The words you are searching are inside this book. To get more targeted content, please make full-text search by clicking here.
Discover the best professional documents and content resources in AnyFlip Document Base.
Search
Published by Ts. Mohamad Faezal Omar Baki, 2021-09-02 22:19:14

Press_Dies_English_Issue2007

Press_Dies_English_Issue2007

1203 PRODUCTS DATA

)HOW TO MOUNT PUNCHES & DIES 1205"""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""
)CHARACTERISTICS OF PUNCHING TOOLS 1207"""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""
)SHAPES AND DIMENSIONS OF PUNCHES & DIES 1208""""""""""""""""""""""""""""""""""""""""""""""""""""""
)CALCULATION OF PUNCH STRENGTH 1209""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""
)DURABILITY OF PUNCHES 1213""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""
)DICOAT…PUNCH 1215""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""
) QUALITY IMPROVEMENT COATING PUNCHES 1217""""""""""""""""""""""""""""""""""""""""""""""""""""""""
)COATING PUNCHES TiCN 1220""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""
)WPC…PUNCH"HW COATING 1221""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""
)PUNCHES FOR HEAVY LOAD 1223""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""
)CONDITIONS UNDER WHICH FRACTURE, BREAKAGE AND ABNORMAL WEAR ARE APT TO OCCUR""1225
)CEMENTED CARBIDE TOOL MATERIALS FOR WEAR RESISTANCE 1226"""""""""""""""""""""""""""""""""""""
)SELECTION OF BUTTON DIES 1227"""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""
)SCRAP RETENTION BUTTON DIES 1229""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""
)BUTTON DIES FOR PREVENTING CLOGGING OF SCRAP 1231"""""""""""""""""""""""""""""""""""""""""""""""
)PRECAUTIONS ON ASSEMBLING STRIPPER GUIDE 1233""""""""""""""""""""""""""""""""""""""""""""""""""""

1204

’PRODUCTS DATA» IMounting of punches

HOW TO MOUNT PUNCHES & DIES

IMounting of punches

Category How to mount Notes Page
P. 53~
a Flange fixing The position and perpendicularity of the punch need to be maintained at A standard method for round punches. P. 85~
P. 93~
the shank, and the head prevents the punch from coming off. It is reliable for preventing the punch from coming off. P.743~
P.153~
b Flang(e positioning with a segment) The position and perpendicularity of the punch need to be maintained at The position is determined by the segmental shank P.165~
P.393~
the shank, and the head prevents the punch from coming off. inserted into the hole machined with WEDM. P.691~
P.183~
c Positioning with dowel pin Positional accuracy is achieved with the dowel pin, and the head of the As the dowel hole is made in the NC process,positioning P.135~

punch is fixed. is easy. This is often used for the dies for automobiles.

d Fixing with adjust pin The position and perpendicularity of the punch need to be maintained at It allows the punch to be replaced easily.
the shank, and the head is fastened with a screw.

(a) (b) (c) (d) (e) (f) (g) (h) (i) (j) e Bolt fixin(g tapping) The position and perpendicularity of the punch need to be maintained with the It is reliable for maintaining accuracy and preventing the punch from

punch plate, and the bolt prevents the punch from coming off. coming off, but not suitable for thin punches and punching thick plates.

f Key fixing The groove of the punch is fixed with a key. It allows the punch to be mounted and replaced easily.It is often
used for precision dies based on stripper plates.

g Holder fixing The head of the punch is screwed with a holder. It allows the punch to be replaced easily. It is used in case the
clearance between the punch plate and stripper is small.

IHolding of punches h Ball lock The punch is fixed with a steel ball in the dedicated The punch can be set and removed quickly by raising the steel
retainer which locks the groove of the punch. ball with a pin. This is often used for the dies for automobiles.
Based on punch plate (Fig. 1)
Punch plate Punch plate i Tapering for preventing The tapering part prevents the punch from coming off. The cost is reduced because the head is produced with a header.
(Light press fit) Based on stripper plate (Fig. 2) (Clearance) the punch from coming off It is used for small diameter punches.

Stripper plate Stripper plate j Taper+Ring Support the tapered part with the dedicated ring. A dedicated ring enables the tapered head punch which has
(Clearance) (Guide) a robust head to be installed easily.

IHolding of punches :The most typical method is used for the press fit of the punch in the punch plate, facilitating the production of dies.
It is not suitable for the punch and die with a small clearance. When the accuracy of the concentricity of the punch or
CPunch plate standard machined hole of the punch plate is low, the clearance between the punch and die is often uneven.
(Fig. 1)

IGuiding of punches CRelative to stripper plate:This method is mainly used for thin, high precision dies.The end of the punch blade is guided by

Without a guide With a punch guide (Fig. 2) the stripper plate near the punch and die, minimizing the precision error.
=(1~2)P
The punch is held in the punch plate with clearance fit
PP
IAdjustments of punches and dies Shim for a punch with a tap PWC Shim for punch PWB
P.194 P.194
CAdjustment in regrinding
IMounting of dies The height of the punch and die will not
change with regrinding when the shim or
spacer for punches, or die spacer is used.

Spacer for punch PWA
P.194

Two-side cutting Press fit One-side cutting D cutting Dowel fixing Press fit Flange fixing Holder fixing Bolt fixing CAdjustment of clearance Shim FGSMCFGSMW P.752
Die:m5 Die:n5 Die:m5 Die:n5 Die:n5 The position of the die can be easily Liner UTPBCUTPL P.753
Hole:H7 Hole:H7 Hole:H7 Hole:H7 Hole:H7 adjusted by using the shim or liners.
Die Spacer
Free washer FWSK LHP P.751
P.729

1205 1206

’PRODUCTS DATA» ’PRODUCTS DATA»

CHARACTERISTICS OF PUNCHING TOOLS SHAPES AND DIMENSIONS OF PUCHES AND DIES

ICharacteristics required for punching tools include: IShapes of punches and dies

Good wear resistance, compression resistance, impact resistance and toughness, and fatigue strength. View Profile length of blade tip R Diagonal line(circumscribed circle)K Sectional area S
P QP2/4
Punching tools should be selected according to the punching conditions such as the quantity of production, machining materials and lubrication.

ICharacteristics of tool steel IEffects of alloying elements Round K QP
PP
Alloy tool 12%Cr class SKD11 has good wear resistance and hardenability which Element Effect
steel SKD11 minimize defomation. It is most often used.
Carbide is formed with Cr, W, Mo, and V to achieve wear resistance.
SKD11(improved)HRC60 to 63 hardness is achieved with high-temperature tempering. This increases toughness. C Hardness becomes greater as C content is increased.

High speed Of high-speed steels, SKH51 is most often used. It has good Cr Wear resistance, corrosion resistance and hardenability are improved. Square (2 P+W) (P2+W2) PW
tool steel SKH51 2QR+P+W-4R 2R+ (P-2R)2+(W-2R)2 PW-(4R2-QR2)
Hard double carbide is formed as Mo and W combine with C together with Fe and Cr. W Q4 W 2+W(P-W)
wear resistance and toughness. Mo,W Wear resistance, hardenability, and hardness at high temperatures are improved. QW+2(P-W) P

Powder Organizational particles are evenly refined with powder metallurgy. It contains a

high-speed SKH40 large amount of high alloying element(s W, V, Co., etc.)as usual, and has good V Wear resistance and toughness are improved. K
P
tool steel toughness, wear resistance and fatigue strength. Co Hardness at high temperatures and tempering hardness are improved. Round R

Compared with steel, hardness is good, and wear resistance, compression resistance, Mn Hardenability and toughness are improved. WR

Carbide V30 rigidity, and heat resistance are also good, but toughness is not. If it is selected in a

wrong way, its capability cannot be full used.

Oblong P

W

1700 Segment P 2 P2-W2+(QP Sin-1 W/P)/90 P QP2/4-(QP2-Cos-1 W/P)/360+W/2 P2-W2
1600
1500 SKH40
1400
Wear resistance Carbide V30 Stress(N/mm2) 1300 W
1200
Powdered high-speed steel 1100 SKD11 SKH51 IHow to find the length of R part(Y)
SKH40 1000
900 1 10 100 1000 1Length of punch R(Y) 2Length of R part of pilot punc(h Y)
SKH51 800 Count(thousand times) Find Y from X=(D-P)/2 Y= P(10-P/4)EEFor R10
SKD11 Y= X(20-X)EEFor R10 Y= P(R-P/4)EEFor a value other than R10
0.1 Y= X(2R-X)EEFor a value other than R10
SKD11
(improved) IFatigue strength of punching tools(rotating bending) R10

Toughness The value of fatigue strength largely depends on the state

IProperties of punching tools of surface treatment and heat treatment, and so on.

Use this diagram as a reference. KWhen P<8 KWhen P˘8, Y R10

R10 is always 8mm.

IMaterial properties of punching tools D P<8
XP P˘8
Material Alloy tool steel High-speed steel Powdered high-speed steel Carbide

Item SKD11 SKD11(improved) SKH51 SKH40 V30 Y8

Chemical composition(%) C 1.5 0.85 1.3 Y Example 2)Finding Y when SPT5-20-P4.5
Y= P(10-P/4)
Cr 12 4.15 4 Example 1 )Finding Y when SPAS10-60-P6.80 = 4.5(10-4.5/4) 6.32
X=(D-P)/2=(10-6.8)/2
Mo - 8%Cr class 6.5 6 Co:12% =1.6
Y= 1.(6 20-1.6) 5.426
W 1 die steel 5.3 5 Other:WC

V 0.35 2.05 3

Co - -8

Mn 0.45 1020~1040 0.35 - -
Quenching temperature A 1000~1050 520~550 1180~1220 1120~1190 -
Tempering temperature A
150~200 550~570 560~580

Hardness HRC 60~63 60~63 61~64 64~67 1200~1350HV
Traverse rupture force 3500 4500 4800 4500 2500
Young's modulus N/mm2
N/mm2 210000 217000 219000 228600 540000
Density g/cm3 7.72 7.87 8.11 8.07 14.4
Thermal expansion coefficient M10-6/A 12.0 12.2 10.1 10.1 5.4

Thermal conductivity w/mCk 29.3 23.7 20.6 23.8 72

(Note)CThis data presents typical values but not guaranteed values.

CPowdered high-speed steel SKH40 is specified based on JIS/G/4403:2000.

(Hitachi Metal:HAP40, Kobe Seikosho:KHA30, Daido Special Steel:DEX40, Fujikoshi:FAX38 are applied among others.)

1207 1208

’PRODUCTS DATA»

CALCULATION OF PUNCH STRENGTH1

There are cases where trouble, such as punch tip breakage and flange fractures, occurs during the punching operation. I3.Minimum punching diameter ’Fig.3»Punching limit
Many of these problems are caused by a lack of technical data on standard components or improper material or the shape of the selected
punching tools. To reduce the number of these problems, standards for proper use of punches are described below, taking into account the ¡ Minimum punching diameter:dmin. Shearing resistance of workpieceÍ’kgf/mm 2 » 100
fatigue strength of tool steel, stress concentration on flanges, and so on. dmin=4tÍ/‰ d/t=4Í/‰
‰:Fatigue strength of tool steel[kgf/mm2 ]
I1.Calculation of punching force 80
[Example 3]To obtain the minimum punching diameter that makes it possible to punch SPCC plates 10 5shots
¡Maximum punching force Pmax.’kgf» with a thickness of 2mm 100,000 shots or more using a SKH51 punch:
P= rtÍCCCCCC(1) Table 1. Shearing resistance and tensile strength of various materials SKH51 10 5 shots
dmin=4t Í/‰CCCCCCCCCCCC(3) 60 10 4 shots
F d r:Punching profile length’mm» Material Shearing resistanceÍ Tensile strength‰B =4M2M26/97 40 SKD11
(For a round punch r=Qd) (kgf/mm 2 ) (kgf/mm 2 ) —2.1mm The fatigue strength‰of SKH51, 10 4 shots
subjected to 100,000 shots of
t :Material thickness’mm» Soft Hard Soft Hard punching;
Í:Shearing resistance of material’kgf/mm2» ‰ is 97kgf/mm2 from Fig 2.
Lead 2~ 3 - 2.5~4 - Í is 26kgf/mm2 from Table 1. 20
(Í—0.8MTensile strength‰B) Tin 3~ 4 - 4~ 5 -
Aluminum 7~11 13~16 8~12 17~22
[Example 1]To calculate the maximum punching force P when a round hole Duralumin
with a diameter of 2.8mm is to be punched in a high tensile strength Zinc 22 38 26 48
steel plate(tensile strength:80kgf/mm2)with a thickness of 1.2mm: Lead 12 20 15 25
Brass 18~22 25~30 22~28 30~40
In Pmax.= rtÍ Bronze 22~30 35~40 28~35 40~60
Shearing resistanceÍ=0.8M80 Nickel silver 32~40 40~60 40~50 50~75
=64[kgf/mm2] Silver 28~36 45~56 35~45 55~70
Hot rolled steel plate(SPH1~8) 19 - 26 -
P=3.14M2.8M1.2M64=675kgf Cold rolled steel plate(SPC1~3) 26 or more 28 or more
t Steel plate for deep drawing 26 or more 28 or more 012345
Steel plate for structural use(SS330) Punch diameter/material thickness’d/t»
Stress amplitude‰’kgf/mm2 » Steel plate for structural use(SS400) 30~35 28~32
Steel 0.1%C 27~36 33~44 I4.Fracture due to buckling
n 0.2%C 33~42 41~52
I2.Fracture of punch tip n 0.3%C 25 32 32 40 ¡ Buckling load P[kgf] E:Young's modulus[kgf/mm2 ]
n 0.4%C 32 40 40 50 SKD11:21000
¡ Stress‰ exerted on punch tip[kgf/mm2] n 0.6%C 36 48 45 60 P=nQ2E!/r2 CCCCCCCCCCC(4) SKH51:22000
Steel 0.8%C 45 56 56 72 HAP40:23000
‰=P/A (a)Shoulder punch (b)Jector punch n 1.0%C 56 72 72 90 r= nQ2E!/P CCCCCCCCCCC(5) V30 :56000
Silicon steel plate 72 90 90 110 n:Coefficient n=1:Without stripper guide
P:Punching force, A:Cross-sectional area of punch tip Stainless steel plate 80 105 100 130
Nickel 45 56 55 65 n=2:With stripper guide
Leather 52 56 66~70 - !:Secondary moment of inertia[mm 4 ]
Mica 0.5mm in thick 25 - 44~50 57~63
n 2mm in thick 0.6~0.8 For a round punch !=Qd 4 /64
Fiber - r:Punch tip length[mm]
Birch material 8 -
(a)For shoulder punch 5 -
9~18 -
‰s=4tÍ/d CCCCCCCCCCCCCCCC(2) 2 - As expected from Euler's formula, to improve buckling strength P, it is recommended that a stripper guide and a material with a higher Young's modulus
(SKD, SKH, and HAP in increasing order of Young's modulus)be used, and that the punch tip length be reduced.
(b)For jector punch The buckling load P represents the value of the load when a buckled punch fractures. When selecting a punch, therefore, safety factor 3 to 5 should be
‰J=4dtÍ/(d2-d12)CCCCCCCC(3) taken into account.
When selecting a punch for small holes, special attention should be paid to buckling load and stress exerted on the punch.
Fracture
d d1

d [Example 4]Calculating the full length of punch when a F 8 hole is punched in stainless steel SUS304(thickness 1mm,
tensile strength ‰b=60kgf/mm2)using a straight punch(SKD11)without buckling:
[Example 2] Probability of punch tip fracture is ’Fig.1»Fracture of punch tip *{N}=kgfM9.80665 (Schuler, Bliss)

calculated using shoulder punch SPAS6-50- Punching force P=QdtÍ

P2.8 and jector punch SJAS6-50-P2.8(the From equation(5)r= nQ2E!/P =QM8M1M0.8M60 rT
= 2MQ2M21000M201/1206 r
d1 dimension is 0.7 from P.186). =262mm =1206kgf

(Punching conditions are the same as in ’Fig.2» Fatigue characteristics of tool steel If the safety factor is 3 Secondary moment of inertia!= Qd4 = Q84
r=262/3=87mm 64 64
Example 1.)
Reference:Ago. Plasticity and Working 19-204(1978) =201mm4

(a)For the houlder punch, from equation(2) Ú140 SKH51 1160A oil 580A(1+1)h 62.0HRC With stripper guide:n=2 d d
‰s=4M1.2M64/2.8=110kgf/mm2 SKH11 1025A air 220A(1+1)h 61.0HRC For relative to punch plate For relative to stripper

(b)For the jector punch, from equation(3) If punch plate thickness T=20mm, buckling can be prevented by using a punch
‰J=4M2.8M1.2M64/(2.82-0.72)
SKH51 having a full length of 107mm or less. The full length is 87mm or less for the
=117kgf/mm2
Ú120 punches relative to stripper(the punch plate guides the tip in the clearance).

From Fig. 2, when ‰s is 110kgf/mm2, the punch tip of SKD11 punch will break after 9,000 SKD11
punching shots. Use of the SKH51 material instead will increase this value to 40,000 shots or
Ú100 [Example 5]To obtain the buckling load P for SHAL5-60-P2.00-BC20, the punch is

so. used without a stripper guide: Punch material:SKH51 F5 =20
P= nQ2E!/r2 60
The probability on the jector punch can be found in the same way. Its punch tip will break after = 1MQ2M22000M0.785/202 E=22000kgf/mm2 d=2
about 5,000 punching shots because it has a smaller sectional area. =426kgf ’Fig.4»Buckling of punch
Ú80 != Qd4 = Q24
If the safety factor is 3 64 64
Where the stress ‰ exerted on punches is controlled to a value equal to or below the
allowable stress of the specific punch materials, they will not fracture. Ú70 4 5 6 7 8 9 10 4 2 3 4 5 6 7 8 9 10 5 =0.785mm4
3

(This is only for reference; the maximum allowable stress depends on conditions, including Number of strokes ’times» P=426/3=142kgf Without stripper guide:n=1

die accuracy, die structure, variations in workpieces, the surface roughness of punches, heat Buckling will not occur if the punching force is 142kgf or less.
treatment, and so on.)
1209 1210

’PRODUCTS DATA»

CALCULATION OF PUNCH STRENGTH2

I5. Flange fractures Shank diameterFD

As shown in Products Information of punches for heavy load on page 1223, it is said that the cause of flange fractures is tensile force due to elastic waves that are produced 45
during the punching operation(the tensile force corresponding to the punching load applies to the punch at the time of breaking through)and the concentration of stress. 1M10 5 38
1M10 4 SKD 32
There are various methods for the prevention of flange fractures including: 400 600 800 1000 25 35
1. Increase the radius under the flange to ease the concentration of stress.(use a punch for thick plates) 30 40 1M10 3
2. Increase the strength of the flange of a punch to a value higher than that of its tip.
8 10 14 18 25
Let us use method 2 above to find the optimum shank diameter that will not cause flanges to fracture. 12 16 20 20
16
13
10

8
6
5
4
3
SKD11
SKH51
Punch for thick plate

¡Calculations for the optimum shank diameter Fig.5 Flange fractures 1M10 5

The punching load P exerted on a punch tip is as follows: A:t Cross-sectional area flange[mm 2] (a)Shoulder punch (b)Jector punch 200 6 1M10 4 Punch for thick plate Fig.7 Selection of shank diameter
P=Qdt Í
(a)For shoulder punch M 1M10 3
The allowable stress ‰w on the flange is
(a)For shoulder punch A t =QD2/4 60 80 100

‰w =PÅ/A t (b)For jector punch 24
=4PÅ/QD 2
A t =Q(D2-M2)/4 c
(b)For jector punch
‰wJ =4PÅ/Q(D2-M2) D:Shank diameter d

Å:Coefficient of stress concentration Fracture

(a)For shoulder punch, Å—3 FD FD 20 40 1M10 5
Punch for punching plate thickness Å—2
1 1M10 4 SKH
Find the strength of the flange when the punching For taper head punch, Å—1.6 d=
conditions are the same as in Example 1. (b)For jector punch, Å—5 F 1M10 3
Tip diameter
Example 6 (a)For shoulder punch SPAS6-50-P2.8
‰w =4M675M3/QC62 =71.6kgf/mm2 CCCCCCCCFractures starting from the flange will not occur because the stress applied 8 10
to the punch tip in Example 2 is smaller than 110kgf/mm2

(b)For jector punch SJAS6-50-P2.8 6

‰wJ =4M675M5/Q(62-32)=159kgf/mm2 CCCCFractures starting from the flange will occur because the stress applied 4
to the punch tip in Example 2 is greater than 117kgf/mm.2
When the shank diameter is 8mm, =90kgf/mm,2 which does not

cause flange fractures.(Considering from the figure showing the

fatigue strength of tool steel, the flange will break after about 50,000 2

shots. 4 6 8 10 12

¡Selection table for the optimum shank diameter

Punching conditions:Punch tip to convert P=12.8, W=10.6 into punch diameter Fd, use the following equation:

Fd=[2(P-W)+WQ]/Q

=[2(12.8-10.6)+10.6Q]/Q P 20 30 40

=12mm P>W

When material thickness is t=4mm, shearing resistance is =50kgf/mm2, W Number of shots 10 0.4 0.6 0.8 1 2
1M10 3 Material thickness t(mm)
and total number of shot times is 104shots, to find the shank diameter, follow the steps described below: Tip diameterFd(mm) =
SKH 1M10 4 Fig.6 Durability of punch tip
1M10 5 a 20

b 30 =
2
Durability of punch tip(Fracture) ’Fig. 6» 1M10 5 mm100kgf/ = 605040 =
a)Obtain point a where material thickness t and shearing resistance intersect. 4 6 8 10 =
b)Obtain point b by extending a line from point a to the left or right until it intersects the diameter of the punch tip. = 80 =
CSince the point b is below the line for the total number of shot times of 105, it is interpreted that both SKH
=
and SKD have the durability for 105 shots or more.
1M10 3 SKD 1M10 4 Shearing resistance
Selection of shank diameter ’Fig. 7»
c)Extend a line from point a to the right and obtain point c where it intersects the tip diameter. 2
d)Extend a line from point c downward and obtain points d and d' where they intersect the line for total shot times of 10 4(for standard and thick material).
e)Obtain the shank diameter by extending a line from points d and d' to the right. 1
CSince 14.0 is indicated for standard punches(SKH), select F16 for the shank.
CSince 11.8 is indicated for punches for thick material(SKH), select F13 for the shank. 4000 2000 40
1000
Note:This selection table was prepared based on the results of tensile/compressive fatigue tests. The data
may differ slightly from actual punching conditions. 800
600
400
200
100
80
60

1211 1212

’PRODUCTS DATA»

DURABILITY OF PUNCHES FOR PUNCHING

Characteristics required of punching tools are wear resistance, compression ’Table 1»Types of tools used I2.Buckling and traverse tests
resistance and toughness. The utilization of high-speed steel and a variety of
surface treatments have significantly lengthened the lives of tools, and it is Material and (HRC) Main chemical component(s %) ¡Test conditions ’Fig.3»Buckling and traverse tests
necessary to choose proper tools taking punching conditions into account. surface treatment C Mo W V Co As shown in [Fig.3], buckling loads and traverse rupture loads were applied to (a)Buckling load
As data for the purpose, described below are the results of punching life,
buckling and transverse tests on punches using various combinations of SKD11 61 - 0.3 - test pieces at a velocity of 1mm/min(. the traverse rupture loads were applied to the
materials(SKD11, SKH51 and Powdered high-speed steel)and the TD SKD-TD 1.5 1 point 0.5mm from the end of a punch tip, using a knife-edge-shaped presser), and
process. the respective maximum load under which the punch ruptured was found.
Note)TD=DICOAT punch(see P.1215). 60
¡Test result
SKH51 61 0.9 5.0 6.0 2.0 - Both buckling strength and traverse rupture strength increase

HAP40 65 in the order of SKD11, SKD51 and HAP40.Especially, HAP40 5F5
HAP-TD 1.3 5.0 6.5 3.0 8.0 maintains high hardness, and thus it is excellent in compression 50
resistance’. Table 2»The metal structure of HAP40 is very fine,
62 and it contains high alloy components(W, V, Co, etc.), 30
which makes the HAP40 punch excellent in toughness.Therefore,
I1.Punching life span Area of side wear Punch the HAP40 punch is most suitable for punching that may cause Fracture
Side fracture or chipping.
Fracture
Since the TD processed punches are degraded in base
¡Punching conditions ’Fig.1»Transition of area of material hardness, they are also slightly low in buckling strength Traverse rupture 0.5
side wear and traverse rupture strength. force 13
Material of workpiece :S55C Material thickness:1.0mm (b)
End

Punch diameter :8.0mm Clearance :10% Die F2 (a)Buckling (b)Traverse rupture

Die material :SKD11 Lubrication :None

Bridge widt :1.5mm Press used :25Ton

Punching speed :200SPM ’Table 2»Results of buckling and traverse tests

Area of side wear (Om 2) 1500 Material and Buckling Traverse rupture
Symbol Material surface treatment

¡Test result SKD11 [HRC] Buckling load Buckling strength Ratio [HRC] Traverse rupture Breaking Ratio
[kgf][kgf/mm 2] strength deflection
Side wear SKH51

’Figure 1»illustrates the transition of the area of side wear 1000 HAP40 SKD11 61.1 805 265 100 60.5 21.4 2.28 100
with an increase in the number of shots.
(1)The number of side wear in the punches decreases in the SKD-TD SKD-TD 59.6 829 264 103 59.5 19.4 1.65 91
order of SKD11, SKH51, HAP40, SKD-TD, and HAP-TD. HAP-TD
(2)Since the TD processed punches are high in surface hardness
(3000 HV or more), they develop a very small amount of SKH51 61.5 946 301 118 61.8 26.8 2.37 125
side wear.
500 HAP40 66.0 1168 372 145 64.8 29.8 2.37 139

HAP-TD 62.2 952 303 118 62.0 24.5 1.75 113

*{N}=kgfM9.80665

0 10 20 30 40 50

Number of shots(M104) I3.Summary

Height of burr ’Fig.2»Transition of height of burr with increase in number of shots Shown below are the toughness, traverse rupture strength and wear Life span, cost, life span/cost’Fig.4»Comparison of economy of punches
resistance of the above-mentioned materials relative to those of SKD11. Life span
’Figure 2»illustrates the transition of the height of burr 100 Symbol Material (HRC) Life span Cost18
with an increase in the number of shots. (1)SKH51 is approx. 1.2 times greater in both buckling strength and
SKD11 61 3(Unit:M in traverse rupture strength, and 2 times greater in wear resistance. Life span/cost16
(1) The life span of punches increases in the order of SKD11, SKH51 61 6 104shots)
SKH51, SKD-TD, HAP40, and HAP-TD.When the height (2)SKD-TD is 1 times greater in both buckling strength, 0.9 times greater 14
of burr reached 50Om, it was judged that the punch was at Height of burr(Om) 80 HAP40 65 25 in traverse rupture strength, and 7 times greater in wear resistance.
the end of its life. The life of HAP-TD lasted for 500,000 12
punching shots and had not yet reached the end of its life. SKD-TD 60 22 (3)HAP40 is 1.5 times greater in both buckling strength, 1.4 times greater
The TD process is to coat a workpiece with VC(vanadium HAP-TD 62 50 or more in traverse rupture strength, and 8 times greater in wear resistance. 10
carbide)to enhance its wear and seizure resistance.Because
there was a very small amount of side wear in the HAP-TD 60 (4)HAP-TD is 1.2 times greater in both buckling strength, 1.1 times (with those of SKD11 as ""1"")
punch and its base material was HAP 4(0 65 HRC), its end greater in traverse rupture strength, and 16 or more times greater in
wear was also slight, leading to its long life span. 40 wear resistance. 8

20 ¡Economy of punch 6
’Figure 4»illustrates the punching life span, cost and life span/cost of
0 10 20 30 40 50 punches as used to punch S55C materials.With the economy of the 4
SKD11 punches as ""1"", a 1.5-fold economy is expected from SKH51,
Number of shots(M10 4) 2-fold from SKD-TD, 3.5-fold from HAP40, and 3.2 or more from HAP-TD. 2
This data is taken from life span tests with the S55C material. It differs
slightly form that taken from tests with other materials. 0

SSSHH
KKKAA
DDHPP
11 51 40

TT
DD
-
-

1213 1214

’PRODUCTS DATA»

DICOAT R PUNCH

DICOAT R PUNCH 3.Toughness ’Fig.-5» Comparison of resistance 1500

DICOAT punches are epoch-making standard punches that have superior properties made ’Fig.-1»Photograph of DICOAT ¡ VC coating does not result in revised toughness of base metal. (a)Plain test piece
Also, DICOAT as high tempered, which
results in minimal breakage as compared 1000
with other punches. (b)V-notched
test piece
Smoothness R

500
0.1R 1R
possible by a vanadium carbide layer produced by the TD process.Having a surface hardness of Hardness HV 50gpunch section (a) F8 plain test piece
DICOAT punch
3200HV to 3800HV they can be effectively used as anti-abrasion and counter-seizure punches. As a Resin
CVD
result, overall expenses will be minimized when these punches are used. PVD Ni coating 70
BoridingVC 90B
MISUMI undertakes the overall production of these punches and applies the TD process under PlatingBase material (b)V-notched test piece
NitridingSKD11
license, ""TD Process Application to Metallic Mold Standard Items and Sales"", granted by Toyota Sulphuration
Electric discharge
Central Research Institute Co., Ltd. This has enabled MISUMI to establish a production line for Quenching tool steel 0
Carbide TD TD
DICOAT punches having the same dimensional precision as other punches. 35 TD TD
270VC NbcNbc Nbc
The TD process, known as ""surface hardening by diffusion"", was developed by Toyota's general F10 F8

research institute, Toyota Central Research Institute Co., Ltd. With this method, a certain Breaking load(kg)
quenching and tempering
element(carbide)is diffused to penetrate through the surface of the metal to form an anti-abrasion
-
and an anti-seizure film. Since its first practical use in 1970, the TD process has been widely applied -

to press dies, cold forging steel dies and casting dies, cutters, jigs and machine parts to improve quenching and tempering

-

quenching and tempering

-
their performance. Effect of DICOAT R PUNCH

Features of DICOAT R PUNCH ’Fig.-2»Comparison of surface hardness 1. DICOAT punches exhibit excellent abrasion and seizure resistance under a wide range of conditions.

1.anti-abrasion:Surface hardness TiC Especially under the following circumstances, the benefits extend throughout the life of the punch:
¡ The tip of DICOAT punch is coated with a 4~7Om 4000 VC TiC (1)Because DICOAT punches have a smaller regrinding allowance and shorter regrinding times, even
vanadium carbide(VC)film.
¡ The surface hardness of DICOAT punch is 3200~3800HV 3000 FeB when the regrinding allowance and abrasion is severe, and the potential span is increased.
resulting in a minimal degree of abrasion when punching all 2000 WC,TiC (2)Because the speed at which the burr height increases is low, quality control based on the burr height
types of materials. 1000
Fe-N can be accomplished with minimal steps.
2.anti-seizure & anti-abrasion 0 Fe2B NiP (3)When the product surface is important:
¡ DICOAT punches have high anti-seizure and anti-abrasion
characteristics when used with all types of materials. Cr Fe-S As scuffing hardly occurs, stable production of smooth-surfaced products is possible.
The punches are virtually flawless and have polished surfaces. (4)When using ineffective or expensive lubricants:

The DICOAT punches are designed to minimize scuffing and degree of abrasion which allows of
use of any type of lubricant at reduced amounts.

