecular  formula  and  different  functional
group.

(i) Alcohol  and  ether  C H 3 — C H 2 — O H and CH3—O—CH3

(ii) Aldehydes  and  ketones  CH3 CH2 C H and CH3 C CH3

OO

(iii) Acids  and  ester  CH3 C OH and H C O CH3
O
O
CH3—CH2—CH2—NC
(iv) Cyanide  and  isocyanide  C H 3— C H 2— C H 2— C N and

(v) Nitro  and  Nitrite  O and CH3—CH2—O—N O

CH3 CH2 N
O

(vi) Keto  and  enol  O and CH2 C CH3
CH3 C CH3 OH

(vii) Amide  and  Oxime  CH3 C NH2 and CH3—CH NOH
(viii) 1°,  2°,  3°  amines O

(i)  CH3—CH2—CH2—NH2 (ii)  CH3—NH—CH2—CH3 (iii)  CH3
CH3 N CH3

(ix) Alcoholic  and  phenolic  compounds  : CH2OH OH
and CH3

(x) Alkyl  halides  do  not  show  Functional  isomerism.

www.abyss.net.in

ABYSS Learning

5 . Metamerism  :

Same  molecular  formula,  same  polyvalent  Functional  group  but  different  alkyl  groups  attached  to  polyvalent
Functional  group.
Polyvalent  Functional  group  [More  than  one  valency]  are  :

—O— ,    —S—,  C ,  C O ,  C NH ,    —NH—,    N ,    O CN
O O O C O  ,   O
C
O

Example  : CH3—O—CH2—CH2—CH3 ; CH3–CH2–O–CH2–CH3
Both  are  metamers.

Example  : CH3—CH2—NH—CH2—CH3 CH3—NH—CH2—CH2—CH3
N–Ethyl  ethanamine N–Methyl  propanamine

They  are  only  metamers  not  CI

Example  : CH3 C CH2 CH2 CH2 CH3 CH3 CH2 C CH2 CH2 CH3
O O

2–Hexanone 3–Hexanone
Both  are  metamers  and  Position  isomer

Example  : CH3 C CH2 CH2 CH2 CH3 CH3 CH2 C CH CH3
O O CH3

2–Hexanone 2–Methyl–3–pentanone

Both  are  Metamers,  Chain  and  Position  isomers

E x . Structures O and O   are
C6H5 C O CH3
CH3 C O C6H5

S o l. Both  are  metamers.

6 . Tautomerism  or  De smotropism  :

Tautomerism  was  introduced  by  "Laar".  It's  also  called  desmotropism.

 Desmotroism  means  bond  turning.  [Desmos  =  Bond  ;  Tropos  =  Turn]

 Tautomers  have  same  molecular  formula  but  different  structural  formula  due  to  wandering  nature  of

active  hydrogen  between  two  atoms.

 The  tautomerism  is  also  called  kryptomerism  or  allotropism  or  desmotropism  or  dynamic

isomerism.

CH2 C H –H attached to carbonyl compound is active H

HO
–Hydrogen or active H

Example  : H H
HC CH HC CH

HO OH

www.abyss.net.in

ABYSS Learning

Example  : CH3 C CH2 CH3 C CH2

OH OH
      keto   ene  +  ol  =  enol

Note  : Tautomers  are  also  F.  I.  and  exist  in  dynamic  equilibrium    is  used  to  show  tautomerism]
(i) By  shifting  of  H–atom   bond  also  change  its  position.
(ii) Tautomers  always  exist  in  dynamic  equilibrium.
(iii) Number  of  electrons  and  lone  pairs  in  both  tautomers  always  remain  the  same.
(iv) It  is  a  chemical  phenomenon  which  takes  place  only  in  liquids  and  gaseous  phase  only.  It  never
(v) takes  place  in  solid  state.
The  process  can  be  catalyzed  by  the  acid  as  well  a  bases.
(vi)

 Condition  for  Tautomerism  :

( a ) For  carbonyl  compounds  :-  Carbonyl  compounds  having  atleast  one –H  show  tautomerism

(i) CH3 C H 3   H, show  tautomerism.
O

(ii) CH3 C CH3 6   H, show  tautomerism
O

CH3 CH C H 1   H, show  tautomerism
(iii) No   H, No  tautomerism

CH3 O

(iv) H C H

O
O

(v) C H No   H, No  Tautomerism

O 3   H, shows  tautomerism  (Aceto  phenone)
(vi) C CH3

(vii) Ph C Ph No   H, No  tautomerism  (Benzophenone)
O

(viii) Ph C CH2 C Ph 2   H, shows  tautomerism
OO

O

H H 4   H, shows  tautomerism
(ix) H H

O
HH

(x) H H H,  attached  sp2  carbon  does  not  take  part  in  tautomerism

O www.abyss.net.in

ABYSS Learning

Ex . Which  of  the  following  show  keto  enol  tautomerism.

O O H (C)  CH CH OH
(A)  (B)  H (D) 

O O

S o l . (A),  (B)    and    (D)

( b ) For  nitro  compounds  :  Nitro  compounds  having  atleast  one   –  H  show  tautomerism

O O
CH2 N O       
H       CH2 N
OH

Nitro  form Aci  nitro  form
(acidic  form  so  soluble  in  base)

Note  :    Nitro  compounds  with  at  least  one  –H  are  soluble  in  NaOH.

Ex . Which  of  the  following  show  tautomerism.

(A)  CH3CH2—NO2 (B)  (CH3)2CH—NO2 (C)  (CH3)3C—NO2 (D)  Ph—CH2—NO2
S o l . (A),  (B)  and  (D) (D)  Ph—CH2—NO2

Ex . Which  of  the  following  do  not  soluble  in  NaOH.

(A)  CH3CH2—NO2 (B)  (CH3)2CH—NO2 (C)  (CH3)3C—NO2
Sol. Only  (C)

( c ) H—C N  and  H—N   C  are  tautomers  [also  Functional  isomers]  while  R—C N  and  R—N C
are  only  Functional  isomers.

H—C N        C N—H

Active  H

O   and H—O—N O  are  tautomers.
(d) H N
CH2 C H
O OH

Enol  Content  : "enol"  (  1%)

1 . CH2 C H           CH3 C CH2      Less  stable  or  unstable
HO OH

"keto"  (  99%)  1%

2 . CH3 C CH2 OH
OH sp2

         99%

O
3. H

"keto"  (  1%)         "enol"  (stable  by  resonance  and  aromatic  nature)  (  99%)

www.abyss.net.in

ABYSS Learning

4 . CH3 C CH2 C OC2H5            CH3 C CH C OC2H5
OO OH O

Aceto  acetic  ester  (AAE) keto : enol = 93 : 7
aqueous solution keto : enol = 25 : 75

AAE liquid state

In  aqueous  solution

CH3 C CH2 C O C2H5
OO

HOH HOH  Keto  from  is  stablised  by  intermolecular  H–Bonding.
 Enol  form  is  stabilised  by  intramolecular  H–Bonding.
In  liquid  state

CH3 C CH C OC2H5
OH O

(i) Enol  content   number  of  >C O  group.
(ii) If  number  of  >C O  groups  are  equal  then  proportional  to  number  of  –H.
(iii) Group  —OH  attached  to  sp2  carbon  or  double  bond  is  less  stable  or  unstable.
(iv) More  active  H,  more  take  part  in  tautomerism.
(v) Stability  of  enol  form  depnds  on  (i)  Resonance  and  (ii)  H  –  Bond.

E x . Arrange  the  following  in  correct  order  of  enol  content.

