The words you are searching are inside this book. To get more targeted content, please make full-text search by clicking here.

Organic Chemistry Some Basic Principles and Techniques

Discover the best professional documents and content resources in AnyFlip Document Base.
Search
Published by mkumar, 2019-01-31 02:07:51

Organic Chemistry Some Basic Principles and Techniques

Organic Chemistry Some Basic Principles and Techniques

Keywords: Organic Chemistry Some Basic Principles and Techniques

ABYSS Learning

 Aliphatic  or  Open  chain  compounds  :
Those  compounds  in  which  first  &  last  carbon  atoms  are  not  connected  with  each  other.  Branched  or  unbranched
chains  are  possible  in  these  compounds.
For  example  :

CH3

CH3–CH2–CH2–CH3,    CH3–CH2– CH–CH3,    CH3–C–CH3

CH3 CH3

(Unbranched) (Branched)

There  are  two  varieties  in  these  compounds  -

 Saturated  Hydrocarbons  :

(a) In  such  type,  adjacent  carbon  are  attached  with  single  bonds.

Example  -  CH3–CH2–CH3
(b) General  formula  of  these  compounds  are  CnH2n+2
(c) These  are  also  called  as  paraffins  (Parum  +  Affins  i.e.  little  reactivity)  because  these  are  less  reactive

due  to  absence  of  -bonds.

 Unsaturated  Hydrocarbons  :

(a) There  will  be  a  double  bond  or  a  triple  bond  between  any  two  carbon  atoms,

CH2  =  CH  –  CH3 Propene
CH     C  –  CH3 Propyne
(b) General  formula  is  CnH2n  or  Cn  H2n–2
(c) These  are  also  called  as  olefins  because  they  reacts  with  halogens  to  form  oily  substances  olefins

(Oleum  +  fines  i.e.  Oil  forming).

(d) Due  to  presence  of    bonds  these  are  more  reactive.

 Closed  chain  compounds  :

In  these  compounds  first  &  last  carbon  are  attached  with  each  other.

CH2
Example.  CH2 CH2    cyclopropane.

 Homocyclic  compounds  :
These  are  the  compounds  in  which  the  complete  ring  is  formed  by  carbon  atoms  only.  These  are  also  of
two  types
( A ) Alicyclic  compounds  :  These  are  the  compounds  having  the  properties  like  aliphatic  compounds.
These  may  be  saturated  or  unsaturated  like  aliphatic  compounds.

                     

cyclopropane cyclopropene     cyclobutene

( B ) Aromatic  compounds  :  Conditions  for  a  compound  to  be  aromatic  -
(i) Compound  should  be  cyclic.
(ii) Compound  should  be  planar.  (All  carbon  in  ring  should  be  sp2  hybridised)

www.abyss.net.in

ABYSS Learning

(iii) It  follow  Huckel's  Rule  :-  [4n  +  2]   electrons.  (Odd  number  of   electron  pairs)

n  =  0 2  electrons or  1  pair

n  =  1 6  electrons or  3  pairs

n  =  2 10  electrons or  5  pairs

n  =  3 14  electrons or  7  pairs

(iv) There  should  be  cyclic  resonance  in  ring.

 Heterocyclic  Compounds  :
These  are  cyclic  compounds  having  ring  and  rings  builts  up  of  more  than  one  kind  of  atoms.

O           S            N
Furan |
H

  Thiophene         Pyrrole

 Normal  Groups  :

(a) It  is  represented  by  'n'  :

(b) Straight  chain  of  carbon  atoms  is  known  as  normal  group.

(c) Free  bond  will  come  either  on  Ist  carbon  atom  or  on  last  carbon  atom.

n  –  propyl CH3–CH2–CH2–

n  –  butyl CH3–CH2–CH2–CH2–

 Iso  group  :
(a) It  is  represented  by  following  structure

CH3–CH–

CH3
(b) When  methyl  groups  are  attached  to  the  second  last  carbon  atom,  group  is  named  as  iso.

CH3–CH– CH3–CH–CH2– CH3–CH–CH2–CH2–

CH3          CH3
CH3

Iso  propyl           Iso  butyl Isopentyl

 Neo  group  :

(a) When  two  methyl  group  are  attached  to  second  last  carbon  atom  group  is  named  neo  group.

(b) It  is  represent  by  following  structure  -

CH3

for  Ex.  CH3–C–CH2–    Neo  pentyl
CH3

 Secondary  group  :
(a) When  two  alkyl  groups  attached  to  the  same  carbon  atom,  group  is  named  as  secondary.
Ex.

CH3–CH2–CH– CH3–CH2–CH2–CH–
  CH3

CH3

Secondary  butyl Active  Secondary  pentyl

(b) It  is  represented  by  following  structure.

CH3–CH2–CH–CH3

www.abyss.net.in

ABYSS Learning

 Ter t iar y  group  :
(a) When  three  alkyl  groups  (similar  or  dissimilar)  are  attached  to  the  same  carbon  atom,  group  is  name
as  tertiary.

CH3 CH3
CH3–C–
  CH3–CH2–C–
CH3 CH3

Tertiary  butyl         Tertiary  pentyl

(b) It  is  represented  by  following  structure  -

CH3
CH3–C–

CH3

 Groups  :
When  a  hydrogen  is  removed  from  saturated  hydrocarbon  then  alkyl  group  is  formed.  It  is  represented  by
R  &  its  general  formula  is  CnH2n+1.  A  bond  is  vacant  on  alkyl  group,  on  which  any  functional  group  may
come.

 Alkyl  groups  :

Alkane  H   Alkyl  (monovalent  radical)  H   Bivalent  radical  H Trivalent  radical

CH4  CH3    Methyl C2H6  C2H5 Ethyl n–propyl
(i) CH3 CH2 CH2 Iso–propyl
CH3 CH2 CH3 (ii) CH3 CH CH3
Propane

CH3  CH2 CH2 CH3 (i) CH3  CH2 CH2 CH2 n–butyl
Butane (ii) CH3  CH2 CH CH3 sec–butyl

CH3  CH CH3 (i) CH3  CH CH2 Isobutyl
CH3 CH3 

Isobutane (ii) CH3  C CH3 tert.–butyl
CH3 
CH3CH2CH2CH2CH3 n - pentyl
n — Pentane (a) CH3  CH2  CH2  CH2  CH2  Active sec. pentyl
(b) CH3  CH2  CH2  CH  CH3 1 - Ethyl propyl 
(c) CH3  CH2  CH  CH2  CH3 or sec. pentyl

www.abyss.net.in

ABYSS Learning

CH3  CH  CH2  CH3 (a) CH3  CH CH2  CH2  Iso pentyl or 
CH3 3–Methyl butyl
CH3
Iso pentane (b) CH3  CH CH CH3  1,2–dimethyl propyl 
CH3 or active iso pentyl.

(c) CH3  C CH2 CH3  tert. pentyl or 
CH3 1,1–dimethyl propyl 
or tert. amyl
(d)  CH2  CH CH2 CH3 
CH3 Active pentyl or 
active amyl

CH3 CH3
CH3  C  CH2
CH3  C  CH3    
CH3
CH3

neo-pentane                 neo-pentyl

Note  : Pentyl  is  also  called  amyl  group.

( a ) Alkene  H   Alkenyl

E x . CH2 CH2     CH2 CH Ethenyl  (vinyl)

CH3 CH CH2  (1) CH3 CH CH 1–propenyl
|
Iso  propenyl  or
(2) CH3 C CH2 1–methyl  ethenyl
2–Propenyl  (Allyl)
(3) CH2 CH CH2
( b ) Alkyne  H   Alkynyl

E x . CH CH  CH C Ethynyl
1 –  Propynyl
CH3 C CH CH3 C C 2 - Propynyl (Propargyl)

CH2 C CH

 Aryl  Radical  -

(i) – H – C6H5  – H

Phene Phenyl Phenylene

www.abyss.net.in

ABYSS Learning

CH2 CH C

(ii) – H – H
CH3
Benzyl Benzal or Benzo (Benzylidyne)
Toluene Benzylidene

CH3 CH3 CH3

o – Tollyl m – Tollyl p – Tollyl

CH2OH CHO COOH

Ex.

Benzyl alcohol Benzaldehyde Benzoic acid

       NOMENCLATURE  :

Mainly  three  systems  are  adopted  for  naming  an  organic  compound  -
(i) Common  names  or  Trivial  system
(ii) Derived  system
(ii) IUPAC  system  or  Jeneva  system
Trivial  System  :Initially  organic  compounds  are  named  on  the  basis  of  source  from  which  they  were  obtained  for

S . No .   Or ganic Compound  Trivial Nam e  S ourc e 

1  C H3OH   W o o d s pi rit  or  M e th y l  Obta ined by destructive distillation 
sp irit  of  w o o d 

2  NH CONH   Ur ea  Obta ined from urine  
22 M ars h  ga s  (f ire  d am p)  It  w as  p ro du ced  in  m a rs h y  pla c es 
V in e g a r   Obta ined from Acetum –i.e. 
3  CH   V in e g a r  
4 Oxalic acid  
Obta ined from oxalis pla nt 
4  CH COOH  F orm i c  acid  
3 Lac tic  a c id  Obta ined from formicus [Red ant] 

C OOH  Obta ined from sou r milk 
5  | 

C OOH 

6  HCOOH 

CH  CH  COO H  
|
7  3

OH

CH2 –COOH M alic  a c id  Obta ied from apples 


C H( O H) C OO H

9  CH CH CH COOH  Bu ty ric  aci d  Obta ined from butter 
32 2 C apro ic  ac id  Obta ined from goats 

1 0  C H (C H ) COO H 
3 24

www.abyss.net.in

ABYSS Learning

Some  typical  compounds  in  which  common  &  trivial  names  are  also  differ.