2.DICOAT PUNCH adoptable stocks

’Fig.-3»Comparison of anti-abrasion and anti-seizure in press-thinning process Steels SS, SPC, SPH, SC, SCM, SK, SUS,
High tensile strength steels, Silicon steels
Abrased depthd(Om) Coefficient of friction(F/P) Surface treated
0 1 2 3 4 0.05 0.01 steel sheets Sn plated steels, Zn plated steels, Aluminized steels,
Nonferrous metals Plastic coating steels
non-metal Al, Al alloy, Cu, Cu alloy, Zn alloy, Ni alloy
Rubber, Cloth-inserted rubber, Asbestos, Cloth-inserted bakelite

0.15 0.20

quenching and tempering ’Fig.-4»Section structure of piercing 3.Reduction of number of die repair-steps
Cemented carbides punch tip after punching Figure 6 shows the relationship between the time needed to repair progressive dies used at company B and the effect of applying the TD process. The time
Nitriding
Chrome plating (Stock:SPCC t=3.2mm) needed for repair includes the regrinding of bending and trimming punches, and other problems resulting from mis-operation.
N + striking Bending punches and dies are the only TD processed parts used in progressive dies. Nevertheless, a close relationship is clearly evident between the start of
Boriding Side
Carbon(PVD) TD process application and repair times. For example, the repair time was about 50 hours per production run of 100,000 and was reduced to 15 hours after the
TiN(PVD) introduction of the TD process. Due to company B's production quantity, the increase in profit from repair time reductions was significant.
W 3 C(CVD)
Ti(C,N)(CVD) 11.6 M Starting ’Fig.-6» Changes in die repair index by TD process
TiN(CVD) d M After drawing 250m
TiC(CVD) End
TiN+TiN(CVD) (M:Break-away)
VC(TD process) VC coating quenching and tempering 100h
NbC(TD process) P 754kgf 50
Thinned ratio of section :12% (after 101,500 shots)(after 16,100 shots) Start of TD process application on part of bending
Lubrication:Antirust oil punches and dies.
Trimming and bending progressive dies
2F Start of quenched and tempered die application. SCM-3 2.0t
(TD process not applied yet.) Trimming:8 points
Bending:3 points
Start of TD process application Perforating:2 points
on all bending punches Chamfering:1 point
and dies. Stamping:1 point

0 month year
6 8 10 12 2 4 6 8 10 12 2 4 6 8

1215 S49 S50 S51 1216

kPRODUCTS DATAe

Quality improvement IMPROVED COATING PUNCHES

'Introduction TiCN coating Conventionally TiCN coating Improvement HW coating Conventionally HW coating Improvement

In recent years, worldwide demands for weight reduction and higher safety in the automobile industry have been increasing, and high
tensile steel sheet is coming into increasingly wide use.
The punching conditions for high tensile steel sheet are becoming increasingly severe each year, and early wear and chipping have
become issues.
Consequently, interest is being shown in increasing the life of the punch.
In order to solve these issues, coating punches, which have improved film adherence and wear resistance, have been commercialized.
These improved coating punches have much longer life than conventional products.

'Features of improved coating punches Ball Friction side kFig.4eFriction face of ball after friction wear test

'Improved adhesion of the coating film '980 MPa class high tensile material punching life test
Unless the adhesion of the film to the base material is strong, the film will quickly separate due to external stress, even if it has
excellent characteristics. A punching life test of 980 MPa class high tensile material was carried out, and the burr height of the punching scrap was measured
Accordingly, in order to evaluate the adhesion force of the film, an impression test using a Rockwell hardness tester C scale was Fig.5 . Test conditions: Table 1
performed, and the separation condition of the film was observed.
Assuming that the allowable value of the burr height is 50Mm, the TiCN coating improved product can be used for at least 1.5 times
It can be seen that in the case of the conventional product, film separation and cracking occurred, whereas in the case of the improved the number of shots as that of the conventional product.
product the adhesion of the film has been improved, preventing the film from separating. Fig.1 A comparison of the burr height after 400,000 shots shows that the HW coating improved product produces scrap with the smallest
burr height, and also that it has the best durability of all of the coating punches that were used in this punching test.
TiCN coating Conventionally TiCN coating Improvement HW coating Conventionally HW coating Improvement
70
Separation occurs Separation does not occur Separation occurs Separation does not occur

Relative wear of ball +10-3"mm3/Nm SKH51

Burr height of punching scrap …m TiCN coating Conventionally

60

Specimen Indentation trace Crack of a membrane and separation Crack of a membrane and separation

kFig.1eResults of observation after the impression tes t Test piece base material: SKH51

'Improved wear resistance 50 SKH51

One cause of wear of the punch is adhesive wear in which the work piece and the punch both wear due to adhesion to each other.
Accordingly, in order to evaluate the wear resistance, a friction wear test was carried out, and the relative wear of the ball was TiCN coating Improvement
measured. SKH51

Here, the superiority or inferiority of the wear resistance was checked by assuming that the test piece substrate was the punch and
ball was the work piece materia l Fig.2 , and measuring the relative wear of the ball. HW coating Conventionally

Compared to the conventional product, the relative wear resistance of the ball fell by about 26% in the case of a TiCN coating, and fell 40

by about 60% in the case of an HW coating. Fig.3 SKH51

Also, compared to the conventional product, it can be seen that the ball of the improved product has a smaller friction face Fig.4 , HW coating Improvement
and the wear resistance has been improved.

1 0.98 0.96

Specimen About 26% reduction
board 0.73

About 60% reduction

Ball 30

0.5 20
0
Load 5N 0.38 Punching conditions Work piece: 980 MPa class high tension material
Thickness:1mm
Circumferential speed 100mm/sec Clearance:One side 5%
Punched shape:$4.1mm
Ball SUJ2 $4mm Lubrication:No lubrication
Punching speed:200spm
Specime n board SKH51
coating

kFig.2eOutline of friction wear test 0

TiCN coating Conventionally TiCN coating Improvement HW coating Conventionally HW coating Improvement 10 15 20 25 30 35 40

kFig.3eRelative wear of ball after friction wear test Number of shot s ten thousands
kFig.5eChange of burr height accompanying the number of punching operations

1217 1218

’PRODUCTS DATA» ’PRODUCTS DATA»

Quality improvement IMPROVED COATING PUNCHES COATING PUNCHES-TiCN-

IComparison of appearance of tip and side face after 980 MPa class high tensile material punching life test ICOATING PUNCH-TiCN-

When the appearance of the tip is compared after the 980 MPa class high tensile material punching test(after 400,000 shots)(Fig.6), MISUMI's coating punch is the TiCN coating by ion plating, one of Technical data of TiCN coating
it is possible to confirm that separation and sticking of the coating film occur with the conventional product. Also, chipping and wear
of the edge part have occurred over a wide range. the PVD methods. TiCN coating has many strong points such as high Hardness(HV) 3000
Separation of the film due to edge chipping was found on the TiCN coating improved product, however no sticking occurred on the tip
or the side face, and the test was finished in a more or less satisfactory condition. hardness and low friction coefficient. It will improve the abrasion Coat thickness(Om) 3~5
Also, no chipping or sticking was observed on the HW coating improved product, and it was confirmed that a satisfactory film resistance of punches and contribute to raise the productivity and Friction coefficient 0.3
condition was maintained. quality of products. Also, it is treated at 500A or lower in high (to steel, dry)
It is thought that this is partly due to the fact that the WPC treatment improved the fatigue strength of the punch tip. (*Regarding vacuum condition so that it enables the base materials, which have the Heat resistance(A) ~400
WPC treatment, refer to P1221.) Color Blue gray

tempering temperature of 500A or higher, to be coated without

From the above results, it was confirmed that the improved product was highly effective even on 980 MPa class high tension material hardness degradation or thermal deformation.
and other material that is difficult to machine.
Because MISUMI's coating punch is guaranteed its dimension and accuracy after coating, there is no need to control sizes

1TiCN CoatingCOld model 2TiCN CoatingCNew with consideration of the thickness of coated layer.

a.Cross b.Side a.Cross b.Side

3HW CoatingCOld model 4HW CoatingCNew IFeatures of COATING PUNCHES -TiCN-

a.Cross b.Side a.Cross b.Side 1. High hardness
The TiCN coating has a hardness of 3000HV, which is harder than cemented carbide.
’Fig.6»Appearance of the tip after the 980 MPa class high tensile material punching life test (after 400,000 shots) This hardness protects the cutting edges from abrasion well enough to bring a longer life, max. 10 times, till regrinding.

’Reference»Improved coating -Applicable Punches- 2. Low friction coefficient
TiCN coating has the low friction coefficient to steel and is chemically inert, enabling to avoid surface fatigue which causes crack.
Applicable Punches TiCN CoatingCNew HW CoatingCNew Applicable Punches TiCN CoatingCNew HW CoatingCNew
This coating treatment enables to keep the punch surface away from the worked material surface, therefore the lubrication still
SKH51 K K P.59 For heavy load SKH51 K K works even if the cutting fluid lost its activity. Also TiCN has superior slide characteristic, it enables to press with high speed
stroking. More effective in the worked materials which have much tackiness like light metal, nonferrous metal, stainless steel, etc.
Shoulder Powdered high- P.57 Powdered high- P.113 P.115
speed steel speed steel 3. Products quality improvement
Jector K K K K TiCN coating enables to manufacture products with less fin and longer life, and work cutting surface with less streak and much
Jecto(r Spring reinforced)
Shoulder quill Powdered high- K P.67 K P.69 For heavy load jector Powdered high- K P.123 K P.125 smoothness.
speed steel speed steel
INotes for users
Powdered high- K P.67 K P.69 For heavy load jector Powdered high- K P.131 K P.133
speed steel (B dimension fixed) speed steel Please pay attention to the notice below at using coating punches TiCN.
¡Effective coating punch length is the dimension B(point length)but there is a continuous faint coating layer about 10mm of
SKH51 K SKH51 K K 0.5Om or thinner.
K ¡There is a slight dispersion of the thickness of coating layer on the corner part of the edge.
Powdered high- P.77 For heavy load with tapered head Powdered high- P.135 P.135 ¡Do not grind too much at regrinding to prevent coating layer from exfoliation.
speed steel speed steel
K K

SKH51 K SKH51 K K
K
Shoulder short Powdered high- P.79 For heavy load with tapered head jector Powdered high- P.137 P.137
speed steel speed steel
K K

SKH51 K K SKH51 K K

Key flat Powdered high- P.85 P.87 For heavy load with dowel Powdered high- P.141 P.143
speed steel speed steel
K K K K

Key flat jector Powdered high- K P.89 K P.91 For heavy load with dowel jector SKH51 K P.147 K P.149
speed steel

Key flat jector(Spring reinforced) Powdered high- K P.89 K P.91 SKH51 K P.155 K P.157
speed steel Tapped

With dowel SKD11 or equivalent K P.97 K P.99 Powdered high- K P.163 K P.159
speed steel

With dowel jector SKD11 or equivalent K P.105 K P.107 SKH51 K K
With key groove
With dowel jector Powdered high- P.167 P.169
(Spring reinforced) SKD11 or equivalent K P.105 K P.107 speed steel
K K

Straight SKH51 K P.176
K
Powdered high-
speed steel

In the above punching test, an ISIS 20-ton precision press and precision forward dies were used. Various factors, such as the accuracy of the press, the accuracy of the clearance, and
random variations, were involved with the actual dies, and it is assumed that compared to this punching test, early wear can be seen. Use this as reference data.

1219 1220

kPRODUCTS DATAe

WPC R "HW COATING PUNCHES

'Features of WPC R PUNCHES 'Features of HW Coating jTiCN coatingd TiCN jHW coatingd
Approx. 3000HV
1. Fatigue strength improvement With conventional TiCN treatment, coating separation sometimes occurred under conditions in
which a high stress was applied to the punch. It is thought that this trouble occurred because WPC R
WPC® treatment consists of causing fine particles of between 0.04 and 0.2 mm to collide with the metal surface at a high speed of at least 100 m/s, so a high residual whereas punch base material that is of relatively low hardness deforms, the very hard coated film Approx. 1000HV
compression stress is generated in the vicinity of the surface of the punch [Fig.1]. As a result, the fatigue strength of the punch is improved, providing a high is unable to follow this deformation.
resistance to point breakage and chipping [Fig.2]. Base material
In the case of the HW coating, the base material of the punch is strengthened by the WPC® 700O900HV
For example, in Fig.2 if a load of 1,200 N/mm2 is applied repeatedly to the point, the SKD11 may fail after about 10,000 operations, however in the case of the SKD11 treatment, raising the adhesive performance of the TiCN film. The HW coating is a new kind of
+ WPC® treatment, durability will increase to about 100,000 operations. The results shown in Fig.2 are different from the actual sampling test results, so use them surface treatment which combines the excellent abrasion resistance of the TiCN coating with the
only a rough guide. inherent high fatigue strength of the WPC® treatment.

1,500 1,600 [Fig.5] HW coating and
1,000 1,400 TiCN-coating models
1,200
Residual compression Stress N/mm2500WPC R type Normal type 1,000 SKD11
WPC®
Stress amplitude N/mm2 SKD11
kREFERENCE DATAeLife test with old model
'SUS304 Punching life test

200 60,000 shots 100,000 shots 100,000 shots 100,000 shots

0 Tip side 800 10,000 100,000 1,000,000
Tip end 1,000

Number of strokes Occurrence of chipping Cracks occur, but do Occurrence No abnormality
150 SKH51 not cause chipping of separation 200,000 shots
[Fig.1] Surface residual compression stress [Fig.2] Improved fatigue strength due to WPC® treatment
due to WPC®treatment SKH51
WPC R 200,000 shots

Punch material SKD11 Lood conditions Pulsating load.Test piece$4,61HRC Burr height of punched scrap -m

2. Anti-seizure improvement WPC® treatment range SKH51 Enlarged viem of separation Occurrence
100 SKH51
TiCN of separation
In the case of a normal polished finish, streaks running in the polishing direction remain. In
contrast, a surface treated with WPC® has fine surface irregularities [Fig.3]. SKH51
HW coating
The fine depressions trap oil, so the WPC® -treated surface retains an oil film more readily than
a normal polished surface. As a result, seizure is less likely to occur. SKH51
WPC R SKH51
TiCN

50

3. Anti-abrasion improvement SKH51
HW coating

When WPC® treatment is carried out, work hardening occurs, increasing the hardness of the 0
surface. As a result, the abrasion resistance of the punch is increased. 0
In the case of a WPC® -treated punch, the surface gradually hardens from the inside [Fig.4], so
there is no loss of toughness of the base material of the punch.

5 10 15 20

1,100 Powdered (a)Surface of normal polished (b)Surface of WPC®-treated Number of shots ten thousands Punching conditions
1,000 High-speed steel product(equivalent to Ra0.2) product(equivalent to Ra0.4) Material to be punched SUS304, t 1mm, Hv180
[Fig.6] Change of burr height along with the unmber Clearance One side 7.5%
900 SKH51 [Fig.3] Camparison of normal polished product of punching operations, and appearance of punch point Punched shape $5.0mm
800 and WPC®-treated product Punching speed 200spm
SKD11
HV 25g If, for example, the tolerance of the burr height was made 100 -m, the number of punching operations would be nearly doubled compared to when surface treatment
was not carried out. Also, it was found that whereas a punch that had not been surface-treated started to chip at the edge of the point after about 60,000 shots, a WPC®

-treated punch showed no signs of significant chipping even after 100,000 shots. As a result, it was confirmed that the fatigue strength of the punch point increased due
to WPC® treatment.

700 20 40 60 80 The TiCN-coated punch and the HW coated punch were both able to withstand at least 200,000 punching operations. However, when the points of both were compared,
0 it was found that after about 100,000 shots, the coating of the normal TiCN-coated punch started to separate, and also the burr height started to increase, but in contrast
Depth from surface -m the coating of the HW-coated punch showed absolutely no signs of separation after about 100,000 shots, and the burr height remained at a low level up to 200,000
[Fig.4] Hardness distribution near the surface shots.
From these results, it was confirmed that the HW-coated punch exhibits superior performance even when used on materials, such as SUS304, that are difficult to
of a WPC®-treated product machine.

Hardness measured using a
micro-Vickers hardness tester

1221 1222

’PRODUCTS DATA»

PUNCHES FOR HEAVY LOAD, TAPERED HEAD PUNCHES

IWhat are punches for heavy load and tapered head punches? 3.Periphery of top surface of punch head

When a thick sheet or high tensile steel sheet, for example, is punched, the tip of the punch often wears, breaks or chips, and also the The outer periphery of the top face of the punch is
head frequency breaks. The main causes of damage to the head of the punch are stress concentration and tensile impact force that inclined. This is to prevent the punch from breaking due
occur at the head of the punch. Misumi's punches for heavy load and tapered punches have increased strength due the use of a to the application of a bending moment in the vicinity of
different profile for the punch head. the outer periphery in the event that the axial center of
the punch is out of alignment.

ICauses of damage to the punch head D+3 D+5 D+3 ’Fig.5»Reduction of bending moment

1.Stress concentration ’Fig.1» 5 IStrength of the punch head’Refer to Fig.6 and 7.»
8
Because the punch head has a rapidly changing profile going from the shank to the head, stress If the tensile strength of the head of a standard punch is assumed to be 1, that of punch for heavy load is approx. 1.5, and that of a
concentration occurs. As a result, depending upon the tip diameter and the shank diameter, there are (7) tapered head punch is approx 1.9. [Fig.6]
cases in which the head is subjected to a greater stress than the tip, causing it to become damaged The results of a comparison of fatigue strength of punch heads carried out over several 104 repetitive cycles, for example, show that
CPunch for heavy load has a larger radius of curvature beneath the neck of the punch than a R 0.5 max R1.2~1.5 R1.2~1.5 the head of punch for heavy load has a fatigue strength of about 1.8 times that of a standard punch. Also, the results of a
standard punch in order to reduce stress concentration. However, when the radius of curvature comparison performed at 784 MPa [80 kgf/mm2] show that the head of punch for heavy load can withstand nearly six times the
beneath the neck is increased, the O.D. of the head also increases, which is disadvantageous from the DD D number of repetitive cycles as that of a standard punch. [Fig.7]
viewpoints of cost and installation space. Consequently, it is impractical to increase the radius of The tensile strength of the head of a tapered head punch is about 20% higher than that of punch for heavy load, so it is estimated
curvature to an excessive degree. Standard punch Punch for heavy load Tapered head punch that the tapered head punch has a fatigue strength that is at least as high as that of punch for heavy load. For this reason, a tapered
CA tapered head punch is a punch that has a tapered head and also the same radius of curvature head punch is suitable for applications in which the head of even punch for heavy load is likely to become damaged, such as
beneath the neck as that of punch for heavy load, in order to further reduce stress concentration. ’Fig.1»Stress concentration condition blanking of high tensile steel of at least 980 MPa [100 kgf/mm2] class, spring steel or hardened steel.

2.Tensile force due to elastic waves ’Fig.2» Tensile strength’MPa» 3000 Shank diameter D=10 300 Tensile strength’Kgf/mm2» R1.5 150 Stress’Kgf/mm2»
2500 Material:SKH51 1500Stress‰’MPa »(Punch for heavy load) 100
When a punch is performing a blanking operation, it is 2000
subjected to a large compressive force. It is said that at the Hardness:61~64HRC 250 R1.2
instant the punch blanks the material(breakthrough), this Tension application speed:1mm/min
compressive force is abruptly released, and conversely a large 200
tensile impact force is generated.1), 2)In certain cases, this Material 1500 1000
tensile impact force is comparable in magnitude to the
blanking load, and can cause damage to the punch head. Compression Tensile load 150
load
[Bibliography]
1)Spring Lecture on Plastic Forming, Fiscal 1985, 1000 100 500 50
R0.3 0
Nagai and Shimanuki 500 50 10 6
2)Spring Lecture on Plastic Forming, Fiscal 1981, (Standard punch)
During blanking Immediately after blanking 0 0
Takaishi, Maeda, Mori et al 0
(breakthrough) Standard punch Punch for heavy load Tapered head punch SKH51 10 2 10 3 10 4 10 5
(Å=3) (Å=2) (Å=1.6) tensile strength
’Fig.2»Tensile force generation situation Number of repetitive cycles N

IFeatures of punches for heavy load and tapered head punches’Figs.3 to 5» ’Fig.6»Tensile strength of the punch head of various types of punches ’Fig.7»Fatigue strength of punch for heavy load and standard punch(D = 5, SKH51)
(D = 10, SKH51)
1.Thickness of the punch head 10B RR11..22~~11..55 Å: Stress concentration coefficient of punch head

The thickness of the punch head was set on the thick DD++55 IWhen using a punch
side in order to prevent shear failure due to tension DDÚÚ00..55
from the impact force. C P.1209~ of Product Data shows the selection standards for the punch tip diameter and the shank diameter. The optimum
C Punch for heavy load: 8 mm DD punch(tip diameter and shank diameter)can be selected from the relationship between the shearing resistance of the workpiece, the
C Tapered head punch: Approx. 7 mm(Thickness of sheet thickness, punch diameter and total number of blanking operations.
88++++0000..00..003131 Punch for heavy load
flange combined with ring: 8 mm) 30B RR11.2.2~~11.5.5 CA tapered head punch is used for on-the-spot adjustment during punching or tapering, so use punches bearing the same
identification mark in combination with each other.
2.O.D. of punch head and radius of curvature beneath the neck D+5
(DD++35)
Punch for heavy load has a radius of curvature beneath (DÚ3)
of the neck of between 1.2 and 1.5 R, and a head O.D.
of D+5 mm (D: Punch shank diameter) in ((DD))
consideration of the stress concentration reduction
effectiveness and economical efficiency.A tapered head DD
punch has a radius of curvature beneath the neck of 88++++0000..00..001313
between 1.2 and 1.5 R, and a head O.D. of D+3 mm. It Tapered head punch
is designed so that when it is used in combination with Tapered ring
a tapered ring, it's O.D.
’Fig.3»Punch profile

Shear failure due to
tension

Destruction due to stress
concentration

1223 ’Fig.4»Destruction of punch head 1224

’PRODUCTS DATA» ’PRODUCTS DATA»

CONDITIONS UNDER WHICH FRACTURE, BREAKAGE AND ABNORMAL WEAR ARE APT TO OCCUR CEMENTED CARBIDE TOOL MATERIALS FOR WEAR RESISTANCE

IConditions under which fracture, breakage and abnormal wear are apt to occur ITable of comparison of cemented carbide tools for wear resistance

Probability of punch Probability of Probability of thin Application Classification of Tungaloy Sumitomo Electric Mitsubishi Dijet Hitachi Fuji Nippon Sanalloy Kyoritsu Silver Alloy
tip being fractured heavy wear occurring punch being broken applicability code Dice Tungsten lndustry GOKIN
Factor Conditions Hardmetal Materials Industrial Tool Engineering G1
High/Medium/Low High/Medium/Low High/Medium/Low D10 G1 DA10 H1 G2
V10 D10 D1 GTi05 D1 WH10 D20 DA20 G1 G3
WH20 D40 G2 DA25 KD05
D50 G2 G4
Too high heat treatment hardness. For general wear-resistant V20 D20 D2 GTi10 D2 WH30 C50 DA30 KD10 G5
Nonuniform material(e.g. internal defect) impact-resistant tools D25 GTi15 WH40 G55 VA30 A10W 6F
Material of tools Approximation between tool material and workpiece material. D3 D3 WH50 D60 G3 G6
ED30 GTi20 NC2 WH60 G4 F65
Material of workpiece Presence of oxide film on surface. V30 D30 NC6 WB60 C60 G3 DA50 KD20 G65
High hardness. D40 G5 GTi30 NC8 NM08 G65 G20 VA40 MC30 G7
High elongation and viscosity. * D50 ED50 GTi35 G5 NM15 C70 G30 G5 G8
GTi30S NC10 BRM20 C84 G40 DA60 TB6 7F
V40 G6 GTi40 GD195 EF20N G70 G50 VA50 KD40 8F
GTi40S MH4 NM25 G85 G60 EA50
* G7 GTi50S GD174 C95 VA60 TB7
G8 ZH104 GD201 NM25 G80 VA70
V50 SF10 NM40 F08 SD1 EA60 G8
F0 MF10 MH5 F10 EA70
Too long relative to diameter. * D60 XF1 HTi10 MH7 M10 VA80
Too small roundness in punch shoulder. D70 F1 MF20 GD206 F20 EA80
Sharp corner contained in cutting edge. V60 AFU TF15 EA90
Rough surface finish. AF0 UF30 FZ05 F08
Tool contour For cutting tools Z01 F SF2 FB10 F10
MD08F AF1 UF20 FZ10 F20
A1 UF30 FZ15 M10
Clearance Too small. Ultrafine grain M CC FB15 FN10 FD25 EF05
Biased. cemented carbide F0 FZ20 FN20
Z10 MD10 SF1 FB20 FN30 FD25 EF10
ED10 FZ25 SF30 FD15 EF20
MD05F AFU FN40 EF05
MD15 AF0 FB15 SF50 EF10
AF1 FZ10 EF20
Z20 MD20 A1 FZ15 FN10
CC FB20 FN20
EM10 FZ20
FZ25 FN30
Z30 UM SF30
FN40
Lubrication No lubrication provided. For wear and impact V10 F SF50
Bridge width Improper lubricant. resistance
Working V20 EM10 SF20
conditions Uneven. V30 SF05
V40 * SF25
SF30

Punch guide No punch guide provided. *:Standard of Carbide Tool Association
Poor punch guide accuracy.
IClassification of applicability of cemented carbide Unit:Wt% IUltrafine grain cemented carbide

Retention of No plate retainer provided. Classification of Hardness Traverse rupture force Metal component Hard phase component Classification of Hardness Traverse rupture force
workpiece (When fixed stripper is used).
applicability code HRA N/mm2 {kgf/mm2} Co W-based hard phase applicability code HRA N/mm2 {kgf/mm 2}
Anomaly during punching Insufficient plate retaining force.
V10 Over 89 1170 or more{120 or more} 3~6 88~91 Z01 Over 92 1177 or more{120 or more}
Double shot or two-plate shot takes place. V20 Over 88 1275 or more{130 or more} 5~9 88~90 Z10 Over 91 1275 or more{130 or more}
V30 Over 87 1471 or more{150 or more} 8~16 78~87 Z20 Over 89.5 1471 or more{150 or more}
Poor press rigidity. V40 Over 85 1864 or more{190 or more} 11~20 73~85 Z30 Over 88.5 1668 or more{170 or more}
Poor press accuracy. V50 Over 83 2060 or more{210 or more} 14~25 70~82
Poor die set accuracy. V60 Over 78 2256 or more{230 or more} 17~30 65~78 (JIS B4053-1989)

Press, die set (Standard of Carbide Tool Association CIS 019C-1990)

Press Working Data Book, 1980, the Nikkan Kogyo Shimbun Ltd. Notes 1.The classification of applicability codes from V10 to V30 and the values for them are in accordance with JIS B 4053.
2.The classification of applicability codes should not be used as material type codes.
3.Some cemented carbide manufactures have a plurality of material type codes of their own corresponding to one and the same code of classification of applicability.

ICriteria for cemented carbide selection Classification of applicability code

Name HighTWear resistanceULow
LowTImpact resistanceUHigh
Rough classification Name and classification of item
V10 V20 V30 V40 V50 V60
Trimming die Die Light load involved
Punch Heavy load involved (Standard of Carbide Tool Association CIS 019C-1990)
Light load involved
Drawing die Drawing die Heavy load involved
Drawing punch Light load involved
Heavy load involved
Powder metal Die Light load involved
compacting die Heavy load involved
Round
Other wear-resistant, Small impact involved Deformed
impact-resistant tools Medium impact involved Punch
and components Gauge, valve, nozzle, seal ring,
Large impact involved precision ball, etc.

Bending die, crasher, spike, etc.

Engraver, coining die, coining punch, impact die,
swaging die, nail making tool, hot extrusion die,
polishing disk, etc.

1225 1226

’PRODUCTS DATA»

SELECTION OF BUTTON DIES

The following is a summary of the procedures for selecting proper clearances of punches, dies and outside diameters of button dies for ordinary punching processes.
Follow steps from 1 to 7.

STEP 1 See Table 1 for the material code.
Example:SPCC 1.6tEEEEEEEEEEcode42

STEP 2 See Table 2 for hole tolerances. (Table 3)Standard for clearance selection
Example:F6Ú0.15EEEEEEEEEEcode S
Material Tensile strength Recommended(on one side)%
kgf/mm2 Precision class P Standard class S

STEP 3 Determine clearances based on the material code and the hole tolerances, Table 3. Soft Less than 10 36
Example:10%M1.6=0.16 Medium 10~18 48
Aluminum Over 20 8 10
STEP 4 Determine the hole diameter of die using the following formula. Aluminum alloy Hard 68
Punch diameter+(2MClearance)=Die hole diameter 8 10
Example:6.0+(2M0.16)=6.32 Tough pitch copper Soft 20 or less 48
Hard 28 8 10
6 10
STEP 5 Determine the outside diameter of die according to the tolerance code and the Brass Soft 28 10 15
die hole diameter, Table 4. Hard 35 6 10
Example:Material code 42, hole tolerance code S 10 12
Phosphate bronze Soft 30 12 15
Die hole diameter F6.32EEEEEEEEEEoutside diameter F13 Steel Hard 50 6 12
Extra soft 28 8 15
STEP 6 Determine button die length L based on design and then select head or straight Soft 34 8 12
type. 35
Hard 70 44
Example:Length of 16 long button die with head

STEP 7 Place order by catalog number. Stainless Soft 60
Example:MHD 13-16-P6.32EEEEEEE10pcs. Hard 100

(Table 1)Material code (Table 2)Code for hole tolerance Sillicon steel 35~39
Vinyl chloride fiber 4~ 8
Material thickness Precision class Standard class 5~10
Phenol laminate

Tensile strength 1 1~2 2~4 Code P S
kgf/mm2 or less

Hole tolerance Ú0.1 or less Over Ú0.1

20 or less 21 22 24 Shearing surface Shearing surface
50% 30% or less
40 or less 41 42 44 Hole cut surface (Table 4)Recommended outside diameter of button die
Usage Shaft holding hole Drill hole
Vent Material Code 21 22 24 41 42 44 81 82 84
Rivet hole Unfinished tap hole PS PS PS PS PS PS PS PS
80 or less 81 82 84 Weight-reduction hole Hole diameter Hole tolerance P S -- 88 88 --
10 10 10 10 10 10 10 10
1.0~ 1.99 66 6 6-- 6 6 6 6
2.0~ 2.99 13 13 13 13 13
3.0~ 3.99 88 88 88 88 13 13 13
4.0~ 4.99 16 16
5.0~ 5.99 88 10 10 10 10 16 16 16
16 16 16
Cracks Punch Punch Punch 10 10 10 10 10 10
Tang 20
Portion Cracks Cracks 6.0~ 6.99 13 13 13 13 13 13 13 13 13 13 20
Die at which Die Die 7.0~ 7.99
secondary 25
shearing 8.0~ 8.99 16 16 16 16 16 16 16 16 16 16 25
occurs 9.0~ 9.99
Cracks
10.0~10.99
11.0~11.99 20

(a)Clearance is too small. (b)Clearance is appropriate. (c)Clearance is too large.

Difference in growth of cracks according to the amount of clearance 12.0~14.99 25

15.0~19.99 32

20.0~25.00 38

Sagging Thickness(t)
Shearing surface

Ruptured surface

Burr Secondary shearing surface

(a)Clearance is large. (b)Clearance is medium. (c)Clearance is small. (d)Clearance is very small.