(A) CH3 C H (B)  CH3 C CH3
O O

(C) CH3 C CH2 C H (D)  CH3 C CH2 C CH3
OO OO

Sol. (A)  <  (B)  <  (C)  <  (D)
E x . Which  have  maximum  stable  enol  form

O OH O OH
H    H   

(A)    (C)  H 

O OH OH
  
(B)    O
O OH (D)   

S o l . (D)  Stable  by  Resonance  and  is  Aromatic

www.abyss.net.in

ABYSS Learning

STEREO  ISOMERISM

Stereoisomers

Configurational Conformational

(non-interconvertible  (Interconvertible 
resolvable) non-resolvable)

Geometrical diastereomers Optical Isomers

       (non-mirror image 
Geo. isomers)

Enantiomers Optical
(Mirror-image (non-mirror image 
stereoisomers)
optical isomers)

Two  or  more  than  two  compounds  having  same  molecular  formula,  same  structural  formula  but  different
arrangements  of  atoms  or  groups  in  space.
( A ) CONFIGUR ATIONAL  ISOMERISM  :  Stereo  isomers  which  have  following  characteristics.
 Stereo  isomer  which  cannot  interconvert  in  each  other  at  room  temperature  due  to  restricted  rotation  known
as  Geometrical  isomerism.
 Stereo  isomer  which  cannot  super  impose  on  each  other  due  to  chirality  know  as  optical  isomerism.

 Geometrical  isomerism  (G.  I)  :  Alkenes  (  >C C<),  oximes  (>C   N—)  and  azo  compounds
[—N N—],  show  Geometrical  Isomers  due  to  restricted  rotation  about  double  bond  while  cycloalkanes  show
Geometrical  Isomers  due  to  restricted  rotation  about  single  bond.

 Geometrical  Isomers  in  Alkenes  :
Reason  :  Restricted  rotation  about  double  bond  :  It  is  due  to  overlapping  of  p–orbital.

Restricted  Rotation       Free  Rotation

CH3 CH3

      H
CH3 CH CH CH3 H


sp2 sp2

www.abyss.net.in

ABYSS Learning

CH3 CH3 CH3 H

Example  : CC CC

HH H CH3

cis–2–butene trans–2–butene

Note  :  cis    trans  is  possible  only  when    bond  break.

 Condition  for  Geometrical  isomerism  :

Only  those  alkenes  show  G.  I.  in  which  "Each  sp2  carbon  have  different  atoms  or  groups"

aa ax
CC     b C C y

bb

Geometrical  isomers Geometrical  isomers

ay pp
CC C

ay C
qq

          Not  Geometrical  isomers Not  Geometrical  isomers

Ex . Which  of  the  following  show  Geometrical  isomerism  –

(A)  1,1–diphenyl–1–butene (B)  1,1–diphenyl–2–butene

(C)  2,3–dimethyl–2–butene (D)  3-phenyl–1–butene

Sol. (B)

( B ) NOMENCLATURE  SYSTEMS  OF  GEOMETRICAL  ISOMERS  :

( a ) Cis–Trans  System  :  If  same  groups  at  same  side  then  cis  and  if  same  groups  at  different  side  then

trans.

aa ba
CC C C
a b
bb

[Same  groups,  same  side] [Same  groups  different  side]
      cis       trans

Example  : aa zz
CC CC

xy xy
          cis   cis

CH3 C H Cl Cl
C C
Example  : H CH2 CH3
   C
Br Br

trans-2–pentene   It  does  not  show  Geometrical  isomers  So  no  cis–trans

Physical  Proper ties  of  Cis–Trans  Isomers  :

S.No. Physical proper ties C om p a ri s on Remarks
1 D ipole moment cis >  trans
cis-isomer has resulta nt of dipoles w hile in trans isomer dipole 
2 B oiling point cis >  trans m om e n ts  c a n ce l o ut
3 S olubility (in H2O) cis >  trans
    4 Melting point trans >  cis   Molecules having higher dipole moment have hig he r boiling  
point due to larger intermolecular  force of attra ction
5 Stability  trans >  cis  
M o re  po la r m o le c ules  a re  m o re  s o luble  in  H 2 O
M o re  sym m e tri c i so m e rs  h a ve   hi gh e r m elti n g po in ts  du e  to  
be tt e r p ac kin g i n  cra s ta lli n e  la tt ice  &  tran s  is o m e rs  a re  m o re 
sy m m etri c t ha n  c is .
The molecule  having more vander wall strain are less stable. In 
cis isomer the  bulky g roup are close r they have larger vander 
w a a l s tra i n .

www.abyss.net.in

ABYSS Learning

Dipole  moment  []  :

 
H C CH3
Example  : CH3 C H
Example  :     
Example  :
CH3 C H CH3 C H
cis      0 trans      =  Zero

 

CH3 C H CH3 C H

 

H C CH2 CH3 Cl C H
  cis       0
trans     0
Cl


CH3 C H
     trans       0

H C Cl

E x . If  dipole  moment  of  chlorobenzene  is  ,  then  dipole  moment  of    is  –
Cl Cl

Sol. Zero

( b ) E  –  Z  System  :
E  (Entgegen)  :  When  high  priority  groups  are  opposite  side.
Z  (Zussaman)  :  When  high  priority  groups  are  same  side.

LP C C HP HP C C HP
HP LP LP LP

              'E'               'Z'

    HP  –  High  priority  and  LP  –  Low  priority

Priority  Rules  :

Rule  I  :  Priority  is  proportional  to  atomic  number  of  atom  which  is  directly  attached  to  sp2  carbon.

Br C C F [HP] Cl C CH3
C N H2 [HP]
[HP] I Cl  [HP]
Cl C
'Z' Cl Cl 'E'

Rule  II  :  If  rule-I  is  failed  then  consider  next  atom

CH3 CH3 [C, C, C]
[HP]
[HP]  F C C CH3
C     decreasing  order  of  atomic  number
C CH3
[LP] CH3H2C CH3 [C, C, H]
[LP]
H

'Z'

Rule  III  :–  If  multiple  bond  is  present  then  consider  them  as  :-

CC

C C  C C C C  C C

CC CC

C OC O N
O C N  C N

N

O

[O, O, H]

  [HP] NC CH
HNC C
H
C OH

O [O, O, O]
[HP]

'Z'

www.abyss.net.in

ABYSS Learning

Prioity order for some groups is :
Br > Cl > OH > NH2 > COOH > CHO > CH2OH > CN > C6H5 > C    CH > C(CH3)3 > CH    CH2 > CH(CH3)2

Rule  IV  :  If  isotopes  are  present  then  consider  atomic  weight.

H CH3
CC
CH2 CH3 [HP]
[HP] D

'Z'

CH3 H CH3 CH3
C C
Example  :      Cl CH3 [HP] ;      C C
H Cl
[HP]

'Z'           'E'

NC C CBr3 [Br, Br, Br]
[HP] C CH2I
CH3 CH2 CH2Cl [Cl, H, H] C
CC [O, O, O] CH3 [I, H, H]
Example  :    CH C COOH   ;   CH3
[LP] CH3

                'E'           'E'

 GEOMETRICAL  ISOMERS  IN  OXIMES  [>C  =  N–OH]  :
 Oximes  show  G.  I.  due  to  restricted  rotation  about  double  bond.
 Only  those  oximes  show  Geometrical  isomerism  in  which  sp2  carbon  have  two  different  groups.

[CH3—CH O  +  H2N—OH]   CH3—CH N—OH  (oxime)
Example  :  Acetaldoximes  has  two  Geometrical  isomers  –

CH3 C H CH3 C H
N OH     

syn HO N
When  H  and  OH  are  on  the  same  side
anti

When  H  and  OH  are  on  the  opposite  side

Example  :      Ph—CH N—OH Ph C H
              Benzaldoxime N OH [syn.]