S. No.  Com pou nd  Trivial Nam e  Com m on nam e 

1  CH 4  M ars h  ga s   Methane  

2  CH 3OH  W o o d s p i rit  M e th yl  alco h o l 

3  CH 3COOH   Vinegar   Acetic a cid 
Acetone   Dim ethyl ketone 
4  CH3  C  C H 3   A c rol e in    Acryl Aldehyd e 
||
O Pyvalde hyde   Te rtiary valer ald ehyde 

5  O  
||

CH2  CH  C  H

H3C O

6  CH3–C–C–H

CH  
3

 Trivial  Names  :

Ex  : The  trivial  name  of  the  following  compounds  is  :

CH3

CH3–C–CHO

CH3

(A)  Pyvaldehyde (B)  Trimethyl  acetaldehyde

(D)  ,  ,  -  trimethylacetaldehyde (C)  t-butyl  formaldehyde

Sol. (A) (B)  A  saturated  aldehyde
(C)  An  alkene
Ex  : Acrolein  is  :
(A)  An  unsaturated  aldehyde
(C)  A  polymer

Sol. (A)
 Comman  Name  :  R  is  termed  as  alkyl.

S . No .   Com pou nd   Na m e 

1  R – X  A lky l h a lid e  

2  R – OH  A lky l a lc o h ol 
A lk y l t hi o  alc oh o l 
3  R – SH 
A lky l am in e  
4  R  – N H   D ialkyl e ther 
2 Dia l kyl  th io e th e r 

5  R – O –  R  Dialk yl keone  

6  R – S  – R 
R–C–R 




www.abyss.net.in

ABYSS Learning

S . No .   Com pou nd   Na m e 
8  D ialkyl amine 
R–NH –R 
9  R–N –R T ria lky l a m i n e 
10   R  Alkyl alkyl’ ether 
11   R–O –R’  Alk yl alkyl’ ketone 
12   R–C–R' Alk yl alkyl’ thio e ther 
13   O  Alkyl a lkyl’ amine 
14   R –S– R’  A lkyl alkyl’ alkyl’’ amine 

R –N H– R’ 
R–N –R'
R''  

Ex  : The  common  name  of  the  compounds  CH2  =  CH  –  CH2  –  NH2  is  -

(A)  Vinyl  amine (B)  Allyl  amine (C)  Divinyl  amine (D)  Diallyl  amine

Sol. (B)

Ex  : Ethyl  methyl  ether  is  :

(A)  CH3  –CH2–  O  –CH3 (B)  CH3  –O  –CH2–  CH3
(C)  Both  A  &  B (D)  CH3  –CH2–  O  –CH2–CH3

Sol (C)

 Position  of  double  bond  :
In  an  unsaturated  hydrocarbon  if  the  position  of  double  bond  is  on  Ist  or  last  carbon  then  it's  prefix  will  be
  (alpha)  if  it  is  on  2nd  carbon  it  is  termed  as    (Beta)  &  then   (gamma)  &   (delta)  and  so  on.

Example  :

H2C=CH–CH2–CH3 -butylene
H3C–CH=CH–CH3 -butylene
H3C–CH2–CH=CH2 -butylene

H2C=CH–CH3  or propylene           
CH3–C=CH2
Both are same positions 
CH3
propylene, isobutylene

Isobutylene

CH3–CH2–CH=CH–CH2–CH3 -hexylene

CH3–CH2–CH2–CH=CH–CH2–CH2  –CH3   -octylene

 Common  -  Naming  of  dihalides  :

(a) When  two  same  halogen  atoms  are  attached  to  the  same  carbon  such  compounds  are  called
Gemdihalides.

(b) Common  names  of  such  compounds  are  alkylidene  halides.

Example  : I

Cl CH3–CH–CH
CH3–CH I

Cl CH3
Ethylidene chloride Isobutylidene Iodide

www.abyss.net.in

ABYSS Learning

Exception  : X Methylidene halide (wrong) 

CH2
X Methylene halide (right)

(c) When  two  same  halogen  atoms  are  attached  to  adjacent  carbon,  these  are  called  as  vicinal  dihalides.

Common  names  of  such  compounds  are  alkylene  halide.
Cl

CH3–CH–CH2 H3C–C–CH2–Cl
II
CH3
Propylene  Iodide Isobutylene  chloride

(d) When  two  same  halogen  atoms  are  attached  at  the  two  ends  of  a  carbon  chain  its  common  naming

will  be  polymethylene  halide.

'poly'  word  indicates  the  number  of  –CH2–  groups.

–CH2– 2 3 45 6
Hexa
Poly di tri tetra penta

Example  :

CH2–CH2–CH2 CH2–CH2–CH2–CH2–CH2

I I   ,      Br Br

Trimethylene Iodide Pentamethylene Bromide

Exception  :  CH2–X   Dimethylene halide (wrong)

CH2–X   Ethylene halide (right)

 Common  -  Naming  of  di-hydroxy  compounds  :
(a) When  two  –OH  groups  are  attached  to  adjacent  carbon's  they  are  termed  as  alkylene  glycol.

OH

CH3–CH2–CH–CH2 CH3–CH2–C–CH2–OH

OH OH CH3
Butylene glycol Secondary pentylene glycol 

(b) When  two  –OH  groups  are  attached  at  the  two  ends  of  a  carbon  chain,  these  compounds  are  named

as  polymethylene  glycol.

Poly    Number  of  >CH2  groups.
Example  :

CH2–CH2–CH2–CH2–CH2–CH2 CH2–CH2–CH2–CH2
OH OH OH OH
Tetra methylene glycol
Hexamethylene glycol

Exception  :  CH2–OH   Dimethylene glycol (wrong) 3.  Trimethylene  glycol
CH2–OH   Ethylene glycol (right)
3.  CH2–CH2–CH2
Ex  :  Make  the  structure  of  following  organic  compounds  - OH OH
1.  Isopropylidene  Bromide 2.  Isobutylene  glycol

Br OH
2.  H3C–C–CH2–OH
S o l . 1.  CH3–C
Br CH3

CH3

www.abyss.net.in

ABYSS Learning

 Common  -  Naming  of  the  functional  group  having  carbon  :
Chart  -  1

S .  No .   Fu nct iona l Group  S u ffix 
1  A ldehyde 
2  O
3  i c  acid  
4  –C–H   yl halide  
5  O A m id e  
o- ni tr i le  
–C–OH  
O

–C–X
O

–C–NH2  

–C N 

6   –N =  C   o -i so n it rile  
a te 
O
7  ic-anhydride  

–C–O–R  

O

–C
8  O

–C

O

 Prefix  :
1    Carbon  Form
2    Carbon  Acet
3    Carbon  Propion

4    Carbon  Butyr  Normal
Iso

5    Carbon  Valer  Normal
Iso
Secondary
Tertiary

3C  +  (=)  double  bond  =  Acryl
4C  +  double  bond  =  Croton
Example  :

O O O

H–C–H , CH3–C–O–H    , CH3–CH2–C–Cl ,
Acetic Acid Propionyl chloride
Formaldehyde

CH3 O O

        CH3–CH–C–NH2  , CH3–C–H
Isobutyramide Acetaldehyde

www.abyss.net.in

ABYSS Learning

O

Ex  : Common  name  of  the  compound  :  CH3–CH=CH–C–OH  is  -

(A)  Crotonic  acid (B)  Acrylic  acid

(C)  Allylic  acid (D)  None

Sol. (A)

O

Ex  : Common  name  of  the  compound  :  CH2–CH=C–H  is  -

(A)  Croton  aldehyde (B)  Acryl  aldehyde

(C)  Propion  aldehyde (D)  Butyr  aldehyde

Sol. (B)

O

Nomenclature  of  Ester  :      –C–O–R
The  group  which  is  attached  to  the  oxygen  is  written  as  alkyl  &  the  remaining  structure  is  named  same
as  defined  in  chart-1.

Example  :

O O OO O

CH3–C–O–CH3,    CH3–CH2–C–O–CH2–CH3  ,  CH3–C–O–CH2–CH3,  H–C–O–CH3 ,  CH3–O–C–H ,

Methyl acetate Ethyl propionate Ethyl acetate  Methyl formate  Methyl formate 

OO O

CH3–C–O–H  ,  CH2=CH–C–O–CH2–CH3,  CH3–CH=CH–C–O–CH3

Acetic acid Ethyl acrylate Methyl crotonate

O

Nomenclature  of  Anhydride  :    R–C O
R–C

O
Rule  :  Add  the  total  number  of  carbon  atoms  &  divide  by  2,  the  quotient  will  give  you  the  number  of    carbon
atom  now  name  it  according  to  Chart-1.

Total   =  Quotient  =  Number  of  C  atom
2

O O

CH3–C O 4 2 CH3–CH2–C O 6 3
CH3–C 2       CH3–CH2–C  2

O O
Propionic anhydride
Acetic anhydride

O

In  R–C O If R  R', You need not to find out Quotient. Divide it in two parts as above 
R'–C & name it by suffixing ic anhydride (alphabetically)  

O

O Acetic propionic anhydride (right) O
Propionic acetic anhydride (wrong)
CH3–C CH3–CH2–C
O O

Ex.  : CH3–CH2–C CH3–CH2–CH2–C

O O
Butyric propionic anhydride 

www.abyss.net.in

ABYSS Learning

O

CH3–CH–C O

CH3 O CH2=CH –C
,     
eg.  : CH3–CH2–CH–C O

CH2=CH–C

CH3 O O

Isobutyric secondary valeric anhydride Acrylic anhydride

Derived  System  :  According  to  this  system  any  compound  is  given  name  according  to  the  parent  name

of  the  homologous  series.  This  system  is  reserved  for  the  following  nine  homologous  series.