Effects of clearance on sectional surface of sheared products

1227 1228

’PRODUCTS DATA» IInfluence on the shape of a sectional surface Run R1<R2
S1>S2
SCRAP RETENTION BUTTON DIES Dies with countermeasures for scrap retention deliver their effect by providing slanted Section length H1<H2
grooves in the die inside surfac(e 0.005~0.1mm). As a result, since the local C1<C2
-GUIDE- clearance of those parts corresponding to the parts of the dies where special grooves Break surface length B1<B2
have been machined is greater, there are slight changes in the sectional surfaces. That
Scrap retention during press operations is caused by product defects or damage to the dies, etc. and can become a serious problem.It is said that scrap retention occurs particularly Variation of tolerance
easily when punching small holes in thin panels or during side cuts when the grinding force with the dies is low. of break surface

ICauses of scrap retention Burr height

The causes of scrap retention are said to be adsorption by a vacuum, adhesion to the punch cutting blades, adsorption by oil, punch magnetic force, and its is, in comparison to those parts where machining of grooves is not done, the Special recessed part
being pushed up by compressed air in the die, etc. penetration(R), cross section length(H), cross section dimensional
Also, with general clearances, since the dimension of punching debris is smaller than the diameter of hole so scrap retention occurs easily. difference(C)and burr height(B)become greater while the shear {
section(S)becomes smaller. Accordingly, a lot of shear planes are necessary in {
IGeneral countermeasures for scrap retention shaping work, etc., so please exercise caution in cases where there are problems B1 H1 S1 R1
B2 H2 S2 R2
To prevent scrap retention, if between the shear plane dimensions.
adsorption force to the punch<friction force with the die+weight of punch debris , then the effect is good. Therefore,
1)Countermeasures with the punchEEMachining of the blade front end(shear angle, projections), air flow, use of jector IAvailable range C1 C2

punch, etc. 1.Hole diameter :F0.8mm~F48mm Ironed portion
2)Countermeasures with the dieEEESuck the debris out with a vacuum, make the surface of the blade edge rougher or It is said that the smaller the hole diameter, the easier it is for scrap retention to occur, but if the

carry out minute chamfering of the cutting blades, etc. smallest hole diameter is F0.8mm or larger, it is possible to handle the rising debris(. Only the
3)Other countermeasuresEEEChange the contour shapes, make the clearances smaller, make the penetration depth
precision class is compatible with diameters smaller than F1.0mm.)
of the punch and die greater, etc.
All kinds of methods have been used. 2.Machined material:Materials with a high tensile Fig. 2 Shear plane shape due to die with countermeasures for scrap retention
Generally, the suction system using a vacuum is used widely, but this requires consideration of the construction
from the point when the die is designed and installation operations and adjustments of suction force, etc. are a strength up to 1177N/mm2(120kgf/mm2)
lot of trouble. In addition, in the case of a jector punch, the jector pins need to be treated during repolishing of
the punch and changes in the roughness of the inner surfaces of blade edges require retreatment after It is said that harder the material and the less it can extend, the easier it is for scrap retention to occur. It is possible to use button dies which
repolishing. MISUMI dies with countermeasures for scrap retention are subjected to special groove machining
and solve these problems. have undergone countermeasures for scrap retention on practically the whole diverse range of machining materials, and they can be used on

Fig. 1 Groove shape of dies with materials with a tensile strength of up to 1177N/mm2(120kgf/mm2).
countermeasures for scrap retention In the case of machining materials with a tensile strength that exceeds 1177N/mm(2 120kgf/mm2), the effect may not be realized.

ITheory and features of button dies with countermeasures for scrap retention 3.Thickness of machining materials:Handles materials with thickness of 0.1mm of greater.
Through adsorption by oil or a vacuum, etc., the thinner the panel thickness gets, the easier it is for scrap retention to occur, and this causes
1)Theory of dies with countermeasures for scrap retention
Two or more slanted grooves are machined in the inside surface of the die in opposite directions when viewed from the center. The scrap trouble. Button dies with countermeasures for scrap retention are capable of working with materials with thickness of 0.1mm or greater(. For
punched out initially in the punching process have little projections formed in them corresponding to the slanted grooves in the die. materials with thickness of less than 0.15mm, only precision class dies can be used.)
When these are pushed still farther down to the bottom surface by the downward stroke of the punch, these projections are compressed 4.Die Material:Selection can be made from SKD11, SKH51, powdered high-speed steel, carbide V40 and super corpuscle.
from the die's side surface(ironing effect)and the friction force becomes great, preventing scrap retention. Also, since the slanted
grooves are not machined in a spiral pattern but in opposite directions, so there is no rotation of the scrap together with the punch in its ICautions
upward stroke.
1.Machining of special grooves is done so as to achieve the best effect and to minimize the effect on the product, but scrap retention gives
2)Blade shapes and types of die rise to variations in the effects due to a number of conditions.
For round and deformed tools which make it easier to produce scrap retention, it is possible and effective to use button dies with
countermeasures for scrap retention on cut-out shapes(side cuts)where there is little binding force with the die. 2.Punch and die penetration:About 1mm
To realize the function of button dies with countermeasures for scrap retention sufficientl(y to increase the friction force with the die by the ironing
3)Handling is easy and the total cost is reduced. effect), penetration of about 1mm is necessary, so caution is necessary during die design and during repolishing.
Since results are realized simply by incorporating dies which have undergone countermeasures for scrap retention, it is possible to use
them on existing dies and it is unnecessary to undergo all the trouble at repolishing time or reprocessing after repolishing.The cost is 3.Amount of repolishing(regrinding):About 1mm(When BC is used, up to BC-1mm)
slightly higher than previous button dies, but the cost difference from ordinary punches and jector punches make the cost about the In order to obtain the effect of the button die with countermeasures for scrap retention sufficiently, it is desirable that regrinding up to about 1mm be
same. And if the effects and maintenance costs are considered, we can say that the added value is extremely high.
carried out.(In order to realize the effect, grinding of a minimum of 1mm on the blade straight portion is necessary.)
1229
IOrder Method

In order to machine slanted grooves which will achieve the best effect as a countermeasure for scrap retention and minimize the effect on

products, in addition to the ordinary button die dimensions, the plate thickness of the machining material and the clearance(one

side)values are necessary.

C Worked material thickness MT :0.15mm or more(0.01mm increments) CClearance C :0.01mm or more(0.005mm increments)

Clearance precision MT :0.10mm or mor(e 0.01mm increments) Clearance precision C :0.005mm or more(0.001mm increments)

Order Catalog No. L PW R( Ronly) MT C Clearance
SR-MHD13 30 P7.00 MT1.50 C0.105
Punch blade
edge

Die blade edge

1230

’PRODUCT DATA»

BUTTON DIES WITH AIR HOLE AND SCRAP VACUUM UNIT

ICauses of scrap clogging d Straight land Clogging due to IScrap vacuum unit(SVBN) Non-clogging Air inlet hole
is long scrap dropping button die
Generally, the following are conceivable causes of scrap clogging. Die into the hole 1)Principle and features of scrap vacuum unit P.273 Die plate
CThe straight part of the die tip is too long. Backing Rough surface, P.446
CThe rear relief profile is unsuitable(is a reverse taper). Die holder reverse taper, etc. Clogging due to C The scrap vacuum unit uses an air blow(compressed air)to create a negative Backing plate
CThe inside surface of the die is rough. oil adhesion pressure inside the die. This causes the scrap(product)to be pushed downward, Air blow Air blow
CSteps are formed due to mis-centering of the holes in the die, backing Excessively large preventing the scrap from clogging or rising. (for groove) (for hole)
with respect to d
plate and die holder. CGreater effectiveness can be obtained by using a non-clogging button die that has an
CWhen pieces of blanking scrap fall on top of each other and drop together Step due to air inlet hole.
mis-centering
like a cylinder, they clog up the relief hole. CThe air supply path to the die holder can be selected from groove feed and hole feed.
CScraps become magnetized. [Fig.1] Causes of scrap clogging CThe unit is intended to be recessed in the die holder, enabling it to be installed later

Particularly, during blanking of thin sheets or blanking of small holes, the blanked scrap is 1)¤Presswork Troubleshooting" by Hiromi Yoshida, Fumio Yamaguchi as a countermeasure against scrap rising and scrap clogging without making major
light, so it is considered that the scrap will readily clog up due to even a small impediment. changes in design.
CThere is no need to form an inclined hole to the die plate, die holder, and so on.

INon-clogging button dies(SV series) 2) Scope Die holder

1)Principle and features of non-clogging button dies CHole diameter d:F3 mm to 16 mm

One conceivable way of thinking concerning the prevention of scrap clogging is as follows: Air inlet hole CO.D. D:F6 mm to 20 mm Fd

Scrap discharge resistance(cause of scrap clogging)< Scrap discharge force + Weight of scrap FD

Misumi's non-clogging button dies have an air inlet hole near the tip, so if a 3)Precautions [Fig.4] Example of use of a scrap vacuum unit
non-clogging button die is used in combination with a vacuum device, a
downward airflow is generated inside the die. As a result of this airflow the CThe magnitude of the suction force of the scrap vacuum unit differs depending upon the pressure of the air supplied, the hose diameter, the cross-
scrap discharge force increases, thus helping to reduce the amount of scrap
generated. sectional area and length of the air supply path of the plate, and the size of the unit.
For the vacuum device, please use a vacuum pump, vacuum cleaner(pail
cleaner)or a scrap vacuum unit. [Fig.2]. C A scrap vacuum unit that is not adequately airtight is likely to have insufficient suction effect.

CWhen using two or more scrap vacuum units, take steps to ensure that the flow of air through each airflow path is the same. Note that in this case

the flow velocity will fall, causing the vacuum to fall as well. The vacuum is proportional to the pressure of the compressed air and the cross-

sectional area of the flow path, and inversely proportional to the diameter of the vacuum unit and the length of the flow path.

CUse a hose that has an O.D. of F6 and an I.D. of at least F4.

Scrap vacuum unit CThis unit can be used to prevent scrap from rising or clogging, however it cannot solve these problems under all conditions.

CDimensions not included in this catalog may be changed for the purpose of improvement.

2)Scope

Material Shape of relief hole Shank diameter Tip diameter Page ITest data (reference value)

Regular Angular D P CThe scrap suction performance(degree of vacuum at the die tip)becomes maximum when suction is performed using a vacuum pump.
CThe suction performance of a scrap vacuum unit or a vacuum cleaner(pail cleaner)is inferior to that of a vacuum pump, however it is possible to drive a scrap
SKD11 or equivalent k - 6~10 1.00 ~6.00
k - 3~ 5 0.50 ~2.50 P.273 vacuum unit using an existing compressor, for example, so there is almost no need to purchase new equipment.
Steel SKH51 k - 6~10 1.00 ~6.00 CThe suction performance differs depending upon the size of the button die, the hose diameter, the length, and so on, so it is given here only as a rough guide.
k k 3~10 0.50 ~6.00 P.517≤P.523
Powdered - k 3~10 0.500~6.000
high-speed steel -
P.446
Cemented V40 k 3~10 0.500~6.000 -80
carbide

Precision V40 Degree of vacuum at tip of die kPa Button die used:
carbide Superfine particles SV-MSD6-20-P2.00

Vacuum cleaner Vacuum pump + -60
(pail cleaner) scrap accumulation tank
3)When used for scrap retention Vacuum pump

When the BC alterations are used to shorten the tip length(length of the straight [Fig.2] Examples of combinations with different vacuum devices -40
part)and increase the bite of the punch in order to separate scrap from one
sheet at a time using airflow it is possible to prevent scrap from rising. [Fig.3] Scrap vacuum unit: Example of vacuum cleaner
The conventional scrap retention button die was unable to prevent scrap from SVBN10-6 (pail cleaner)
rising when it was necessary to perform shaving during a subsequent process or
when the sheet thickness of the work piece was less than 0.1 mm and the -20
clearance was small. In contrast, these dies can be used to prevent scrap from
rising in these applications. 0 0.3 0.4 0.5 0.3 0.4 0.5
(Only the angular type can be used for BC alterations.) -20 -40 -60

4)Precautions Suction pressure kPa Compressed air pressure MPa

CA non-clogging button die is intended to be used in combination with a vacuum device such [Fig.5] Comparison of different suction units
as a vacuum pump. It is not possible to prevent scrap from clogging by using a button die on
its own. Note: The suction performance of a vacuum cleaner differs according to the particular model.

CIf the air inlet hole at the top of the button die becomes clogged with lubricating oil, cutting [Fig.3] When used for scrap retention
chips, dirt, and so on, the effectiveness of the die will be impaired, so maintain the die
1231 periodically. After the die has been stored for a long period, remove solidified lubricating oil, 1232
dirt, and so on, clogging the air inlet hole before using the die.

CIf the airtightness of a die is poor, it may not be possible to obtain adequate suction effect.
CThis product is intended mainly for punching thin sheet material. It may not always be

possible to obtain adequate suction performance in the case of thick sheets.

’PRODUCTS DATA»

NOTES ON ASSEMBLING STRIPPER GUIDES

IEffects of machining errors and adhesive gaps on stripper guides IAssembling stripper guide pin
Centering may deviate when the punch is inserted during die production due to machining errors in punch plates, stripper plates and
die plates, and gaps between the guide bushing and adhesive. If inserted in these conditions, the punch will deform due to deviation Press fit
from the center, resulting in breakage or abnormal wear.
The following countermeasures can be used to eliminate the causes of the above trouble: Headed type

Countermeasures (1)The headed type guide pins are press fit with the Grinding Gaps

(!)Enlarge the hole of the punch guide bushing. sliding part as a lead. This minimizes the press-
When the hole of the punch guide is enlarged, the stripper plate can only be used for stripping machining materials. This
makes the features as a punch guide to be lost, and unsuitable for punching thin plates having small clearances or precision fit errors, and facilitates to produce
dies.
perpendicularity(. Fig. 1)
(@)Make the punch guide as an insert type for adjustments.
Adjustments are easy, but the cost will increase. (2)It is ideal to level off the guide pin and plate surface

(#)Adjust the die. after press fit by grinding the head of the pin
Use liners, shims and the like on the block die to prevent center deviation.
protruding from the plate surface(. Fig.2)
($)Use a reference pin for adjustments.
The reference pin can be used for leveling uneven gaps between the guide bushing and Loctite adhesive. (Adjustments with counterbore depth is possible

(%)Make the precision of mounting hole of stripper guide bushing to the level of a micro clearance. for the TG/VG series having the tolerance of 5 0 (Fig.1) (Fig. 2) (Fig. 3)
For precision dies that should have no machining errors, one way to prevent center deviation due to gaps produced by -0.05
adhesive is to minimize the clearance between the mounting hole and bushing. In this case, the concentricity and circularity
of the bushing are critical. Use a precision class bushin(g VG/TG series). Using alteration DRC is the best way to increase in head thickness.) For SGPH/SGOH, alteration
the adhesive strength.
Press fit of the bushing is another way to prevent center deviation, but is not recommended for precision dies because TKC will improve the tolerance of head thickness.
press fit will cause deformation due to the shrinkage of internal diameter, or weaken the mounting strength.
Gaps at the head part will cause a slight movement of the

(3)guide pin which will exert bad effects on perpendicularity

during machining(. Fig. 3)

Straight Type Press fit Press fit

(!)Adjustments with enlarged (@)Adjustments (1)When the straight type guide pin is press fit as
slanted during assembly, a seizure may be
A hole of guide bushing with insertion caused during sliding due to insufficient
perpendicularity(. Fig. 4)
Guide
(2)Perfect perpendicularity can be obtained by
Î Î1 press fit of the guide pin using a guid(.e Fig.5)
For bolt type guide pins, perpendicularity defect
will be caused by tightening the bolt if (Fig. 4) (Fig. 5) Slant
perpendicularity is not maintained at the end (Fig. 6)
face of the guide pin(. Fig. 6)

(The orthogonality of SGPN and SGON can be
improved by alteration TGC. The TG/VG series
are delivered with their end faces polished.)

B Center deviation and bent punch (#)Adjustments of location
Center deviation due to machining errors due to gaps with Loctite adhesive with liners, shims, etc.

(A–B) IGuide length of stripper guide pins D D Guide pin
Bushing
Gaps with Loctite Press fit length of guide pin of punch plate
Groove for Loctite Thickness of the plate 1.5 to 2 times the diameter of the guide pin is
Spacer most suitable for producing perpendicularity.(Fig. 7)
T˘D, T=(1.5~2)D
T
Guide length of stripper plates T
Thickness of the plate 1.5 to 2 times the diameter of
($)Assembly using a Dowel pin (%)Prevention of adhesive gap the guide pin is most suitable considering the stability
reference pin (Reference pin) errors(DRC machining) and seizure of the guide(Fig. 8).
T˘D, T=(1.5~2)D

1233 (Fig. 7) (Fig. 8) 1234

TECHNICAL DATA

)S I International System of Units 1237
)HARDENINGS AND HARDNESS TEST METHODS 1239
)HARDNESS CONVERSION TABLE 1240
)SURFACE ROUGHNESS 1241
)DRAWING INDICATION OF SURFACE TEXTURE 1242
)SURFACE ROUGHNESS BY DIFFERENT METHODS 1243
)INDICATIONS OF GEOMETRICAL TOLERANCE ON DRAWINGS 1244
)DESCRIPTION OF FITS 1245
)GRAPHICAL REPRESENTATION OF STANDARD FITS 1246
)TOLERANCES OF REGULARLY USED HOLE FITS 1247
)TOLERANCES OF REGULARLY USED SHAFT FITS 1248
)STANDARD TOLERANCES FOR PARTS FORMED BY PRESS WORKING FROM SHEET METAL AND SHEAR FROM METAL PLATES 1249
)STANDARD MACHINING TOLERANCES 1250
)HEXAGON SOCKET HEAD CAP SCREWS 1251
)TABLE OF HOLE SIZE BEFORE THREADING 1253
)PROPER BOLT AXIAL TIGHTENING FORCE / TORQUE 1254
)STRENGTH OF BOLTS, SCREWS AND DOWEL PINS 1255
)CALCULATION OF CUBIC VOLUME 1256
)CALCULATIONS OF AREA, CENTER OF GRAVITY AND GEOMETRICAL MOMENT OF INERTIA 1257
)CONVERSION CHART OF TRIGONOMETRICAL FUNCTION 1259
)COMPARISON OF MATERIALS BETWEEN JIS AND FOREIGN STANDARDS 1 1261
)COMPARISON OF MATERIALS BETWEEN JIS AND FOREIGN STANDARDS 2 1263
)COMPARISON OF DIE STEEL BY MANUFACTURERS 1265
)HARDNESS OF MATERIAL AND CORRESPONDING TOOLS 1266

1235 1236

TECHNICAL DATA

SI(International System of Units) Excerpts from JIS Z 8203(1985)

1. International System of Units and Usage 1-3. Multiple of 10 of SI Units
(1)Prefixes The multiples and the names and symbols of prefixes to express integer multiples of 10 SI Units are shown in Table 4.
1-1. Scope of application This standard specifies how to use the International System of Unit(s SI)and other international unitary systems, as well
as units used in correlation with units from international systems, and other units which made be used. Table 4. Prefixes

1-2. Terms and definitions Terminology used in this specification and definitions thereof are as follows Multiples Prefixes Multiples Prefixes Multiples Prefixes
of Unit
(1)International System Coherent system of units adopted and recommended by the International committee on Weights and Measures. of Unit Name Symbol of Unit Name Symbol Name Symbol
10 -9
of Unit(s SI) It contains base units and supplementary units, units derived from them, and their integral exponents to the 10th power. 10 18 Exsa E 10 2 Hect h 10 -12 Nano n
10 15 Peta P 10 Deca da 10 -15 Pico p
SI is the abbreviation of Systeme International d'Unites(International System of Units). 10 12 Tera T 10 -1 Deci d 10 -18 Femt f
10 9 Giga G 10 -2 Centi c Ato a
(2)SI unit Generic term used to describe base units, supplementary units or derived units of the International System of Units(SI). 10 6 Mega M 10 -3 Milli m
10 3 Kilo k 10 -6 Micro O
(3)Base unit Those units given in Table 1.

(4)Supplementary unit Those units given in Table 2.
Table 1. Base Unit

Base Quantity Unit Symbol Definition 2. Conversion Tables for SI and Conventional Units
Length Meter m
Kilogram kg A meter is the length of the path traveled by light in a vacuum during a time interval of 1 of a second. (The units enclosed by thick lines are the SI units.)
Mass Second s 299, 792, 458
Ampere A N dyn kgf PaCs cP P
Time Kelvin K A kilogram is a unit of mass(not weight nor force); it is equal to the mass of the Force 1M10 5 1.019 72M10-1 Viscosity 1M10 3 1M10
Mole mol international prototype of the kilogram. 1 1.019 72M10-6 1 1M10 -2
Current 1M10 -5 1 1M10 -3 1
Candela cd A second is the duration of 9 192 631 770 periods of radiation corresponding to the transition between 9.806 65 9.806 65M10 5 1 1M10 -1 1M10 2 1
Thermodynamic the two hyperfine levels of the ground state of the cesium 133 atom.
Temperature
Amount of An ampere is that constant current which, if maintained in two straight parallel conductors of Note)1 P =1 dynCs/cm2 =1 g/cmCs
Substance
infinite length, of negligible circular cross-section, and placed 1 meter apart in a vacuum, would 1 PaCs =1 NCS/m2 ,1 cP=1mPaCs
Luminous Intensity produce between these conductors a force equal to 2M10-7 Newton per meter of length.

Kelvin, a unit of thermodynamic temperature, is the fraction 1 of the thermodynamic temperature of the triple point of water.
273.16
Pa or N/m 2 MPa or N/mm 2 kgf/mm 2 kgf/cm2 m 2 /s cSt St
A mole is the amount of substance of a system that contains as many elementary particles( 1 ) Kinematic viscosity 1M10 6
1 1M10 -6 1.019 72M10 -7 1.019 72M10 -5 1 1M10 4
or aggregation of elementary particles as there are atoms in 0.012 kilogram of carbon 12 and 1M10 6 1 1.019 72M10 -1 1.019 72M10 1M10 -6 1 1M10 -2
9.806 65M10 6 1M10 -4 1M10 2
when the mole is used, the elementary particles must be specified. Stress 9.806 65M10 4 9.806 65 1 1M10 2 1
9.806 65M10 -2 1M10 -2 1
A candela is the luminous intensity, in a given direction, of a source that emits monochromatic radiation of
1
frequency 540M1012hertz and that has a radiant intensity in that direction of 683 watt per steradian.

Note( 1 ) The elementary particles here must be atoms, molecules, ions, electrons or other particles. Note)1 St=1cm2/s, 1 cSt=1mm /S2

Table 2. Supplementary Unit Note)1 Pa=1 N/m2 , 1Mpa N/mm2

Base Quantity Unit Symbol Definition Pa kPa MPa bar kgf/cm2 atm mmH 2 0 mmHg or Torr
Plane angle Radian rad
Solid angle Steradian sr A radian is the plane angle between two radii of a circle that cuts off an arch on the 1 1M10 -3 1M10 -6 1M10 -5 1.019 72M10 -5 9.869 23M10 -6 1.019 72M10 -1 7.500 62M10 -3
circumference equal in length to the radius. 1M10 3 1M10 -3 1M10 -2 1.019 72M10 -2 9.869 23M10 -3 1.019 72M10 2 7.500 62
1M10 6 1 1M10 1.019 72M10 9.869 23 1.019 72M10 5 7.500 62M10 3
A steradian is the solid angle which, having its vertex in the center of a sphere, cuts off an area of the 1M10 5 1M10 3 1 1 1.019 72 9.869 23M10 -1 1.019 72M10 4 7.500 62M10 2
surface of the sphere equal to that of a square with sides equal in length to the radius of the sphere. 9.806 65M10 4 1M10 2 1M10 -1 9.806 65M10 -1 9.678 41M10 -1 7.355 59M10 2
1.013 25M10 5 9.806 65M10 -2 1.013 25 1 1M10 4 7.600 00M10 2
(5)Derived units The units algebraically expressed using mathematical symbols such as plus, minus, etc. The SI derived units with Pressure 9.806 65M10 1.013 25M10 -1 9.806 65M10-5 1.033 23 1 1.033 23M10 4 7.355 59M10 -2
9.806 65 1.013 25M10 2 9.806 65M10 -6 1.333 22M10 -3 9.678 41M10 -5
special names and symbols are given in Table 3. 1.333 22M10 2 9.806 65M10 -3 1.333 22M10 -4 1M10 -4 1.315 79M10 -3 1 1
1.333 22M10 -1 1.359 51M10 -3
Examples of SI Derived Units Expressed in Terms of Base Units Table 3. SI Derived Units with Special Names and Symbols 1.359 51M10

Base Quantity Derived units SI Derived units Expression in Terms of Base
Unit Units or Supplementary
Area Square Symbol Base Quantity Unit Symbol Units, Supplementary Units
Volume Cubic m2 or other SI Units
Velocity Meter/Second m3 Frequency Herz Hz Note) 1 Pa=1 N/m2
Acceleration Meter/Second2 Force Newton N 1 Hz=1s-1
Wave Numbers Every Meter m/s Pressure, Stress Pascal Pa 1 N=1kgCm/s 2 Work, Energy, J kWCh kgfCm kcal Thermal W/(mCK) kcal/(hCmCA)
Density Kilogram Every Cubic Meter m/s 2 Energy, Work, Heat Quantity Joule J 1 Pa=1N/m2 Heat Quantity 1.019 72M10 -1 2.388 89M10 -4 Conductivity 1 8.600 0M10 -1
Current Density Ampere Every Square Meter m -1 W 1 J=1NCm 1 2.777 78M10 -7 3.670 98M10 5 8.600 0M10 2
Magnetic Field Strength Ampere Every Meter kg/m3 Work Rate, Process Rate, Watt C 1 W=1J/s 3.600 M10 6 1 2.342 70M10 -3 1.162 79 1
Concentration of Substance Mole Every Cubic Meter A/m2 Power, Electric Power Coulomb V 1 C=1ACs 9.806 65 1
Specific Volume Cubic Meter Every Kilogram F 1 V=1J/C 4.186 05M10 3 2.724 07M10 -6 4.268 58M10 2 1 Coefficient of W/(m 2CK) kcal/(hCm 2CA)
Luminance Candela Every Square Meter A/m Electric Charge, Quantity of Electricity Bolt 1 F=1C/V 1.162 79M10 -3 Heat Transfer 1 8.600 0M10 -1
mol/m3 Farad S 1 =1V/A PS kcal/h 1
m3/kg Electric Potential, Potential Difference, Ohm Wb 1 S=1 -1 Note) 1 J=1 WCs,1 J=1NCm 1.359 62M10 -3 8.600 0 M10 -1 1.162 79
cd/m 2 Voltage, Electromotive Force Siemens T 1 Wb=1VCs 1.333 33M10 -2 8.433 71
Weber H 1 T=1Wb/m2 6.325 29M10 2
Electrostatic Capacity, Capacitance Tesla A 1 H=1Wb/A Power, Heat Flow W kgfCm/s 1
Electric Resistance Henry lm 1 t=(t+273.15)K 1.580 95M10 -3 1
Conductance lx 1 lm=1cdCsr 1 1.019 72M10 -1 Specific Heat J/(kgCK) kcal/(kgCA)
Magnetic Flux Celsius degree Bq 1 lx=1lm/m2 9.806 61 1 cal/(gCA)
Magnetic Flux Density, or Degree Gy 1 Bq=1s-1 7.355 M10 2 1
Inductance Sv 1 Gy=1J/kg 1.162 79 7.5 M10 4.186 05M10 -3 2.388 89M10 -4
Celsius Temperature Lumen 1 Sv=1J/kg 1.185 72M10 -1 1
Luminous Flux Lux
Illumination Note) 1 W=1 J/s,PS:French horsepower
Radioactivity Becquerel
Absorbed Dose Gray
Dose Equivalent Sievert

1237 1238

TECHNICAL DATA TECHNICAL DATA Excerpts from
SAE J 417 (1983)
HARDENINGS AND HARDNESS TEST METHODS HARDNESS CONVERSION TABLE

Heat Treatment for Steel Materials Approximate Conversion of Rockwell C Hardness Values for Stee(l 1)