Ph C H [Anti]
HO N

Ex . Which  of  the  following  show  Geometrical  isomerism  – (B)  H2C N—OH
(A)  CH3—CH2—CH N—OH (D)  CH3 C CH2CH3
(C)  CH3 C CH3
N OH N OH

Sol.  (A),  (D)

www.abyss.net.in

ABYSS Learning

 GEOMETRICAL  ISOMERS  IN  AZO  COMPOUNDS  :  ( .. .. )
N N

Ph Ph
N N

N  N
Ph Ph

(syn) (Anti)

Ph—N N—Ph  (Azo  benzene)

 GEOMETRICAL  ISOMERS  IN  CYCLOALKANES  :
Cycloalkanes  show  Geometrical  isomers  due  to  restricted  rotation  about  single  bond.  Only  those  cyclo  alkanes
show  Geometrical  isomers  in  which  atleast  two  different  carbons  have  two  different  groups.

Two Geometrical isomers 

Me Me Me Me cis

HH HH

Me H trans
H Me

Ex . Which  of  the  following  show  Geometrical  isomerism  –

H Cl H Me
H Me

(A)  H H (B)  Cl Cl (C)  Cl Br (D)  Me
Cl Cl H H Me
Cl Br

Sol,  (A),  (B)  and  (D)

 NUMBER  OF  GEOMETRICAL  ISOMERS  IN  POLYENES  :

R1—CH CH—CH CH  ..................................  CH CH—R2

(a) If  R1   R2  then  number  of  Geometrical  isomers  =  2n [n  =  number  of  double  bonds.]

Example  :    CH3—CH CH—CH CH—CH CH—CH2CH3
As  n  =  3    number  of  Geometrical  isomers  =  23  =  8

(b) If  R1  =  R2  then  number  of  Geometrical  isomers  =  2n  –  1  +  2p  –  1

where p  n   (when  n  is  even) and p  n 1   (n  is  odd)
2 2

Example  :    CH3—CH CH—CH CH—CH CH—CH3 [n  =  3]

Number  of  Geometrical  isomers        =  2n  –  1  +  2p  –  1       [  p  =  3 1 ]

2

=  22  +  21 =  4  +  2  =  6

www.abyss.net.in

ABYSS Learning

Special  Point  :  CH2 CH—CH CH2 [1,3–butadiene]  show  Geometrical  isomerism  due  to  resonance.



CH2 CH CH CH2

 
H C CH2
CH2 CH—CH CH2  CH2 C C CH2 C H
HH CH2
cis
trans.

 OPTICAL  ISOMERISM  :
Certain  substances  possess  the  property  to  rotate  the  plane  of  polarized  light.  Such  substances  are  called
optically  active  substances  and  this  phenomenon  is  called  optical  activity.

 Optical  activity  :

Light  is  propagated  by  a  vibratory  motion  of  the  'ether'  particles  present  in  the  atmosphere.  Thus  in  ordinary
light  vibrations  occur  in  all  planes  at  right  angles  to  the  line  of  propagation.  In  plane  polarized  light  the
vibrations  take  place  only  in  one  plane,  vibrations  in  other  planes  being  cut  off.  Plane  polarized  light  can  be
obtained  by  passing  ordinary  light  through  a  Nicol  prism.

ordinary light  Nicol prism
waves vibrating in
Plane polarized waves 
all directions vibrating in one direction

plane rotated  Plane polarized plane rotated 
to the right light to the left

Certain  organic  compounds,  when  their  solutions  are  placed  in  the  path  of  a  plane  polarized  light,  have  the
remarkable  property  of  rotating  its  plane  through  a  certain  angle  which  may  be  either  to  the  left  (or)  to  the
right.  This  property  of  a  substance  of  rotating  the  plane  of  polarized  light  is  called  optical  activity  and  the
substance  possessing  it  is  said  to  be  optically  active.
The  observed  rotation  of  the  plane  of  polarized  light  [determined  with  the  help  of  polarimeter]  produced  by
a  solution  depends  on  :
(a) the  amount  of  the  substance  in  tube  ;
(b) on  the  length  of  the  solution  examined  ;
(c) the  temperature  of  the  experiment  and
(d) the  wavelength  of  the  light  used.
The  instrument  used  to  measure  angle  of  rotation  is  called  polarimeter.  The  measurement  of  optical  rotation
is  expressed  in  terms  of  specific  rotation  []Dt ;  this  is  given  by  the  following  relation  :

www.abyss.net.in

ABYSS Learning

[]Dt  obs [where    =  observed  angle  of  rotation]
C

[]Dt =  specific  rotation  determined  at  t°C,  using  D-line  of  sodium  light.
      =  length  of  solution  in  decimeters
      C  =  concentration  of  the  active  compound  in  grams  per  millilitre.
For  example,  the  specific  rotation  of  amyl  alcohol  [2-methyl-1butanol]  at  25°C  for  D-line  of  sodium  light  is
given  by

[]2D5  –5.756

The  sign  attached  with  the  angle  of  rotation  signifies  the  direction  of  rotation.  Negative  sign  (–)  indicates  that
the  rotation  is  towards  the  left,  while  positive  (+)  sign  means  that  the  direction  of  rotation  is  toward  right.
The  rotation  may  be  different  in  different  solvents  and  this  needs  to  be  mentioned  while  reporting  the  specific
rotation.  Thus,

[]2D5 =  +  24.7°  (in  chloroform)

 Asymmetric  carbon  (or)  Chiral  Carbon  :
If  all  the  four  bonds  of  carbon  are  satisfied  by  four  different  atoms/groups,  it  is  chiral.  Chiral  carbon  is  designated
by  an  asterisk  (*).

 Optical  isomerism  in  bromo  chloro  iodo  methane  :
The  structural  formula  of  bromo  chloroiodomethane  is

Br
H C* Cl

I
The  molecule  has  one  chiral  carbon  as  designated  by  star.  So  molecule  is  chiral.  It  is  non-super  imposable  on
its  mirror  image.
According  to  Van't  Hoff  rule.
Total  number  of  optical  isomers  should  be  =  2n.

where  n  is  number  of  chiral  centre.
The  fischer  projections  of  the  two  isomers  are

Br Br

H II H

Cl Cl
(i) (ii)
These  are  optically  active,  which  are  non-super  imposable  mirror  image  of  each  other  and  can  rotate  plane
of  polarized  light.

Stereoisomers  which  are  mirror-image  of  each  other  are  called  enantiomers  (or)  enantimorphs.  Thus  (i)  and
(ii)  are  enantiomers.  All  the  physical  and  chemical  properties  of  enantimoers  are  same  except  two  :

(i) They  rotate  PPL  to  the  same  extent  but  in  opposite  direction.  One  which  rotates  PPL  in  clockwise
direction  is  called  dextro-rotatory  [dextro  is  latin  word  meaning  thereby  right]  and  is  designated  by  d  (or)
(+).  One  which  rotates  PPL  in  anti-clockwise  direction  is  called  laevo  rotatory  [means  towards  left]  and
designated  by  l  (or)  (–).

(ii) They  react  with  optically  active  compounds  with  different  rates.

www.abyss.net.in

ABYSS Learning

 Properties  of  enantiomers  :

S .No. Properties R em a r k s
Same
1 Molecular formula Same

2 Structural formula D iffe r e nt 

S te r e oche m ica l for m u la  (str . For m u la  with  Same
3 orientation)
Same
P hysica l p r op e r tie s (m .p ., b .p . d e nsity, solu b ility),  D iffe r e nt 
4 refractive index etc.