Chart  -  2

S . No .  Nam e of H o m olo g o us   Der ived Nam e  Stru cture of grou p 
S eries 
|
1   A lkane   Me thane  
–C–  
2   A lkene  E th y le n e 
|

> C=C<  

3   A lkyne  A cetylene  – C C –  

4   A lkanol  C arbinol  |
5   A lkanal  A cetaldehyde 
6   A lkanoic acid  A cetic a cid  – C– OH  
7   A lkanoyl ha lide  A cetyl 
8   A lkanamide  A cetamide  |
9   A lkanone   A cetone 
|

– C– CHO  

|

|

– C– COOH  

|

|

– C– COX  

|

|

– C – CO NH2  

|

||

–C– C– C– 

| || |

O

 IUPAC  system  of  Nomenclature  :

The  basic  criterion  for  naming  a  structure  by  IUPAC  system  is  choice  of  a  parent  name  of  the  basic  carbon
skeleton.

Nomenclature  of  alkanes  is  fundamental  to  naming  whole  class  of  organic  compounds  because  it  helps  us
identify  the  basic  carbon  skeleton.

 General  rules  for  IUPAC  nomenclature  :

The  IUPAC  system  is  the  most  rational  and  widely  used  system  of  nomenclature  in  organic  chemistry.  The
most important feature of this system is that any given molecular structure has only one IUPAC  name  and
any  given  IUPAC  name  denotes  only  one  molecular  structure.

The  IUPAC  name  of  any  organic  compound  essentially  consists  of  five  parts,  i.e.

1.  Word  root 2.  Primary  Suffix 3.  Secondary  Suffix 4.  Primary  Prefix

5.  Secondary  Prefix

Thus,  a  complete  IUPAC  name  of  an  organic  compound  consists  of  the  following  par ts  :

Secondary  prefix  +Primary  prefix  +  Word  root  +  Primary  suffix  +  Secondary  suffix

www.abyss.net.in

ABYSS Learning

1 . Word  root  :  It  is  the  basic  unit  of  the  name.  It  denotes  the  number  of  carbon  atoms  present  in  the  principal
chain  (the  longest  possible  continuous  chain  of  carbon  atoms  including  the  functional  group  and  based  upon
the  common  names  of  alkanes)  of  the  organic  molecules.

Root  word  :  According  to  number  of  carbon's  in  parent  C–chain.

Number Root Number Root Number Root
of  carbons word of  carbons word of  carbons word

1 Meth 6 Hex 11 Undec
2 Eth 7 Hept 12 dodec
3 Prop 8 Oct 13 tridec
4 But 9 Non 20 Eicos
5 Pent 10 Dec

2 . Primary  Suffix  :  A  primary  suffix  is  always  added  to  the  word  root  to  indicate  whether  the  carbon  chain
is  saturated  or  unsaturated.  The  three  basic  primary  suffixes  are  given  below  :

S . N o .  Type of c arb on  ch ain   Pr im ary Su ffix  General Nam e 

1   (a) S atura te d   -a n e   A lk a n e  

2  (b) U n s aturat ed w i th  o n e  do u ble  b on d   -e n e   A lk e n e  

3   (c)  Un s atura ted w ith  o n e  trip le  b o nd   -y n e   A lk y n e  

If  the  parent  carbon  chain  contain  two,  three  or  more  double  or  triple  bond,  numerical  prefix  such  as  di
(for  two),  tri  (for  three),  tetra  (for  four)  etc.  are  added  to  the  primary  suffix.  For  example.

S. No .  Type of carb on chain  Pr im ary Su ffix  Gen eral  Nam e 

1   (a) Unsaturated with two double bonds  -d ie n e  A lka d ie n e  

2   (b) Unsaturated with two triple  bonds  -diyne  Alkadiyne  

3 . Secondary  Suffix  :  A  secondary  suffix  is  always  added  to  the  primary  suffix  to  indicate  the  nature  of  the
functional  group  present  in  the  organic  compounds.  Secondary  suffix  of  some  important  functional  groups
are  given  below.

S . N o .  Class of org anic com pou nds  Functional gr oup  S econdar y S uffix 
1  A lcohols 
2  A ldehydes  – OH  - o l 
3  K e t on e s  
4  C arboxylic acids  –CHO  - a l 
5  A cid amides  
6  A cid chlorides  >  C =  O  - one 
7  E sters 
8  N itriles  – CO OH  - o i c ac id  
9  T h i o a lco h o ls  
1 0  A mines  –CONH   - a m i de 
2 - oyl halide  
– COX 

– COO R  alka noate  

– CN  -  ni tril e  

– S H   - t hi o l 

– N H   -  a m in e 
2

www.abyss.net.in

ABYSS Learning

The  following  examples  illustrate  the  use  of  word  root,  primary  suffix  and  secondary  suffix  in  naming  of
organic  compounds.

S .  Or ganic  W o r d  r o ot   Prima ry  Sec o nd ary   IUP AC  nam e 
No.  Com pou nd s  Eth  s u ffix  s uffix  Ethanol 
CH3C H2O H  Pr op   a n  (e )   ol 
1  CH3C H2CH 2NH 2  B ut  a n  (e )   Amine   P ro p an a m in e 
2  CH CH CH COOH  Pr op   a n  (e )   O ic  a ci d  Bu tan o ic  aci d 
3  Pr op   P ro p a n e n itr i le  
4  322 Pr op   an(e)  N i tri le  
5  en(e)  al  Propenal  
6  CH3C H2CN   y n( e )  Pr o py n o ic  a ci d 
CH  =  CH CHO   o i c a c id 

2

HC  CCOOH  

4 . Primary  prefix  :  A  primary  prefix  is  used  simply  to  distinguish  cyclic  from  acyclic  compounds.  For  example,
in  case  of  carbocyclic  compounds.(cyclic  compounds  containing  only  carbon  atoms  in  the  ring.),  a  primary
prefix,  cyclo  is  used  immediately  before  the  word  root.  Thus.

CH2 Cyclo              +    Pent            +    ane                     =  Cyclopentane
CH2 CH2

eg.  :  CH2 CH2 Primary prefix  +    Word root    +    primary suffix      =  IUPAC

If  the  prefix  cyclo  is  not  used,  it  simply  indicates  that  the  compound  is  acyclic  or  open  chain.
5 . Secondar y  Prefix  :  In  IUPAC  system  of  nomenclature,  certain  groups  are  not  considered  as  functional

groups    but  instead  are  treated  as  substituents.  These  are  called  secondary  prefixes  and  are  added  immediately
before  the  word  root  (or  the  primary  prefix  in  case  of  carbocyclic  compounds)  in  alphabetical  order  to  denote
the  side  chains  or  substituent  groups.  The  secondary  prefixes  for  some  groups  which  are  always  treated  as
substituents  groups  (regardless  of  the  fact  whether  the  organic  compound  is  monofunctional  or  polyfunctional)
are  given  below  :

S .  O r gan ic   Second ary  W o rd  ro o t    IUP AC  n am e 
No .  C o m p o un d s   pr efix 
Bromo  eth  W or d  r oo t  B ro m o e th an e  
1  CH C H –Br  m e th   N itrom etha ne 
     3 2 Nitro  eth  ane   E thoxyethane 
ane  
2  CH –NO   E th o xy   ane  
32

3   C2H5 –OC2H 5 

In  case  of  carbocylic  compounds,  primary  prefixes  are  also  used.

Br

4

CH

5 3 4-Bromo + Cyclo + hex + an (e) + 1- ol

Ex  : H2C CH2 Secondary Primary Word Primary  Secondary
  
2 prefix prefix root suffix suffix
H2C6
CH2

CH

1

OH

www.abyss.net.in

ABYSS Learning

E x . Write  the  IUPAC  name  of  the  compound
CH3

OH
CH
CH3 CH3

S o l . 2  -  Isopropyl-5-methylcyclohexanol  or  2-(1-methylethyl)-5-methyl  cyclohexanol

Here

Secondary  prefix = 2  -  Isoprypyl  5–methyl

Prim  aryprefix = Cyclo

Word  root = hex

Primary  suffix = an  (e)

Secondary  suffix = ol

E x . The  correct  IUPAC  of  the  following  compound  is  -

                 

(A)  1,  3,  4-trimethyl  cyclopentane (B)  1,  3,  5-trimethyl  cyclopentane

(C)  1,  3,  5-trimethyl  cyclobutane (D)  1,  2,  4-trimethyl  cyclopentane

Sol. (D)

E x . The  correct  statement  is  about  following  compound  is  -

OH
                

(A)  word  root  is  But (B)  secondary  prefix  is  cyclo

(C)  primary  suffix  is  ol (D)  primary  prefix  is  cyclo

Sol. (D)

 IUPAC  Nomenclature  of  Branched/Complex  Alkanes  :

( 1 ) (a) Select  the  longest  chain  of  carbon  atoms  in  the  molecule.

(b) Count  the  number  of  carbon  atoms  in  that  chain  and  name  according  to  the  following  rules.

Example  :

CH2–CH3

45 6 7

CH3–C–CH2–CH2–CH3

32 1

CH2–CH2–CH3

Longest  chain  has  7  carbons.

  It  is  a  hept   +  ane

word root primary suffix

When  chains  of  equal  lengths  are  competing  for  selection,  that  chain  is  selected  which  has  more  number

of  subtituents.

www.abyss.net.in

ABYSS Learning

CH3

CH3–H2C–CH–CH–CH3

CH–CH2–CH2–CH3

CH2–CH2–CH3

Here  the  chain  shown  is  selected.

( 2 ) Carbon  atoms  in  the  longest  chain  selected  as  above  in  numbered  consecutively  form  one  end  to  the  other

such  that  the  substituents  attached  get  the  lowest  number.

In  the  above  example,  according  to  this  rule,  the  numbering  will  be  done  as  :

CH3

32 1

CH3–H2C–CH–CH–CH3

45 6 7

CH–CH2–CH2–CH3

CH2–CH2–CH3

By  this  numbering,  locant  (substituents)  get  the  number  2,  3  and  4  compared  to  4,  5  and  6  if  numbering

is  done  from  other  end.