Vickers Quenching Applicable Typical Brinell hardness(HB) Rockwell Hardness( 3 ) Rockwell Superficial Hardness (Hs) Tensile Strength Rockwell
hardness depth material materials Diamond Conical Penetrator
Name Strain Remark (HRC) (HV) Ball:10mm in diameter Shore (Approximate Value)Hardness
(HV) (mm) High-C steel SKS3 Rockwell Vickers Load:3,000kgf
C>0.45% SKS21 CNot applicable for long or Hardness Hardness
SUJ2 precision parts such as C scale Standard Tungsten (HRA) (HRB) (HRD) 15-N 30-N 45-N Hard- MPa C scale
Low-C steel SKH51 spindles, etc. Ball Carbide A scale B scale D scale ness (kgf/mm 2) (3)
C<0.3% SKS93 Load:60kgf Load:100kgf Load:100kgf Scale Scale Scale
SK4 CHardening parts. Ball Diamond Conical Ball of 1.6mm Diamond Conical (2)
Varies S45C CHardening depth specified on drawings. penetrator (1/16in)dia. Penetrator Load:15kgf Load:30kgf Load:45kgf
according CApplicable for precision parts.
Through Max. 750 Full depth to material. SCM415 CHardening parts. 68 940 - - 85.6 - 76.9 93.2 84.4 75.4 97 - 68
hardening SNCM220 CExpensive in small volume. 85.0 - 76.1 92.9 83.6 74.2 67
CGood strain resistance. 67 900 - - 84.5 - 75.4 92.5 82.8 73.3 95 - 66
CObtains highest hardness of all Hardening techniques. 83.9 - 74.5 92.2 81.9 72.0 92 - 65
CApplicable for precision parts. 66 865 - - 83.4 - 73.8 91.8 81.1 71.0 91 - 64
CApplicable for spindles for radial bearing. 88 -
CGood fatigue resistance and wear resistance. 65 832 - (739) 82.8 - 73.0 91.4 80.1 69.9 63
CSame corrosion resistance as zinc plating. 82.3 - 72.2 91.1 79.3 68.8 87 - 62
CNot applicable for precision parts because 64 800 - (722) 81.8 - 71.5 90.7 78.4 67.7 85 - 61
81.2 - 70.7 90.2 77.5 66.6 83 - 60
Carburizing Max. 750 Standard:0.5 Moderate of incapability of polishing after the heat treatment. 63 772 - (705) 80.7 - 69.9 89.8 76.6 65.5 81 - 59
Induction Max. 500 Max. 2 CApplicable for dry bearings. 62 746 - (688) 80 -
Hardening CLow-temperature annealing. 61 720 - (670) 80.1 - 69.2 89.3 75.7 64.3 58
Nitriding 1~2 Medium-C steel S45C CRemoves internal stress in forming 60 697 - (654) 79.6 - 68.5 88.9 74.8 63.2 78 - 57
C0.3~0.5% 59 674 - (634) 79.0 - 67.7 88.3 73.9 62.0 76 - 56
Tufftride to enhance elasticity. 78.5 - 66.9 87.9 73.0 60.9 75 - 55
High 58 653 - 615 78.0 - 66.1 87.4 72.0 59.8 74 2075 (212) 54
57 633 - 595 72 2015 (205)
900~1000 0.1~0.2 Low Nitriding SACM645 56 613 - 577 77.4 - 65.4 86.9 71.2 58.6 53
steel 55 595 - 560 76.8 - 64.6 86.4 70.2 57.4 71 1950 (199) 52
S45C 54 577 - 543 76.3 - 63.8 85.9 69.4 56.1 69 1880 (192) 51
Steel SCM415 75.9 - 63.1 85.5 68.5 55.0 68 1820 (186) 50
materials SK3 53 560 - 525 75.2 - 62.1 85.0 67.6 53.8 67 1760 (179) 49
Stainless 66 1695 (173)
Carbon steel:500 52 544 (500) 512 74.7 - 61.4 84.5 66.7 52.5 48
SUS:1000 74.1 - 60.8 83.9 65.8 51.4 64 1635 (167) 47
0.01~0.02 Low 51 528 (487) 496 73.6 - 60.0 83.5 64.8 50.3 63 1580 (161) 46
73.1 - 59.2 83.0 64.0 49.0 62 1530 (156) 45
50 513 (475) 481 72.5 - 58.5 82.5 63.1 47.8 60 1480 (151) 44
58 1435 (146)
49 498 (464) 469 72.0 - 57.7 82.0 62.2 46.7 43
71.5 - 56.9 81.5 61.3 45.5 57 1385 (141) 42
Bluing Wire rod SWP-B 48 484 451 455 70.9 - 56.2 80.9 60.4 44.3 56 1340 (136) 41
47 471 442 443 70.4 - 55.4 80.4 59.5 43.1 55 1295 (132) 40
46 458 432 432 69.9 - 54.6 79.9 58.6 41.9 54 1250 (127) 39
45 446 421 421 52 1215 (124)
44 434 409 409 69.4 - 53.8 79.4 57.7 40.8 38
68.9 - 53.1 78.8 56.8 39.6 51 1180 (120) 37
Hardness Test Methods and Applicable Parts 43 423 400 400 68.4 (109.0) 52.3 78.3 55.9 38.4 50 1160 (118) 36
42 412 390 390 67.9 (108.5) 51.5 77.7 55.0 37.2 49 1115 (114) 35
Test method Principle Applicable heat-treated parts Features Remark 41 402 381 381 67.4 (108.0) 50.8 77.2 54.2 36.1 48 1080 (110) 34
1.Brinell Hardness 40 392 371 371 47 1055 (108)
2.Rockwell Hardness CA(Steel or superhard alloy) CAnnealed parts 39 382 362 362 66.8 (107.5) 50.0 76.6 53.3 34.9 33
3.Shore Hardness ball indenter is used to indent CNormalized parts 66.3 (107.0) 49.2 76.1 52.1 33.7 46 1025 (105) 32
the test surface. Hardness is CAnchored materials 1Applicable to uneven materials JISZ2243 38 372 353 353 65.8 (106.0) 48.4 75.6 51.3 32.5 44 1000 (102) 31
4.Vickers Hardness given as a quotient minus the and forged products because JISZ2245 37 363 344 344 65.3 (105.5) 47.7 75.0 50.4 31.3 43 980 (100) 30
surface area of the indent, CQuenched-Tempered parts indent is large. JISZ2246 36 354 336 336 64.7 (104.5) 47.0 74.5 49.5 30.1 42 950 ( 97) 29
computed from the diameter. CCarburized surfaces JISZ2244 35 345 327 327 41 930 ( 95)
CNitrided surfaces 2Not applicable for small 34 336 319 319 64.3 (104.0) 46.1 73.9 48.6 28.9 28
CThe standard or test load CThin sheets like copper, or thin specimens. 63.8 (103.0) 45.2 73.3 47.7 27.8 41 910 ( 93) 27
is applied via a diamond 33 327 311 311 63.3 (102.5) 44.6 72.8 46.8 26.7 40 880 ( 90) 26
or boll indenter. Hardness brass, bronze, etc. 1Hardness value obtained 32 318 301 301 62.8 (101.5) 43.8 72.2 45.9 25.5 38 860 ( 88) 25
is read on a tester. quickly. 31 310 294 294 62.4 (101.0) 43.1 71.6 45.0 24.3 38 840 ( 86) 24
CQuenched-Tempered parts 30 302 286 286 37 825 ( 84)
CThe specimen is set on CNitrided parts 2Applicable as intermediate 29 294 279 279 62.0 100.0 42.1 71.0 44.0 23.1 23
a table. A hammer is CLarge carburized parts, test to actual products. 61.5 99.0 41.6 70.5 43.2 22.0 36 805 ( 82) 22
dropped from a uniform 28 286 271 271 61.0 98.5 40.9 69.9 42.3 20.7 35 785 ( 80) 21
height. Hardness is etc. 3Caution is required as there 27 279 264 264 60.5 97.8 40.1 69.4 41.5 19.6 35 770 ( 79) 20
based on how high the are 30 types. 26 272 258 258 - 96.7 34 760 ( 77) (18)
hammer bounces. CThin parts hardened by 25 266 253 253 - - - - 33 730 ( 75)
Induction Hardening, 1Extremely easy to 24 260 247 247 - 95.5 (16)
CUses a diamond 136B carburizing, nitriding, operate. Data can be - 93.9 - - - - 32 705 ( 72) (14)
square pyramid indenter. electrolytic plating, obtained quickly. 23 254 243 243 - 92.3 - - - - 31 675 ( 69) (12)
Hardness value is ceramic coating, etc. 22 248 237 237 - 90.7 - - - - 29 650 ( 66) (10)
obtained as the surface 2Applicable for large parts. 21 243 231 231 - 89.5 - - - - 28 620 ( 63) ( 8)
area of the indent, CHardened layer depth in 3Indent is kept shallow, therefore 20 238 226 226 - - - - 27 600 ( 61)
computed from the carburized and nitrided parts (18) 230 219 219 - 87.1 ( 6)
length of the diagonal is applicable to actual products. - 85.5 - - - - 26 580 ( 59) ( 4)
lines of the indent. 4Compact and light-weight. Portable. (16) 222 212 212 - 83.5 - - - - 25 550 ( 56) ( 2)
(14) 213 203 203 - 81.7 - - - - 24 530 ( 54) ( 0)
1Applicable for small and (12) 204 194 194 - - - - 24 515 ( 53)
thin specimens. (10) 196 187 187
( 8 ) 188 179 179
2Applicable for all materials
because of diamond ( 6 ) 180 171 171
indenter. ( 4 ) 173 165 165
( 2 ) 166 158 158
( 0 ) 160 152 152

Notes( 1 )Blue Figures: Based on ASTM E 140, Table 1(Jointly coordinated by SAE, ASM and ASTM.)
( 2 ) The units and figures shown in brackets are the results of conversion from psi figures by reference to JIS Z 8413 and Z8438 conversion tables.
1MPa=1N/mm2.

( 3 )The figures in brackets are in ranges not frequently used. They are given as reference data.

1239 1240

TECHNICAL DATA TECHNICAL DATA

SURFACE ROUGHNESS Excerpts from JIS B 0601(1994)and DRAWING INDICATION OF SURFACE TEXTURE Excerpts from
JIS B 0031(1994) JIS Z B 0031(1994)

Varieties of Surface Roughness Indicators Position of Auxiliary Symbols for Surface Symbol

Definitions and presentations of arithmetic average roughness(Ra), maximum height(Ry), 10-spot average roughness(Rz), average A surface roughness value, cut-off value or reference length, processing method, grain direction,
concave-to-convex distance(Sm), average distance between local peaks(S)and load length rate(tp)are given as parameters indicating surface undulation, etc. are indicated around the surface symbol as shown in Fig.7 below.
the surface roughness of an industrial product. Surface roughness is the arithmetic average of values at randomly extracted spots on the
surface of an object.’Center-line average roughness(Ra75)is defined in the supplements to JIS B 0031 and JIS B 0601.» Fig. 7 Positions of Auxiliary Symbols

a :Ra Value

Typical Calculations of Surface Roughness Y Ra= 1 r dx ac g ed b b :Machining Method
r ed f c :Cutoff Value. Evaluation Length
Arithmetical Average Roughness,(Ra) 0 m 0 f(x ) c :Reference Length. Evaluation Length
c d :Grain Direction
A portion stretching over a reference length in the direction in g
which the average line extends is cut out from the roughness curve.
This portion is presented in a new graph with the X axis extending f :Parameter other than R(a tp:Parameter / Cutoff Level)
in the same direction as the average line and the Y axis representing
the magnitude. Ra is represented by the equation shown at right, in Ra g :Surface Undulation(according to JIS B 0610)
microns(Om). Yp1
YV1 X Remark:These symbols except a and f are provided when they are needed.
Yp2 Rp
Y V2 r Remark:Under ISO 1302, a finish allowance should be indicated as e in Fig.7.

Symbol Meaning Illustration IExamples

Maximum Height,(Ry) r The trace left by a cutting instrument Surface Symbol
m is parallel to the projection plane in
A portion stretching over a reverence length in the direction in which the drawing.
the average line extends is cut out from the roughness curve. The Ry=Rp+Rv
gap between the peak line and the trough line is measured in the Ry (ex)Shaped Surface Trace Left by a
direction in which the magnitude axis extends, in microns(Om). Rv Cutting Instrument
Removal process by Machining is Required
Remarks:A portion without an abnormally high peak or abnormally low trough,
which may be regarded as a flaw, is cut out over the reference length.

Ten-Spot Average Roughness,(Rz) m The trace left by a cutting instrument Removal process is Prohibited
is perpendicular to the projection
A portion stretching over a reference length in the direction in Yp3 plane in the drawing. Trace Left by a
which the average line extends is cut out from the roughness curve. Y V3 Cutting Instrument
The average of the levels(Yp)of the highest peak of the fifth (ex)Shaped Surface
highest peak as measured from the average line and the average of Yp4 (SideView), Circular Cut, Trace Left by a
the levels(Yv)of the lower trough to the fifth lowest trough Y V4 Cylindrical Cut. Cutting Instrument
similarly measured in the said portion are added together. Rz is
this sum, in microns(Om). Yp5 The pattern left by a cutting instrument
Y V5 diagonally crosses the projection plane
r in the drawing

Rz= Yp1+Yp2+Yp3+Yp4+Yp5 + Yv1+Yv2+Yv3+Yv4+Yv5 (ex)Honed Surface Upper Limits of Ra (c)
5 25
The patter left by a cutting instrument (a) (b)
Yp1, Yp2, Yp3, Yp4, Yp5:Levels of the highest peak to the fifth highest crosses in various directions or has 25 6.3 25
peak in the said portion with the length r. no grain direction.
25 6.3
Yv1, Yv2, Yv3, Yv4, Yv5:Levels of the lowest trough to the fifth highest (ex)Lapped Surface,
trough in the said portion with the length r. Superfinished Surface and Grain Direction
Surface Finished with a
Reference:Relation between Arithmetic Average Roughness(Ra)and Conventional Parameters Front Mill or End Mill.

Arithmetic Average Roughness Max. height Ten-Spot Average Roughness Reference Conventional The pattern left by a cutting instrument
Ry Rz Ry / Rz Length Finish Symbol is virtually concentric around the
Ra center of the plane in the drawing.
r (mm) ~
Standard Series Cut-off value Graphic Representation of Surface Texture Standard Series (ex)Faced Surface
c(mm) 0.08
0.012 a The pattern left by a cutting instrument
0.025 a 0.08 0.05 s 0.05 z 0.25 is virtually radial around the center of
0.05 a the plane in the drawing.
0.1 a 0.25 0.012 ~ 0.2 0.1 s 0.1 z
0.2 a
0.2 s 0.2 z Upper Limit and Lower Limit of Ra

0.4 s 0.4 z (a) (b)

0.8 s 0.8 z 6.3
1.6
0.4 a 0.8 1.6 s 1.6 z 0.8
0.8 a 3.2 s 3.2 z 6.3
1.6 a 0.4 ~ 1.6 6.3 s 6.3 z 1.6

3.2 a 0.25 3.2 ~ 6.3 12.5 s 12.5 z 0.25
6.3 a 25 s 25 z
Machining Method
12.5 a 8 12.5 ~ 25 50 s 50 z 8 (b)
25 a - 50 ~ 100 100 s 100 z - (a) M
Milling
50 a 200 s 200 z 3.2
100 a 400 s 400 z 3.2

GInterrelations among the three varieties shown here are not precise, and are presented for convenience only.
GRa:The evaluated values of Ry and Rz are the cut-off values and the reference length each multiplied by five, respectively.

1241 1242

TECHNICAL DATA TECHNICAL DATA

SURFACE ROUGHNESS BY DIFFERENT METHODS INDICATIONS OF GEOMETRICAL TOLERANCE ON DRAWINGS Excerpts from
JIS B 0021(1984)

Arithmetical average roughness 0.025 0.05 0.1 0.2 0.4 0.8 1.6 3.2 6.3 12.5 25 50 100 IKinds and symbols of geometrical tolerances
Ra 12.5 25
-S -S 50 100 200 400 Kind of tolerance Symbol Definition of tolerance zone Examples of diagrammatical indication and its interpretation
-S -S -S -S
Former designations Max. height 0.1 0.2 0.4 0.8 1.6 3.2 6.3 2.5 Where symbol F is attached before the F0.08 Where a tolerance frame is
of surface roughness Rmax. -S -S -S -S -S -S -S 8 25 numerical value indicating a tolerance connected to the dimension showing
Precision Straightness zone, this tolerance zone is a zone in a
Precision - tolerance cylinder of diameter t. F F 60 the diameter of a cylinder, the axis of

Standard values of Ft FF F the cylinder shall be contained a
standard length(mm) t
0.25 0.8 cylinder of 0.08mm diameter.

The tolerance zone is a zone held This surface shall be contained between
between two parallel planes a distance t
Triangular indication llll lll l ll Flatness apart. 0.08 two parallel planes 0.08mm apart.
tolerance
Forging

Casting t The tolerance zone in the considered 0.1 The circumference in any section normal
plane is a zone between two concentric 0.1 to the axis shall be contained between
Die casting Form tolerance Circularity circles a distance t apart. two concentric circles 0.1mm apart on
tolerance the same plane.
Hot rolling The tolerance zone is a zone contained
Cylindricity between two coaxial cylinder surfaces a The considered surface shall be
Cold rolling tolerance t distance t apart. contained between two coaxial cylinder
F surfaces 0.1mm apart.
Drawing
t
Extruding

Tumbling Profile tolerance The tolerance zone is a zone held 0.04 In any cross-section parallel to the
of line between two lines enveloping circles of 0.02 projection plane the considered profile
Sandblasting diameter t, the centers of which are shall be contained between two lines
Profile tolerance situated on a theoretically exact profile enveloping circles of 0.04mm in
Rolling of surface line. diameter, the centers of which are
Face cutter grinding situated on a surface having the
Precision Parallelism The tolerance zone is a zone held theoretically exact profile.
tolerance between the two surfaces enveloping the
Planing SFt spheres of diameter t, the centers of The considered surface shall be contained
Perpendicularity which are situated on a theoretically
tolerance exact profile surface. between two surfaces enveloping the

Angularity spheres of diameter 0.02mm, the centers
tolerance
of which are situated on a surface having
Positional
tolerance the theoretically exact profile.

Carving( Slotting) Precision Coaxiality tolerance t The tolerance zone is a zone held 0.01 A The surface shown by the arrow of the
Cutter grinding or between two parallel planes parallel to A leader line shall be contained between
the datum plane and a distance t apart two planes parallel to the datum plane A
Precision boring Orientation tolerance concentricity tolerance from each other. and 0.01mm apart from each other in the
Filing direction of the arrow of the leader line.
Round grinding Symmetry
Boring Precision tolerance Ft Where symbol F is attached before the F F0.01 A The axis of the cylinder shown by the
Fine t numerical value indicating the tolerance, arrow of the leader line shall be
Methods Precision Medium Rough Circular the tolerance zone is a zone within a A contained within a cylinder of
Precision run-out cylinder of diameter t perpendicular to 0.08 A diameter 0.01mm perpendicular to
tolerance the datum plane. 40B the datum plane A.
B
Drilling Precision Total run-out The tolerance zone is a zone held The surface shown by the arrow of the
Reaming Precision tolerance between two parallel planes inclined at 100 leader line shall be contained between two
Broach grinding the specified angle to the datum plane parallel planes which are inclined at 40B
and a distance t apart from each other. with theoretical exactness to the datum
plane A and which are 0.08mm apart from
each other in the direction of the arrow of

A the leader line.

The tolerance zone is a zone within a F0.03 AB The point shown by the arrow of the
circle or sphere of diameter t having its leader line shall be contained within a
Shaving Ft center at the theoretically exact location,
Grinding t hereinafter referred to as the ""true circle of 0.03mm diameter having its
Hone finishing location"".
Super finishing t center at the true location 60mm and
Buffing t
Paper finishing Precision Fine Medium Rough True 100mm apart, respectively, from the
Lapping Precision location
Liquid honing datum straight line A and from the
Precision
Precision Location tolerance A datum straight line B.

Precision Where symbol F is attached before the A F0.01 A The axis shown by the arrow of the
numerical value indicating the tolerance, leader line shall be contained
Precision the tolerance zone is a zone within a
Precision cylinder of diameter t whose axis agrees within a cylinder of 0.01mm
with the datum axial straight line.
diameter whose axis agrees with

the datum axial straight line A.

The tolerance zone is a zone held A 0.08 A The median surface shown by the arrow of
between two parallel planes a distance t the leader line shall be contained between
apart from each other and arranged
symmetrically about the datum median two parallel planes 0.08mm apart form
plane.
each other and arranged symmetrically

about the datum median plane A.

Burnishing Measuring plane The tolerance is a zone between two 0.1 A-B The run-out in the radial direction of the
concentric circles whose centers agree cylinder surface shown by the arrow of the

Run-out tolerance with the datum axial straight line on any leader line shall not exceed 0.1mm on any

Surface rolling measuring plane normal to the datum measuring plane normal to the datum axial

axial straight line and straight line when the cylinder is rotated by

Electric discharge carving Tolerance surface which are a distance t apart AB one rotation about the datum axial straight
from each other in the radial line A-B.

direction.

Wire cut electric sparking The tolerance zone is a zone between 0.1 A-B The total radial run-out of the cylinder
Chemical polishing two coaxial cylinders having axes surface shown by the arrow of the leader line
Electrolytic abrasion agreeing with the datum axial straight
line and a distance t apart from each shall not exceed 0.1mm at any point on the
other in the radial direction.
Precision cylinder surface when the cylinder part is

rotated about the datum axial straight line

Precision AB A-B with a relative movement in the axial
direction.

Lines used in the drawings in the column of ""definition of tolerance zone"" indicate the following meanings:

Thick solid line or broken line:Feature Thin alternate long and short dash line:Center line
Thick alternate long and short dash line:Datum Thin alternate long and two short dashes line:Supplementary projection plane or sectional plane.
Thin solid line or broken line:Tolerance zone Thick alternate long and two short dashes line:Projection of a feature to supplementary

Projection plane or sectional plane

1243 1244

1245

H6 H7 H8 H9 Applicable part Functional classification Application example

Loose Fit Part which accommodates a wide gap or moving part which needs a gap. Part whose structure needs a gap. Piston ring and piston ring groove TECHNICAL DATA
c9 Part which accommodates a wide gap to facilitate assembling. Part which Inflates. Large position error Fitting by means of a loose set pin
Long DESCRIPTION OF FITS
needs an appropriate gap even at high temperature. Crank Web and Pin Bearing(Side)
Exhaust Valve Box and the Sliding Part of a Spring Bearing
Cost needs to be reduced. Piston Ring and the Ring Groove

Can be moved relatively d9 d9 Part which accommodates or needs a gap. Manufacturing cost
Clearance fit Maintenance cost

Roll Fit Light Roll Fit Part which accommodates a wide gap or needs a gap. Fairly wide gap, well Fitting of the Exhaust Valve Box
Main Bearing for the Crankshaft
e7 e8 e9 greased bearing. Bearing subjected to a high temperature, high speed and Regular Rotary or Sliding Part Regular Sliding Part Stripper bolt MSB(e9)

heavy load(high-degree forced lubrication). (Must be well greased)

f7 Fitting so as to provide an appropriate gap to permit movement(high-quality Regular Fitting Part in which a cooled Exhaust Valve Box is inserted.
f6 f7 fitting). Regular normal-temperature bearing lubricated with grease or oil. (Often comes apart) Regular Shaft and Bush Guide lifter pin(g6)
Link Device Lever and Bush
f8

Fine g5 g6 Continuously rotating part of a precision machine under a light load. Fitting Part required making a precision motion Link Device Pin and Lever
Roll Fit with a narrow gap so as to permit movement(spigot and positioning). with virtually no play. Key and its Groove
Precision sliding part. Precision Control Valve Rod

Push Fit Sliding Fit h7 Fitting so as to permit movement by hand, with a lubricant applied.(high- Fitting a rim and boss together Dowel pin MSTH(h7)
h5 h6 h9 quality positioning). Special High-Precision Sliding Part. Unimportant Fitting the gear of a precision gear device
h8 Stationary Part.

h5 Fitting which accommodates a light gap. Precision fitting which locks both Fitting Coupling Flanges Together
js6 Governor Path and Pin
parts while the unit is used. Fitting which allow assembling and Force cannot be Fitting a Gear Rim and a Boss Together "Drawing Manual" in JIS "How to Use" Series
h6 transmitted by the
Transition fit js5 k6 disassembling with a wooden or lead hammer. Can be fitting force alone. Fixing the Shaft of a Gear Pump and a Casing together
k5 m6 Reamer Bolt
Driving Fit m5 n6 Fitting. Which requires an iron hammer or hand press for assembling / disassembled / re- Slight force can be
n5 disassembling(a key or the like is necessary to prevent inter-part shaft assembled without transmitted by the Reamer Bolt Dowel pin MSTM(m6)
rotation). Precision positioning. damaging fitting force alone. Fixing the piston of hydraulic equipment and a shaft together
p6 component parts. Fitting a Coupling Flange and a Shaft Together
n6
Cannot be moved relatively Requires an iron hammer or hand press for assembling / disassembling. Flexible-Axis Coupling and Gear(Passive Side)
Precision Fitting Punch SPAS, etc(. m5)
Precision positioning which allows no gap. Insertion of a Suction Valve and Valve Guide Die MHD, etc.(m5)

Light Press Fit Fitting which requires considerable force for assembling / disassembling. Insertion of a Suction Valve and Valve Guide Straight die MSD, etc(. n5)
Precision stationary fitting(a key or the like is necessary for high-torque Fixing a Gear and a Shaft Together(Low Torque)
Press Fit transmission purposes). Shaft of a Flexible Coupling and a Gear(Drive Side).

Fitting which requires much force for assembling / disassembling(a key or the like is necessary for
high-torque transmission). Light press fitting or the like is necessary for non-ferrous component
parts. Standard press fitting is required for iron component part and a bronze part and a copper part.

Interference Fit Strong Press FitC p5 r6 Fitting which require much force for assembling / disassembling. Shrinkage press Hard to disassemble Coupling and Shaft
Shrinkage FitCFreeze Fit fitting, cold press fitting or forced press fitting is required for large component parts. without damaging
r5 s6 component parts. Considerable force Attaching and Fixing a Bearing Bush
t6 Firmly coupled together and require shrinkage press fitting, cold press Insertion of a Suction Valve and Valve Guide Dowel pin MST(p6)
u6 fitting or forced press fitting. Permanent assembly, which can not come can be transmitted Fixing a Coupling Flange and Shaft Together(High-Torque)
x6 apart. Press fitting or the like is required for light alloy members. by the fitting force Fixing the Rim of a Drive Gear and a Boss Together
alone.

Attaching and Fixing a Bearing Bush

The items printed in red in the Application example are press die parts presented in this catalog.

1.1 Fitting, with Regularly Used Hole Adopted as Reference 2.1 Fitting, with Regularly Used Shaft Adopted as Reference

Reference hole Class of Tolerance Range for Shafts Reference shaft Class of Tolerance Range for Shafts TECHNICAL DATA

Clearance fit Transition fit Interference Fit Clearance fit Transition fit Interference Fit GRAPHICAL REPRESENTATION OF STANDARD Excerpts from JIS B 0401(1999)

H6 g5 h5 js5 k5 m5 h5 H6 JS6 K6 M6 N6 * P6
H7 h6 N6 P6 *
f6 g6 h6 js6 k6 m6 n6* p6* F6 G6 H6 JS6 K6 M6 N7 P7 *
h7
f6 g6 h6 js6 k6 m6 n6 p6 * r6* s6 t6 u6 x6 F7 G7 H7 JS7 K7 M7 R7 S7 T7 U7 X7

e7 f7 h7 js7 E7 F7 H7

f7 h7 F8 H8

H8 e8 f8 h8 h8 D8 E8 F8 H8
D9 E9 H9
d9 e9

H9 d8 e8 h8 D8 E8 H8
c9 d9 e9 h9 h9 C9 D9 E9 H9

H10 b9 c9 d9 B10 C10 D10

Note:An exception may arise according to the dimensional sectioning scheme. Note:An exception may arise according to the dimensional sectioning scheme.

1.2 Interrelation between Tolerance Ranges-Fitting with Regularly used Hole Adopted as Reference 2.2 Interrelation between Tolerance Ranges-Fitting with Regularly used Shaft Adopted as Reference

Reference hole H6 H7 H8 H9 H10 Reference shaft h5 h6 h7 h8 h9

Clearance fit
Transition fit
Interference Fit

Sliding Fit
Driving Fit
Press Fit
Strong Press Fit
Shrinkage Fit
Loose roll fit
Light roll fit

Roll fit

Clearance fit
Clearance fit

Clearance fit

Transition fit
Interference Fit
Clearance fit
Transition fit
Interference Fit
Clearance fit
Clearance fit
Clearance fit
Clearance fit Transition fit Interference Fit Clearance fit

Fit Fit

Class of Tolerance Range for shaft f6 g5 g6 h5 h6 js5 js6 k5 k6 m5 m6 n6 p6 e7 f6 f7 g6 h6 h7 js6 js7 k6 m6 n6 p6 r6 s6 t6 u6 x6 d9 e8 e9 f7 f8 h7 h8 c9 d8 d9 g8 e9 h8 h9 b9 c9 d9 Class of Tolerance Range for Hole M6 JS6 K5 M6 N6 P6 F6 F7 G6 G7 H6 H7 JS6 JS7 K6 K7 M6 M7 N6 N7 P6 P7 R7 S7 T7 U7 X7 E7 F7 F8 H7 H8 D8 D9 E8 E9 F8 H8 H9 B10 C9 C10 D8 D9 D10 E8 E9 H8 H9

50 H7 H8 200
0 H6 H10
H9

150
Dimension tolerance(Om)
Dimension tolerance(Om)-50 100

-100 50

-150 0 h5 h6 h6 h7 h8
-50
h9

-200 *Values in cases where the measurement exceeds the reference, 18mm, but does not exceed 30mm.

*Values in cases where the measurement exceeds the reference, 18mm, but does not exceed 30mm.

1246

1247

Dimensional Tolerances of Hole, Regularly Used Fitting

Basic Class of Tolerance Range of hole Unit:Om TECHNICAL DATA

size TOLERANCES OF REGULARLY USED HOLE FITS
(mm)

Over or less B10 C9 C10 D8 D9 D10 E7 E8 E9 F6 F7 F8 G6 G7 H6 H7 H8 H9 H10 JS6 JS7 K6 K7 M6 M7 N6 N7 P6 P7 R7 S7 T7 U7 X7

- 3 +180 +85 +100 +34 +45 +60 +24 +28 +39 +12 +16 +20 +8 +12 +6 +10 +14 +25 +40 Ú3 Ú5 00 -2 -2 -4 -4 -6 -6 -10 -14 - -18 -20
+140 +60 +60 +20 +20 +20 +14 +14 +14 +6 +6 +6 +2 +2 0 0 0 0 0 -6 -10 -8 -12 -10 -14 -12 -16 -20 -24 -28 -30

3 6 +188 +100 +118 +48 +60 +78 +32 +38 +50 +18 +22 +28 +12 +16 +8 +12 +18 +30 +48 Ú4 Ú6 +2 +3 -1 0 -5 -4 -9 -8 -11 -15 - -19 -24
+140 +70 +70 +30 +30 +30 +20 +20 +20 +10 +10 +10 +4 +4 0 0 0 0 0 -6 -9 -9 -12 -13 -16 -17 -20 -23 -27 -31 -36

6 10 +208 +116 +138 +62 +76 +98 +40 +47 +61 +22 +28 +35 +14 +20 +9 +15 +22 +36 +58 Ú4.5 Ú7 +2 +5 -3 0 -7 -4 -12 -9 -13 -17 - -22 -28
+150 +80 +80 +40 +40 +40 +25 +25 +25 +13 +13 +13 +5 +5 0 0 0 0 0 -7 -10 -12 -15 -16 -19 -21 -24 -28 -32 -37 -43

10 14 +220 +138 +165 +77 +93 +120 +50 +59 +75 +27 +34 +43 +17 +24 +11 +18 +27 +43 +70 Ú5.5 Ú9 +2 +6 -4 0 -9 -5 -15 -11 -16 -21 - -33
14 18 +150 +95 +95 +50 +50 +50 +32 +32 +32 +16 +16 +16 +6 +6 0 0 0 0 0 -9 -12 -15 -18 -20 -23 -26 -29 -34 -39 -26 -51
-44 -38

-56

18 24 +244 +162 +194 +98 +117 +149 +61 +73 +92 +33 +41 +53 +20 +28 +13 +21 +33 +52 +84 Ú6.5 Ú10 +2 +6 -4 0 -11 -7 -18 -14 -20 -27 - -33 -46
24 30 +160 +110 +110 +65 +65 +65 +40 +40 +40 +20 +20 +20 +7 +7 0 0 0 0 0 -11 -15 -17 -21 -24 -28 -31 -35 -41 -48 -33 -54 -67
-40 -56

-54 -61 -77

30 40 +270 +182 +220 -39 -51
40 50
+170 +120 +120 +119 +142 +180 +75 +89 +112 +41 +50 +64 +25 +34 +16 +25 +39 +62 +100 Ú8 Ú12 +3 +7 -4 0 -12 -8 -21 -17 -25 -34 -64 -76 -
+280 +192 +230 +80 +80 +80 +50 +50 +50 +25 +25 +25 +9 +9 0 0 0 0 0 -13 -18 -20 -25 -28 -33 -37 -42 -50 -59 -45 -61

+180 +130 +130 -70 -86

50 65 +310 +214 +260 -30 -42 -55 -76
65 80
+190 +140 +140 +146 +174 +220 +90 +106 +134 +49 +60 +76 +29 +40 +19 +30 +46 +74 +120 Ú9.5 Ú15 +4 +9 -5 0 -14 -9 -26 -21 -60 -72 -85 -106 -
+320 +224 +270 +100 +100 +100 +60 +60 +60 +30 +30 +30 +10 +10 0 0 0 0 0 -15 -21 -24 -30 -33 -39 -45 -51 -32 -48 -64 -91

+200 +150 +150 -62 -78 -94 -121

80 100 +360 +257 +310 -38 -58 -78 -111
100 120
+220 +170 +170 +174 +207 +260 +107 +126 +159 +58 +71 +90 +34 +47 +22 +35 +54 +87 +140 Ú11 Ú17 +4 +10 -6 0 -16 -10 -30 -24 -73 -93 -113 -146 -
+380 +267 +320 +120 +120 +120 +72 +72 +72 +36 +36 +36 +12 +12 0 0 0 0 0 -18 -25 -28 -35 -38 -45 -52 -59 -41 -66 -91 -131

+240 +180 +180 -76 -101 -126 -166

120 140 +420 +300 +360 -48 -77 -107
+260 +200 +200 -88 -117 -147

140 160 +440 +310 +370 +208 +245 +305 +125 +148 +185 +68 +83 +106 +39 +54 +25 +40 +63 +100 +160 Ú12.5 Ú20 +4 +12 -8 0 -20 -12 -36 -28 -50 -85 -119 - -
+280 +210 +210 +145 +145 +145 +85 +85 +85 +43 +43 +43 +14 +14 0 0 0 0 0 -21 -28 -33 -40 -45 -52 -61 -68 -90 -125 -159

160 180 +470 +330 +390 -53 -93 -131
+310 +230 +230 -93 -133 -171

180 200 +525 +355 +425 -60 -105
+340 +240 +240 -106 -151

200 225 +565 +375 +445 +242 +285 +355 +146 +172 +215 +79 +96 +122 +44 +61 +29 +46 +72 +115 +185 Ú14.5 Ú23 +5 +13 -8 0 -22 -14 -41 -33 -63 -113 - - -
+380 +260 +260 +170 +170 +170 +100 +100 +100 +50 +50 +50 +15 +15 0 0 0 0 0 -24 -33 -37 -46 -51 -60 -70 -79 -109 -159

225 250 +605 +395 +465 -67 -123
+420 +280 +280 -113 -169

250 280 +690 +430 +510 -74 Excerpts from
280 315 JIS B 0401(1999)
+480 +300 +300 +271 +320 +400 +162 +191 +240 +88 +108 +137 +49 +69 +32 +52 +81 +130 +210 Ú16 Ú26 +5 +16 -9 0 -25 -14 -47 -36 -126 - - - -
+750 +460 +540 +190 +190 +190 +110 +110 +110 +56 +56 +56 +17 +17 0 0 0 0 0 -27 -36 -41 -52 -57 -66 -79 -88 -78

+540 +330 +330 -130

315 355 +830 +500 +590 -87
355 400
+600 +360 +360 +299 +350 +440 +182 +214 +265 +98 +119 +151 +54 +75 +36 +57 +89 +140 +230 Ú18 Ú28 +7 +17 -10 0 -26 -16 -51 -41 -144 - - - -
+910 +540 +630 +210 +210 +210 +125 +125 +125 +62 +62 +62 +18 +18 0 0 0 0 0 -29 -40 -46 -57 -62 -73 -87 -98 -93

+680 +400 +400 -150

400 450 +1010 +595 +690 -103
450 500 +760 +440 +440 +327 +385 +480 +198 +232 +290 +108 +131 +165
+1090 +635 +730 +230 +230 +230 +135 +135 +135 +68 +68 +68 +60 +83 +40 +63 +97 +155 +250 Ú20 Ú31 +8 +18 -10 0 -27 -17 -55 -45 -166 - - - -
+840 +480 +480 +20 +20 0 0 0 0 0 -32 -45 -50 -63 -67 -80 -95 -108 -109

-172

Note:In each column, the upper value is the upper dimensional tolerance, and the lower figure is the lower dimensional tolerances.