Che m ica l p r op e tie s
5 (a) with optically inactive compound

(b ) with op tica lly a ctive  c om p ou nd

 Optical  isomerism  in  compounds  having  more  than  one  chiral  carbons  :
If  an  organic  molecule  cotains  more  than  one  chiral  carbons  then  the  molecule  may  be  chiral  (or)  achiral
depending  whether  it  has  element  of  symmetry  or  not.
Elements  of  symmetry  :  If  a  molecule  have  either.
(a) a  plane  of  symmetry,  and/or
(b) centre  of  symmetry,  and  /or
(c) n-fold  alternating  axis  of  symmetry.
If  an  object  is  super  imposable  on  its  mirror  image  ;  it  can  not  rotate  PPL  and  hence  optically  inactive.  If  an
object  can  be  cut  exactly  into  two  equal  halves  so  that  half  of  its  become  mirror  image  of  other  half,  it  has
plane  of  symmetry.
COOH

H—C—OH (I)

Mirror plane

H—C—OH (II)

COOH
(I)  and  (II)  are  mirror  images,  hence  plane  of  symmetry  is  present  in  the  molecule.

COOH
H—C—OH (I)

Mirror plane

HO—C—H (II)
COOH

(I)  and  (II)  are  not  mirror  images,  hence  plane  of  symmetry  is  absent  in  the  molecule.
 Centre  of  symmetry  :  It  is  a  point  inside  a  molecule  from  which  on  travelling  equal  distance  in  opposite

directions  one  takes  equal  time.

www.abyss.net.in

ABYSS Learning

A  centre  of  symmetry  is  usually  present  only  in  an  even  numbered  ring.  For  example,  the  mole  of  trans-2,4-
dimethyl-cyclobutane-trans-1,  3  dicarboxylic  acid  has  a  centre  of  symmetry.

CH3 COOH

H •H H
H

COOH CH3

Thus,  if  an  organic  molecule  contains  more  than  one  chiral  carbon  but  also  have  any  elements  of  symmetry,
it  is  super  imposable  on  its  mirror-image,  cannot  rotate  PPL  and  optically  inactive.  If  the  molecule  have  more
than  one  chiral  centres  but  not  have  any  element  of  symmetry,  it  must  be  chiral.
 Stereoisomerism  in  Tar taric  Acid  :
Compounds  which  contain  two  asymmetric  carbon  atoms  and  are  the  type  Cabc-Cabc  exist  in  only  three
isomeric  forms.  Two  of  these  are  non-superimposable  mirror  images  of  each  other  and  are  optically  active
and  the  third,  a  diastereomer  of  the  first  two,  contains  a  plane  of  symmetry,  is  super  imposable  on  its  mirror
image  and  is  not  optically  active  e.g.,

OH OH OH CO2H
CO2H CO2H H—C—OH

CO2H HO2C

HO2C HO2C

OH OH OH    
H—C—OH
-(–)- tartaric acid  d-(+)-tartaric acid
Mesotartaric 

acid CO2H

The  inactive  diastereomer  is  usually  described  as  a  meso  form.  As  with  other  examples  of  diastereomers,  the
properties  of  meso  forms  are  different  from  those  of  the  isomeric  mirror-image  pairs  ;  for  example,  mesotartaric
acid  melts  at  a  lower  temperature  [140°C]  than  the  d  and    isomer  [170°C]  and  is  less  dense,  less  soluble  in
water,  and  a  weaker  acid.
Compounds  with  two  asymmetric  carbon  atoms  in  which  at  least  one  substituent  is  not  common  to  both
carbons  occur  in  four  optically  isomeric  forms,  e.g.,  the  four  isomers  of  structure.

HH
H3C—C*—C*—CH2CH3

Br Br

2,3-dibromopentane

CH3 CH3 CH3 CH3

H—C—Br Br—C—H H—C—Br Br—C—H

H—C—Br Br—C—H Br—C—H H—C—Br
            
C2H5 C2H5
C2H5 (ii) (iii) C2H5
(i) (iv)

www.abyss.net.in

ABYSS Learning

In  general,  a  compound  possessing  n  distinct  asymmetric  carbon  atoms  exists  in  2n  optically  active  forms.

It  should  be  noted  that,  whereas  (i)  and  (ii)  and  (iii)  and  (iv)  are  mirror-image  pairs  and  therefore  have  identical
properties  in  a  symmetric  environment,  neither  of  the  (i)  and  (ii)  bears  a  mirror-image  relationship  to  either
of  those  (iii)  and  (iv).  These  and  other  stereoisomers  which  are  not  enantiomers  are  described  as  diastereomers
(or  diastereo  isomers)  and  unlike  enantiomers,  they  differ  in  physical  and  chemical  properties.

 Calculation  of  number  of  optical  isomers  :

The  number  of  optical  isomers  of  an  organic  compound  depends  on  its  structure  and  number  of  asymmetric
carbon  atoms.  Thus,  the  number  of  optical  isomer  may  be  determined  from  the  knowledge  of  the  structure
of  the  compound  as  follows  :

(a) When  the  molecule  is  unsymmetrical
No.  of  optically  active  isomers,  a  =  2n

Number  of  meso  forms  (m)  =  0

Number  of  racemic  mixtures,  r  =  a/2
 Total  no.  of  optically  active  isomers  =  (a  +  m)  =  2n

(b) When  the  molecule  is  symmetrical  and  has  even  no.  of  asymmetric  carbon  atoms.
No.  of  optically  active  isomers,  a  =  2(n  –1)

No.  of  meso  forms,  m  =  n 1

22

No.  of  racemic  mixtures,  r  =  a/2

 Total  no.  of  optically  active  isomers  =  a  +  m

(c) When  the  molecule  is  symmetrical  and  has  an  odd  no.  of  asymmetrical  carbon  atoms.

no.  of  optically  active  isomers,  a  =  2(n–1)  –  (n / 21 )
2
2

(n /21)

No.  of  meso  forms,  m  =  2 2

 Total  no.  of  optically  active  isomer  =  (a  +  m)  =  2(n–1)

 Optically  active  compounds  having  no  asymmetric  carbon  :

1 . Allenes  :  An  sp-hybridized  carbon  atom  possess  one  electron  in  each  of  two  mutually  perpendicular  p  orbitals.
When  it  is  joined  to  two  sp2-hybridized  carbon  atoms,  as  in  allene,  two  mutually  perpendicualr  -bonds  are
formed  and  consequently  the  -bonds  to  the  sp2-carbons  are  in  perpendicular  planes.  Allenes  of  the  type
abC=C=Cab  (a    b)  are  therefore  not  superimposable  on  their  mirror  images  and  despite  the  absence  of  any
asymmetric  atoms,  exist  as  enantiomers  and  several  optically  active  compounds  have  been  obtained.
(Ex.  a  =  phenyl,  b=1-naphthyl)

ba ab

C     C     C C     C     C

ab ba

2 . Any  molecule  containing  an  atom  that  has  four  bonds  pointing  to  the  corners  of  a  tetrahedron  will  be  optically
active  if  the  groups  are  different.

16O —CH3
—CH2-S—

18O

www.abyss.net.in

ABYSS Learning

3 . Alkylidene  cyclo  alkanes  :  The  replacement  of  one  double  bond  in  an  allene  by  a  ring  does  not  alter  the
basic  geometry  of  the  system  and  appropriately  substituted  compounds  exist  in  optically  active  forms.

H CO2H
H3C H

Related  compounds  in  which  sp2-carbon  is  replaced  by  nitrogen  have  also  been  obtained  as  optical  isomers.
H OH
N

CO2H
 Difference  between  Racemic  mixture  and  Meso  compound  :

A  racemic  mixture  contains  equimolar  amounts  of  enantiomers.  It  is  optically  inactive  due  to  external
compensation.

 External  compensation  :
If  equimolar  amounts  of  d  and  -isomers  are  mixed  in  a  solvent,  the  solution  is  inactive.  The  rotation  of  each
isomer  is  balanced  (or)  compensated  by  the  equal  but  opposite  rotation  of  the  other.  Optical  inactivity  having
this  origin  is  described  as  due  to  external  compensation.  Such  mixtures  of  (+)  and
(–)  isomer  (Racemic  mixtures)  can  be  separated  into  the  active  components.