( 3 ) Each  substituent,  which  obviously,  is  an  alkyl  group  is  named  according  to  number  of  carbon  atoms  present

in  it  and  it  is  prefixed  by  the  number  to  which  it  is  located  in  the  main  chain.  In  the  above  example,  substituents

are  as  following:

–  CH3  (methyl)  group  at  carbon  NO.  2  2-methyl
3-ethyl
–  C2H5  (ethyl)  group  at  carbon  NO.  3  4-propyl

–  CH2CH2CH3  (propyl)  group  at  carbon  NO.  4 

Hence,  the  above  compound  is  named  as  :

3-Ethyl-2-methyl-4-propylheptane

( 4 ) If  the  same  substituent  occurs  more  than  once  in  the  molecule,  the  prefix  di  (for  two),  tri  (for  three),  etc.

used  to  indicate  how  many  times  it  appears.

The  above  example  can  be  written  with  a  little  modification  as  :

Example  :

CH3CH3

CH3–H2C–3C – C2H – C1 H3

45 67

  CH–CH2–CH2–CH3

CH2–CH2–CH3

Methyl  at  No.  2,  3,  Ethyl  at  no.  3,  propyl  at  no.4
This  will  be  named  as  : 3-Et hyl-2,3-dimet hyl-4-propylheptane
( 5 ) The  name  of  the  compound  is  composed  in  such  a  manner  that  each  substituent  with  its  number  and  name
is  written  alphabetically  just  before  the  parent  name.  Prefixes  di,  tri,  tetra  etc.  are  not  considered  in  deciding
alphabetical  order.
 Ethyl  will  be  written  before  methyl  which  will  be  written  before  propyl.
Note  that  in  the  above  examples,  this  pattern  has  been  compiled  with.

*Also,  as  per  convention,

(i) numbers  are  separated  each  other  by  commas.
(ii) numbers  are  separated  from  words  by  hyphens  and
(iii) write  the  name  of  the  compound  as  a  single  word  (with  no  space  between)

www.abyss.net.in

ABYSS Learning

E x . Write  the  IUPAC  name  of

1234 56

H3C–HC–HC–HC–H2C–CH3

CH3 CH2CH3

CH3
1. Primary  suffix  is  ane  as  all  are  single  bonds.
2. Chain  is  numbered  as  shown.
3. Root  word  is  hex
4. Prefixes  methyl  appears  twice             It  is  2,  4-dimethyl  and  3-ethyl
5. While  arranging  in  alphabetical  order  Replicators  di,  tri,  tetra,  are  not  considered.
 3-Ethyl-2,4-dimethylhexane
Ex  : Write  the  IUPAC  name  of  the  following  compounds.

CH3

54 3 21 1 2 3 4 56 78 9

(i) CH3–CH2–CH–C–CH3                    (ii)      CH3–CH2–CH2–CH2–CH–CH2–CH2–CH2–CH3

CH3 CH3 1

CH–CH3

2

CH–CH3

3

CH3

S o l . (i)  2,  2,  3-trimethylpentane

(ii)  5-(1,2-dimethylpropyl)nonane

Ex  : Write  IUPAC  name  of  the  following  compounds  :-

CH3 CH2–CH3

(a) CH3–CH2–CH–CH2CH–CH2–CH2–CH3 (b)    CH3–C–CH2–CH–CH2–CH–CH3

CH3 CH2–CH3 CH3 CH3

(c)

S o l . (a)  5-Ethyl-3-methyloctane
(b)  4-Ethyl-2,  2,  6-trimethylheptane
(c)  3-Methylhexane

 IUPAC  NOMENCLATURE  OF  ALKENES  :

Functional  group  :  –C=C–

(1) Select  the  longest  chain  containing  carbon-carbon  double  bond.  This  need  not  be  the  longest  chain  in  the

compound  as  a  whole.  Parent  name  will  be  alkene  corresponding  to  number  of  carbon  atoms  in  the  longest

chain. CH3

CH3–CH2–C–CH=CH2

CH2
CH2
CH3

Longest  chain  is  as  shown  above  it  has  6  atoms    hexene  =  parent  name
(2) Carbon  atoms  in  the  longest  chain  is  numbered  so  that  doubly  bonded  carbon  atom  gets  the  lowest  number.

The  position  of  double  bond  is  indicated  by  the  smaller  of  the  numbers  assigned  to  two  carbon  atoms  of
double  bond.

www.abyss.net.in

ABYSS Learning

 The  above  example  can  be  rewritten  as,

CH3

32 1

CH3–CH2–C–CH=CH2

4CH2

5 CH2

6 CH3
Position  of  double  bond  will  be  indicated  as  no.  1.

Hence,  name  will  be, 3-Ethyl–3–Methylhex–1–ene

CH3 CH3

Example  :  6 54 3 2  1 

CH3–C–CH=CH–C–CH3

CH3 CH3

2, 2, 5, 5-tetramethylhex-3-ene

Ex  : Write  the  IUPAC  name  of  the  following  compounds  :

CH3 CH3 CH2–CH3 CH3
(a)  CH3–CH2–CH–CH=CH–CH2–CH3 (b)  CH3–CH2–CH–CH–CH–CH=C–CH3

CH2
CH2
CH–CH3
CH3

Ans. (a)  5–Methyl–3–heptene
(b)  5–Ethyl–2,6–dimethyl–4–(3–methylbutyl)oct–2–ene

Ex  : Draw  the  bond  line  structures  of  the  following  compounds.
(a)  2–Methyl–3–heptene          (b)  2,  6–Dimethyl  hept  –1,  5–diene

Sol. (a)         (b)   

 IUPAC  nomenclature  of  alkynes  (–  C    C  –  group)
Numbering  of  longest  chain  is  exactly  same  as  that  for  naming  alkenes.

Example

CH3

CH3–C–CH2–CCH

CH3CC–CH3                                                CH3

But–2–yne 4,4–dimethylpent–1–yne

Ex.  : Write  the  IUPAC  name  of  the  following  compounds  :

(a)  CH3–CH–CC–CH3 (b)  
(b)  4–Propyl–2–heptyne
CH3
S o l . (a)  4–Methyl–2–Pentyne www.abyss.net.in

ABYSS Learning

Ex.  : Write  the  IUPAC  name  of  the  following  compounds  :

(a)  CH3–C    CCH(CH3)2 CH3
(b)  H3C–CH2–C – CH–CCH

CH3CH3

S o l . (a)  4–methyl–2–pentyne,  (b)  3,  4,  4–trimethyl–1–hexyne

 IUPAC  nomenclature  of  hydrocarbons  containing  both  double  and  triple  bonds  occurring  only
once  :

(i) Such  hydrocarbon  is  named  as  alkenyne  (not  alkynene).

(ii) Numbering  is  done  in  a  manner  that  double  and  triple  bonds  get  the  lowest  possible  number.  In  case
of  a  choice,  the  double  bond  is  given  preference  over  triple  bond.

Example  :    CH3–CH=CH–CCH  multiple  bonds  at  (1)  &  (C)
5 43 21

Note 1 23 45  multiple  bonds  at  (B)  &  (D)

 Name  will  be  Pent  –3–en–1–yne

HC   C  –  CH2– CH  =  CH2 Pent–1–en–4–yne
5 4 3 2            1 

(Here  there  is  a  choice  :  if  we  number  from  other  side)

HC   C  –  CH2– CH  =  CH2
1 2 3 4            5

again  multiple  bonds  are  at  numbers  (1)  and  (D)

So,  here  we  will  give  preference  to  double  bond  over  triple  bond.

Ex  : Write  IUPAC  name  of  the  following  compounds.

(a) CH3–CH2–CC–CH–CH=CH2 (b) 
CH2
CH–CH3
CH3

S o l . (a) 3–(2–Methyl  propyl)–1–hepten–4–yne
(b) Oct–1–en–4–yne

Ex  : Write  IUPAC  name  of  the  following  compounds.

(a) H–CCCH2CH=CH2 (b) 
pent–1–en–4–yne
Sol. (a) 1,4–heptadiene–6–yne
(b)

www.abyss.net.in

ABYSS Learning

 IUPAC  NOMENCLATURE  OF  ALICYCLIC  COMPOUNDS  :
( 1 ) The  names  of  alicylic  compounds  are  obtained  by  adding  the  prefix  "cyclo"

Cyclobutane Cyclopentene

( 2 ) The  numbering  of  the  carbon  atoms  in  the  ring  is  done  in  such  a  way  that  the  substituent  which  comes

first  in  the  alphabetical  order  is  given  the  lowest  possible  number  provided  it  does  not  violate  the  lowest

set  of  locants  rule

Example  :

CH3 CH3 C2H5 I

4

3 53 3 2 Br

42 4

2 CH3
6 1 CH2CH3 CH3    
5 1 51

6 CH2CH3 CH3     Cl

6

1–Ethyl–3–methyl 2–Ethyl–1,4–dimethyl 3–Ethyl–1,1–dimethyl 2–Bromo–1–chloro
cyclohexane cyclohexane –3–iodocyclohexane
cyclohexane

( 3 ) When  the  ring  contains  more  or  equal  number  of  carbon  atoms  than  the  alkyl  group  attached  to  it,  then

it  is  named  as  a  derivative  of  cycloalkane  and  the  alkyl  group  is  treated  as  substituent

Example  :

CH2–CH2–CH3 (CH2)5CH3

3
2

4

    CH3(CH2)5 51 (CH2)5CH3           

6

Propylcyclopropane 1, 3, 5–Trishexylcyclohexane Cyclohexylcyclohexane

( 4 ) The  alkane  chain  contains  greater  number  of  carbon  atoms  than  present  in  the  ring,  the  compound  is  considered
as  the  derivative  of  alkane  and  the  ring  is  designated  as  substituent.
Example  :