Dimensional Tolerances of Shaft, Regularly Used Fitting

Basic Class of Tolerance Range of shaft Unit:Om TOLERANCES OF REGULARLY USED SHAFT FITS TECHNICAL DATA

size
(mm)

Over or less b9 c9 d8 d9 e7 e8 e9 f6 f7 f8 g5 g6 h4* h5 h6 h7 h8 h9 js5 js6 js7 k5 k6 m5 m6 n5* n6 p6 r6 s6 t6 u6 x6
+26
- 3 -140 -60 -20 -20 -14 -14 -14 -6 -6 -6 -2 -2 0 0 0 0 0 0 Ú2 Ú3 Ú5 +4 +6 +6 +8 +8 +10 +12 +16 +20 - +24 +20
-165 -85 -34 -45 -24 -28 -39 -12 -16 -20 -6 -8 -3 -4 -6 -10 -14 -25 0 0 +2 +2 +4 +4 +6 +10 +14 +18 +36
+31 +28
3 6 -140 -70 -30 -30 -20 -20 -20 -10 -10 -10 -4 -4 0 0 0 0 0 0 Ú2.5 Ú4 Ú6 +6 +9 +9 +12 +13 +16 +20 +23 +27 - +23 +43
-170 -100 -48 -60 -32 -38 -50 -18 -22 -28 -9 -12 -4 -5 -8 -12 -18 -30 +1 +1 +4 +4 +8 +8 +12 +15 +19 +37 +34
+28 +51
6 10 -150 -80 -40 -40 -25 -25 -25 -13 -13 -13 -5 -5 0 0 0 0 0 0 Ú3 Ú4.5 Ú7 +7 +10 +12 +15 +16 +19 +24 +28 +32 - +40
-186 -116 -62 -76 -40 -47 -61 -22 -28 -35 -11 -14 -4 -6 -9 -15 -22 -36 +1 +1 +6 +6 +10 +10 +15 +19 +23 +56
+45
10 14 +67
-150 -95 -50 -50 -32 -32 -32 -16 -16 -16 -6 -6 0 0 0 0 0 0 +9 +12 +15 +18 +20 +23 +29 +34 +39 +44 +54
14 18 -193 -138 -77 -93 -50 -59 -75 -27 -34 -43 -14 -17 -5 -8 -11 -18 -27 -43 Ú4 Ú5.5 Ú9 +1 +1 +7 +7 +12 +12 +18 +23 +28 - +33 +77
+64
18 24 0 000 0 0 Ú4.5 Ú6.5 Ú10 +11 +15 +17 +21 +24 +28 +35 +41 +48 - +54
-160 -110 -65 -65 -40 -40 -40 -20 -20 -20 -7 -7 -6 -9 -13 -21 -33 -52 +2 +2 +8 +8 +15 +15 +22 +28 +35 +54 +41 -
+61
24 30 -212 -162 -98 -117 -61 -73 -92 -33 -41 -53 -16 -20 -
+41 +48
-
30 40 -170 -120 +64 +76
-232 -182 -
-80 -80 -50 -50 -50 -25 -25 -25 -9 -9 0 0 0 0 0 0 Ú5.5 Ú8 Ú12 +13 +18 +20 +25 +28 +33 +42 +50 +59 +48 +60
-7 -11 -16 -25 -39 -62 +2 +2 +9 +9 +17 +17 +26 +34 +43 +70 +86 -
40 50 -180 -130 -119 -142 -75 -89 -112 -41 -50 -64 -20 -25
-242 -192 -
+54 +70
-
50 65 -190 -140 +60 +72 +85 +106
-264 -214 -
-100 -100 -60 -60 -60 -30 -30 -30 -10 -10 0 0 0 0 0 0 Ú6.5 Ú9.5 Ú15 +15 +21 +24 +30 +33 +39 +51 +41 +53 +66 +87
-8 -13 -19 -30 -46 -74 +2 +2 +11 +11 +20 +20 +32 +62 +78 +94 +121
65 80 -200 -150 -146 -174 -90 -106 -134 -49 -60 -76 -23 -29
-274 -224
+43 +59 +75 +102

80 100 -220 -170 +73 +93 +113 +146
-307 -257
-120 -120 -72 -72 -72 -36 -36 -36 -12 -12 0 0 0 0 0 0 Ú7.5 Ú11 Ú17 +18 +25 +28 +35 +38 +45 +59 +51 +71 +91 +124
-58 -71 -90 -27 -34 -10 -15 -22 -35 -54 -87 +3 +3 +13 +13 +23 +23 +37 +76 +101 +126 +166
100 120 -240 -180 -174 -207 -107 -126 -159
-327 -267
+54 +79 +104 +144

120 140 -260 -200 +88 +117 +147
-360 -300 +63 +92 +122

140 160 -280 -210 -145 -145 -85 -85 -85 -43 -43 -43 -14 -14 0 0 0 0 00 Ú9 Ú12.5 Ú20 +21 +28 +33 +40 - +52 +68 +90 +125 +159 -
-380 -310 -208 -245 -125 -148 -185 -68 -83 -106 -32 -39 -12 -18 -25 -40 -63 -100 +3 +3 +15 +15 +27 +43 +65 +100 +134

160 180 -310 -230 +93 +133 +171
-410 -330 +68 +108 +146

180 200 -340 -240 +106 +151
-455 -355 +77 +122

200 225 -380 -260 -170 -170 -100 -100 -100 -50 -50 -50 -15 -15 0 0 0 0 0 0 Ú10 Ú14.5 Ú23 +24 +33 +37 +46 - +60 +79 +109 +159 - -
-495 -375 -242 -285 -146 -172 -215 -79 -96 -122 -35 -44 -14 -20 -29 -46 -72 -115 +4 +4 +17 +17 +31 +50 +80 +130

225 250 -420 -280 +113 +169 Excerpts from
-535 -395 +84 +140 JIS B 0401(1999)

250 280 -480 -300 +126
-610 -430
-190 -190 -110 -110 -110 -56 -56 -56 -17 -17 0 0 0 0 0 0 Ú11.5 Ú16 Ú26 +27 +36 +43 +52 - +66 +88 +94 - - -
-88 -108 -137 -40 -49 -16 -23 -32 -52 -81 -130 +4 +4 +20 +20 +34 +56 +130
280 315 -540 -330 -271 -320 -162 -191 -240
-670 -460
+98

315 355 -600 -360 +144
-740 -500
-210 -210 -125 -125 -125 -62 -62 -62 -18 -18 0 0 0 0 0 0 Ú12.5 Ú18 Ú28 +29 +40 +46 +57 - +73 +98 +108 - - -
-98 -119 -151 -43 -54 -18 -25 -36 -57 -89 -140 +4 +4 +21 +21 +37 +62 +150
355 400 -680 -400 -299 -350 -182 -214 -265
-820 -540
+114

400 450 -760 -440 -230 -230 -135 -135 -135 -68 -68 -68 -20 -20 0 0 0 0 0 0 +32 +45 +50 +63 +166
-915 -595 -47 -60 -20 -27 -40 -63 -97 -155 +5 +5 +23 +23 +80 +108 +126
Ú13.5 Ú20 Ú31 - +40 +68 +172 - - -
-840 -480 -327 -385 -198 -232 -290 -108 -131 -165
450 500 -995 -635 +132

Note:In each column, the upper value is the upper dimensional tolerance, and the lower figure is the lower dimensional tolerances[. Notes]*:h4 and n5 are the previous version of JIS. Presented here because many Misumi products conform to this version.

1248

TECHNICAL DATA TECHNICAL DATA Excerpts from JIS B 0405/0419(1991)

GENERAL DIMENSIONAL TOLERANCES FOR PARTS FORMED Excerpts from JIS B 0408/0410(1991) STANDARD MACHINING TOLERANCES

BY PRESS WORKING FROM SHEET METAL AND SHEAR FROM METAL PLATES

1. General dimensional tolerances for parts formed by press working from sheet metal JIS B 0408 -1991 1. Regular Cut Dimension Tolerance JIS B 0405-1991

Table 1. General dimensional tolerance of blanking Unit:mm Table 2. Dimensional tolerance of bending and drawing Unit:mm Tolerances in Respect of Length Excluding Chamfered Portion Unit:mm

Grades Grades Degree Standard Dimension Over 2000
Grade B Grade B Symbol Description to
Basic size step Grade A Grade C Basic size step Grade A Grade C 0.5 (1) Over 3 Over 6 Over 30 Over 120 Over 400 Over 1000
to to to to to to to 4000 incl.
6 or less Ú0.05 Ú0.1 Ú0.3 6 or less Ú0.1 Ú0.3 Ú0.5
3 incl. 6 incl. 30 incl. 120 incl. 400 incl. 1000 incl. 2000 incl. -
Over 6 to 30 incl. Ú0.1 Ú0.2 Ú0.5 Over 6 to 30 incl. Ú0.2 Ú0.5 Ú1 Ú2
Ú0.05 Ú0.1 Ú0.5 Ú4
Over 30 to 120 incl. Ú0.15 Ú0.3 Ú0.8 Over 30 to 120 incl. Ú0.3 Ú0.8 Ú1.5 Ú0.1 Ú0.2 Tolerance Ú1.2 Ú8
Ú0.3 Ú0.5 Ú3
Over 120 to 400 incl. Ú0.2 Ú0.5 Ú1.2 Over 120 to 400 incl. Ú0.5 Ú1.2 Ú2.5 f Fine Ú0.05 Ú0.5 Ú1 Ú0.15 Ú0.2 Ú0.3 Ú6
m Medium Ú0.1
Over 400 to 1000 incl. Ú0.3 Ú0.8 Ú2 Over 400 to 1000 incl. Ú0.8 Ú2 Ú4 c Coarse Ú0.2 Ú0.3 Ú0.5 Ú0.8
v Very coarse -
Over 1000 to 2000 incl. Ú0.5 Ú1.2 Ú3 Over 1000 to 2000 incl. Ú1.2 Ú3 Ú6 Ú0.8 Ú1.2 Ú2

Note: Grade A, B and C are equal to tolerance grade f, m and c of Note: Grade A, B and C are equal to tolerance grade m, c and v of

JIS B 0405 respectively. JIS B 0405 respectively. Ú1.5 Ú2.5 Ú4

Not(e 1):Tolerance for standard dimensions of less than 0.5mm shall be specified individually.

2. General tolerances for parts formed by shear from metal plates JIS B 0410 -1991 2. Tolerances in Respect of the Length of the Chamfered Portion 3. Angle Tolerance

Table 1. General dimensional tolerance of cut width Unit:mm (Radius of Rounding for Edges and Edge Chamfering Dimension) Unit:mm
Over 400
Unit:mm

Metal plate thicknes(s t) Degree Standard Dimension Degree Length of Shorter Side

Basic size step t¯1.6 1.6< t¯3 3< t¯6 6< t¯12 Over 10 Over 50 Over 120
to to to
Grades 0.5 ( 2) Over 3 Over 6 10 or less
to to Symbol Explanation 50 incl. 120 incl. 400 incl.
Grade A Grade B Grade A Grade B Grade A Grade B Grade A Grade B Symbol Description
- - 3 incl. 6 incl.
- Tolerance
30 or less Ú0.1 Ú0.3 - - - - - Ú1.5
- Ú2 Tolerance
Over 30 to 120 incl. Ú0.2 Ú0.5 Ú0.3 Ú0.5 Ú0.8 Ú1.2 - Ú2.5 Ú0.5 f Fine Ú30“ Ú20“ Ú10“ Ú 5“
- Ú3 Ú1 Ú1B
Over 120 to 400 incl. Ú0.3 Ú0.8 Ú0.4 Ú0.8 Ú1 Ú1.5 Ú4 f Fine Ú1
Ú0.2 Ú2 m Medium
Over 400 to 1000 incl. Ú0.5 Ú1 Ú0.5 Ú1.2 Ú1.5 Ú2 Ú 1B Ú30“ Ú15“ Ú10“
m Medium c Coarse Ú1B30“ Ú 2B Ú 1B Ú30“ Ú20“
Over 1000 to 2000 incl. Ú0.8 Ú1.5 Ú0.8 Ú2 Ú2 Ú3
c Coarse v Very coarse Ú3B
Over 2000 to 4000 incl. Ú1.2 Ú2 Ú1.2 Ú2.5 Ú3 Ú4
Ú0.4

v Very coarse

Table 2. General tolerance of straightness Unit:mm Note(2):Tolerance for standard dimensions of less
than 0.5mm shall be specified individually.
Metal plate thicknes(s t)
4. Regular Perpendicularity Tolerance
Nominal length on t¯1.6 1.6< t¯3 3< t¯6 6< t¯12
cut dimension JIS B 0419 -1991
Grades Unit:mm
30 or less
Over 30 to 120 incl. Grade A Grade B Grade A Grade B Grade A Grade B Grade A Grade B
Over 120 to 400 incl. 0.1 0.2 - -
Over 400 to 1000 incl. 0.2 0.3 ---- - 1.5 Nominal Length on Shorter Side
Over 1000 to 2000 incl. 0.3 0.5 - 2
Over 2000 to 4000 incl. 0.5 0.8 0.2 0.3 0.5 0.8 - 3 100 or less Over 100 Over 300 Over 1000
0.8 1.2 - 4 to to
1.2 2 - 6 Tolerance Class to
1000 incl. 3000 incl.
0.3 0.5 0.8 1.5 300 incl.

0.5 1 1.5 2 Perpendicularity Tolerance

0.8 1.5 2 3 H 0.2 0.3 0.4 0.5

1.2 2.5 3 5 K 0.4 0.6 0.8 1

Table 3. General tolerance of perpendicularity Unit:mm L 0.6 1 1.5 2

Metal plate thicknes(s t) 5. Regular Straightness and Flatness Tolerance

Nominal length on t¯3 3< t¯6 6< t¯12 JIS B 0419 -1991 Unit:mm
shorter side
Grades
30 or less
Over 30 to 120 incl. Grade A Grade B Grade A Grade B Grade A Grade B Nominal Length
Over 120 to 400 incl. - - - -
Over 400 to 1000 incl. 0.3 0.5 -- - 1.5 Tolerance Class 10 or less Over 10 to Over 30 to Over 100 to Over 300 to Over 1000 to
Over 1000 to 2000 incl. 0.8 1.2 - 2 30 incl. 100 incl. 300 incl. 1000 incl. 3000 incl.
Over 2000 to 4000 incl. 1.5 3 0.5 0.8 - 3
3 6 - 6
6 10 1 1.5 - 10 Straightness and Flatness Tolerance

23 H 0.02 0.05 0.1 0.2 0.3 0.4

46 K 0.05 0.1 0.2 0.4 0.6 0.8

6 10 L 0.1 0.2 0.4 0.8 1.2 1.6

1249 1250

TECHNICAL DATA

HEXAGON SOCKET HEAD CAP SCREWS Excerpts from JIS B 1176 (1999C2000)

1. Dimension of Sections To be chamfered. t 2. L,Rs and Rg of Hexagon Socket Head Cap Screw Unit:mm
t May be roughed )
W Nominal thread(d) M3 M4 M5 M6 M8 M10 M12 (M14) M16 (M18) M20 (M22) M24 (M27) M30
out when it is L rs min and rg max
M4 or less.
) W Circular cone bottom d
B(min. 1 2 0 B(min.
e Fdk da Nominal min max Rs Rg Rs Rg Rs Rg Rs Rg Rs Rg Rs Rg Rs Rg Rs Rg Rs Rg Rs Rg Rs Rg Rs Rg Rs Rg Rs Rg Rs Rg
ds length min max min max min max min max min max min max min max min max min max min max min max min max min max min max min max
Incomplete
0 thread part Drilling End 5 4.76 5.24
(2P or less)
2 rs
rg b(Reference)
1 k 6 5.76 6.24
L
S 8 7.71 8.29

Interior of hexagonal hole 10 9.71 10.29
may be chamfered
12 11.65 12.35
Rounded or Max. Rounding Beneath Neck
Chamfered Head 16 15.65 16.35
f
Round f(max.)=1.7(t max.) 20 19.58 20.42
V
da(max.)-d(s max.)
r r r(max.)= 2 25 24.58 25.42 4.5 7

Fdk r(min.)Value in the attached Table 30 29.58 30.42 9.5 12 6.5 10 4 8
Fdw
35 34. 5 35.5 11.5 15 9 13 6 11
r
da 40 39. 5 40.5 16.5 20 14 18 11 16 5.75 12
V Chamfered ds
(4m5Bax.) 45 44. 5 45.5 19 23 16 21 10.75 17 5.5 13

50 49. 5 50.5 24 28 21 26 15.75 22 10.5 18

Unit:mm 55 54. 4 55.6 26 31 20.75 27 15.5 23 10.25 19

Nominal thread(d)(15) M3 M4 M5 M6 M8 M10 M12 (M14) M16 (M18) M20 (M22) M24 (M27) M30 60 59. 4 60.6 31 36 25.75 32 20.5 28 15.25 24 10 20

65 64. 4 65.6 30.75 37 25.5 33 20.25 29 15 25 11 21 4.5 17

Pitch of thread(P) 0.5 0.7 0.8 1 1.25 1.5 1.75 2 2 2.5 2.5 2.5 3 3 3.5 70 69. 4 70.6 35.75 42 30.5 38 25.25 34 20 30 16 26 9.5 22

b Reference 18 20 22 24 28 32 36 40 44 48 52 56 60 66 72 80 79. 4 80.6 45.75 52 40.5 48 35.25 44 30 40 26 36 19.5 32 15.5 28 11.5 24

Max(. Standard size)* 5.5 7 8.5 10 13 16 18 21 24 27 30 33 36 40 45 90 89. 3 90.7 50.5 58 45.25 54 40 50 36 46 29.5 42 25.5 38 21.5 34 15 30 9 24

dk Max.** 5.68 7.22 8.72 10.22 13.27 16.27 18.27 21.33 24.33 27.33 30.33 33.39 36.39 40.39 45.39 100 99. 3 100.7 60.5 68 55.25 64 50 60 46 56 39.5 52 35.5 48 31.5 44 25 40 19 34

110 109.3 110.7 65.25 74 60 70 56 66 49.5 62 45.5 58 41.5 54 35 50 29 44 20.5 38

Min. 5.32 6.78 8.28 9.78 12.73 15.73 17.73 20.67 23.67 26.67 29.67 32.61 35.61 39.61 44.61 120 119.3 120.7 75.25 84 70 80 66 76 59.5 72 55.5 68 51.5 64 45 60 39 54 30.5 48

da Max. 3.6 4.7 5.7 6.8 9.2 11.2 13.7 15.7 17.7 20.2 22.4 24.4 26.4 30.4 33.4 130 129.2 130.8 80 90 76 86 69.5 82 65.5 78 61.5 74 55 70 49 64 40.5 58

Max(. Standard size) 3 4 5 6 8 10 12 14 16 18 20 22 24 27 30 140 139.2 140.8 90 100 86 96 79.5 92 75.5 88 71.5 84 65 80 59 74 50.5 68
ds
150 149.2 150.8 96 106 89.5 102 85.5 98 81.5 94 75 90 69 84 60.5 78
Min. 2.86 3.82 4.82 5.82 7.78 9.78 11.73 13.73 15.73 17.73 19.67 21.67 23.67 26.67 29.67
160 159.2 160.8 106 116 99.5 112 95.5 108 91.5 104 85 100 79 94 70.5 88

e Min. 2.87 3.44 4.58 5.72 6.86 9.15 11.43 13.72 16.00 16.00 19.44 19.44 21.73 21.73 25.15 180 179.2 180.8 119.5 132 115.5 128 111.5 124 105 120 99 114 90.5 108

f Max. 0.51 0.60 0.60 0.68 1.02 1.02 1.45 1.45 1.45 1.87 2.04 2.04 2.04 2.89 2.89 200 199.05 200.95 135.5 148 131.5 144 125 140 119 134 110.5 128

Max(. Standard size) 3 4 5 6 8 10 12 14 16 18 20 22 24 27 30 220 219.05 220.95 139 154 130.5 148
k
240 239.05 240.95 159 174 150.5 168
Min. 2.86 3.82 4.82 5.70 7.64 9.64 11.57 13.57 15.57 17.57 19.48 21.48 23.48 26.48 29.48
260 258.95 261.05 179 194 170.5 188

r Min. 0.1 0.2 0.2 0.25 0.4 0.4 0.6 0.6 0.6 0.6 0.8 0.8 0.8 1 1 280 278.95 281.05 199 214 190.5 208

Nominal designation 2.5 3 4 5 6 8 10 12 14 14 17 17 19 19 22 300 298.95 301.05 219 234 210.5 228
(Standard size)

s Min. 2.52 3.02 4.02 5.02 6.02 8.025 10.025 12.032 14.032 14.032 17.050 17.050 19.065 19.065 22.065

Max.(14) Column 1 2.580 3.080 4.095 5.140 6.140 8.175 10.175 12.212 14.212 14.212 17.230 17.230 19.275 19.275 22.275 Reference:Dimensions of Counterboring and Bolt Hole for the Hexagon Socket Head Cap Screws.

Column 2 2.560 3.080 4.095 5.095 6.095 8.115 10.115 12.142 14.142 14.142 Unit:mm

t Min. 1.3 2 2.5 3 4 5 6 7 8 9 10 11 12 13.5 15.5 DV DV Nominal thread(d) M3 M4 M5 M6 M8 M10 M12 M14 M16 M18 M20 M22 M24 M27 M30
dk dk d s 3 4 5 6 8 10 12 14 16 18 20 22 24 27 30
v Max. 0.3 0.4 0.5 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.7 3 dV 3.4 4.5 5.5 6.6 9 11 14 16 18 20 22 24 26 30 33
ds ds dk 5.5 7 8.5 10 13 16 18 21 24 27 30 33 36 40 45
dw Min. 5.07 6.53 8.03 9.38 12.33 15.33 17.23 20.17 23.17 25.87 28.87 31.81 34.81 38.61 43.61 dV HVdV DV 6.5 8 9.5 11 14 17.5 20 23 26 29 32 35 39 43 48
k K 3 4 5 6 8 10 12 14 16 18 20 22 24 27 30
d kd
H"

w Min. 1.15 1.4 1.9 2.3 3.3 4 4.8 5.8 6.8 7.7 8.6 9.5 10.4 12.1 13.1

Notes(14) Column 1 for s(max.)applied to items in strength brackets 8.8 and 10.9 and properties brackets A 2-50 and A2-70. Column 2 applies to d2 d2 HV 2.7 3.6 4.6 5.5 7.4 9.2 11 12.8 14.5 16.5 18.5 20.5 22.5 25 28
strength bracket 12.9. Column 1 may be applied to strength bracket 12.9 in accordance with an agreement made between the delivering and H" 3.3 4.4 5.4 6.5 8.6 10.8 13 15.2 17.5 19.5 21.5 23.5 25.5 29 32
receiving sides. When the thread size is M20 or larger, (s max.)applies to all strength brackets and properties brackets. d2 2.6 3.4 4.3 5.1 6.9 8.6 10.4 12.2 14.2 15.7 17.7 19.7 21.2 24.2 26.7

Notes(15) Thread of a size in brackets should not be used unless it is absolutely necessary.
Remarks 1.A side of the head should be knurled into a straight-line or twill pattern’refer to JIS B 0951(knurling pattern)». d(k max.)should be the

value marked with two asterisks.
When an unknurled item is needed, it should be specified by the ordering side. d(k max.), however, should be the value marked with an
asterisk.
2.The recommended length(L)of the thread is shown with a bold frame around it. If L is shorter than the dotted line, the thread should
be fully threaded. The length of the incompletely threaded portion beneath the neck should be approximately 3P.
3.r(g max.)and rs(min.)for a screw whose length(, L), exceeds the dotted line is represented by the equations below.