A  meso  compound  is  optically  inactive  due  to  internal  compensation

 Internal  compensation  :

In  meso  tartaric  acid  the  inactivity  is  due  to  effects  within  the  molecule  and  not  external.  The  force  of  rotation
due  to  one  of  the  molecule  is  balanced  by  the  opposite  and  equal  force  due  to  the  other  half.  The  optical
inactivity  so  produced  is  said  to  be  due  to  internal  compensation.  It  occurs  whenever  a  compound  containing
two  (or)  more  asymmetric  carbon  atoms  has  a  plane  (or)  point  of  symmetry.  Since  the  optical  inactivity  of  such
a  compound  arises  within  the  molecule,  the  question  of  separating  into  active  components  does  not  arise.

Example  : CH3  CH3  CH3 
CH3  Cl H  H  Cl Cl H 

H  Cl

H  Cl Cl H  Cl H  H  Cl

CH2CH3  CH2CH3  CH2CH3  CH2CH3 

(I) (II) (III) (IV)

I,  II =  Enantiomers, III,  IV =  Enantiomers

I,  III =  Diastereomers, II,  IV =  Diastereomers
I,  IV
II,  III =  Diastereomers, =  Diastereomers

COOH  COOH 

H  OH  HO  H 

Example  : H  OH  HO  H 
I and II are identical COOH (II) 
COOH (I) 
Achiral

 Absolute  Configuration  (R,  S    configuration)  :

The  actual  three  dimensional  arrangement  of  groups  in  a  molecule  containing  asymmetric  carbon  is  termed

absolute  configuration.

www.abyss.net.in

ABYSS Learning

System  which  indicates  the  absolute  configurastion  was  given  by  three  chemists  R.S.  Cahn,  C.K.  Ingold  and  V.
Prelog.  This  system  is  known  as  (R)  and  (S)  system  or  the  Cahn–Ingold  system.  The  letter  (R)  comes  from  the
latin  rectus  (means  right)  while  (S)  comes  from  the  latin  sinister  (means  left).
It  is  better  system  because  in  manycases  configuration  to  a  compound  cannot  be  assigned  by  D,  L  method.
(R)  (S)  nomenclature  is  assigned  as  follows  :
1 . Each  group  attached  to  stereocentre  is  assigned  a  priority  on  the  basis  of  atomic  number.  The  group  with  the
directly  attached  atom  with  highest  atomic  number  out  of  the  four  groups  gets  top  priority  while  the  group  with
the  atom  of  least  atomic  number  gets  the  least  priority.

Cl 3 F Cl Br I 
4C 1 Increa sing At.No.
Example  :        F C I
2 4 3 21 
Br Increa sin g Pr iority

2 . If  out  of  the  four  attached  atoms  in  consideration,  two  are  isotopic  (like  H  and  D),  then  priority  goes  to  higher
atomic  mass  i.e.  D.

3 . If  out  of  the  four  attached  atoms  in  consideration,  two  or  more  are  same,  then  priority  is  decided  on  the  basis
of  the  atom  attached  next  to  it  in  its  group.  e.g.  out  of  CH3  and  COOH,  COOH  gets  priority.

4 . While  deciding  the  priority,  if  the  atom  in  consideration  is  attached  is  further  to  an  atom  through  a  double  bond
then  it  is  treated  as  if  it  is  attached  to  two  such  atoms.  For  example  :

CC CC      OC NC
CC CO     C N CN
CC NC
CO

5 . After  assigning  priorties,  the  least  priority  group  is  written  at  remotest  valency  (going  away),  while  the  top  priority
group  is  written  at  the  top  directed  valency  (towards  viewer).

(2) (2) COOH

COOH (1) R (3)
(4) H
NH2 CH3
NH2 C (C3)H3
H(4)
(1)

 If  lowest  priority  group  is  not  on  the  dash  position  then,
Step  1  :  Bring  the  lowest  priority  group  to  dash  by  even  simultaneous  exchanges.
Step  2  :  Draw  an  arrow  from  first  priority  group  to  second  priority  group  till  third  priority  group.
Step  3  :  If  the  direction  of  arrow  is  clockwise  the  configuration  is  R  and  if  anticlockwise  it  is  S.
Step  4  :  Draw  the  Fisher  projection  formula  having  equivalent  configuration  to  the  wedge-dash  formula.

(1) H C2H5

OH CH3 S CH3 S

(2)C2H5 C C OH
H CH3
OH C2H5
(4) (3)
H

 Now  the  order  from  top  priority  to  the  one  of  second  priority  and  then  to  the  one  of  third  priority  is  determined.
If  this  gives  a  clockwise  direction  then  it  is  termed  R  configuration  and  if  the  anticlockwise  direction  is  obtained
then  it  is  assigned  S  configuration.

www.abyss.net.in

ABYSS Learning

 Important  :  Note  that  the    designation  of  a  compound  as  R  or  S  has  nothing  to  do  with  the  sign  of  rotation.
the  Cahn-Ingold  rule  can  be  applied  to  any  three  dimensional  representation  of  a  chiral  compound  to  determine
whether  it  is  R  or  S  only.  For  example  in  above  case  (i.e.  lactic  acid),  R  configuration  is  laevo  rotatory  is
designated  as  R-(–)-lactic  acid.  Now  the  other  configuration  of  it  will  have  opposite  sign  of  rotation  i.e.  S-(+)-
lactic  acid.

Special  Point  :

 Chiral  nitrogen  containing  tetra  alkyl  ammonium  ion  show  optical  isomerism.

R1 R1
N N

R4 R3 R2 R2 R3 R4

(I) (II)
I  and  II  enatiomers

 Chiral  nitrogen  containig  tertiary  amine  do  not  show  optical  isomerism

Reason  :-  Rapid  umbrella  inversion.

N Room temperature N

R1 R2 R3 R3 R2 R1
(I) (II)

Energy  required  for  this  interconversion  is  available  at  room  temperature  so  I  and  II  are  identical

 Chiral  C  containing  carbanion  do  not  show  optical  isomerism.
Reason  :-  Rapid  umbrella  inversion.

C Room temperature C

R1 R2 R3 R3 R2 R1
(I) (II)

Energy  required  for  this  interconversion  is  available  at  room  temperature.So,  I  and  II  are  identical.

 Substituted  Allenes  do  not  have  chiral  carbons  but  molecule  is  chiral,  so  show  optical  isomerism.

CH2 C CH2  XX
Allene CCC

YY

No  chiral  C  but  molecule  is  chiral

–bond –bond

Ha C  –bond Hc
C  –bond –bond C 

Hb Hd
–bond

Only  those  substituted  allenes  will  be  optically  active  in  which  "each  sp2  C  have  different  atoms  or  group".

www.abyss.net.in

ABYSS Learning

E x . Which  of  the  following  is  optically  active  –

(A) CH3—CH C CH—CH3 (B) CH2 C CH2
Cl Cl Me Cl

(C) C C C (D)    C C C
Br Br Et Br

Sol.  (A),  (C)  and  (D)

 Ortho  substituted  biphenyl  compounds  do  not  have  any  chiral  carbon  but  due  to  chiral  molecule,  they  are

optically  active.

NO2 HOOC SO3H H3C

COOHO2N CH3 HO3S
Optically active
Horizontal  Vertical 

plane plane

 CONFORMATIONAL  ISOMERISM  :

The  different  arrangement  of  atoms  in  space  that  result  from  the  free  rotation  arround   C—C  bond  axis
are  called  conformations.  The  phenomenon  is  called  conformational  isomerism

H HH
H
H
C C

CH H C H
HH HH

Here  (60°)  is  dihedral  angle,  angle  between  two  planes.