13 CH3–CH2–CH––CH2–CH2–CH3
2

4

2-Cyclopropylbutane 3–Cyclopentylhexane

( 5 ) If  ring  has  unsaturation  and  side  chain  is  saturated  then  ring  is  selected  as  parent  chain.
If  side  chain  has  unsaturation  and  ring  is  saturated  then  side  chain  is  selected  as  parent  chain.
If  both  have  unsaturation  the  chain  with  maximum  unsaturation  has  selected  as  parent  chain.
If  equal  unsaturation  then  longest  chain  is  selected  as  parent  chain.
If  unsaturation  and  number  of  carbon  atoms  both  are  equal  then  ring  is  selected  as  parent  chain.
Example  :

6 3
51 42

     4 2  5 1

3 6

1–Ethyl  Cyclohex–1–ene   6–Ethyl–3,3–dimethyl  cyclohex–1–ene

www.abyss.net.in

ABYSS Learning

32 3 21

=1 CH2 CH2–CH=CH

Methylene Cyclohexane 3–Cyclopropyl prop–1–ene

6 CH2–CH2–CH= CH–CH2–CH3

51
42

3

1–(Hex–3–ene) Cyclohex–1–ene

( 6 ) If,  more  than  one  alicyclic  ring  is  attached  to  a  single  chain,  the  compound  is  named  as  a  derivative  of  alkane
and  the  ring  is  treated  as  a  substituent  group.
Example

  CH2      

Dicyclopropylmethane 1,3-Dicyclohexyl propane 1–Cyclohexyl–4–cyclopropylbutane

( 7 ) If  a  multiple  bond  and  some  other  substituents  are  present  in  the  ring,  the  numbering  is  done  in  such  a
way  that  the  multiple  bond  gets  the  lowest  number.  Example  :

NO2

3

4 2
1
 

5

6

3–Nitrocyclohex–1–ene

( 8 ) If  a  compound  contains  an  alicyclic  ring  directly  linked  to  the  benzene  ring.  It  is  named  as  a  derivative  of
benzene.  Example  :

56 23

11 4
NO4
2

Cyclo hexyl benzene 3 2 65

CH3

1–(2–Methylcyclohexyl)–4–nitrobenzene

( 9 ) If  functional  group  is  present  in  cyclic  compounds  the  main  chain  is  taken  there  principal  functional  is  lie,
if  the  principal  functional  group  is  present  in  ring  also  then  main  chain  will  be  taken  for  the  maximum  no.
of  carbon  atoms.

OH 1
3
1
62 2

53 OH
4 1–Cyclohexyl propan–2–ol

2–propylcyclohexan–1–ol

( 1 0 ) When  chain  terminating  functional  group  is  directly  attached  with  ring  then  ring  is  taken  as  parent  chain
&  special  suffix  used  for  functional  group.

www.abyss.net.in

ABYSS Learning

S . No .   Fu nct iona l Group  S u ffix 
1  — CHO  C arb alde h y de 
2  — COOH  C arboxylic acid 
3  — COX  Carb onyl halide 
4  — COOR  Alkyl C arboxylate 
5  — CONH2  Carbox amide 
6  — CN  Carbonitrile  

Example    :

CN CHO O
      
2 COOC2H5

1

       

Cyclohexane Carbonitrile Cyclohexane Carbaldehyde Ethyl–(2–oxo)cyclohexane–1–carboxylate

Ex  : Write  the  IUPAC  name  of  the  following  compound  :

CH= CH–COCH3 CH3
CH3

(i)                          (ii)   

O CH3
3 CH3
4
42
CH=C3 H–C2 –C1 H3
      (ii)   
S o l . (i) 
51

4–Cyclohexylbut–3–en–2–one 2,3–Dimethyl cyclopent–1–ene

Ex  : The  correct  IUPAC  name  of  the  following  compound  is  :

OH OH
CH2–CH–CH2–CH3

(A)  1–(2–hydroxy  cyclohexane)  butan–2–ol
(B)  4–(2–hydroxy  cyclohexane)  butan–3–ol
(C)  1–(2–hydroxy  but–1–yl)  cyclohexan–2–ol
(D)  2–(2–hydroxy  butyl)  cyclohexan–1–ol
Sol.  (D)

www.abyss.net.in

ABYSS Learning

IUPAC  NOMENCLATURE  OF  COMPOUNDS  CONTAINING  FUNCTIONAL  GROUPS
Funtional Groups

Non chain  terminating Chain terminating
(i) –SO3H
O
(i) –C–OH

(ii) –C– (ii) –C–O–C–
O OO

(iii) –OH (iii) –C–OR
(iv) –NH2 O
(v) –SH
(iv) –C–X
O

(v) –C–NH2
O

(vi) –CN
(vii) –CHO

 Rules  for  non  chain  terminating  functional  groups  :
(A ) Parent  chain  :

Select  the  longest  possible  chain  with  maximum  functional  group  and  maximum  unsaturation    with  out  caring
whether  it  also  denotes  the  longest  possible  chain  or  not.

Example  :    432

CH3–CH2–CH–CH2–CH3

1

CH2OH

(Parent  chain  contains  four  rather  than  five  carbon  atoms)
( B ) Lowest  number  for  the  functional  group  :

Numbering  is  done  from  that  side  of  the  chain  which  gives  lowest  locant  to  the  principle  functional  group
followed  by  double  and  triple  bonds.

O O

6 5 4 32 1 1 2 3 45 6

CH3–CH–CH2–C–CH2–CH3 CH3–CH–CH2–C–CH2–CH3

Example  :  CH3 CH3
(II) wrong
(I) correct

(  C=O group gets lowest number 3  ) ( C=O group gets number 4 which is not lowest)

 Rules  for  chain  terminating  functional  groups  :

( 1 ) When  a  chain  terminating  functional  group  such  as  –CHO,  –COOH,  –  COOR,  –CONH2,  –COCl,  –  CN
etc.  is  present,  it  is  always  given  number  1  (one.)

www.abyss.net.in

ABYSS Learning

Example  :  :

O O

4 3 21 5 4 32 1

CH3–CH2–CH–C–OH CH3 –CC–CH2–C–H

CH3 Pent–3–yn–1–al
2–Methylbutan–1–oic acid

( 2 ) If  a  compound  contains  two  or  more  like  groups,  the  numerical  prefixes  di,  tri,  tetra  etc.  are  used
Example  :  :

CH2 CH CH2 CH3–C–CH2–C–CH3
OH OH OH
Propane –1,2,3–triol OO
Pentane–2, 4–dione

( 3 ) The  name  for  benzene  as  substituent  is  phenyl.  In  case  the  phenyl  ring  is  further  substituted,  the  carbon
atoms  of  the  ring  directly  attached  to  the  parent  chain  in  such  a  ways  that  the  substituent  on  the  ring  gets
the  least  possible  number.

Example  :  :

21 CH3O

CH–CCl3 CH3–C2 – C1 –OC2H5

1
2

1,1,1–Trichloro–2,2–diphenyl ethane 3 NO2
Ethyl–2–methyl–2–(3–nitrophenyl) propanoate

( 4 ) If  the  organic  molecule  contain  more  than  one  similar  complexes  subtitutents,  then  the  numerical  prefixes
such  as  di,  tri,  tetra  etc.  are  replaced  by  bis,  tris,  tetrakis  etc.  respectively.
Example  :  :

HO–CH2–CH2–O CH–COOH
       

HO–CH2–CH2–O

2,2–Bis–(2–hydroxyethoxy) ethanoic acid

Ex  : Write  IUPAC  name  of  the  following  compounds  :

O (iii)  CH3–CH–CH2–COOH
CH3
(i)    CH3CH2–CH–C–OCH3            (ii)  (CH3)3COH
CH2
CH3

S o l . (i)  Methyl–2–ethylbutanoate
(ii)  2–Methylpropan–2–ol
(iii)  3–Methylbutanoic  acid

www.abyss.net.in

ABYSS Learning

 Rules  for  IUPAC  nomenclature  of  polyfunctional  compounds  :
1 . When  an  organic  compound  contains  two  or  more  different  functional  groups  is  selected  as  the  principal

functional  group  while  other  groups  are  treated  as  substituents.

S.  NO.              Functional  group Prefix Suffix
1. —  (C)  OOH  (carboxylic  acid) × oic  acid
—  COOH carboxy carboxylic  acid
2. —  SO3H  (sulphonic  acid) sulpho sulphonic  acid
O
× oic  anhydride
(C)
3 . O(anhydride)

(C)
O

4. —  (C)OOR  (ester) × alkyl  ------  oate
—  COOR alkoxy  carbonyl alkyl  -----  carboxylate
or  carbalkoxy
5. —  (C)OX  (acid  halide) × oyl  halide
—  COX halo  formyl carbonyl  halide
× amide
6. —  (C)ONH2  (amide) carbamoyl carboxamide
—  CONH2 × Nitrile
cyano carbonitrile
7. —  (C)N  (cyanide) × isonitrile
—  CN isocyano/carbyl  amino ×
oxo al
8. —  N    (C)  (isocyanide) formyl carbaldehyde
—  NC

9. —  (C)HO  (aldehyde)
—  CHO

10. (C)    (Ketone) keto/oxo one

O hydroxy ol
mercapto thiol
11. —  OH    (alcohol) amino amine
12. —  SH    (thio  alcohol) alkoxy ×
13. —  NH2  (amine)
14. —  OR    (ether)

2 . Some  functional  group  such  as  all  halo  groups.  (Fluoro,  bromo,  chloro,  iodo)  nitrosol,  (NO)  nitro  (–NO2)

Example  :        NH2

5 43 2 1

CH3–CH–CH–CH–CH3

Cl OH

4–Amino–3–chloropentan–2–ol
(–NH2 & –Cl group treat as substituent )

www.abyss.net.in

ABYSS Learning

Numbering  the  principal  chain  order  is

[Principal  functional  group  >  double  bond  >  triple  bond  >  substituents]

Example  : O

CH3–C–CH2–COOH 5 43 2 1

CH3–C–CH2–CH2–CHO

O 4–Oxopentan–1–al
3–Oxobutan–1–oic acid [–CHO > C=O]

[–COOH > – CO]

O

65 4 32 1

O = CH–CH2–CH2–C–CH2–COOH

3,6–Dioxohexanoic acid
 or 5-formyl–3–oxopentanoic acid

[COOH > C & CHO]

O

3 . The  longest  possible  chain  of  carbon  atoms  containing  the  functional  group  the  maximum  number  of
multiple  bonds  is  selected  as  parent  chain.
Example  :

4 32

(a)  CH3–CH2–CH–CH2–CH3

CH2OH

1

parent  chain  contains  four  rather  than  five  carbon  atoms.