r(g max.)=Nominal lengt(h r)-b
r(s min.)=r(g max.)-5P

1251 1252

TECHNICAL DATA TECHNICAL DATA

TABLE OF HOLE SIZE BEFORE THREADING PROPER BOLT AXIAL TIGHTENING FORCE / TORQUE

1.Metric coarse thread IAxial Tightening Force for Bolt and Fatigue Limit

Nominal Last dimension Max. dimension Nominal Last dimension Max. dimension CThe proper axial tightening force for a bolt should be calculated within an elasticity range up to
of thread Grade 2CGrade 3 of thread Grade 2CGrade 3 70% of the rated yield strength when the torque method is used.
Grade 2 Grade 3 Grade 2 Grade 3 A bolt is tightened by torque, torque inclination,
M 16 M 1.5 14.38 CThe fatigue strength of a bolt under repeated load should not exceed the specified tolerance. rotational angle, stretch measurement and
M 1 M 0.25 0.73 0.78 - M 16 M 1 14.92 14.68 14.75 CDo not let the seat of a bolt or nut dent the contact area. other methods. The torque method is widely
M 1.1 M 0.25 0.83 0.89 - 15.15 15.22 CDo not break the tightened piece by over tightening. used due to its simplicity and convenience.
M 1.2 M 0.25 0.93 0.98 - M 17 M 1.5 15.38
M 1.4 M 0.3 1.08 1.14 - M 17 M 1 15.92 15.68 15.75
M 1.6 M 0.35 1.22 1.32 - 16.15 16.22
M 1.7 M 0.35 1.33 1.42 - M 18 M 2 15.84
M 1.8 M 0.35 1.42 1.52 - M 18 M 1.5 16.38 16.21 16.31 ICalculation of Axial Tightening Force and Tightening Torque
M 2 M 0.4 1.57 1.67 - M 18 M 1 16.92 16.68 16.75
M 2.2 M 0.45 1.71 1.84 - 17.15 17.22 The relation between the axial tightening force and Ff is k :Torque coefficient
M 2.3 M 0.4 1.87 1.97 - M 20 M 2 17.84 represented by equation(1)below.
M 2.5 M 0.45 2.01 2.14 - M 20 M 1.5 18.38 18.21 18.31 Ff=0.7M‰yMAsEE(1) d :Nominal diameter of bol[t cm]
M 2.6 M 0.45 2.12 2.23 - M 20 M 1 18.92 18.68 18.75 Tightening Torque, TfA, can be calculated using the
19.15 19.22 equation(2)below. Q :Tightening coefficient
M 22 M 2 19.84 TfA=0.35(k 1+1/Q)‰yCAsCdEE(2) ‰y :Proof stress(112kgf/mm2 when the strength class is 12.9)
M 3 M 0.5 2.46 2.60 2.64 M 22 M 1.5 20.38 20.21 20.31 As :Effective sectional area of the bol[t mm2]
M 3.5 M 0.6 2.85 3.01 3.05 M 22 M 1 20.92 20.68 20.75
M 4 M 0.7 3.24 3.42 3.47 21.15 21.22
M 24 M 2 21.84
M 4.5 M 0.75 3.69 3.88 3.92 M 24 M 1.5 22.38 22.21 22.31 IExample
M 5 M 0.8 4.13 4.33 4.38 M 24 M 1 22.92 22.68 22.75
M 6M 1 4.92 5.15 5.22 23.15 23.22
M 25 M 2 22.84
M 7M 1 5.92 6.15 6.22 M 25 M 1.5 23.38 23.21 23.31 Proper torque and axial force for soft steel pieces tightened together by means of a bolt with a hexagonal hole, M6(strength bracket 12.9),
M 8 M 1.25 6.65 6.91 6.98 M 25 M 1 23.92 23.68 23.75
M 9 M 1.25 7.65 7.91 7.98 24.15 24.22 with the pieces lubricated with oil can be calculated.
M 10 M 1.5 8.38 8.68 8.75 M 26 M 1.5 24.38
M 11 M 1.5 9.38 9.68 9.75 CProper torque, by using equation(2): CAxial force, by using equation(1):
M 27 M 2 24.84
M 27 M 1.5 25.38 24.68 24.75 TfA=0.35(k 1+1/Q)‰yCAsCd Ff=0.7M‰yMAs
M 27 M 1 25.92
M 12 M 1.75 10.11 10.44 10.53 25.21 25.31 =0.35C0.1(7 1+1/1.4)112C20.1C0.6 =0.7M112M20.1
M 14 M 2 11.84 12.21 12.31 M 28 M 2 25.84 25.68 25.75
M 16 M 2 13.84 14.21 14.31 M 28 M 1.5 26.38 26.15 26.22 =13[8 kgfCcm] =157[6 kgf]
M 18 M 2.5 15.29 15.74 15.85 M 28 M 1 26.92
M 20 M 2.5 17.29 17.74 17.85 IStandard value of tightening coefficient Q
M 30 M 3 26.75
M 22 M 2.5 19.29 19.74 19.85 M 30 M 2 27.84 26.21 26.31 ISurface Treatment for Bolt and Torque Coefficient Dependent on the Combination
M 24 M 3 20.75 21.25 21.38 M 30 M 1.5 28.38 26.68 26.75 of material for Area to be Fastened and material of Female Thread
M 27 M 3 23.75 24.25 24.38 M 30 M 1 28.92 27.15 27.22
M 30 M 3.5 26.21 26.77 26.92 Surface Torque Combination Tightening Surface condition
M 33 M 3.5 29.21 29.77 29.92 M 32 M 2 29.84 treatment coefficient (a) Bolt nut Lubrication
M 32 M 1.5 30.38 & lubrication k Tightened piece material-Internal thread material (b) coefficient Tightening method
27.25 27.38 Q
M 33 M 3 29.75 28.21 28.31
M 33 M 2 30.84 28.68 28.75 (a) (b) 1.25 Torque wrench Manganese phosphate
M 33 M 1.5 31.38 29.15 29.22
M 36 M 4 31.67 32.27 32.42 0.145 SCM-FC FC-FC SUS-FC 1.4 Torque wrench Not treated or treated Not treated or treated Lubricated with
M 39 M 4 34.67 35.27 35.42 M 35 M 1.5 33.38 Torque controlled wrench with phosphate with phosphate oil or MoS2 paste
M 42 M 4.5 37.13 37.80 37.98 0.155 S10C-FC SCM-S10C SCM-SCM FC-S10C FC-SCM
M 45 M 4.5 40.13 40.80 40.98 M 36 M 3
M 48 M 5 42.59 43.30 43.49 M 36 M 2 30.21 30.31 Steel bolt 0.165 SCM-SUS FC-SUS AL-FC SUS-S10C SUS-SCM SUS-SUS 1.6 Impact wrench
M 36 M 1.5 30.68 30.75
Black oxide film 0.175 S10C-S10C S10C-SCM S10C-SUS AL-S10C AL-SCM
M 38 M 1.5 1.8 Torque wrench Not treated or treated Not treated not lubricated
30.25 30.38 Oil lubrication 0.185 SCM-AL FC-AL AL-SUS Torque controlled wrench with phosphate
M 39 M 3 31.21 31.31
2.Metric fine pitch thread M 39 M 2 31.68 31.75 0.195 S10C-AL SUS-AL Strength code
M 39 M 1.5 ex. 1 2 . 9
Nominal Last dimension Max. dimension 33.68 33.75 0.215 AL-AL
of thread Grade 2CGrade 3 M 40 M 3
Grade 2 Grade 3 M 40 M 2 0.25 S10C-FC SCM-FC FC-FC Proof Stress(yield stress):90% of the mianimum value of tensile strength
M 40 M 1.5 S10C-SCM SCM-SCM FC-S10C FC-SCM AL-FC The minimum tensile strength is 1220N/mm2{124kgf/mm2}
M 2.5 M 0.35 2.12 2.22 - 32.75 33.25 33.38 Steel bolt 0.35 S10C-S10C SCM-S10C AL-S10C AL-SCM
M 42 M 4 33.84 34.21 34.31 SCM-AL FC-AL AL-AL
M 3 M 0.35 2.62 2.72 - M 42 M 3 34.38 34.68 34.75 Black oxide film 0.45 10.9
M 3.5 M 0.35 3.12 3.22 - M 42 M 2 not lubricated
M 4 M 0.5 3.46 3.60 3.64 M 42 M 1.5 36.38 36.68 36.75 0.55
M 4.5 M 0.5 3.96 4.10 4.14
M 5 M 0.5 4.46 4.60 4.64 M 45 M 4 35.75 36.25 36.38 S10C:Unrefined soft steel SCM:Refined steel(35HRC) FC:Cast iron(FC200) AL:Aluminum SUS:Stainless(SUS304) Proof Stress(yield stress):90% of the minimum value of tensile strength
M 5.5 M 0.5 4.96 5.10 5.14 M 45 M 3 36.84 37.21 37.31 The minimum tensile strength is 1040N/mm2{106kgf/mm2}
M 6 M 0.75 5.19 5.38 5.42 M 45 M 2 37.38 37.68 37.75 IInitial clamping force and tightening torque
M 45 M 1.5
36.75 37.25 37.38 Effective Strength rank
M 48 M 4 37.84 38.21 38.31
M 7 M 0.75 6.19 6.38 6.42 M 48 M 3 38.38 38.68 38.75 Nominal diameter sectional area 12.9 10.9 8.8 4.8
M 8M 1 6.92 7.15 7.22 M 48 M 2
M 8 M 0.75 7.19 7.38 7.42 M 48 M 1.5 37.67 38.27 38.42 of thread As Yield load Initial Tightening force Tightening torque Yield load Initial Tightening force Tightening torque Yield load Initial Tightening force Tightening torque Yield load Initial Tightening force Tightening torque
38.75 39.25 39.38
M 50 M 3 39.84 40.21 40.31 mm2 kgf kgf kgfCcm kgf kgf kgfCcm kgf kgf kgfCcm kgf kgf kgfCcm
M 50 M 2 40.38 40.68 40.75
M 9M 1 7.92 8.15 8.22 M 50 M 1.5 M 3M0.5 5.03 563 394 17 482 338 15 328 230 10 175 122 5
M 9 M 0.75 8.19 8.38 8.42 40.67 41.27 41.42
41.75 42.25 42.38 M 4M0.7 8.78 983 688 40 842 589 34 573 401 23 305 213 12
42.84 43.21 43.31
M 10 M 1.25 8.65 8.91 8.98 43.38 43.68 43.75 M 5M0.8 14.2 1590 1113 81 1362 953 69 927 649 47 493 345 25
M 10 M 1 8.92 9.15 9.22
M 10 M 0.75 9.19 9.38 - 43.67 44.27 44.42 M 6M1 20.1 2251 1576 138 1928 1349 118 1313 919 80 697 488 43
44.75 45.25 45.38
45.84 46.21 46.31 M 8M1.25 36.6 4099 2869 334 3510 2457 286 2390 1673 195 1270 889 104
46.38 46.68 46.75
M 11 M 1 9.92 10.15 10.22 M10M1.5 58 6496 4547 663 5562 3894 567 3787 2651 386 2013 1409 205
M 11 M 0.75 10.19 10.38 10.42 46.75 47.25 47.38
47.84 48.21 48.31 M12M1.75 84.3 9442 6609 1160 8084 5659 990 5505 3853 674 2925 2048 358
48.38 48.68 48.75
M 12 M 1.5 10.38 10.68 10.75 M14M2 115 12880 9016 1840 11029 7720 1580 7510 5257 1070 3991 2793 570
M 12 M 1.25 10.65 10.91 10.98
M 12 M 1 10.92 11.15 11.22 M16M2 157 17584 12039 2870 15056 10539 2460 10252 7176 1670 5448 3814 889

M18M2.5 192 21504 15053 3950 18413 12889 3380 12922 9045 2370 6662 4664 1220

M 14 M 1.5 12.38 12.68 12.75 M20M2.5 245 27440 19208 5600 23496 16447 4790 16489 11542 3360 8502 5951 1730
M 14 M 1 12.92 13.15 13.22

M22M2.5 303 33936 23755 7620 29058 20340 6520 20392 14274 4580 10514 7360 2360

M 15 M 1.5 13.38 13.68 13.75 M24M3 353 39536 27675 9680 33853 23697 8290 23757 16630 5820 12249 8574 3000
M 15 M 1 13.92 14.15 14.22

1253 (Note)CTightening conditions:Use of a torque wrench(lubricated with oil;Torque coefficient k=0.17;Tightening coefficient Q=1.4) 1254
CThe torque coefficient varies with the usage conditions. Values in this table should be used as rough referential values.
CThe table is an excerpt from a catalog published by Kyokuto Seisakusho Co., Ltd.

’TECHNICAL DATA» ’TECHNICAL DATA»

STRENGTH OF BOLTS, SCREW AND DOWEL PINS CALCULATION OF CUBIC VOLUME

IStrength of bolts Pt :Tensile load in the axial directio[n kgf] ISafety factor of Unwin based on tensile strength Å Solid Volume V Solid Volume V Solid Volume V
‰b:Yield stress of bol[t kgf/mm2] Truncated cylinder Hollow cylinder Circular cone
1)Tensile Load Bolt ‰t :Allowable stress of bol[t kgf/mm2] Material Static load Repeated load Impact load Q V= Q h(D 2 -d 2 ) Q
Pulsating Reversed d 4 dt 4 r 3
Pt=‰tMAsEEE (1) (‰t=‰b/safety factor Å) Steel 3 12 V= d 2 h D Sphere V= r 2 h
=Qd2‰t/4EE(2) Cast iron 4 58 15 Truncated pyramid
As:Effective sectional area of bol[t mm2] Copper, soft metal 5 6 10 15 D
As=Qd2/4 59 h2 =Qth(D-t)
h =Qth(d+t)
d :Effective Dia of bol(t core diameter)[mm] Reference strength Reference strength:Yield stress for ductile materials h1 = Q d 2 h1 +h2 h r =1.0472r 2h
Safety factorÅ Fracture stress for brittle materials 4 2 h h
Stress=

(Example)The proper size of a bolt with a hexagonal hole, which is to bear a repeated tensile load(pulsating)at P=200 kgf, Pyramid V= h A= h arn
should be determined(. Bolt with a hexagonal hole, made of SCM435, 38 to 43 HRC, strength class 12.9) 3 6
a
Using equation(1) Yield stress in strength class 12.9 is ‰b=112’kgf/mm2». Spherical crown A=Area of base V= h3(A+a+ Aa) V= 4 Qr 3 =4.1888r 3
Allowable stress ‰t=‰b/safety facto(r safety factor is 5 from the above table) A,a=Area of both ends 3
As=Pt/‰t a
=200/22.4 =112/5 h r =Radius of inscribed circle
=8.9[mm2] =22.4[kgf/mm2]
a =Length of a side of a regular polygon = Q d 3 =0.5236d 3
6

A larger effective sectional area should be IFatigue strength of bolt(s In case of screws:Fatigue strength is 2 million times) n =Number of the sides of a regular
found in the table at the right, and M5, polygon
14.’2 mm2», should be selected. M6,
tolerable load of 213 kgf, should be selected from the column for strength Nominal Effective Strength rank Qh 2(3r-h) Spherical segment Spherical belt
class 12.9, with the fatigue strength taken into account. diameter 12.9 10.9 3 b
of thread sectional area Fatigue strength* Allowable load Fatigue strength* Allowable load V=
As kgf/mm2 kgf kgf/mm2 kgf a
V= 2 Qr 2 h
mm2 3
= Q6h(3a 2 +h2 ) dh V= Q6h(3a 2 +3b 2 +h2 )
M 4 8.78 13.1 114 9.1 79 h d
111 r h
149
2)If the bolt, like a stripper bolt, is to bear a tensile impact load, the right size M 5 14.2 11.3 160 7.8 318 r =2.0944r 2 h D
should be selected from the fatigue strength column(. Under a load of 200kgf, 423 r
Stripper bolt made of SCM435, 33 to 38HRC, strength class 10.9) M 6 20.1 10.6 213 7.4 548 a is the radius.
690
If the tolerable load is 200kgf or more, strength class 10.9, M8, 318’kgf», M 8 36.6 8.9 326 8.7 895
should be selected from the table at the right. Hence, MSB10 with the M8
threaded portion and an axial diameter of 10mm should be selected. If it is to M10 58 7.4 429 7.3 Ellipsoid 4 Torus Barrel When circumference makes a
ac 3 R r
M12 84.3 6.7 565 6.5 V= Qabc V=2Q2 Rr 2
D
M14 115 6.1 702 6 curve equal to the circular arc,

M16 157 5.8 911 5.7 In case of a spheroid =19.739Rr 2 V= Qr (2D 2 +d2 )
(b=c) 12
Q2
bear a shearing load, a dowel pin should also be used. M20 245 5.2 1274 5.1 1250 = 4 Dd 2 When its periphery makes a

IStrength of screw plugs M24 353 4.7 1659 4.7 1659 Lb =2.4674Dd 2 curve equal to a parabolic line,

Allowable load P when screw plug MSW30 is to bear an impact load should be Fatigue strength* is corrected excerpt from "Estimated values of fatigue V= 4 Qab 2 V=0.209r(2D 2 Dd+1/4d 2 )
limit of metric screw threads for machine screws, bolts and nuts(" Yamamoto). 3

determined.(MSW30 made of S45C, Tensile strength‰b for 34~43HRC is 65kgf/mm2.) M IHow to calculate the weight ICharacteristics of Metals
Core diameter d1
If MSW is shorn at a spot within the minor diameter section and Area A=Core diameter d1MQML Weight[g]=Volume[cm3]MDensity Material Density Young's modulusE Thermal expansion coefficient
is broken, allowable load P can be calculated as shown below. (Core diameter d1—M-P) P [g/cm 3] [Kgf/mm2] [M10 -6/A]
’Example»Material:Mild steel 11.7
Allowable load P=ÍtMA. A=(M-P)QL=(30-1.5)QM12 P FD=16 L=50mm, the weight is: Mild steel 7.85 21000
=3.9M107.4 =1074[mm2] W=Q4 D2MLMDensity
=Q4 M1.62M5M7.85 SKD11 7.85 21000 11.7
Yield stress—0.9MTensile strength‰b=0.9M65=58.2 —79[g]

=4190[kgf] Shearing stress—0.8MYield stress FD Powdered high-speed steel(HAP40) 8.07 23300 10.1

Find the allowable shearing force based =46.6 Cemented carbide V30 14.1 56000 6.0
on the core diameter of internal thread if Allowable shearing stress Ít=Shearing stress/safety factor 12

=46.6/12=3.[9 kgf/mm2]

tapping is made of soft material. IMethod for finding changes dimensions due to thermal expansion Cast iron 7.3 7500~10500 9.2~11.8

IStrength of dowel pins ’Example»Material:SKD11 SUS304 8.0 19700 17.3

The proper size of a dowel pin under repeated shearing load of 800 kgf(one-way swing) FD=2 The volume of dimension change Î
should be determined(. Dowel pin made of SUJ2, 58HRC or greater).
when a pin of L=100mm is heated to 100A is Oxygen free copper C1020 8.9 11700 17.6

Î=Coefficient of thermal expansionMTotal lengthMChange in temperature

=11.7M10-6M100mmM100A 6/4 Brass C2801 8.4 10300 20.8

P=AMÍ ‰b for yield stress of SUJ2=12[0 kgf/mm2] =0.11[7 mm] [20A] Aluminum A1100 2.7 6900 23.6
=QD2Í/4 Allowable shearing strengthÍ=‰bM0.8/safety factorÅ 100

D= (4P)/(QÍ) =120M0.8/5 F2 0.117
= (4M800)/(3.14M19.2) =19.2[kgf/mm2] L
—7.3 [120A] Duralumin A7075 2.8 7200 23.6

The dowel pin must not be loaded IFinding strain with Young's modulus E Titanium 4.5 10600 8.4
1Kgf/mm 2 =9.80665M10 6 Pa
D8 or larger size should be selected for MS. If the dowel pins are of a large uniform ’Example»Find amount of strainwhen load P=1000kgf Pkgf
size, some of the tools and part of the stock or the like will be necessary. to F10ML60 pin.(Material:SKD11)

PL
E= A

Typical strength calculations are presented here. In a real-life situation, it will be necessary to take into account hole-to-hole pitch precision, hole = PL = 1000M60
perpendicularity, surface roughness, circularity, plate material, parallelism, quenching or non-quenching, precision of the press, product output, wear of AE 78.5M21000
tools, etc. Hence the value in theses examples are referentia(l but not guaranteed)values.
—0.036mm F10

1255 Sectional area A= Q D2=78.5 1256
4

’TECHNICAL DATA» GEOMETRICAL MOMENT OF INERTIA

CALCULATIONS OF AREA, CENTER OF GRAVITY

Cross Section Sectional area A Distance of e Geometrical moment of Inertia Section modulus Z=I/e Cross Section Sectional area A Distance of e Geometrical moment of Inertia Section modulus Z=I/e
b gravitational center b gravitational center
h
ee eh h bh h bh 3 bh 2 2r rr a Qab a Q4 ba 3=0.7854 ba 3 Q4 ba 2=0.7854 ba 2
2 12 6 r
b
h2 h h4 h3 e1 e2 Q 2 e1 Q -98Q r4 Z 1 =0.2587 r3
2 12 6 A 2 =0.4244 r 8 Z 2 =0.1908 r3
r e2
d2 =0.5756 r Z 1 =0.1296 r3
d =0.1098 r4 Z 2 =0.0956 r3
a
h2 h h4 0.1179 h3= 2 h3 e1 e2 Q r2 e1 r 0.055 r 4
22 12 12 4 =0.4244 r
e2
Ah =0.5756

e hb h bh 2 bh 3 bh 2 H b b 3 3
24 2 12 6H
2 3 h 36 re b(H-h) ( H 3-h 3 ) (H -h )

b (2 b+b1 ) h 1 M 32bb++2b1b1h 6 b2+6 bb 1+ b 2 h 3 6 b2+6 bb 1+ b 2 h 2 ah eH A 2 -a 2 A A 4 -a 4 1 A 4 -a 4
b 2 3 36(2b+b 1) 1 12(3b+2 b1) 1 a A 2 12 6A

b1 A
2b 22
ee b1
reh 2 d2
2
3 r=0.866 r 5 r3 A A 2 -a 2 A 4 -a 4 A 4 -a 4
4 8 e a 12 12 A 2
2 0.1179( A 4-a 4 )
r 3 3 r2 53
2 16 h =A
2
r4 = 0.5413 r4
h
= 2.598 r 2 b d b e d1 Re 2 6Q4( d 24-d 4 ) Q d 42- d 4
d1 d 1 1

r 53 Q ( d 2 - d 2 ) 32 d2
16 r3= 0.5413 r 3 4 2 1
= Q4 ( R 4 -r4 ) Q R4-r 4
=4M R

1+2 2 r4 Qd 2 1 3Q 1 3Q
6 4 12 16 6a 16 d
r 2.828 r 2 0.924 r2 0.6906 r 3 a 2 - a 4 - d 4 a 4- 4

ee =0.6381 r4 e
ha
a b 1 3Q 1 3Q
b 12 16 d 6h 16 d
d 2 a 4 4
2 b=1+ 2
r
0.8284 a 2 =0.4142 a 2 b(h-d )
1257
0.0547 a 4 0.1095 a 3 Q 2 +b ( h 3-d3 ) +b ( h3-d 3 )
4
+ d +b3 ( h -d ) +b3 ( h-d )

b

2
2

Qd 4 Qr4 Qd 3 Qr 3 1 3Q 1 3Q
64 4 32 4 12 16 6h 16
er 2 = = 2 b(h-d )+ ( d 4 - d4 ) ( d 4 - d4 )
1 1
Qd d
Qr 2 = 4 2 =0.0491 d 4 =0.0982 d 3 e ( 3-d 3 ) h3 3
1 1
e1 =0.05 d 4 =0.1 d 3 h Q4 ( d 2 - d 2 ) +b h +b ( -d )
=0.2234 r 1
e2 =0.7854 r 4 =0.7854 r 3 +b3 ( h-d1 ) +b 3 ( h-d1 )
=0.7766 r
e2 e1 r2 1- Q 0.0075 r 4 0.0075 r4
r 4 e2

=0.2146 r 2 =0.00966r 3
=0.01r 3

1258

’TECHNICAL DATA» a= b c
cosP , sinP
COMPARISON CHART OF TRIGONOMETRICAL FUNCTION ac c
P b = aCcosP tanP
,
b
c = aCsinP ,bCtanP

P When deg=0B00'~11B50' P When deg=12B00'~23B50' P When deg=24B00'~35B50' P When deg=36B00'~45B00'
deg deg deg deg
sinP cosP tanP cotP sinP cosP tanP cotP 24B00' sinP cosP tanP cotP 36B00' sinP cosP tanP cotP
0B00' 12B00'
10 .0000 1.0000 .0000 N 90B00' 10 .2079 .9781 .2126 4.7046 78B00' 10 .4067 .9135 .4452 2.2460 66B00' 10 .5878 .8090 .7265 1.3764 54B00'
20 50 20 50 20 50 20 50
30 .0029 1.0000 .0029 343.77 40 30 .2108 .9775 .2156 4.6382 40 30 .4094 .9124 .4487 2.2286 40 30 .5901 .8073 .7310 1.3680 40
40 30 40 30 40 30 40 30
50 .0058 1.0000 .0058 171.89 20 50 .2136 .9769 .2186 4.5736 20 50 .4120 .9112 .4522 2.2113 20 50 .5925 .8056 .7355 1.3597 20
10 10 25B00' 10 37B00' 10
1B00' .0087 1.0000 .0087 114.59 13B00' .2164 .9763 .2217 4.5107 10 .4147 .9100 .4557 2.1943 10 .5948 .8039 .7400 1.3514
10 89B00' 10 77B00' 20 65B00' 20 53B00'
20 .0116 0.9999 .0116 85.940 50 20 .2193 .9757 .2247 4.4494 50 30 .4173 .9088 .4592 2.1775 50 30 .5972 .8021 .7445 1.3432 50
30 40 30 40 40 40 40 40
40 .0145 .9999 .0145 68.750 30 40 .2221 .9750 .2278 4.3897 30 50 .4200 .9075 .4628 2.1609 30 50 .5995 .8004 .7490 1.3351 30
50 20 50 20 26B00' 20 38B00' 20
.0175 .9998 .0175 57.290 10 .2250 .9744 .2309 4.3315 10 10 .4226 .9063 .4663 2.1445 10 10 .6018 .7986 .7536 1.3270 10
2B00' 14B00' 20 20
10 .0204 .9998 .0204 49.104 88B00' 10 .2278 .9737 .2339 4.2747 76B00' 30 .4253 .9051 .4699 2.1283 64B00' 30 .6041 .7969 .7581 1.3190 52B00'
20 50 20 50 40 50 40 50
30 .0233 .9997 .0233 42.964 40 30 .2306 .9730 .2370 4.2193 40 50 .4279 .9038 .4734 2.1123 40 50 .6065 .7951 .7627 1.3111 40
40 30 40 30 27B00' 30 39B00' 30
50 .0262 .9997 .0262 38.188 20 50 .2334 .9724 .2401 4.1653 20 10 .4305 .9026 .4770 2.0965 20 10 .6088 .7934 .7673 1.3032 20
10 10 20 10 20 10
3B00' .0291 .9996 .0291 34.368 15B00' .2363 .9717 .2432 4.1126 30 .4331 .9013 .4806 2.0809 30 .6111 .7916 .7720 1.2954
10 87B00' 10 75B00' 40 63B00' 40 51B00'
20 .0320 .9995 .0320 31.242 50 20 .2391 .9710 .2462 4.0611 50 50 .4358 .9001 .4841 2.0655 50 50 .6134 .7898 .7766 1.2876 50
30 40 30 40 28B00' 40 40B00' 40
40 .0349 .9994 .0349 28.636 30 40 .2419 .9703 .2493 4.0108 30 10 .4384 .8988 .4877 2.0503 30 10 .6157 .7880 .7813 1.2799 30
50 20 50 20 20 20 20 20
.0378 .9993 .0378 26.432 10 .2447 .9696 .2524 3.9617 10 30 .4410 .8975 .4913 2.0353 10 30 .6180 .7862 .7860 1.2723 10
4B00' 16B00' 40 40
10 .0407 .9992 .0407 24.542 86B00' 10 .2476 .9689 .2555 3.9136 74B00' 50 .4436 .8962 .4950 2.0204 62B00' 50 .6202 .7844 .7907 1.2647 50B00'
20 50 20 50 29B00' 50 41B00' 50
30 .0436 .9990 .0437 22.904 40 30 .2504 .9681 .2586 3.8667 40 10 .4462 .8949 .4986 2.0057 40 10 .6225 .7826 .7954 1.2572 40
40 30 40 30 20 30 20 30
50 .0465 .9989 .0466 21.470 20 50 .2532 .9674 .2617 3.8208 20 30 .4488 .8936 .5022 1.9912 20 30 .6248 .7808 .8002 1.2497 20
10 10 40 10 40 10
5B00' .0494 .9988 .0495 20.206 17B00' .2560 .9667 .2648 3.7760 50 .4514 .8923 .5059 1.9768 50 .6271 .7790 .8050 1.2423
10 85B00' 10 73B00' 30B00' 61B00' 42B00' 49B00'
20 .0523 .9986 .0524 19.081 50 20 .2588 .9659 .2679 3.7321 50 10 .4540 .8910 .5095 1.9626 50 10 .6293 .7771 .8098 1.2349 50
30 40 30 40 20 40 20 40
40 .0552 .9985 .0553 18.075 30 40 .2616 .9652 .2711 3.6891 30 30 .4566 .8897 .5132 1.9486 30 30 .6316 .7753 .8146 1.2276 30
50 20 50 20 40 20 40 20
.0581 .9983 .0582 17.169 10 .2644 .9644 .2742 3.6470 10 50 .4592 .8884 .5169 1.9347 10 50 .6338 .7735 .8195 1.2203 10
6B00' 18B00' 31B00' 43B00'
10 .0610 .9981 .0612 16.350 84B00' 10 .2672 .9636 .2773 3.6059 72B00' 10 .4617 .8870 .5206 1.9210 60B00' 10 .6361 .7716 .8243 1.2131 48B00'
20 50 20 50 20 50 20 50
30 .0640 .9980 .0641 15.605 40 30 .2700 .9628 .2805 3.5656 40 30 .4643 .8857 .5243 1.9074 40 30 .6383 .7698 .8292 1.2059 40
40 30 40 30 40 30 40 30
50 .0669 .9978 .0670 14.924 20 50 .2728 .9621 .2836 3.5261 20 50 .4669 .8843 .5280 1.8940 20 50 .6406 .7679 .8342 1.1988 20
10 10 32B00' 10 44B00' 10
7B00' .0698 .9976 .0699 14.301 19B00' .2756 .9613 .2867 3.4874 10 .4695 .8829 .5317 1.8807 10 .6428 .7660 .8391 1.1918
10 83B00' 10 71B00' 20 59B00' 20 47B00'
20 .0727 .9974 .0729 13.727 50 20 .2784 .9605 .2899 3.4495 50 30 .4720 .8816 .5354 1.8676 50 30 .6450 .7642 .8441 1.1847 50
30 40 30 40 40 40 40 40
40 .0756 .9971 .0758 13.197 30 40 .2812 .9596 .2931 3.4124 30 50 .4746 .8802 .5392 1.8546 30 50 .6472 .7623 .8491 1.1778 30
50 20 50 20 33B00' 20 45B00' 20
.0785 .9969 .0787 12.706 10 .2840 .9588 .2962 3.3759 10 10 .4772 .8788 .5430 1.8418 10 .6494 .7604 .8541 1.1708 10
8B00' 20B00' 20
10 .0814 .9967 .0816 12.251 82B00' 10 .2868 .9580 .2994 3.3402 70B00' 30 .4797 .8774 .5467 1.8291 58B00' .6517 .7585 .8591 1.1640 46B00'
20 50 20 50 40 50 50
30 .0843 .9964 .0846 11.826 40 30 .2896 .9572 .3026 3.3052 40 50 .4823 .8760 .5505 1.8165 40 .6539 .7566 .8642 1.1571 40
40 30 40 30 34B00' 30 30
50 .0872 .9962 .0875 11.430 20 50 .2924 .9563 .3057 3.2709 20 10 .4848 .8746 .5543 1.8040 20 .6561 .7547 .8693 1.1504 20
10 10 20 10 10
9B00' .0901 .9959 .0904 11.059 21B00' .2952 .9555 .3089 3.2371 30 .4874 .8732 .5581 1.7917 .6583 .7528 .8744 1.1436
10 81B00' 10 69B00' 40 57B00' 45B00'
20 .0929 .9957 .0934 10.712 50 20 .2979 .9546 .3121 3.2041 50 50 .4899 .8718 .5619 1.7796 50 .6604 .7509 .8796 1.1369
30 40 30 40 35B00' 40 deg
40 .0958 .9954 .0963 10.385 30 40 .3007 .9537 .3153 3.1716 30 10 .4924 .8704 .5658 1.7675 30 .6626 .7490 .8847 1.1303 P
50 20 50 20 20 20
.0987 .9951 .0992 10.078 10 .3035 .9528 .3185 3.1397 10 30 .4950 .8689 .5696 1.7556 10 .6648 .7470 .8899 1.1237
10B00' 22B00' 40
10 .1016 .9948 .1022 9.7882 80B00' 10 .3062 .9520 .3217 3.1084 68B00' 50 .4975 .8675 .5735 1.7437 56B00' .6670 .7451 .8952 1.1171
20 50 20 50 50
30 .1045 .9945 .1051 9.5144 40 30 .3090 .9511 .3249 3.0777 40 .5000 .8660 .5774 1.7321 40 .6691 .7431 .9004 1.1106
40 30 40 30 30
50 .1074 .9942 .1080 9.2553 20 50 .3118 .9502 .3281 3.0475 20 .5025 .8646 .5812 1.7205 20 .6713 .7412 .9057 1.1041
10 10 10
11B00' .1103 .9939 .1110 9.0098 23B00' .3145 .9492 .3314 3.0178 .5050 .8631 .5851 1.7090 .6734 .7392 .9110 1.0977
10 79B00' 10 67B00' 55B00'
20 .1132 .9936 .1139 8.7769 50 20 .3173 .9483 .3346 2.9887 50 .5075 .8616 .5890 1.6977 50 .6756 .7373 .9163 1.0913
30 40 30 40 40
40 .1161 .9932 .1169 8.5555 30 40 .3201 .9474 .3378 2.9600 30 .5100 .8601 .5930 1.6864 30 .6777 .7353 .9217 1.0850
50 20 50 20 20
.1190 .9929 .1198 8.3450 .3228 .9465 .3411 2.9319 .5125 .8587 .5969 1.6753 .6799 .7333 .9271 1.0786
78B10 66B10 54B10
.1219 .9925 .1228 8.1443 .3256 .9455 .3443 2.9042 .5150 .8572 .6009 1.6643 .6820 .7314 .9325 1.0724
deg deg deg
.1248 .9922 .1257 7.9530 P .3283 .9446 .3476 2.8770 P .5175 .8557 .6048 1.6534 P .6841 .7294 .9380 1.0661

.1276 .9918 .1287 7.7704 .3311 .9436 .3508 2.8502 .5200 .8542 .6088 1.6426 .6862 .7274 .9435 1.0599

.1305 .9914 .1317 7.5958 .3338 .9426 .3541 2.8239 .5225 .8526 .6128 1.6319 .6884 .7254 .9490 1.0538

.1334 .9911 .1346 7.4287 .3365 .9417 .3574 2.7980 .5250 .8511 .6168 1.6212 .6905 .7234 .9545 1.0477

.1363 .9907 .1376 7.2687 .3393 .9407 .3607 2.7725 .5275 .8496 .6208 1.6107 .6926 .7214 .9601 1.0416

.1392 .9903 .1405 7.1154 .3420 .9397 .3640 2.7475 .5299 .8480 .6249 1.6003 .6947 .7193 .9657 1.0355

.1421 .9899 .1435 6.9682 .3448 .9387 .3673 2.7228 .5324 .8465 .6289 1.5900 .6967 .7173 .9713 1.0295