  Ex. Which  of  the  following  show  conformational  isomerism.

HH

C O O
(1) HH
(2)   C H     (3)
HH
H HH

HH H HH

OO C CH C CC

(4) H (5)     (6)     
H
HH HH H
H HH

S o l . 2,  4,  5,  6  [Hint  :  Condition  to  show  conformational  isomerism  There  should  be  at  least  three  continuous

sigma  bonds.]

  Conformers  of  ethane  [CH3—CH3]  :

HH H HH

C H H 60°                 H H
HH C     H HH

H H
HH

(I)       (II)

(Saw  horse  projection)

www.abyss.net.in

ABYSS Learning

HH
H

HH

H         60°           H
H
                                                                (III) HH
H

H
                                                          (IV)

(Newman  projection)

I  =  III  (Eclipsed  form)  in  this  form  distance  between  2C–H  bonds  is  minimum  so  maximum  repulsion  or

minimum  stable.

II  =  IV  (Staggered  form)  in  this  form  distance  between  2C–H  bonds  is  maximum  so  minimum  repulsion  so

maximum  stable.

There  are  infinite  conformers  between  eclipsed  and  staggered  forms  which  are  called  as  skew  forms

Stability order : Staggered > Skew > Eclipsed.

 Dihedral  Angle  :  Dihedral  angle  in  eclipsed  form  of  ethane  is  0°.
    Dihedral  angle  in  staggered  form  of  ethane  is  60°.

The  variation  of  energy  with  rotation  about  the  C–C  bond  in  ethane  has  been  shown  in  figure  below  :
HH

HH
HH
Eclipsed

Potential Energy 12.5 kJ mol–1

HHH HHH

HHH HHH
Staggered Staggered

Rotation

Changes in energy during rotation about C–C bond in ethane

The  difference  in  the  energy  of  various  conformers  constitutes  an  energy  barrier  to  rotation.  The  energy
required  to  rotate  the  ethane  molecule  about  carbon-carbon  single  bond  is  called  torsional  energy.  But
this  energy  barrier  is  not  large    enough  to  prevent  the  rotation.  Even  at  ordinary  temperature  the  molecules
possess  sufficient  thermal  and  kinetic  energy  to  overcome  the  energy  barrier  through  molecular  collisions.
Thus,  conformations  keep  on  changing  form  one  form  to  another  very  rapidly  and  cannot  be  isolated  as
separate  conformers.

 Torsional  energy  :  The  energy  required  to  rotate  the  ethane  molecule  about  ‘C–C’  bond  is  called  torsional
energy.

1CH3 4

CH3

Conformation  of  Butane  [CH3—CH2—CH2—CH3] 2C 3

HH C

HH

www.abyss.net.in

ABYSS Learning

MeMe

      60°     60°           60°        

H
Me

              (I)                             (II)   (III)         (IV)

I  (Fully  eclipsed  form)  :  In  this  form  distance  between  2  methyl  groups  is  minimum  so  maximum  repulsion

or  minimum  stable.

IV  (Anti  or  antistaggered)  :  In  this  form  distance  between  2  methyl  groups  is  maximum  so  minimum  repulsion

or  maximum  stable.

Stability  order  :  IV  >  II  >  III  >  I

 Dihedral  angle  :  Angle  between  two  planes.

 Angle  of  rotation  to  get  minimum  stable  to  maximum  stable  form  in  butane  is  180°.

 Angle  of  rotation  to  get  maximum  stable  to  maximum  stable  form  in  butane  is  360°.

 The  energy  profile  diagram  for  the  conformation  of  butane  is  given  below  along  with  the  difference  of

        energy  between  various  conformation  of  butane.

H CH3 H3CCH3 H CH3

HH HH HH
H3C H HH H3C CH3
Eclipsed IV
Eclipsed II Eclipsed VI

Potential Energy 19 kJ mol–1

16 kJ mol–1 16 kJ mol–1

3.8 kJ mol–1 3.8 kJ mol–1

H CH3 H H3C CH3 H H CH3 H CH3
CH3 H

HH HH HH HH
CH3 H H CH3
Anti I
Gauche III Gauche V Anti I

0° 60° 120° 180° 240° 300° 360°

Rotation

Energy changes that arises from rotation about the C2–C3 bond of butane.

 Conformational  analysis  of  cyclohexane  :

(A ) Chair  form  :

Experimental  evidences  show  that  cyclohexane  is  non-planar.  If  we  look  to  the  models  of  the  different
conformations  that  are  free  of  angle  strain  first  there  is  chair  conformation.  If  we  sight  along  each  of  the
carbon-carbon  bonds  in  turn  we  see  in  every  case  perfectly  staggered  bonds.

5 61 1 32
43 6

5

2 4
Chair conformation
Chair conformation(all staggered bonds)

www.abyss.net.in

ABYSS Learning

The  conformation  is  thus  free  of  all  the  strains,  it  lies  at  energy  minimum  and  is  therefore  a  conformational
isomer.  The  chair  form  is  the  most  stable  conformation  of  cyclohexane.

Axial  and  equatorial  bonds  in  chair  form  of  cyclohexane  :

HH H H H H HH
H H H H H H

H H
HH H

Axial C–H bonds Equatorial C–H bonds H
HH

H
Axial & equatorial 

bonds together

The  12  hydrogen  atoms  of  chair  conformation  of  cyclohexane  can  be  divided  into  two  groups.  Six  of  the
hydrogens,  called  axial  hydrogens,  hence  their  bonds  parallel  to  a  vertical  axis  that  passes  through  the  rings

centre.  These  axial  bonds  are  directed  up  &  down  on  adjacent  carbons.  The  second  set  of  six  hydrogens  called
equatorial  hydrogens  are  located  approximately  along  the  equator  of  the  molecule.

( B ) Boat  form  :

Another  conformation  which  is  known  as  boat  conformation  has  exactly  eclipsed  conformations.

Flagpole
hydrogens

41 6 1 2 HH
56 5 4 3
HH
32 Boat conformation
Boat conformation (all eclipsed bonds) e H H e
e H H e

HHa HaH

aa

In  boat  form  of  cyclohexane  6  hydrogens  are  equatorial,  4  hydrogens  are  axial  and  two  hydrogens  are  flagpoles.
It  is  an  unstable  conformation  of  cyclohexane  due  to  torsional  strain  among  axial  hydrogens  and  due  to  van
der  waals  strain  caused  by  crowding  between  the  "flagpole"  hydrogens.
 Conformational  inversion  (Ring  flipping)  in  cyclohexane  :

Like  alkanes  cyclohexane  too  is  conformationally  mobile.  Through  a  process  known  as  ring  inversion,  Chair-
chair  interconversion,  or  more  simple  ring  flipping  one  chair  conformation  is  converted  to  another  chair.

6 1 5
6
5
4 23
4
12

3

axial a'
a

equatorial a'
a

56 4 32 56 4 2 3
b 1 b'
equatorial
b b'
axial

By  ring  flipping  all  axial  bonds  convert  to  equatorial  and  vice-versa.  The  activation  energy  for  cyclohexane  ring
inversion  is  45  kJ/mol.  It  is  a  very  rapid  process  with  a  half-life  of  about  10–5  sec  at  25°C.