O
(b)  CH3–CH–CH2–C–O–C2H5

3 21

CH=CH2

45

parent  chain  contains  four  rather  than  six  carbon  atoms.

O

4

O CH3 C–NH2
1
(c) CH3–CH–CH2–C–O–C2H5
3 21 (d)      4  3  2
CH=CH2
45 CH3–CH–CH–CHCH3
Ethyl–3–methyl–4–pentenoate
CH3 CH3

3,3–Dimethyl–2–(1–methylethyl) butanamide

4 . If  more  than  one  same  chain  terminating  group  are  present  then  the  principal  chain  is  selected  including
the  functional  groups  and  numbering  is  done  from  that  side  which  gives  lowest  locant  to  unsaturation  substituent.

Example  :  HOOC–CH2–CH2–COOH 12 3 4 5
12 3 4
Butan–1,4–dioic acid NC–CH–CH2–CH2–CN

CH3

2-Methylpentanedinitrile

www.abyss.net.in

ABYSS Learning

Example  :    Write  the  IUPAC  name  of

34 5

CH3–CH2–CH–CH2–CH–CH3

12 67

CN–CH2 CH2–CH3

1. The  longest  chain  containing  functional  group  is  of  7  carbon  atoms.  Therefore,  the  word  root  is  hept
&  the  chain  is  numbered  as  shown.

2. There  is  no  multiple  bond  in  it.  Hence,  the  primary  suffix  is  ane.
3. The  functional  groups  is  –CN.  Hence  ,  secondary  suffix  is  nitrile.
4 . Moreover,  there  is  a  methyl  groups  on  carbon  5  and  ethyl  group  on  carbon  3.
5. The  IUPAC  name  is  ,therefore,  3–Ethyl–5–methylheptanenitrile
Example  :  Write  the  IUPAC  name  of

76 54 32 1

CH3–CH2–CH–CH=CH–CH2–CHO

CH3

1 . The  longest  chain  containing  functional  group  is  of  seven  carbon  atoms.  Therefore,  word  root  is  hept.
2. As  C=C  double  bond  is  present  in  the  molecule.  Thus,  primary  suffix  is  ene.
3. The  secondary  suffix  is  al  because  of  presence  of  –CHO  group.
4. The  chain  is  numbered  as  shown  so  that  carbon  atoms  of  –CHO  group  gets  number  1.

The  methyl  group  is  present  on  carbon  5  while  position  of  double  bond  is  3.  Thus  ,  IUPAC  name  is

5–Methylhept–3–en–1–al

Example  :  Write  the  IUPAC  name  of

NH2

11 9 3 2 1

CH3–CH–CH2 CH3  CH2–CH–CH3

10 87 4

HC CH CH OH

65

Br HC–CH

NO2
1. Primary  suffix  is  ene,  due  to  presence  of  double  bond  between  C4  &  C5
2. Senior  functional  group  is  alcohol  hence  secondary  suffix  is  –ol
3. Root  word  is  undec.
4. Chain  is  numbered  as  shown.
5. 6–Nitro–7–methyl–8–bromo–10–amino  are  prefixes.  Arrange  them  in  alphabetical  order  &  give  the

name
10–Amino–8–bromo–7–methyl–6–nitroundec–4–en–2–ol

 Nomenclature  of  Aromatic  Compounds  :
The  aromatic  compounds  are  cyclic  compounds  contains  one  or  more  benzene  type  rings.  Benzene  is  the
simplest  hydrocarbon  of  aromatic  series  which  has  planar  cyclic  ring  of  six  carbon  atoms  having  three  double
bonds  in  alternate  positions  as  shown  below.

CH 1
HC CH 62

HC CH              or                  5 3

CH 4 

www.abyss.net.in

ABYSS Learning

(A) Nuclear  Substituted  –
The  functional  group  is  directly  attached  to  benzene  ring  in  the  IUPAC  system,  they  are  named  as  derivative
of  benzene.  The  position  of  the  substituents  in  disubstituted  benzenes  are  indicates  either  by  prefixes  such
as  o–(ortho)  for  1,  2,  m–(meta)  for  for  1,  3  and  p  (para)  for  1,  4  position.  However,  many  of  their  common
names  have  also  been  adopted  by  the  IUPAC  system.

( B ) Side–Chain  Substituted  –
The  functional  group  is  present  in  the  side  chain  of  the  benzene  ring  in  the  IUPAC  systems,  these  are  usually
named  as  phenyl  derivatives  of  the  corresponding  aliphatic  compounds.
The  IUPAC  and  common  names  of  a  few  impor tant  members  of  each  formly  are  given  below  :
(a) Aromatic  hydrocarbons  (arenes)  :  Hydrocarbons  which  contain  both  aliphatic  and  aromatic  units  are
called  arenes.  These  are  of  two  types
(i) Hydrocarbon  containing  one  ring  only.
Example  :

CH3 CH3 CH3 123

1 CH3 1 1 CH3–CH–CH3
2
2 2
3

  ,  3 CH3 ,    4  ,     

CH3
1,2–Dimethyl benzene 1,3–Dimethyl benzene 1,4–Dimethyl benzene Isopropyl benzene 

(o–Xylene) (m–Xylene) (p–Xylene) (Cumene)

CH=CH2 32 1 CCH 3 21

CH2CH=CH2 CH2C CH

  ,          ,      ,           

Ethenynl benzene 3–propenyl benzene Ethynyl benzene 3–propynyl benzene

(Styrene) (Allyl benzene) (Phenyl acetylene) (Propargyl benzene)

(ii) Hydrocarbon  containing  condensed  or  fused  ring  : 3

4 2
1
8 1 5 9 1  5
7 2 72 6

6 36 3 10   ,
5
  ,        ,          7 9

4 5 10 4 8

Naphthalene Anthracene Phenanthrene

 Aryl  Groups  :

CH2– CH C CH3 CH3 CH3

1 1 1

22
2

3

    ,    ,      ,    ,  2–Tolyl   ,    3   ,    4
Phenyl Benzo or o–Tolyl
Benzyl Benzal 3–Tolyl 4–Tolyl
or m–Tolyl or p–Tolyl

www.abyss.net.in

ABYSS Learning

 Halogen  derivatives  : Cl

1

Cl

Cl 1 Cl

12

  ,          ,        Cl

1,2–Dichlorobenzene 1,4–Dichlorobenzene

Chloro benzene or o–Dichlorobenzene  or p–Dichlorobenzene 

CHCl2 12 1 CH=CH–Cl

CH2–CH2–CH2–Br

    ,    ,   

Phenyldicholoromethane 1–Bromo–3–phenyl propane 1–chloro–2–phenyl ethene

(Benzyl chloride)

 Hydroxy  derivatives  :

The  nuclear  hydroxy  derivatives  are  called  phenols  while  the  side  chain  substituted  hydroxy  derivatives  are
called  aromatic  alcohols.

(i) Phenols–monohydric OH
OH
1
2

3

  , 4  ,
Hydroxybenzene
CH3
(phenol)
4–methyl phenol

(p-cresol)

(ii) Dihydric  and  polyhydric  phenols

OH OH OH
1 OH
1 OH
2 2 Benzene–1,4–diol(Quinol)

Benzene–1,2–diol 3 OH
(Catechol) Benzene–1,3–diol

(Resorcinol)

(iii) Aromatic  Alcohols  : 21
CH2OH
C H3CH–OH

Phenyl methanol 1–phenyl ethanol
(Benzyl alcohol) (–phenyl ethyl alcohol)
(iv) Aromatic  ethers
O–C6H5
OCH3
Phenoxy benzene
  (Diphenyl ether)
Methoxy benzene
www.abyss.net.in
(Anisol)

ABYSS Learning

(v) Aldehydes CHO 
CHO 1 OH
CH2CH2–CHO
Benzaldehyde 2

(vi) Ketones     

12 2–Hydroxy benzaldehyde 3–phenylpropanal

COCH3 (Salicylaldehyde) (–phenylpropionaldehyde)

COC6H5

1–phenyl ethanone Diphenylmethanone
(Acetophenone) (Benzophenone)

(vii) Nitro  Compounds NO2
NO2
1
Nitrobenzene 2
(viii) Amines
(a) Aryl  amines 3 NO2
1, 3–Dinitrobenzene
NH2 (m-Dinitrobenzene)

Benzenamine NH2 NH2
(Aniline)
Benzene–1,2–diamine
(b) Aryl  alkyl  amine (o-phenylenediamine)
CH2NH2

CH2–CH2–NH2

Phenyl methanamine 2–Phenyl ethanamine
(Benzylamine) (–phenyl ethyl amine)

(ix) Arenediazonium  Salts  : 
N NHSO4

NN.Cl Benzene diazonium hydrogen sulphate

Benzene diazonium chloride N= C

(x) Cyanides  and  Isocyanides
CN

Benzonitrile Phenyl isocyanide or 
or Phenyl Cyanide Phenyl carbylamine

www.abyss.net.in

ABYSS Learning

(xi) Carboxylic  Acids COOH COOH
COOH
1 1
Benzoic acid
(xii) Anhydrides CH3 COOH

2 2

        

2–Methyl benzoic acid Benzene–1,2–dicarboxylic acid

(o–toluic acid) (Pthalic acid)

OO
C6H5–C–O–C–C6H5
Benzoic anhydride

(xiii) Esters (xiv)  Amides

CH3 4 3 O
C–NH2
2 O

1 O–C–CH3        

4–Methyl phenyl ethanoate Benzamide

E x . Write  IUPAC  name  of  the  aromatic  compounds

CH3 CH2OCH3
CH2–CH–CHO

(i)                (ii) 

S o l . (i)  2-methyl  -3-phenylpropanal,    (ii)  Methoxyphenylmethane  (Benzylmethyl  ether)

 Some  Impor tant  1993  Recommendations  of  IUPAC  Nomenclature  of  Organic  Compounds  :

1 . Locants  (numerals  and  /  or  letters)  are  placed  immediately  before  the  part  of  the  name  to  which  they  relate.
For  example  :

CH3CH2CH  =  CH2  should  be  named  as  but–1–ene
CH3CH2OH  should  be  named  as  ethan–1–ol
Similarly  ,  a  few  more  examples  are  given  as  following  :

OH CH3 CH3

 1  4  3  2  1  3  2  1
 2
    CH3–CH=C–CH2OH         CH3–C–CH2OH
 3
CH3
Cyclopent–2–en–1–ol
2–Methylbut–2–en–1–ol 2,2–Dimethylpropan–1–ol

2 . The  locant  1  is  often  omitted  when  there  is  no  ambiguity.  For  example.