.1449 .9894 .1465 6.8269 .3475 .9377 .3706 2.6985 .5348 .8450 .6330 1.5798 .6988 .7153 .9770 1.0235

.1478 .9890 .1495 6.6912 .3502 .9367 .3739 2.6746 .5373 .8434 .6371 1.5697 .7009 .7133 .9827 1.0176

.1507 .9886 .1524 6.5606 .3529 .9356 .3772 2.6511 .5398 .8418 .6412 1.5597 .7030 .7112 .9884 1.0117

.1536 .9881 .1554 6.4348 .3557 .9346 .3805 2.6279 .5422 .8403 .6453 1.5497 .7050 .7092 .9942 1.0058

.1564 .9877 .1584 6.3138 .3584 .9336 .3839 2.6051 .5446 .8387 .6494 1.5399 .7071 .7071 1.0000 1.0000

.1593 .9872 .1614 6.1970 .3611 .9325 .3872 2.5826 .5471 .8371 .6536 1.5301 cosP sinP cotP tanP

.1622 .9868 .1644 6.0844 .3638 .9315 .3906 2.5605 .5495 .8355 .6577 1.5204 When deg=45B00'~54B00'

.1650 .9863 .1673 5.9758 .3665 .9304 .3939 2.5386 .5519 .8339 .6619 1.5108

.1679 .9858 .1703 5.8708 .3692 .9293 .3973 2.5172 .5544 .8323 .6661 1.5013 IHow to Obtain Trigonometrical Functions from the Chart

.1708 .9853 .1733 5.7694 .3719 .9283 .4006 2.4960 .5568 .8307 .6703 1.4919 When deg(. degree)is between 0B00'and 45B00'

.1736 .9848 .1763 5.6713 .3746 .9272 .4040 2.4751 .5592 .8290 .6745 1.4826 qLocate the target deg. value in the left-handed
sideP column.
.1765 .9843 .1793 5.5764 .3773 .9261 .4074 2.4545 .5616 .8274 .6787 1.4733 ex.)sin 5B=10.0872
wCheck the required type of trigonometrical function in the ex.)cos5B=10.9962
.1794 .9838 .1823 5.4845 .3800 .9250 .4108 2.4342 .5640 .8258 .6830 1.4641 chart's top row, and obtain the real number corresponding ex.)tan 5B=00.0875
to the deg. value from the appropriate column. ex.)cot 5B=11.430
.1822 .9833 .1853 5.3955 .3827 .9239 .4142 2.4142 .5664 .8241 .6873 1.4550

.1851 .9827 .1883 5.3093 .3854 .9228 .4176 2.3945 .5688 .8225 .6916 1.4460

.1880 .9822 .1914 5.2257 .3881 .9216 .4210 2.3750 .5712 .8208 .6959 1.4370

.1908 .9816 .1944 5.1446 .3907 .9205 .4245 2.3559 .5736 .8192 .7002 1.4281 When deg(. degree)is between 45B00'and 90B00'

.1937 .9811 .1974 5.0658 .3934 .9194 .4279 2.3369 .5760 .8175 .7046 1.4193 qLocate the target deg. value in the right ex.)sin 85B=00.9962
most column. ex.)cos85B=00.0872
.1965 .9805 .2004 4.9894 .3961 .9182 .4314 2.3183 .5783 .8158 .7089 1.4106 ex.)tan 85B=11.430
wCheck the required type of trigonometrical function in the ex.)cot 85B=00.0875
.1994 .9799 .2035 4.9152 .3987 .9171 .4348 2.2998 .5807 .8141 .7133 1.4019 chart's bottom row, and obtain the real number
corresponding to the deg. value from the appropriate column.
.2022 .9793 .2065 4.8430 .4014 .9159 .4383 2.2817 .5831 .8124 .7177 1.3934

.2051 .9787 .2095 4.7729 .4041 .9147 .4417 2.2637 .5854 .8107 .7221 1.3848

cosP sinP cotP tanP cosP sinP cotP tanP cosP sinP cotP tanP

When deg=78B10'~90B00' When deg=66B10'~78B00' When deg=54B10'~66B00' If the deg value contains any fractions, convert it into a degree and minute value.
ex.)5.5Bstands for 5B30'(5 degrees 30 minutes).(1 degree=60 minutes)

1259 1260

1261

ICarbon steels for machine structual use and Alloy steel ’TECHNICAL DATA»

Japan Industrial Standards Steel types related to foreign standards Japan Industrial Standards Steel types related to foreign standards COMPARISON OF MATERIALS BETWEEN JIS AND

Standard number Code I SO AIS I BS DIN EN 10084 NF A35-551 o O C T Standard number Code I SO AIS I B S DIN EN 10084 NF A35-551 oO C T
Name 683/1,10,115) SAE 970 Part1,3 DIN EN 10083-1,2 NF EN 10083-1,2 4543 Name 683/1,10,115) SAE NF EN 10083-1,2 4543
BS EN 10083-1,2 970 Part1,3

BS EN 10083-1,2 DIN EN 10083-1,2

JIS G 4051 040A10 C10E JIS G 4102 SNC236 - -- - - 40XH
Carbon steel 045A10 C10R Nickel-chrome SNC415 - -- - --
for machine S10C C10 1010 045M10 XC10 - steel SNC631
structual use SNC815
S12C SNC836 - -- - - 30XH3A
S15C 15NiCr13 - 655M13 15NiCr13 -
- 1012 040A12 - XC12 -
C15E4 1015 055M15 C15E - - - -- - --
C15M2
C15R JIS G 4103 8615 805A20 20NiCrMo2
Nickel-chrome 20NiCrMo2 8617 805M20 20NiCrMo2
S17C - 1017 - - XC18 - molybdenum SNCM220 20NiCrMoS2 8620 805A22 20NCD2 -
- steel SNCM240
S20C - 1020 070M20 C22 C22 8622 805M22
C22 C22E C22E
C22E C22R C22R 41CrNiMo2 8637 - - --
C22R 41CrNiMoS2 8640

S22C - 1023 - - -- SNCM415 - -- - --
SNCM420 4320 - 20XH2M(20XHM)
C25 C25 C25 C25 SNCM431 - - -
C25E4 C25E C25E C25E SNCM439 - -- - --
S25C C25M2 1025 C25R C25R C25R - SNCM447 4340 - --
S28C 1029 25o SNCM616 - -
- - - - SNCM625 - -- - --
S30C 1030 080A30 30o SNCM630 - -- - --
C30 080M30 C30 C30 SNCM815 - -- --
C30E4 C30 C30E C30E - -- - --
C30M2 C30E C30R C30R -
C30R - -- --
-

JIS G 4104 SCr415 - - - 17Cr3 - 15X
Chrome steel 17CrS3 15XA

S33C - - - - - 30o SCr420 20Cr4 5120 - - - 20X
20CrS4
C35 C35 C35 C35
S35C C35E4 1035 C35E C35E C35E 35o SCr430 34Cr4 5130 34Cr4 34Cr4 34Cr4 30X
C35M2 C35R C35R C35R 34CrS4 5132 34CrS4 34CrS4 34CrS4

S38C - 1038 - - - 35o SCr435 34Cr4 5132 37Cr4 37Cr4 37Cr4 35X
34CrS4 37CrS4 37CrS4 37CrS4
080M40 34Cr4
C40
S40C C40 1039 C40E C40 C40 40o 34CrS4
C40E4 1040 C40R C40E C40E
S43C C40M2 C40R C40R 40o SCr440 37Cr4 530M40 41Cr4 41Cr4 40X
S45C 1042 080A42 45o 37CrS4 5140 41Cr4 41CrS4 41CrS4
S48C - 1043 - - 45o 41Cr4
S50C 1045 C45 50o 41CrS4 41CrS4
C45 1046 C45E C45 C45 50o
S53C C45E4 C45R C45E C45E SCr445 - - -- - 45X
C45M2 - 080A47 C45R C45R - SCM415 - - -- --
S55C 080M50 JIS G 4105 - 18CrMo4 - 20XM
- 1049 C50 - - 60o Chrome SCM418 18CrMo4 - 18CrMoS4
S58C C50E - molybdenum
S09CK C50 1050 C50R C50 C50 - steel SCM420 18CrMoS4
S15CK C50E4 1053 C50E C50E - SCM421
S20CK C50M2 - C50R C50R - - 708M20 - - 20XM
1055 SCM430 - -- --
- 070M55 - - -
1059 C55 SCM432
C55 1060 C55E C55 C55 - 4131 - - - 20XM
C55E4 C55R C55E C55E 30XMA
C55M2 - C60 C55R C55R
- C60E - -- - --
C60 - C60R C60 C60
C60E4 045A10 C60E C60E SCM435 34CrMo4 4137 34CrMo4 34CrMo4 34CrMo4 35XM
C60M2 045M10 C60R C60R 34CrMoS4 34CrMoS4 34CrMoS4 34CrMoS4

- - C10E XC10 SCM440 42CrMo4 4140 708M40 42CrMo4 42CrMo4 -
- 42CrMoS4 4142 709M40 42CrMoS4 42CrMoS4
- C15E XC12 42CrMo4 -
- - XC18 SCM445 - 4145 42CrMoS4 - - -
SCM822 - 4147 - -
- -
-

GISO(International Standard), AISI(USA), BS(UK), DIN(Germany), NF(France), ΓOCT(Russia)

JJaappaann IInndduussttrriiaall SSttaannddaarrddss SSteteel ltytyppeessrerelalateteddtotofoforereigignnsstatannddaardrdss Japan Industrial Standards Steel types related to foreign standards FOREIGN STANDARDS -1-

SSttaannddaarrddnnuummbbeerr CCooddee ISO AISI BS DIN EN 10084 NF A35-551 o O C T Standard number Code ISO AISI BS DIN EN 10084 NF A35-551 oO C T
Name 683/1,10,115) SAE 970 Part1,3 DIN EN 10083-1,2 NF EN 10083-1,2 4543 Name 683/1,10,115) SAE 970 Part1,3 DIN EN 10083-1,2 NF EN 10083-1,2 4543
BS EN 10083-1,2 BS EN 10083-1,2

JIS G 4106 SMn420 22Mn6 1522 150M19 - - - JIS G 4107 SNB5 - 501 BS1506-625 - --
Structual manga- 30o2
nese steel for SMn433 - 1534 150M36 - - 35o2 High-temperature
machine 35o2
Structual use SMn438 36Mn6 1541 150M36 - - 40o2 alloy steel for SNB7 42CrMo4 4140 708M40 42CrMo44) -
and manganese 40o2 bolts 42CrMoS4 4142 709M40 42CrMo42)
chrome steel SMn443 42Mn6 1541 - - - 45o2 4145 42CrMo41)
SMnC420 - - - - -
JIS G 4202 SMnC443 - - - - - - JIS G 4108 SNB16 - - 40CrMoV4-61) 40CrMoV473) 40CrMoV4-64) -
Aluminum chrome - Steel bar for SNB21-1~5 - - 40CrMoV4-61) 40CrMoV473) 40CrMoV4-64) -
molybdenum - - - - special-purpose 42CrMo4 -
steel - alloy steel bolt SNB22-1~5 42CrMoS4 4142H - 42CrMo42) - -
1522H - - - -
JIS G 4052 SACM645 41CrAIMo74 - - - - - SNB23-1~5 - E4340H - - -
Structual steel - - - - SNB24-1~5 - 4340 - - -
with guaranteed 1541H - - - -
hardenability SMn420H 22Mn6 1541H - - - - G1) BS EN 10259
(H steel) SMn433H - - - -
SMn438H - - - 17Cr3 - - 2) DIN 1654 Part 4
SMn443H 36Mn6 - 17CrS3 15X
SMnC420H - - - - 3) DIN 17240
SMnC443H 42Mn6 34Cr4 34Cr4 34Cr4 20X
5120H 34CrS4 34CrS4 34CrS4 4) NF EN 10259
- 5130H 30X
- 5132H 37Cr4 37Cr4 37Cr4 5) The translation JIS of ISO683-1, 10, and 11 are issued as JIS G 7501, G7502, and G7503.
37CrS4 37CrS4 37CrS4 35X
SCr415H - 5135H
41Cr4 41Cr4 41Cr4 40X
20Cr4 5140H 41CrS4 41CrS4 41CrS4 Name of tool steel
20CrS4 -
SCr420H - - - - - Rolled steel for general structure SS400EEE SteeCl StructureC400N/mm2
SCr430H 34Cr4 - - 18CrMo4 - - Carbon steel for machine structure S45CEEE SteeCl 0.45%C
34CrS4 - 708H20 18CrMoS4 - - Chrome molybdenum steel SCM435EE SteeCl CrCMo 435
SCr435H 4135H 34CrMo4 34CrMo4 Nickel chrome molybdenum steel SNCM220E SteeCl NiCCrCMo 220
34Cr4 4137H 34CrMoS4 - 34CrMoS4 - Carbon tool steel SK105EEE SteeCl TooCl 105 types
SCr440H 34CrS4 4140H 42CrMo4 34CrMo4 42CrMo4 (Previous SK3)
SCM415H 37Cr4 4142H 42CrMoS4 34CrMoS4 42CrMoS4 - Alloy tool steel SKS3EEE SteeCl TooCl SpeciaCl 3 types
SCM418H 37CrS4 4145H 42CrMo4 - - SKD11EEE SteeCl TooCl DiesC11 types
SCM420H 37Cr4 4147H - 42CrMoS4 - - W SKH51EEE SteeCl TooCl High SpeedC51 types
SCM435H 37CrS4 - - - - High-speed tool steel SUJ2EEE SteeCl UseCBearingC2 types
SCM440H 41Cr4 - - - - - High-carbon chrome bearing steel SUS304EE SteeCl UseCStainlessC304 types
41CrS4 - - - - Stainless steel FC250EEE Ferrum(Steel)CCastC250N/mm2
- 655H13 - - Gray Cast iron
- 8617H 805H17 - 20NCD2
18CrMo4 8620H 805H20 15NriCr13 -
18CrMoS4 8622H 805H22 -
4320H - -
-
34CrMo4 -
34CrMoS4

42CrMo4
42CrMoS4

SCM445H -

SCM822H -
SNC415H -
SNC631H -
SNC815H 15NiCr13

SNCM220H 20NiCrMo2
20NiCrMoS2

SNCM420H -

1262

1263

IStainless steelsCHeat resisting steels and related materials ’TECHNICAL DATA»

Japan Industrial Standards International Foreign standards European Standards Japan Industrial Standards International Foreign standards European Standards COMPARISON OF MATERIALS BETWEEN JIS AND
JIS NumberCName Standards Standards
(Stainless JIS USA UK Germany France Russia EN JIS NumberCName JIS USA UK Germany France Russia EN
steel is ISO TR (Old Soviet Union) ISO TR UNS AISI (Old Soviet Union)
15510 (Stainless 15510
omitted) LCNo. UNS AISI BS DIN NF OCT Category Number steel is LCNo. BS DIN NF OCT Category Number
omitted)
12
JIS G 4303~ SUS 201 S20100 201 Z12CMN17-07Az X12CrMnNiN17-7-5 1.4372 SUS 405 40 S40500 405 405S17 X6CrAl13 Z8CA12 X6CrAl13 1.4002
5 SUS 410L
4305 SUS 202 S20200 202 284S16 12X17 9AH4 X12CrMnNiN18-9-5 1.4373 SUS 429 Z3C14 X6Cr17 1.4016
SUS 430 X6CrMoS17 1.4105
Bar SUS 301 S30100 301 301S21 X12CrNi17 7 Z11CN17-08 07X16H6 X5CrNi17-7 1.4319 SUS 430F S42900 429 X3CrTi17 1.4510
SUS 430LX X2CrTi17 1.4520
Hot-rolled plate and band SUS 301L 4 X2CrNiN18-7 X2CrNiN18-7 1.4318 41 S43000 430 430S17 X6Cr17 Z8C17 12X17 X3CrNb17 1.4511
SUS 430J1L X6CrMo17-1 1.4113
Cold-rolled plate and band SUS 301J1 X12CrNi17 7 SUS 434 42 S43020 430F X7CrMoS18 Z8CF17 X1CrMoTi16-1 1.4513
SUS 436L 1.4521
SUS 436J1L 44 S43035 X6CrTi17 Z4CT17 X2CrMoTi18-2
SUS 444 1.4006
JIS G 4308~ SUS 302 S30200 302 302S25 Z12CN18-09 12X18H9 SUS 445J1 X6CrNb17 1.4000
SUS 445J2
4309 SUS 302B S30215 302B SUS 447J1 Z4CNb17 1.4005
SUS XM27 1.4021
Wire rod SUS 303 13 S30300 303 303S21 X10CrNiS18 9 Z8CNF18-09 X8CrNiS18-9 1.4305 SUS 403 43 S43400 434 434S17 X6CrMo17 1 Z8CD17-01 1.4028
SUS 410 1.4029
Wire SUS 303Se S30323 303Se 303S41 12X18H10E SUS 410S S43600 436
SUS 410F2 1.4057
SUS 303Cu SUS 410J1 46 S44400 444 Z3CDT18-02 1.4109
SUS 416 1.4125
JIS G 4313~ SUS 304 6 S30400 304 304S31 X5CrNi18 10 Z7CN18-09 08X18H10 X4CrNi18-10 1.4301 SUS 420J1 1.4542
1 S30403 304L 304S11 X2CrNi19 11 Z3CN19-11 03X18H11 X2CrNi19-11 1.4307 SUS 420J2 1.4568
4315 SUS 304L 2 1.4307 SUS 420F S44700
SUS 420F2 1.4512
Band for spring SUS 304N1 10 S30451 304N Z6CN19-09Az X2CrNi18-9 1.4306 SUS 429J1 S44627 Z1CD26-01
Wire for spring SUS 304N2 S30452 X2CrNiN18 10 Z3CN18-10Az X2CrNiN18-10 1.4311 SUS 431
Wires for cold forging SUS 304LN SUS 440A S40300 403
JIS G 4317~ SUS 304J1 3 S30453 304LN 1.4303 SUS 440B
SUS 440C 48 S41000 410 410S21 X10Cr13 Z13C13 X12Cr13
4320 SUS 304J2 1.4401 SUS 440F X6Cr13
Hot-rolled equilateral angle iron SUS 304J3 1.4436 SUS 630 39 S41008 410S 403S17 X6Cr13 Z8C12 08X13
Cold finishing bar SUS 305 1.4404 SUS 631 X12CrS13
Billet for tempered steel product SUS 305J1 1.4432 SUS 632J1 S41025 X20Cr13
Cold forming equilateral angle iron SUS 309S 1.4435 JIS G 4311~ SUH 31 X30Cr13
S30431 S30431 1.4406 4315 SUH 35 49 S41600 416 416S21 Z11CF13 X29CrS13
SUS 310S 8 S30500 305 305S19 X5CrNi18 12 Z8CN18-12 1.4429 Heat resisting steel bar
SUS 315J1 06X18H11 X4CrNi18-12 1.4571 Heat resisting steel plate SUH 36 50 S42000 420 420S29 X20Cr13 Z20C13 20X13
SUS 315J2 SUH 37
SUS 316 1.4438 SUH 38 51 S42000 420 420S37 X30Cr13 Z33C13 30X13
SUS 316F 1.4434 SUH 309
SUS 316L 1.4439 SUH 310 S42020 420F Z30CF13
SUH 330
SUS 316N X6CrNi23-14 S30908 309S Z10CN24-13 10X23H18 X6CrNi25-20 1.4539 SUH 660 57 S43100 431 431S29 X20CrNi17 2 Z15CN16-02 20X17H2 X19CrNi17 2
SUS 316LN X6CrNi25-21 S31008 310S 310S31 Z8CN25-20 1.4541 SUH 661
1.4550 SUH 21
SUS 316Ti 1.4587 SUH 409 S44002 440A Z70C15 X70CrMo15
SUS 316J1 1.4381 SUH 409L
SUS 316J1L 1.4462 SUH 446 S44003 440B
SUS 317 1.4507 SUH 1
SUS 317L 26 S31600 316 316S31 X5CrNiMo17 12 2 Z7CND17-12-02 X4CrNiMo17-12-2 SUH 3 S44004 440C Z100CD17 95X18 X105CrMo17
SUS 317LN 27 X5CrNiMo17 13 3 Z6CND18-12-03 X4CrNiMo17-13-3 SUH 4
SUS 317J1 19 S31603 316L 316S11 X2CrNiMo17 13 2 Z3CND17-12-02 X2CrNiMo17-12-2 SUH 11 S44020 S44020
SUS 317J2 20 X2CrNiMo17 14 3 Z3CND17-13-03 X2CrNiMo17-13-3 SUH 600
SUS 317J3L X2CrNiMo18-14-3 SUH 616 58 S17400 S17400 Z6CNU17-04 X5CrNiCuNb16-4
SUS 836L
SUS 890L 03X17H14M3 59 S17700 S17700 X7CrNiAl17 7 Z9CNA17-07 09X17H7 IO X7CrNiAl17-7
SUS 321
SUS 347 S31651 316N X53CrMnNi21 4 331S42 Z35CNWS14-14 45X14H14B2M
SUS 384 22 S31653 316LN (2) 349S52 Z52CMN21-09Az
SUS XM7 23
SUS XM15J1 28 S31635 X2CrNiMoN17 12 2 Z3CND17-11Az X2CrNiMoN17-11-2 S63008 349S54 X53CrMnNi21 9 Z55CMN21-09Az 55X20 9AH4
SUS 329J1 X2CrNiMoN17 13 3 Z3CND17-12Az X2CrNiMoN17-13-3 S63017 381S34
SUS 329J3L X6CrNiMoTi17 12 2 Z6CNDT17-12 08X17H13M2T X6CrNiMoTi17-12-2
SUS 329J4L
S31700 317 317S16 S30900 309 309S24 CrNi2520 Z15CN24-13 20X25H20C2
S31000 310 310S24 Z15CN25-20
21 S31703 317L 317S12 X2CrNiMo18 16 4 Z3CND19-15-04 X2CrNiMo18-15-4 N08330 N08330 CrAI1205 Z12NCS35-16 15X28
X2CrNiMoN18-12-4 S66286 X6CrTi12 Z6NCTV25-20 40X10C2M
24 S31753 Z3CND19-14Az X2CrNiMoN17-13-5 R30155 X45CrSi9 3 40X 9C2
Z6CT12 20X12BHM F
37 S40900 409 409S19 Z3CT12 X2CrTi12
36 401S45 Z12C25
N08367 X15CrN26(2) S44600 446 Z45CS9
N08904 N08904 904S14 X45CrSi9-3(2) S65007 Z40CSD10
S32100 321 321S31 X6CrNiTi18 10 Z80CSN20-02
31 S34700 347 347S31 X6CrNiNb18 10 Z2NCDU25-20 X1CrNiMoCuN25-25-5 443S65
15 S38400 384 Z6CNT18-10 08X18H10T X6CrNiTi18 10
17 S30430 304Cu 394S17 Z6CNNb18-10 08X18H12 X6CrNiNb18 10 X50CrSi18-2(2)
9 S38100 Z6CN18-16
D26(1) S32900 329 Z2CNU18-10 X3CrNiCu18-9-4 S42200
S39240 S31803 Z15CNS20-12 X1CrNiSi18-15-4
33 S39275 S31260 Remark 1.The ISO is based on the ISO TR 15510:1997. The code is same as the EN expression. However,(1)is based on the ISO 4954, and(2)is based on the ISO 683C15.
34 Z3CNDU22-05Az 08X21H6M2T X2CrNiMoN22-5-3
Z3CNDU25-07Az X2CrNiMoCuN25-6-3 2.For USA, UNS registration numbers and AISI steel manuals are referred.

3.European standards are based on the EN10088-1: 1995

4.For European countries, BS, DIN, NF, etc, has been referred, but the specifications of each country will be abolished by the EN enactment.

5.oOCT is based on 5632.

ITool steels and related materials Steel types related to foreign standards Japan Industrial Standards Steel types related to foreign standards FOREIGN STANDARDS -2-
Japan Industrial Standards

JIS numberCname Symbol ISO AISI BS DIN NF OCT JIS numberCname Symbol ISO AISI BS DIN NF OCT
ASTM VDEh ASTM VDEh
- C140E3U 30CrMoV3 BH10 -
JIS G 4401 SK14(0 Previous TC140 - - - C120E3U Y13 JIS G 4404 SKD 7 - H10 BH19 X32CrMoV33 32CrMoV12-18 -
Carbon tool select SK1) TC120 W1-111/2 - - C105E2U Y12 (Continued) SKD 8 - -
TC105 W1-10 - C105W1 C 90E2U H19 - -- 5XHM
steel SK12(0 Previous TC 90 W1- 9 - C 90E2U 55NiCrMoV2 BH224/5
select SK2) TC 90 - C 80E2U Y11 SKT 3 - - 55CrNiMoV4
TC 80 W1- 8 C 80W1 ISO -
SK10(5 Previous Y10 SKT 4 55NiCrMoV6 55NiCrMoV7
select SK3) -

SK9(5 Previous 59Si7
select SK4) 59Si7
55Cr3
SK85(Previous Y8
select SK5) Y9 Special purpose steels -
51CrV4
SK75(Previous TC 80 - - C 80W1 C 80E2U Y8 Japan Industrial Standards 60CrB3 Steel types related to foreign standards
select SK6) TC 70 C 70E2U 55SiCr63
- - 60CrMo33 AISI
SK65(Previous - T1 BT 1 C 70W2 C 70E2U Y7 JIS numberCname Symbol SAE BS DIN NF OCT
select SK7) T4 BT 4 - 1075
T5 BT 5 - 1078 - -
JIS G 4403 SKH 2 HS18-0-1 T15 BT15 - HS18-0-1 P18 JIS G 4801 SUP 3 9 S20 - 75 80
M2 BM 2 - Spring steel 11SMn28 - - - 85
High speed SKH 3 HS18-1-1-5 M3-1 S18-1-2-5 HS18-1-1-5 11SMnPb28 9260 - -
M3-2 - - 5155 - 55Cr3
tool steel SKH 4 HS18-0-1-10 M4 - - HS18-0-2-9 - SUP 6 - 5160 - - 60Si7 60C2
- BM 4 11SMnPb28 6150 735A51,735H51 50CrV4
SKH10 HS12-1-5-5 M36 BM35 S12-1-4-5 HS12-1-5-5 - SUP 7 12SMn35 51B60 - - 60Si7 60C2
- - - 9254 685A57,685H57 54SiCr6
SKH51 HS 6-5-2 M7 BT42 S 6-5-2 HS 6-5-2 - SUP 9 - 4161 705A60,705H60 - 55Cr3 -
M42 - - 1110 - -
SKH52 - F2 BM42 -- - SUP 9A - 1108 - - 60Cr3 -
- - - 1212 - -
SKH53 HS 6-5-3 - - S 6-5-3 HS 6-5-3 - SUP10 44SMn28 1213 (230M07) 9 SMn28 51CrV4 XFA50X FA
- - - 12L13 - 9 SMnPb28
SKH54 - L6 - - HS 6-5-4 - SUP11A B1or 100Cr6 1215 - - - 50X P
- - - - -
SKH55 HS 6-5-2-5 - - S 6-5-2-5 HS 6-5-2-5HC P6M5K5 SUP12 B2 or 100CrMnSi4-4 12L14 - 9 SMnPb28 54SiCr6 -
- - - - 9 SMn36
SKH56 - - - -- - SUP13 - 1117 - 15S10 60CrMo4 -
W2-91/2 - - - - -
SKH57 HS10-4-3-10 W2-8 BW2 S10-4-3-10 HS10-4-3-10 - JIS G 4804 SUM11 - 210M15,210A15 - --
- - - Sulfur and sulfur SUM12 1137 - -
SKH58 HS 2-9-2 - - - HS 2-9-2 1141 - - --
- - - combined free SUM21 1144 (226M44) -
SKH59 HS 2-9-1-8 - - S 2-10-1-8 HS 2-9-1-8 XB4 cutting steel SUM22 51100 - - --
- - XB SUM22L 52100 - 100Cr6
JIS G 4404 SKS11 - D3 - -- ASTM A 485 S250 -
BD3 Grade 1 - -
Alloy tool SKS 2 105WCr1 105WCr6 105WCr5 - S250Pb -
- - -
steel SKS21 - -- - SUM23 - - --

SKS 5 - -- - SUM23L --

SKS51 - -- - SUM24L S250Pb -

SKS 7 - -- - SUM25 S300 -

SKS 8 - - C140E3UCr4 13X SUM31 --

SKS 4 - -- - SUM31L --

SKS41 - -- - SUM32 (13MF4 ) -

SKS43 TCV105 - 100V2 - SUM41 (35MF6 ) -

SKS44 - -- - SUM42 (45MF6.1) -

SKS 3 - -- 9XB SUM43 (45MF6.3) -

SKS31 105WCr1 105WCr6 105WCr5 XB JIS G 4805 SUJ 1 --

SKS93 - -- - High-carbon SUJ 2 100Cr6 X15

SKS94 - -- - chrome --
- bearing steel SUJ 3
SKS95 - --

SKD 1 210Cr12 X210Cr12 X200Cr12 X12 SUJ 4 --
--
SKD11 - D2 BD2 - X160CrMoV12 - SUJ 5

SKD12 100CrMoV5 A2 BA2 - X100CrMoV5 -

SKD 4 30WCrV5 - - - X32WCrV3 -

SKD 5 30WCrV9 H21 BH21 - X30WCrV9 -

SKD 6 - H11 BH11 X38CrMoV51 X38CrMoV5 4X5MFC

SKD61 40CrMoV5 H13 BH13 X40CrMoV51 X40CrMoV5 4X5MF1C

SKD62 - H12 BH12 - X35CrWMoV5 3X3M3F

1264

1265

ICOMPARISON OF DIE STEEL BY MANUFACTURERS ’TECHNICAL DATA»

Category International Standards related symbols Hitachi Aichi Steel Kobe Steel Sanyo Special Daido Steel Nippon Koshuha Nachi-Fujikoshi Riken Seiko Uddeholm Bohler COMPARISON OF DIE STEEL BY MANUFACTURERS
Carbon tool steel
JIS AISI DIN ISO Metals, Ltd. Works., Ltd. Co., Ltd. Steel Co., Ltd. Co., Ltd. Steel Co., Ltd. Corp. Co., Ltd. (Sweden)(Germany)
W1-10 TC105
SK10(5 Previous YC3 SK3 QK3 YK3 K3 K990
select SK3)

SKS93 YCS3 SK301 QKSM YK30 K3M SK3M

SKS3 SGT SKS3 QKS3 GOA KS3 SKS3 RS3 ARNE K460

SKD1 D3 X210Cr12 CRD SKD1 QC1 DC1 KD1 SVERKER3 K100
K107

SKD11 D2 X210Cr12 X210Cr12W12 SLD SKD11 QC11 DC11 KD11 CDS11 RD11 SVERKER21 K105
A2 X100CrMoV5 K110

SKD11 SLD8 AUD15 QCM8 DC53 KD11S MDS9 SLEIPNER K340
(Modification) SLD10 QCM10 KD21

CrSKD in matrix group ARK1 SXACE QCM7 DCX
SKD12
Preharden 40HRC SCD SKD12 DC12 KD12 RIGOR K305
Preharden 50HRC or more
Alloy tool steel HPM2T GO40F KAP65 IMPAX
Flame-hardened steel
PRE2 CX1 RC55