 Conformational  analysis  of  monosubstituted  cyclohexanes  :

In  ring  inversion  in  methylcyclohexane  the  two  chair  conformations  are  not  equivalent.  In  one  chair  the  methyl
group  is  axial  ;  in  the  other  it  is  equatorial.  At  room  temperature  95%  of  the  methylcyclohexane  exist  in
equatorial  methyl  group  whereas  only  5%  of  the  molecule  have  an  axial  methyl  group.

www.abyss.net.in

ABYSS Learning

CH3 CH3
H
(95%)
(5%) H

1,3-diaxial  repulsion  :

A  methyl  group  is  less  crowded  when  it  is  equatorial  than  when  it  is  axial.  The  distance  between  the  axial
methyl  groups  at  C-1  and  two  hydrogens  at  C-3  and  C-5  is  less  than  the  sum  of  their  vander  waal  radii  which
causes  vander  waal  strain  in  the  axial  conformation  this  type  of  crowding  is  called  1,3-diaxial  repulsions.  When
the  methyl  group  is  equatorial,  it  experience  no  significant  crowding.

HH

HC H H H H
H5 H
5H 1 6
H6 H3 H
H C
4H 2
21

H

Vander waals strain between  No vander waals strain between 
hydrogen of axial CH3and axial 
hydrogen at C-1 and axial
hydrogens at C-3 and C-5 
hydrogens at C–3 and C–5 

 Difference  between  conformation  and  configuration

S .N. Conformation Configuration

It refers to different arrangement of atoms or  It refers to different arrangement of atoms  or 
1. groups relative to each other and raised due to  groups in space about a central atom.

fr e e  r ota tion r ou nd a  sig m a  b ond

The energy different between two conformers is  The energy difference between two  configuration 
2. lower
for m s is la r g e

3. Conformers are not isomers and they can not be These are optical isomers and can be separated 
se p a r a te d  fr om  e a ch othe r . fr om  e a ch othe r .

4. These are easily inter converted to one another. These are not easily inter converted to one 
another.

www.abyss.net.in

ABYSS Learning

SOLVED  EXA MPLE

Ex.1 Evaporation  of  an  aqueous  solution  of  ammonium  cyanate  gives  urea.  This  reaction  follows  the  class  of-
Sol.
Ex.2 (A)  Polymerization (B)  Isomerization (C)  Association (D)  Dissociation

Sol. NH4CNO  heat    H2N–CO–NH2                                     Ans.(B)

The  possible  number  of  alkynes  with  the  formula  C5H8  is  -

(A)  2 (B)  3 (C)  4 (D)  5

CH3CH2CH2C    CH CH3 CH3CH2C    CCH3 Ans.(B)

CH–C    CH
CH3

Ex.3 How  many  isomers  of  C5H11OH  will  be  primary  alcohols  -
Sol.
(A)  2 (B)  3 (C)  4 (D)  5

CH3CH2CH2CH2CH2OH CH3CHCH2CH2OH Ans.(C)
                      (i) CH3

              (ii)

HOCH2       CHCH2CH3 CH3
CH3 CH3       C    CH2OH

CH3

                  (iii)                                                       (iv)

Ex.4 Number  of  isomeric  forms  of  C7H9N  having  benzene  ring  will  be  -

(A)  7 (B)  6 (C)  5 (D)  4

CH2NH2 CH3 NHCH3
NH2

Sol.   Ans.(C)
Ex.5
Sol. (i) o-, m-, p- (v)
Ex.6 (iiii) (iv)

Sol. Which  of  the  following  is  an  isomer  of  diethyl  ether-

(A)  (CH3)3  COH (B)  CH3CHO (C)  C3H7OH (D)  (C2H5)2CHOH

Diethyl  ether  has  4  carbon  atoms,  among  different  alternative  alcohols  only  (CH3)3COH  has  4  carbon
atoms.

  Ans.(A)

Total  number  of  isomeric  alcohols  with  formula  C4H10O  are  -

(A)  1 (B)  2 (C)  3 (D)  4

(i)  CH3CH2CH2CH2OH CH3 CH3

  (ii)  CH3CH2      CH    CH3      (iii)  CH3       CH    CH2OH (iv)  CH3        C     OH
CAHn3s. ( D )
OH

www.abyss.net.in

ABYSS Learning

Ex.7 The  molecular  formula  of  a  saturated  compound  is  C2H4Cl2.  The  formula  permits  the  existence  of  two
Sol.
Ex.8 (A)  functional  isomers (B)  Position  isomers (C)  Optical  isomers (D)  cis-trans  isomers
Sol.
HH HH

(i)  H    C   C    Cl                  1,1-dichloro  ethane (ii)  H    C   C    H          1,2-dichloro  ethane Ans .( B )

H Cl Cl Cl

Both  are  position  isomers

The  type  of  isomerism  found  in  urea  molecule  is  -

(A)  Chain (B)  Position (C)  Tautomerism (D)  None  of  these

NH2        C    NH2 NH2        C    NH Ans.(C)

O OH

urea Isourea

Ex.9 An  alkane  can  show  structural  isomerism  if  it  has  .........  number  of  minimum  carbon  atoms  -
Sol.
(A)  1 (B)  2 (C)  3 (D)  4

CH4,CH3–  CH3,  CH3–CH2–CH3  exist  only  in  one  structural  form,  while  CH3CH2CH2CH3  can  exist  in

more  than  one  structural  form. Ans.(D)

E x . 1 0 How  many  chain  isomers  can  be  obtained  form  the  alkane  C6H14    is  :-

(A)  4 (B)  5 (C)  6 (D)  7

Sol. CH3CH2CH2CH2CH2CH3      CH3CHCH2 CH2CH3         CH3CH CHCH3 Ans.(B)

         (i) CH3 CH3 CH3
CH3CH2CH CH2CH3
           (ii)                  (iii)
CH3
           (iv) CH3

CH3       C    CH2CH3

CH3

        (v)

E x . 1 1 Keto  -  enol  tautomerism  is  observed  in  -

O O

(A)  C6H5      C     H (B)  C6H5      C     CH3

O O CH3

(C)  C6H5      C     C6H5 (D)  C6H5     C      C    C6H5

CH3

S o l . Only  compound  (B)  contains    hydrogen  atom  for  showing  keto  enol  tautomerism. Ans.(B)

Ex.12 The  number  of  geometrical  isomers  in  case  of  a  compound  with  the  structure  :
Sol.
CH3–CH=CH–CH=CH–C2H5  is  -

(A)  4 (B)  3 (C)  2 (D)    5

Given  alkene  is  unsymmetrical  one  and  has  two  double  bonds,  the  number  of  geometrical  isomers  is  given

by  2n.  (n  =  2)  therefore  number  of  geometrical  isomers  will  be  22  =  4 Ans.(A)

www.abyss.net.in

ABYSS Learning

Ex.  13 Which  one  of  the  following  will  show  geometrical  isomerism  -

(A)  CH2Cl CH3 (B)  CH3 H

C C

H CH     C(CH3)2 CH2Cl CH     C(CH3)2

(C)  CH2     CH C CH2Cl (D)  CH3CH2CH=CHCH2CH3         Ans.(D)

H CH     CH2

Ex.  14 In  the  reaction

CH3CHO  +  HCN    CH3CH(OH)CN

a  chiral  centre  is  produced.  Thus  product  would  be    -

(A)  Meso  compound (B)  Racemic  mixture (C)  Laevorotatory (D)  Dextrorotatory

S o l . Synthesis  of  a  chiral  compound  from  a  chiral  compound  in  the  absence  of  optically  active  agent  always

produces  a  racemic  modification  :

CN O CN

HCN HCN H OH

HO H C CH3
d – lactonitrile
   CH3 H Ans.(B)

CH3

acetaldehyde

Ex.15 The  molecule  3-penten–2–ol  can  exhibit  -

(a)  Optical  isomerism (b)  Geometrical  isomerism      (c)  Metamerism   (d)  Tautomerism

The  correct  answer  is  -

(A)  a  and  b (B)  a  and  c (C)  b  and  c (D)  a  and  d

OH

Sol. CH3   *CH    CH     CHCH3 Ans.(A)