CH3CH2CH2COOH CH3CH2CHO CH3CH2CH2CN
Butanoic  acid   Propanal       Butanentrile

In  all  the  above  examples  locant  1  for  the  functional  group  is  omitted  because  the  position  of  the  functional

group  is  unambiguous.  However,  in  the  following  cases  the  position  of  the  functional  group  must  be  mentioned.

CH3CH2CH2OH CH3CH2CH2NH2
Propan–1–ol Propan-1- amine

www.abyss.net.in

ABYSS Learning

Here,  we  cannot  write  simply  propanol  (or  propanamine)  because  there  are  two  propanols  ;  propan–1–ol
and  propan–2–ol.

3 . Arrangement  of  Prefixes  :
 Simple  prefixes  such  as  methyl,  ethyl  chloro,  nitro,  hydroxy,  etc.  are  arranged  alphabetically.

The  prefixes  di,  tri,  etc.  are  however  not  considered  for  comparison.

 1  2  3  4  5  6  7  8  2  1 

CH3CH2CHCH2CHCH2CH2CH3 CH2CH2

Example  :  CH3 C2H5 Cl Br
5–Ethyl–3–methyl octane 1–Bromo–2–chloroethane

(ii) The  name  of  a  prefix  for  a  substituted  substituent  is  considered  to  begin  with  the  first  letter  of  its
complete  name.

Example  :

Cl

CH–CH2–CH3

 8  7  6  5  4  3  2  1

CH3–CH2––CH2–CH2–CH–CH–CH2–CH3

CH3
4–(1–Chloropropyl)–3–methyloctane

for  the  substituted  1–chloropropyl,  'C'  is  taken  as  the  first  letter.

(iii) When  two  or  more  prefixes  consist  of  identical  roman  letters  priority  for  citation  is  given  to  the  group
which  contains  the  lowest  locant  at  the  first  point  of  difference.

For  example
Cl–CH–CH3

 1
 2

 3

 4

CH2–CH2Cl
1–(chloroethyl)–4–(2–chloroethyl) cyclohexane

Here,  1–chloroethyl  gets  priority  over  2–chloroethyl.
 Bicyclic  :

Bicyclo  :  When  two  rings  are  fused  at  two  carbon  then  prefix  Bicyclo  is  used.(Carbon  chain  should  be  taken
in  decreasing  order)
( i ) Two  fused  or  bridged  rings  are  called  bicycloalkanes.
( i i ) Total  number  of  carbon  atoms  present  in  both  the  rings  is  considered  as  parent  alkane.
(ii i) Common  carbon  atoms  present  in  both  the  rings  are  referred  as  principal  points  of  the  bridge.
( i v ) The  line  joining  the  principal  points  is  called  the  bridge  line.  Bridge  line  can  have  0.  1.  2  etc  carbon  atoms.
( v ) The  name  is  written  as  bicyclo  [x.  y.  z]  alkane.  x.  y.  z  are  in  the  decreasing  order.
( v i ) The  numbers  are  separated  by  full  stops.

Bicyclo  [4.4.0]  decane Bicyclo  [4.3.0]  nonane

Bicyclo  [2.2.0]  hexane Bicyclo  [1.1.0]  butane

www.abyss.net.in

ABYSS Learning

Bicyclo  [2.2.1]  heptane Bicyclo  [2.2.2]  octane

 Spiro  :  When  two  rings  are  fused  at  one  carbon  the  prefix  spiro  is  used  (Carbon  chain  should  be  taken
in  increasing  order)
1.  A  molecule  that  has  two  rings  sharing  a  single  atom  is  called  spirocyclic.
2.  The  numbers  of  skeletal  atoms  linked  to  the  spiro  atom  are  indicated  by  arabic  numbers,  separated  by
a  full  stop.
3.  The  numbers  are  written  in  ascending  order  and  enclosed  in  square  brackets.
4.  Numbering  of  a  spiro  bicyclic  hydrocarbon  starts  with  a  ring  carbon  next  to  the  spiro  atom  and  proceeds
first  through  the  smaller  ring  and  then  through  the  spiro  atom  and  around  the  second  ring.
Example  :

6 89 1 6 71
4 5 432
75
41 72

8 6 5 3           
32
Spiro[3.5] nonane Spiro[2.4] heptane
Spiro[3.4] octane

Spiro  [4.4]  nonane Spiro  [2.4]  heptane
  
Spiro  [2.2]  pentane 7
61

3
52

4O

4–oxa  spiro  [2.4]  heptane

www.abyss.net.in

ABYSS Learning

SOLVED  EXA MPLES

Ex.1 The  correct  IUPAC  name  of  the  following  compound  is O CH CH2 CH CHO

(A)  1,1–diformyl  propanal HC O
(C)  2–formyl  butanedial
(B)  3–formyl  butanedial
(D)  1,1,3–ethane  tricarbaldehyde

43 21

Sol.    (C)  The  principal  functional  group  is  –  CHO.    O CH CH2 CH CHO  .

CHO

Ex.2 2–formyl butanedial
The  correct  IUPAC  name  of  compound  CH3 CH2 C CH CHO  is

O CN

(A)  2–cyano–3–oxopentanal (B)  2–formyl–3–oxopentanenitrile

(C)  2–cyano–1,  3–pentanedione (D)  1,  3–dioxo–2–cyanopentane

Sol.    (B) Here  the  main  functional  group  is  –  CN,  which  had  nitrile  suffix  and  CHO  and  CO  are  taken  as  substituents.

54 32 CHO    (2-formyl-3-oxopentanenitrile)
CH3 CH2 C CH

O 1CN

Ex.3 IUPAC  name  of  CH3 C CH C OCH3

O C OO (B)  2,  2-acetyl-1-methoxy  ethanone
CH3 (D)  none  of  these

(A)  Methyl-2,  2-acetyl  ethanoate
(C)  Methyl-2-acetyl-3-oxobutanoate

Sol.  (C) The  principal  functional  group  is  ester  group.  CH3 C CH C OCH3 (Methyl-2-acetyl-3-oxobutanoate)
O C OO
CH3

E x . 4 The  IUPAC  name  of  compound  HO C O CH3   is

CH3 C C C H
NH2 Cl

(A)  2-amino-3-chloro-2-methyl-2-pentenoic  acid (B)  3-amino-4-chloro-2-methyl-2-pentenoic  acid
(C)  4-amino-3-chloro-2-methyl-2-pentenoic  acid (D)  none  of  these
Sol.  (B) The  principal  functional  group  is  carboxylic  acid  (–COOH)

15
HO C O CH3

234
CH3 C C C H

NH2 Cl
3-amino-4-chloro-2-methyl-2-pentenoic acid

www.abyss.net.in

ABYSS Learning

Ex.5 How  many  carbons  are  in  simplest  alkyne  having  two  side  chanis  ?

(A)  5 (B)  6 (C)  7 (D)  8
(D)  Orlone
C (D) , 

Sol.  (B) H C C C C

C

Ex.6 The  compound  name  trichloroethene  is

(A)  Westron (B)  Perclene (C)  Westrosol

Sol.    (C) Trichloroethene  is  westrosol  Cl Cl

CC 1,1,2-trichlorethene(westrosol)

H Cl

E x . 7 The  type  of  unsaturation  present  in  crotonic  acid  is  -

(A) ,  (B) ,  (C) , 

Sol.  (A) The type of unsaturation present in crotonic acid is , 

O


CH3 CH CH C OH
4 3 21

Crotonic acid or (2-Butenoic acid) O

Ex.8 IUPAC  name  of  compound  CH3CH2OCCH2CH2CH3   is

(A)  Propyl  propanoate (B)  Ethyl  butanoate

(C)  Propyl  butanoate (D)  Ethyl  propanoate

12 3 4

S o l .   (B) CH3 CH2 O    C    CH2      CH2      CH3 Ethyl butanoate

O

E x . 9 The  IUPAC  name  of  the  compound  given  below  is 

(A)  Bicyclo  [3.2.1]  octane (B)  Bicyclo  [3.2.2]  octane
(C)  Spiro  [2.2]  octane (D)  None  of  these
Sol.    (A)
Ex.  10 The  structure  of  spiro  [3.3]  heptane  is

(A)  (B)  (C)  (D) 

Sol.  (B)
E x . 1 1 The  structure  of  bicyclo  [1.1.0]  butane  is

(A)  (B)  (C)  (D) 
Sol.  (D)

www.abyss.net.in

ABYSS Learning

PURIFICATION METHODS

  Distillation Techniques :

Type Conditions Examples
(A) Simple distillation
(i) When liquid sample has (i) Mixture of chloroform
(B) Fractional distillation non volatile impurities (BP = 334K) and Aniline
(C) Distallation under (BP = 457K)
(ii) When boiling point
reduced pressure difference is 80° K or more. (ii) Mixture of Ether (BP = 308K) &
(Vacuum distillation) Toluene (BP = 384K)
(D) Steam distillation
(iii) Hexane (342K) and Toulene(384K)