CH3
3-penten-2-ol

As  given  compound  contains  a  assymmetric  carbon  atom  and  a  double  bond  (with  sufficient  conditions
for  geometrical  isomerism).    Therefore  it  can  shown  both  optical  and  geometrical  isomerism.

www.abyss.net.in

ABYSS Learning

NOMENCLATURE OF ORGANIC COMPOUNDS

 HISTORY  :
In  1675,  Nicholas  Lemery  had  devided  chemical  substances  into  3  parts.
(i) Mineral  substance  :  which  are  obtained  from  minerals.  eg.  gold,  silver,  iron  etc.
(ii) Vegetable  substance  :    which  are  obtained  from  vegetables.  eg.  sugar,  citric  acid  etc.
(iii) Animal  substance  :  which  are  obtained  from  animals.  eg.  albumin,  gilatin  etc.
After  some  time  when  many  of  the  chemical  substance  were  discovered,  it  was  found  that  some  of  them
can  be  obtained  from  both  vegetables  and  animals.  So  this  classification  was  failed.  So  chemical  substance
were  then  divided  into  two  parts  :
(i) Organic  compounds  :    which  are  obtained  from  living  organism.
(ii) Inorganic  compounds  :  compounds  which  are  obtained  from  any  other  sources  except  living  organisms.
VFT(Vital  Force  Theor y)  :  By  Berzelius  in  1815.  Upto  1815,  any  organic  compound  could  not  be
synthesized  in  lab.  So  Berzelius  suggested  that  there  is  a  mysterious  force  in  living  organisms  which  was  named
as  Vital  Force  and  said  that  organic  compounds  cannot  be  synthesized  in  lab.  This  theory  was  called  as  VFT.
But  in  1828  a  German  scientist  Wholar  synthesized  an  organic  compound  in  lab.  Which  was  'urea'.  So  VFT
was  failed.    Urea  was  synthesized  in  lab  by  heating  of  Ammonium  cyanate  (NH4CNO).

NH4  CNO  Rearrangement NH2 C  NH2
O

Ammonium  cyanate     Urea

Organic  Compounds  :    Hydrocarbons  and  their  derivatives  are  called  as  organic  compounds.

Ex  : Why  are  organic  compounds  found  in  larger  no.?  or  Why  are  they  studied  as  a  separate  subject  ?

Sol. (i) Catenation  Property  :  Carbon  atom  has  a  property  by  which  it  can  join  with  other  C–atoms  and  form
a  long  chain  or  a  ring  of  different  size  and  shapes.If  covalency  of  atom  is  more,  then  catenation  property
is  also  more.

(i i ) Organic  compound  shows  isomerism.

(iii) Exhibits  Homologous  Series.

(i v) Same  Empirical  Formulae.

(v) Polymerisation.

 Characteristics  of  C-Atoms

(a) Tetra  valency  :  Atomic  number  of  carbon  atom  is  6  and  it  have  four  valency  electrons  so  C-Atom  is
tetravalent.  It  is  explained  by  promotion  rule
2s 2p
In  ground  state  (here  covalency  of  carbon  is  2)

First  excited  state  (here  covalency  of  carbon  is  4)

Available for bond formation

(b) Tendency  to  form  multiple  bonds  :  Carbon  atom  forms  following  type  of  bonds,  such  as

            C  C  ,         C  C    ,     C  C  , C  C  C 

www.abyss.net.in

ABYSS Learning

(c) Tetrahedral  shape  :  T he  four  covalent  bond  are  directed 109°28'
towards  the  four  corners  of  a  regular  tetrahedron C
Bond  angle  109028'  or  109.5'

(d) Catenation  :  Self  linking  property  of  C-atom  is  known  as  catenation.  It  is  responsible  for  the  variety
and  large  number  of  organic  compounds.  It  may  also  give  rise  to  open  chain  and  closed  chain  nature
of  compounds.  Bond  energy  for  catenation  of  C  is  maximum.

Bond  energy  in  Kcal  : C—C Si—Si N—N P—P

  85   54   39   50

(e) Hybridisation  : The  orbitals  of  different  shape  but  almost  of  equal  energies  blend  up  to  give  the
same  number  of  new  orbitals  of  another  shape  and  of  identical  energies.

Str ucture   &   bonds Hybridisation Bond  angle Shape

C  4,0 sp3 109°28' Tetrahedral

C  3,1 sp2 120° Planar  (Trigonal)

C  2,2 sp 180° Linear

C  2,2 sp 180° Linear

  -  (sigma)  bonds  :  The  molecular  orbital  formed  by  the  overlapping  of  two-s  atomic  orbtials  or  one  s
and  one  p  atomic  orbitals  or  co-axial  overlapping  of  p-orbitals  is  called  a    bond.

or s p or p p

Note  : (i) Overlapping  of  hybrid  orbitals  also  give     bonds.     bonds  are  stronger,  as  they  are  resulted

from  the  effective  axial  overlapping.

(ii) More  the  directional  character  (p)  in  covalent  bond  more  is  the  strength  of  the  bond.
sp3  -  sp3  >  sp3  -  sp2  >  sp2  -  sp2  >  sp  -  sp

(Pi)  bonds  :     bond  is  formed  by  the

lateral  overlapping  of  two  p-atomic +
orbitals.  It  is  weaker  than    bond,  as  there
is  only  partial  overlapping.

www.abyss.net.in

ABYSS Learning

Ex.  1 sp sp sp2 sp2 sp3
Ex.  2   
 Note  : HC  C   CH CH   CH3

H



C  Flat  hexagonal  structure  due  to  sp2  hybridised
C-atom  in  benzene
H  C  C   H
120°

H  C  C  C  H


H

(A)  electrons  are  mobile  hence     bond  is  more  reactive.     bond  is  formed  by  the  collateral  overlapping

of  sp2  orbitals.

(B) sp2  hybridised  orbitals  overlap  with  each  other  and  with  s  orbitals  of  six  H-atoms  forming  C–C  and

C-H     bonds.

(C) Six  2p  unhybridised  orbitals  of  6  C-atom  in  benzene  form  3    bonds  by  lateral  overlapping  with  each
other.  These  six     electrons  are  free  to  move  over  all  the  six  carbon  atoms.  Since  delocalised  electrons

have  lower  energy  than  localised.

(D) The  relative  sizes  of  hybrid  orbital  follows  the  order sp3  >  sp2  >  sp

(E) The  electronegativity  of  hybrid  orbitals  follows  the  order sp  >  sp2  >  sp3

H H sp  3– sp3 H
 sp3– s s – sp3  sp3– s
H
HH
s – sp3 HH

HH Ethane
 Bond
Methane

p pz pz  pz
z py 



py

     
H sp2 sp2 H H sp sp H
sp sp
sp2  sp2
Ethene
sp2 sp2 
H H





Ethyne

(Orbital diagram of methane, ethane, ethene and ethyne)

www.abyss.net.in

ORGANIC COMPOUND

Open – chain, acyclic Closed  – Chain or
or aliphatic compounds Cyclic compound

Saturated Unsaturated Homocyclic Heterocyclic
compound compound
ABYSS Learning
alkane
CLASSIFICATION  OF  ORGANIC  COMPOUNDS
CH3–CH2–CH3 alkene alkyne Alicyclic *A r o m a t i c
www.abyss.net.in
Propane CH3–CH=CH2 HCCH com pou nd s Alicyclic Aromatic 
compounds compounds compounds
Propene Ethyne
..
Cyclo o N
hexane Pentahydropyran
Pyridine
Cyclo Benzene
butene

annulene [18]

*A r o m a t i c Non benzenoid annulene [18]
(Without any Benzene ring 
compounds containing compounds)

Benzenoid Naphthalene
(Benzene ring 
containing compounds) Benzene


Click to View FlipBook Version