When BP difference is 10° (i) Crude oil in petroleum industry
(ii) Acetone (329) and Methyl alcohol(338K)

When liquid boils at higher (i) Concentration of sugar juice
temperature and it may (ii) Recovery of glycerol from spent lye.
decompose before BP is attained. (iii) Glycerol

When the substance is immiscible (i) Aniline is separated from water
with water and steam volatile. (ii) Turpentine oil
(iii) Nitro Benzene
(iv) Bromo Benzene
(v) Naphthalene
(vi) o-Nitrophenol

SIMPLE DISTILLATION TECHNIQUE

www.abyss.net.in

ABYSS Learning

FR ACTIONAL DISTILLATION

DISTILLATION UNDER REDUCED PRESSURE

STEA M DISTILLATION

www.abyss.net.in

ABYSS Learning

 LASSAIGNE METHOD :

1 . Nitrogen (N) : Na + C + N  NaCN

(Sodium extract)

Te st : NaCN + FeSO4 + NaOH

 boil & cool

FeCl3 + conc. HCl



Blue or green colour [Fe4[Fe(CN)6]3
Prussian blue

2 . Sulphur (S) : 2Na + S   Na2S

(Sodium extract)

Te st (1) Na2S

 Sodium nitro prusside

A deep voilet colour

Te st (2) Na2S + CH3COOH + (CH3COO)2Pb



Black colour (PbS)

3 . Halogen (X) : Na + Cl   NaCl
(Sodium extract)

Te st : NaCl + HNO3 + AgNO3
(a) White ppt soluble in aq. NH3 confirms Cl
(b) Yellow ppt partially soluble in aq. NH3 confirms Br
(c) yellow ppt insoluble in aq. NH3 confirms I

4 . Nitrogen and Sulphur together :

Na + C + N + S   NaC NS
(Sodium thiocynate)



As in test of nitrogen, instead of green or blue colour,

blood red coloration confirms presence of N and S both.
5 . Phosphorous (P) :

P N a 2O2  Na3PO4

boils, 



Solution in boiled with nitric acid and then treated

with ammonium molybdate (NH4)2 MoO4



Formation of yellow ppt indicate presence of phosphate

hence phosphorous present in organic compounds.

 THE QUANTITATIVE ANALYSIS :

Quantitative analysis involves the estimation of percentage composition of various element by suitable method.
The molecular mass of the compound is also determined by suitable methods. The knowledge of molecular
mass and percentage composition help us to determine the molecular formula of the compound.

 ESTIMATION OF CARBON AND HYDROGEN OR LIEBIG COMBUSTION METHOD :

Organic compound + dry, black CuO

(w g)  Heat strongly in combustion tube

mixture of oxide

 Pass through

(i) anhydrous CuSO4
(ii) anhydrous CaCl2

www.abyss.net.in

ABYSS Learning

say increase in weight = a g

 Pass through

(i) KOH (aq)

(ii) Saphnolite resin

say increase in weight = b g

For % of H - The increase in weight is 'a' g due to the formation of H2O

 18 g H2O has H = 2 g

2a
 a g H2O has H g
18

2a
Since w g organic compound has = 18 g hydrogen.

2a 100
 100 g organic compound has= 18  w g hydrogen

 % H  2  weight of H2O formed 100
18 weight of subs tan ce

For % of C -

The increase in wt is b g due to formation of CO2

 44 g CO2 has C = 12 g

12
 b g CO2 has C = b g
44

Since w g organic compound has  12  b  g carbon
 44 

 100 g organic comound has 12  b 100 g carbon

44 w

 % C  12  weight of CO2 formed 100
44 weight of subs tan ce

Note : This method is suitable for estimation if organic compound contains C and H only. In case if other

elements e.g., N,S, halogens are also present the organic compound will also give their oxides which on

being absorbed in KOH will increase the percentage of carbon and therefore following modification

should be made.

(a) If N is also present : The gaseous oxide mixture is first passed over heated Cu gauze which reduces all

oxides of N to N2 which are neither absorbed by H2O nor by KOH
2NO + 2Cu  N2 + 2CuO

(b) If halogens are present : A roll of silver gauze is placed at the exit end of combustion tube which retains

all the halogens on itself.

2Ag + X2  2AgX
2Ag + CuX2  2AgX + Cu
(c) If S is present : A layer of fused lead chromate is placed near the exit end, all the oxides of sulphur are

oxidised to PbSO4 & left in tube it self.
Cr+6 + 3e–  Cr+3

S+4  S+6 + 2e–

(in SO2) (in SO4–2)

www.abyss.net.in

ABYSS Learning

 GENER AL CONCEPT FOR DRYING AND DEHYDR ATING AGENTS

(1) Acidic oxides ( non metals oxides such as CO2, NO2, SO2 P2O5 etc.) are absorbed by alkali (KOH,
NaOH, Ca(OH)2 etc.)

(ii) Basic oxides (Na2O, K2O etc.) are dissolved in acids (H2SO4, HCl etc.)
(iii) Acidic oxides can not be dried by basic dehydrating agent (e.g CaO) but they are dried by acid dehydrat-

ing agent (e.g H2SO4, P2O5 etc). However H2S can be dried by H2SO4 because it reacts with H2SO4.
H2S + H2SO4  2H2O + S + SO2

(iv) Basic substances can not be dried by acidic dehydrating agent but are dried by basic dehydrating agent

(e.g CaO). It is because NH3 is dried by CaO but not by H2SO4.

 ESTIMATION OF NITROGEN

(a) Duma's method :

Organic compound heateCdusOtrongly  Mixture of oxides Pass over Cu gauze  N2+ Other oxides
(w g) 

Dry N2 dryingagent  N2 + Moisture PKasOs tHhr(oaqu.g)h

(Let Vml at N.T.P.)

 22400 ml N2 weigh at N.T.P. = 28 g

 V ml N2 weigh at NTP = 28  V g
22400

since w g organic compound gives 28  V  100 g
22400 w

 % N  28  Volume of N2 at NTP 100
22400 weight of the compound

Note : This method can be used to estimate nitrogen in all types of organic compounds.

 KJELDAHL'S METHOD :

This method is based on the principle that a nitrogenous organic compound on heating with conc. H2SO4
converts all its nitrogen quantitatively to ammonium sulphate ;

organic compound + conc. H2SO4 + K2SO4 + CuSO4
(w g)
(raises the B.P. of H2SO4) (catalyst)



  Heating in Kjeldahl flask


(NH 4 )2 SO 4 draodpdbKyOdrHop NH 3 is form ed

Pass this gas through V1 ml of N1 H2SO4
Now titrate the H2SO4 by another alkali say of N1 H2SO4 (NH3 is absorbed here)

V2 ml of N2 ,KOH are used

Meq of H2SO4 taken = N1V1

Meq. of KOH used for H2SO4 = N2V2

 Meq. of H2SO4 for NH3 = N1V1 – N2V2

 Meq. of NH3 formed = (N1V1 – N2V2) or say NV)

(the difference obtained or V ml of N H2SO4 are used to absorb NH3)

www.abyss.net.in

ABYSS Learning

 WNH3 1000  NV
17

 WNH3  17  NV
1000

Now  17 g NH3 has 14 g Nitrogen

 17  NV g NH3 has 14 17  NV g Nitrogen
1000 17 1000

14NV
= 1000 g Nitrogen

 w g organic compound has 14NV g nitrogen
1000

14NV 100
 .100 g organic compound has w  1000 g nitrogen.

1.4NV
= w g nitrogen

 % Nitrogen  1.4  Normality of the acid  volume of the acid
weight of the compound

Note : This method is simpler and more convenient and is mainly used for finding out the percentage of nitrogen in
food stuffs, soil, fertilizers and various agricultural products. This method cannot be used for compound having
nitro groups, azo gp. (–N = N–) and nitrogen in the ring (pyridine, quinole etc.). Since nitrogen in these
compounds is not quantitatively converted in to ammonium sulphate.

 ESTIMATION OF SULPHUR (CARIUS METHOD) :

Organic compound + con. HNO3 + BaCl2  ppt (BaSO4) is dried and weighed say "a" g
(w g)

S Furning.HNO3  H2SO4 BaCl2  BaSO4 + HCl

 233 g BaSO4 has 32 g sulphur (a g)

32  a
 a g BaSO4 has 233 g sulphur

 % of Sulphur = 32  a 100
233  w

%S 32  weight of BaSO4 formed
100
233 weight of compound

 ESTIMATION OF HALOGENS ( CARIUS METHOD) :

Organic compound + con HNO3 + AgNO3  ppt (AgX) is dried and weighed say a g

% of Cl = 35.5  weight of AgCl 100
143.3 weight of compound

80 weight of AgBr
% of Br =  100
188 weight of compound

% of I= 127 weight of AgI 100

235 weight of compound

www.abyss.net.in

ABYSS Learning

 ESTIMATION OF PHOSPHORUS - (CARIUS METHOD) :

Organic compound + con. HNO3 + Magnesia mixture (MgSO4 + NH4OH + NH4Cl)
(w g)
2 MgNH4PO4  Mg2P2O7 + 2NH3 + H2O

Precipitate is dried and ignited to give magnesium pyrophosphate (Mg2P2O7) weighed say a g

% of P  62  weight of Mg2 P2 O 7 formed  100
222
weight of compound

Atomic weight of P = 31 × 2 = 62 g
molecular weight of Mg2P2O7 = 222 g
 ESTIMATION OF OXYGEN :

There is no direct formula and method for estimation of oxygen however, percentage of oxygen is calculated by

% of oxgyen = 100 – [Sum of the % of all other elements]

Note - A direct method for estimation of oxygen has been given by Alusive in 1947 known as Alusive
method.

www.abyss.net.in


Click to View FlipBook Version