HMD5 SX105V QF3 GO5 FH5 FERNO
HMD1 SX4

Low temperature air-cooled steel ACD37 AKS3 GO4 KSM

High-impact steel YSM AKS4 QF1 GS5 KTV5 SRS6 PREGA K630
COMPAX

CALMAX

Others ACD8 AUD11 ICS22 VIKING K190
SX5 MCR1 ELMAX
SX44 VANADIS4
VANADIS6

VANADIS10

SKH51 M2 H6.5.2 HS6-5-2 YXM1 QH51 MH51 H51 SKH9 RHM1 S600
SKH55 group S6.2.5 HS6-5-2-5
S10-4-3-10 HS10-4-3-10 YXM4 MH55 HM35 HM35 RHM5 S705
HS53M
HS6-5-3-8
HS93R

High-speed SKH57 group XVC5 MH8 MV10 HS98M RHM7 S700
tool steel
FM38V

MDS1

Matrix group YXR33 QHZ MH85 KXM MDS3
YXR3 MH88 KMX2 MDS7
YXR7 KMX3 MATRIX2

ATM3

SKH40 HAP40 KHA30 DEX40 FAX38 ASP30 S590
Matrix group
HAP5R KHA3VN DEX-M1
DEX-M3

HAP10 S690

KHA32 SPM23 DEX21 FAX31 ASP23 S790

Powdered HAP50 DEX60 S390
high-speed
tool steel DEX61 FAX55

HAP72 KHA60 SPM60 DEX80 FAXG1 ASP60

Others KHA77 FAX18

FAXG2

KHA30N

KHA33N

KHA3NH

KHA5NH

Reference material:"Special steel" November 2001 Matrix group:The tool steel type that accelerates tool wear at cutting and enhances its toughness

Tool materials Machined materials ’TECHNICAL DATA»

Nonferrous metal Untreated Hardened materials Quenched/Tempered HARDNESS OF MATERIAL AND CORRESPONDING TOOLS
DC53 (Carbide)
For (AI-alloi) (Be-Cu)
Parts materials press (AI) SS400(SS41) SKD11 SCM435
die
S45C HPM2T SKD11
S50C DC53
Processing S45C SKS3 SUJ2
method
Equipment Required Materials SKH51
tools
(Electroforming/outside) (Electroforming/inside)
HPM7 NAK55
CU PX5 ORAVAR SUPREME
BsBM2 HPM1 Ade-
For SKD61 ( hardened )MAS1C
plastic NAK80
mold STAVAX ESR HPM38 HPM50 HPM38
FDAC S-STAR
Tools materials S-STAR DH2F SKD61 STAVAX ESR RIGOR (SKD12group)
RIGOR (SKD12group) STAVAX ESR

HRC 10 20 30 40 50 60 70

Boring General purpose milling cutter Drills Drills High-speed steel SKH-
on flanks NC milling cutter Reamers
and bottom Machining center End mills Reamers Carbide Wn-Co
Cutting tools
Drilling machine Drills High-speed steel SKH-
Taps
Reamers Taps
Cutting tools
Drill press Carbide Wn-Co
Cutting Boring Boring machine Drills

Jig borer Reamers High-speed steel SKH-
End mills Wn-Co
General purpose lathe Taps
Carbide
Cutting tools
Machining NC lathe Boron CBN (Nonferrous metal) (Carbide)
cylinder Cutting tools D

Turning center Diamond

Surface grinder White fused alumina WA

Brown fused alumina A

Cylindrical grinder Pink fused alumina PA
Jig grinder
Grinding Profile grinder Magnets Magnets Green silicon carbide GC
grindstone
grindstone
Black silicon carbide C (Nonferrous metal)

Electrodeposited boron CBN

Forming grinder Electrodeposited diamond D (Nonferrous metal) (Carbide)

Electroerosion EDM Electrode Electrolytic copper, Brass CU-
WEDM master Electrode master

Wire Copper tungsten, Silver tungsten -Wn

Brass CU-Zn
Wire Wn

Tungsten

1266

1267 BUSINESS INFORMATION

)Competitiveness of MISUMI 1269""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""
)World Network 1270"""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""
)General Ordering Information 1271""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""
)Changing and Canceling Orders/Returning Goods 1272"""""""""""""""""""""""""""""""""""""""""
)Request for MISUMI Catalogs 1273""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""
)Catalog Request Form 1274""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""
)Entry Card 1275""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""
)Communication Card 1276"""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""
)MISUMI Corporation -HISTORY- 1277"""""""""""""""""""""""""""""""""""""""""""""""""""""""""""

1268

Competitiveness of MISUMI World Network

–Provide same products and service to anywhere in the world–

Specialists Free CAD DATA B' E
B
All products in the catalog Just pick out part numbers
are the result of the ideas and from the catalog.
demands of customers. You can dramatically cut
the time needed for
preparing chart data. D Head Quarters
C MISUMI Corporation
Top Quality Published Price HA
G F
MISUMI collects individual All MISUMI prices are
orders and concentrates published in our catalog.
production at special factories No need to take a quotation.
for each product. No need to screen suppliers.
MISUMI guarantees reliable,
high quality and on-time delivery.

Name Phone&Fax WEB Site/E-mail Address AREA

Flexible Specification Global Network A MISUMI USA, INC. TEL: 1-847-843-9105 http://www.misumiusa.com 1105 Remington Road, Suite B North America
B MISUMI UK LIMITED FAX: 1-847-843-9107 [email protected] Schaumburg, IL 60173 U.S.A. Central America
Shows drawings, size, materials There are 400 cooperating B' MISUMI EUROPA GmbH South America
and surface treatment. manufacturers around TEL: 44-1784-465530 Canada
All necessary information the world which have been FAX: 44-1784-466695
in one catalog. Reduce carefully selected as http://www.misumi-europe.com No. 1, The Courtyard, UK
unnecessary machining. outstanding suppliers for [email protected] 76-78 High Street, Staines, Ireland
each product line. Middlesex, TW18 4DP U.K. Scandinavian countries
Southern Europe

TEL: 49-700-9994-1670 http://www.misumi.de Katharina-Paulus-Strasse 6, Central/Eastern Europe (CEE)
FAX: 49-700-9994-3600 [email protected] 65824 Schwalbach,Germany African Countries
Turkey

C MISUMI SOUTH EAST ASIA PTE.LTD. TEL: 65-6733-7211 331 North Bridge Road, Southeast Asia
FAX: 65-6733-0211 http://www.misumi.com.sg/ #03-01 Odeon Towers (excludes Thailand)
Australia
Singapore 188720

One-Stop Shopping Reliable Delivery D MISUMI (THAILAND) CO., LTD. TEL: 66-38-959-200 http://www.misumi.co.th/ 300/24 Moo 1, Eastern Seaboard Industrial Thailand
FAX: 66-38-959-202 [email protected] Estate, Tambol Tasith Amphur Pluakdaeng, India
All 275,000 standardized Delivery compliance rate Rayong Province 21140, Thailand
products are developed based =99.97%
on customers' demands. No need to monitor delivery. E MISUMI KOREA CORP. TEL: 82-2-551-3611 http://www.misumi.co.kr/ 3804 World Trade Center 159-1,
FAX: 82-2-551-4811 [email protected] Samsung-dong, Kangnam-gu, Korea
Seoul 135-729 KOREA

F MISUMI TAIWAN CORP. TEL: 886-2-2570-3766 http://www.misumi-tw.co.tw/ 9F, No.126 Nanjing East Road Sec. 4 Taiwan
FAX: 886-2-2570-3767 Taipei 105 Taiwan R.O.C

No Minimum Order Quantity Reduction in Design Drawing G MISUMI E.A. HK LTD. TEL: 852-2375-4550 [email protected] Suite 1602B, 16/F Tower 5,
FAX: 852-2302-4589 China Hong Kong City, 33 Canton Rd., Hong Kong
We securely deliver everything. No need to make a parts list. H Shanghai MISUMI Tsim Sha Tsui, Kowloon HK
Even just a single piece! Precision Machinery Co., Ltd.
16th Floor JinLingHaiXin Building,
HEAD QUARTERS TEL: 86-21-6391-7301 http://www.misumi.com.cn/ No.666 FuzhouRoad, Shanghai China
MISUMI CORPORATION FAX: 86-21-6391-7360 [email protected] 200001 P.R. China
Press Die Components Division
TEL: 81-3-3647-7114 http://www.misumi.co.jp 4-43, 2-chome Toyo, Koto-ku, Japan
FAX: 81-3-3647-7030 Tokyo, 135-8458 JAPAN

1269 1270

General Ordering Information Changing and Canceling Orders/Returning Goods

1 How to Order IChanging or Canceling Orders

To open an account with MISUMI, please call our subsidiaries representing your country or region for an Changing or canceling orders (the Cancellation) is treated according to the shipment date and the timing
application form. Our subsidiaries will send you the necessary information of trading with MISUMI. If you have when you make the cancellation. Cancellation charges will be imposed in some cases. Please contact
an account with us, please fax our order form with a complete description of the products directly to our our subsidiary in your country for details.
subsidiary.

2 Quantity ¡Stock Items
No cancellation is accepted.
There is no minimum order quantity. You can even order one piece.
¡Items of 3 Day-Production Time or More
3 Price Please refer to the table of the cancellation and shipment date below. Cancellation is acceptable with or without charges
(40% of product cost) by two days before the shipment date depending on the timing of the cancellation.
We are aiming to distribute our products at the catalog price all over the world, but considering tax or foreign Please contact our subsidiary for details.
exchange, prices are adjusted to each region. Contact our subsidiary for details. We have a volume discount rate
system for many products. ¡Express Services
No cancellation is accepted.

¡Table of Cancellation and Shipment date

Catalogue Delivery 4 Days 5 Days 8 Days 10 Days 12 Days 16 Days 20 Days
Schedule and 3 Days Catalog Item Catalog Item 6 Days Catalog Item Catalog Item Catalog Item Catalog Item Catalog Item
Days Service Catalog Item Catalog Item Express A Express B Express C
from the k k k k k k k
Day of Ordering l k k k k k k k l k k
l l k k k k k k Shipment Date l k
4 Delivery Day of Ordering k M l l l k k k k M l
Shipment Date M l l l k k k Shipment Date l
¤Delivery" in the catalog is the lead time to ship your order from MISUMI distribution center. *Delivery 1 Day Later l Shipment Date l l l l k k M
stipulated in catalog might delay depending on the stock availability and required quantity. M l l l l k Shipment Date
2 Day Later M Shipment Date M l l l l
Shipment Date l l l l
3 Day Later Shipment Date M l l l
Shipment Date l l l
4 Day Later M l l
Shipment Date l l
5 Day Later l l
l l
6 Day Later M l
Shipment Date l
7 Day Later l
l
Express Service 8 Day Later M
Shipment Date
5 We have an express service that reduces the lead time (refer to P.38). Please contact our subsidiary for this 9 Day Later
service if you need urgent delivery.
10 Day Later

11 Day Later

12 Day Later

13 Day Later

14 Day Later

15 Day Later

Changes or Cancellation of Order 16 Day Later

6 You can change or cancel your order on the day of placement all over the world. Please contact our subsidiary 17 Day Later
if you need to change or cancel your order on the day after placement.
18 Day Later

19 Day Later

20 Day Later

k :Cancellation without charge. l :40% of product cost is imposed on the M :No cancellation is accepted.
cancellation.

IReturning and Replacing Goods

7 Return Goods ¡ Stock items can be returned. Customer is kindly requested to contact our subsidiary prior to making the return.
Please note that the delivery cost of returning goods to the destination we determined must be paid by the customer.
We do not generally accept return goods that are not defective. Contact our subsidiary if necessary.
¡ Items of 3 day-production time or more cannot be returned.
¡ When the received goods differ from the placed order, please contact our subsidiary for the replacement.

8 Claims

We pay full attention to ship the highest quality products in the correct quantity specified by the customer.
However, if a customer needs to reorder because of a defective part, MISUMI will express ship replacement
parts at our own expense. If the part is no longer needed, MISUMI will give a full refund.

1271 1272

Request for MISUMI Catalogs Catalog Request Form

'Our catalogs contain a wide range of components, tools and technical data to meet your )Please fax this catalog request form to our subsidiary in your country. We will send a free catalog to you.
needs in designing and manufacturing Press Dies, Factory Automation and Plastic Mold. )Please complete this form with your full name, company name, department, job title and your contact.
Company Name
) To request a catalog, please call us or fax the request form on the right page to our subsidiary in your country.
We will send a catalog for free. URL

) Please always keep the latest edition of catalog, because of additional new products, price revision and improvement of lead-time. Address

Please circle appropriate one item in each box.

Industry Business Category Paid-up Capital US No. of Employees

1. Automobile 13. Printing 1. Finished Products 8. Electrical Design of 1. Less than 5Mil. 1. Less than 20
2. Assembly Automated Equipment
2. Automobile Components 14. Machine Tools 3. Manufacturing of 2. 5 2. 20
9. Design of Press Dies 3. 10 3. 50
3. Other Transportations 15. Industrial Machinery Components 4. 20 Mil. or More 4. 100
10. Design of Plastic 5. 50 5. 200 or More
4. Heavy Electric 16. Machine Works 4. Press Molding Mold Dies 6. 100 6. 500
5. Injection Molding 7. 1,000
5. Consumer Electronics 17. Chemicals 11. Manufacturing of 7. 1 8. 5,000
Press Dies 8. 5 Bill. or More 9. 10,000
6. Audio Visual Devices 18. Textiles 9. 10

Standard Components Standard Components for Standard Components for Standard Components for 7. Semiconductor 19. Foods
for Press Die s Japanese Press Die s English Plastic Mol d Japanese Plastic Mol d English
June 2007OMay 2008 May 2007OApril 2008 8. Other Electric Appliances 20. Communications

9. Precision Instrument 30. Trading House 6. Manufacturing of 12. Manufacturing of

10. Computers and Peripherals 40. Schools Automated Equipment Plastic Mold Dies

11. Office Automation Government Offices 7. Mechanical Design of 99. Others
Automated Equipment
Office Supply

12. Logistics 99. Others

Department Job Title

Name Phone No.
Fax No.

E-mail Your Field in Charge Type of Job

Mechanical Standard Components Mechanical Standard Components Mechanical Custom Components Please circle the catalogs you request. 1. Press Dies 1. Design Engineering
for Factory Automatio n Japanese for Factory Automatio n English for Factory Automatio n Japanese only 2. Plastic Mold Dies 2. Equipment Manufacturing
April 2007OApril 2008 April 2007OApril 2008 May 2007OMay 2008 1. Standard Components for Press Dies English 3. Machinery and Equipment 3. R D
2. Standard Components for Press Dies Japanese 4. Electrical Equipment 4. Production Engineering
3. Standard Components for Plastic Mol d English 5. Software for Factory Automation 5. Production
4. Standard Components for Plastic Mol d Japanese 6. Products Manufacturing 6. Purchase Procurement
5. Mechanical Standard Components for Factory Automatio n English 7. Components Manufacturing 7. Sales
6. Mechanical Standard Components for Factory Automatio n Japanese 8. Inspection Quality Control
7. Mechanical Custom Components for Factory Automatio n Japanese only 99. Others
8. Machining ToolsnTool Direct Japanese only 99. Others
9. Electronics for Factory Automation Japanese only
Press Dies Catalog 2007
99. Others

Machining Toolns Tool Direct Electronics for Factory Automation
Japanese only Japanese only

June 2007OMay 2008 June 2007OMay 2008

1273 1274

Entry Card Communication Card

Please note that this card is NOT for catalog request. Please fax this card to our subsidiary in your country.

In order to make sure that MISUMI Catalog to reach to the customer who wishes to receive, we register customer's personal name as a IPlease send your suggestions and opinions about new products and spec. that the MISUMI catalog doesn't list in Catalog.
membership. Please kindly let us know by this entry card if our mail is sent to the incorrect address/name or no longer needed.If you are IPlease send your questions and inquiries about the products and the services in this catalog.
new customer to MISUMI, please use Catalog request form. IWe keep on improving our products and services based on your valuable suggestions and opinions.

Please use this card if you are

Relocated to Other Division Retired / Resigned

Changes Change your registration Withdrawals Remove your registration Your name
Company Name
¡For those who MISUMI sends incorrect address/name ¡For those who no longer need MISUMI information Address Department
Job Title
IPlease fill in the blanks. Please check the appropriate box below. E-mail
IPlease write company and department name accurately.
Company name [iChange iCorrection] Ideas, Suggestions & Feedbacks
If your company name and address is changed, please write previous ones.
Your Name Address [iMove/Relocation iChange iCorrection] Tel
Fax
Changes Department [iTransfer iOrg change iNew title] Contact No.
Withdrawals URL
Mailing Address [iTransfer iOn Loan iOthers]

Others ( )

iPlease stop mailing catalogs and direct mails.

Company Name Department

(Previous
Company Name)

Address

(Previous Address) Contact No. Tel
Job Title Fax
E-mail
URL

Your Field in Charge Type of Job Catalogs you're been using

Please circle appropriate 1. Press Dies 1. Design Engineering 1. Standard Components for Press Dies (English)
one. 2. Plastic Mold Dies 2. Equipment Manufacturing 2. Standard Components for Press Dies (Japanese)
3. Machinery and Equipment 3. R & D 3. Standard Components for Plastic Mold (English)
4. Eletrical Equipment 4. Production Engineering 4. Standard Components for Plastic Mold (Japanese)
5. Software for Factory Automation 5. Production 5. Mechanical Standard Components for Factory Automation (English)
6. Products Manufacturing 6. Purchase / Procurement 6. Mechanical Standard Components for Factory Automation (Japanese)
7. Components Manufacturing 7. Sales 7. Mechanical Custom Components for Factory Automation (Japanese only)
8. Inspection / Quality Control 8. Machining Tools "Tool Direct" (Japanese only)
99. Others 9. Electronics for Factory Automation (Japanese only)
99. Others
Press Dies Catalog 2007

Press Dies Catalog 2007

1275 1276

MISUMI Corporation

HISTORY

1277 1963 Established as MISUMI Shoji Co., Ltd., focused on selling electronic equipment and bearings.
1965 Began sale of press die components.
1973 Established Chubu Office (now Nagoya Marketing Center) and continued establishing regional offices (Marketing

Centers) across Japan.
1977 Published first edition of Face: Standard Components for Press Dies catalog.
1979 All service centers (Marketing Centers) networked online.
1980 Published first edition of Voice, an information magazine.
1981 Established Kansai Plant as a distribution center (now West Japan Distribution Center).
1985 Published first edition of Face: Standard Components for Plastic Molds (now Standard Components for Plastic Mold &

Diecast) catalog.
1987 Established branch office in Taipei, Taiwan.
1988 Established local subsidiary, MISUMI USA, INC., in the United States.

Published first edition of Face: Standard Components for Factory Automation (now Mechanical Standard Components for
Factory Automation) catalog.
1989 Established local subsidiary, MISUMI TAIWAN CORP., in Taipei to succeed the Taipei Office.
Changed corporate name from MISUMI Shoji Co., Ltd. to MISUMI Corporation.
Established local subsidiary, MISUMI (U.K.) LTD., (now MISUMI UK LTD.) in the United Kingdom.
1991 New building of Kansai Plant completed (now West Japan Distribution Center) and automatic sorting line installed.
Published first edition of Face: Electronics Components for Factory Automation (now Wiring Components) catalog.
1993 Published first edition of Face: Machine Tools (now Tool Box: Machine Tools) catalog.
Began outsourcing basic information systems.
Began ordering system utilizing PC communication.
1994 Listed on the second section of the Tokyo Stock Exchange.
Established local subsidiary, MISUMI SOUTH EAST ASIA PTE LTD., in Singapore.
Published first edition of parts catalog, Face: Custom Mechanical Parts for Factory Automation.
Published first edition of medical supplies catalog (now PROMICLOS ) for medical practitioners.
1995 Published first edition of Computer Components for Factory Automation (now PC Components for Measurement and
Control ) catalog.
Established local subsidiary, MISUMI E.A. HK LTD., in Hong Kong.
Published first edition of foodstuff and sundry supplies catalog (now MISUMI Pro Stock).
1996 Published first edition of desktop publishing supplies catalog (now Multi-Bits).
1997 Established local subsidiary, MISUMI (THAILAND) CO., LTD., in Thailand.
1998 Listed on the first section of the Tokyo Stock Exchange.
1999 Established local subsidiary, MISUMI KOREA CORP., in South Korea.
2000 Published first edition of Assembly Parts catalog.
2001 Established sales offices in San Jose, CA, USA; Nuremberg, Germany; and Shanghai, China.
2002 Established local subsidiary, SHANGHAI MISUMI INTERNATIONAL TRADING CO., LTD., in Shanghai, China.
South Korean distributor MULTI-BITS CO., LTD. made into a subsidiary company.
Established local subsidiary, GUANGZHOU MISUMI INTERNATIONAL TRADING CO., LTD., in Guangzhou, China.
2003 Established local subsidiary, MISUMI EUROPA GmbH, in Germany.
Opened QCT Center in Shanghai as a major distribution center.
2004 Published catalog lnch Mechanical Standard Components for Factory Automation for the North American market.
Opened QCT Center in North America as a major distridution center.
2005 Merged with SURUGA SEIKI CO.,LTD. through a stock swap. Company name changed to MISUMI Group lnc., and a new
company, MISUMI Corporation, is incorporated to assume MISUMI's entire business.





INDEX 1285
1309
)CATALOG NO. INDEX 1314
)PRODUCT NAME INDEX
)DISCONTINUED PRODUCTS"INTEGRATION OF STANDARDS LIST

1283 1284

CATALOG NO. INDEX 1 3 5 8 10 12 are the number of working days required for delivery.
T A B C signify available express delivery services. These are reference only.
The actual delivery may differ on conditions. Refer to respective pages for details.

Printed in red are new products added in this catalog. Printed in blue are carried from previous catalog. Printed in black are discontinued/modified products.

‘A«MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM A-MMMEMMMPMMMHMMMDMMMGMMMMMMMMMMMMMMMMMEMMMMMDMMMMMMAMMMMMM 259 AHM-MMMMMHMMMAMMMTMMMAMMMMXMMMMMMMMMMMMMMMMMMMMMMMMEMMMMMM 205 AHM-MMMMMPMMMHMMMEMMMLMMM(MMQMMMuMMMiMlMlMM)MMMMMMMMMMMMMEMMMMMM 77 AHM-MMMMMPMMMTMMMPMMMAMMMLMMMMMMMMMMMMMMMMMMMMMMMMMEMMMMMM 205 AHM-MMMMMSMMMSMMMHMMMDMMMMSMMMMMMMMMMMMMMMMMMMMMMMMEMMMMMM 79 AHMWMMMMMGMMMSMMMMMMMMMMMMMMMMMMMMMMMMMMMMEMMMMMMAMMMMMM 331 AHMWMMMMM-MMMMMMMMMPMMMHMMMRMMMMSMMMMMMMMMMMMMMMMMMMEMMMMMM 157 AHMWMMMMM-MMMMSMMMHMMMMAMMMLMMMMMMMMMMMMMMMMMMMMMMMEMMMMMM 59 AHM-MMMMMWMMMMXMMMMMMMMPMMMEMMMLMMMMMMMMMMMMMMGMMMMMMCMMMMMM 473
A-MMMEMMMPMMMHMMMDMMMRMMMMMMMMMMMMMMMMMEMMMMMDMMMMMMAMMMMMM 259 AHM-MMMMMHMMMAMMMTMMMKMMMMAMMMLMMMMMMMMMMMMMMMMMMMMMEMMMMMM 215 AHM-MMMMMPMMMHMMMEMMMSMMMMMMMMMMMMMMMMMMMMMMMMMMMMEMMMMMM 57 AHM-MMMMMPMMMTMMMPMMMAMMMSMMMMMMMMMMMMMMMMMMMMMMMMMEMMMMMM 205 AHM-MMMMMSMMMSMMMHMMMEMMMLMMMMMMMMMMMMMMMMMMMMMMMMMEMMMMMM 79 AHM-MMMMMWMMMMJMMMAMMMLMMMMMMMMMMMMMMMMMMMMMGMMMMMMCMMMMMM 455 AHMWMMMMM-MMMMMMMMMPMMMHMMMRMMMMXMMMMMMMMMMMMMMMMMMMEMMMMMM 157 AHMWMMMMM-MMMMSMMMHMMMMAMMMSMMMMMMMMMMMMMMMMMMMMMMMEMMMMMM 59 AHM-MMMMMWMMMMXMMMMMMMMPMMMEMMMSMMMMMMMMMMMMMMGMMMMMMCMMMMMM 473
MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM A-MMMEMMMPMMMMMMMHMMMMDMMMMMMMMMMMMMMMMEMMMMMDMMMMMMAMMMMMM 259 AHM-MMMMMHMMMAMMMTMMMKMMMMAMMMSMMMMMMMMMMMMMMMMMMMMMEMMMMMM 215 AHM-MMMMMPMMMHMMMEMMMSMMM(MMQMMMuMMMiMlMMlM)MMMMMMMMMMMMMEMMMMMM 77 AHM-MMMMMPMMMTMMMPMMMAMMMXMMMMMMMMMMMMMMMMMMMMMMMMMEMMMMMM 205 AHM-MMMMMSMMMSMMMHMMMEMMMSMMMMMMMMMMMMMMMMMMMMMMMMMEMMMMMM 79 AHM-MMMMMWMMMMJMMMAMMMSMMMMMMMMMMMMMMMMMMMMMGMMMMMMCMMMMMM 455 AHM-MMMMMWMMMMMMMMMPMMMRMMMLMMMMMMMMMMMMMMMMMGMMMMMMCMMMMMM 473 AHMWMMMMM-MMMMSMMMHMMMMAMMMXMMMMMMMMMMMMMMMMMMMMMMMEMMMMMM 59 AHM-MMMMMWMMMMXMMMMMMMMPMMMGMMMMLMMMMMMMMMMMMMGMMMMMMCMMMMMM 473
MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM A-MMMEMMMPMMMMMMMSMMMMDMMMMMMMMMMMMMMMMEMMMMMDMMMMMMAMMMMMM 263 AHM-MMMMMHMMMAMMMTMMMKMMMMAMMMXMMMMMMMMMMMMMMMMMMMMMEMMMMMM 215 AHM-MMMMMPMMMHMMMEMMMXMMMMMMMMMMMMMMMMMMMMMMMMMMMMEMMMMMM 57 AHM-MMMMMPMMMTMMMPMMMKMMMAMMMLMMMMMMMMMMMMMMMMMMMMMMEMMMMMM 215 AHM-MMMMMSMMMSMMMHMMMGMMMMLMMMMMMMMMMMMMMMMMMMMMMMMEMMMMMM 79 AHM-MMMMMWMMMMJMMMAMMMXMMMMMMMMMMMMMMMMMMMMMGMMMMMMCMMMMMM 455 AHM-MMMMMWMMMMMMMMMPMMMRMMMSMMMMMMMMMMMMMMMMMGMMMMMMCMMMMMM 473 AHMWMMMMM-MMMMSMMMHMMMMDMMMLMMMMMMMMMMMMMMMMMMMMMMMEMMMMMM 59 AHM-MMMMMWMMMMXMMMMMMMMPMMMGMMMMSMMMMMMMMMMMMMGMMMMMMCMMMMMM 473
A MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM1MMMMMM 1123 A-MMMEMMMPMMMSMMMDMMMDMMMMMMMMMMMMMMMMMEMMMMMDMMMMMMAMMMMMM 263 AHM-MMMMMHMMMSMMMTMMMAMMMLMMMMMMMMMMMMMMMMMMMMMMMMMEMMMMMM 205 AHM-MMMMMPMMMHMMMGMMMMLMMMMMMMMMMMMMMMMMMMMMMMMMMMEMMMMMM 57 AHM-MMMMMPMMMTMMMPMMMKMMMAMMMSMMMMMMMMMMMMMMMMMMMMMMEMMMMMM 215 AHM-MMMMMSMMMSMMMHMMMGMMMMSMMMMMMMMMMMMMMMMMMMMMMMMEMMMMMM 79 AHM-MMMMMWMMMMJMMMDMMMLMMMMMMMMMMMMMMMMMMMMMGMMMMMMCMMMMMM 455 AHM-MMMMMWMMMMPMMMAMMMMLMMMMMMMMMMMMMMMMMMMMGMMMMMMCMMMMMM 451 AHMWMMMMM-MMMMSMMMHMMMMDMMMSMMMMMMMMMMMMMMMMMMMMMMMEMMMMMM 59 AHM-MMMMMWMMMMXMMMMMMMMPMMMRMMMLMMMMMMMMMMMMMMGMMMMMMCMMMMMM 473
A-MMMAMMMHMMMBMMMMMMMMMMMMMMMMMMMMMMMMMMMMEMMMMMMAMMMMMM 187 A-MMMEMMMPMMMSMMMDMMMEMMMMMMMMMMMMMMMMMEMMMMMDMMMMMMAMMMMMM 263 AHM-MMMMMHMMMSMMMTMMMAMMMSMMMMMMMMMMMMMMMMMMMMMMMMMEMMMMMM 205 AHM-MMMMMPMMMHMMMGMMMMLMMM(MQMMMMuMMiMMlMlM)MMMMMMMMMMMMMEMMMMMM 77 AHM-MMMMMPMMMTMMMPMMMKMMMAMMMXMMMMMMMMMMMMMMMMMMMMMMEMMMMMM 215 AHM-MMMMMSMMMSMMMHMMMRMMMMLMMMMMMMMMMMMMMMMMMMMMMMMEMMMMMM 79 AHM-MMMMMWMMMMJMMMDMMMSMMMMMMMMMMMMMMMMMMMMMGMMMMMMCMMMMMM 455 AHM-MMMMMWMMMMPMMMAMMMMLMM(MMQMMMuMMMiMlMMlM)MMMMMMGMMMMMMCMMMMMM 461 AHMWMMMMM-MMMMSMMMHMMMMDMMMXMMMMMMMMMMMMMMMMMMMMMMMEMMMMMM 59 AHM-MMMMMWMMMMXMMMMMMMMPMMMRMMMSMMMMMMMMMMMMMMGMMMMMMCMMMMMM 473
A-MMMAMMMHMMMDMMMMMMMMMMMMMMMMMMMMMMMMMMMMEMMMMMMAMMMMMM 275 A-MMMEMMMPMMMSMMMDMMMGMMMMMMMMMMMMMMMMMEMMMMMDMMMMMMAMMMMMM 263 AHM-MMMMMHMMMSMMMTMMMAMMMXMMMMMMMMMMMMMMMMMMMMMMMMMEMMMMMM 205 AHM-MMMMMPMMMHMMMGMMMMSMMMMMMMMMMMMMMMMMMMMMMMMMMMEMMMMMM 57 AHM-MMMMMPMMMTMMMPMMMMMMMMAMMMLMMMMMMMMMMMMMMMMMMMMMEMMMMMM 213 AHM-MMMMMSMMMSMMMHMMMRMMMMSMMMMMMMMMMMMMMMMMMMMMMMMEMMMMMM 79 AHM-MMMMMWMMMMJMMMEMMMLMMMMMMMMMMMMMMMMMMMMMGMMMMMMCMMMMMM 455 AHM-MMMMMWMMMMPMMMAMMMMSMMMMMMMMMMMMMMMMMMMMGMMMMMMCMMMMMM 451 AHMWMMMMM-MMMMSMMMHMMMMEMMMLMMMMMMMMMMMMMMMMMMMMMMMEMMMMMM 59 AHM-MMMMMWMMMMXMMMPMMMAMMMMLMMMMMMMMMMMMMMMMMGMMMMMMCMMMMMM 451
A-MMMAMMMHMMMDMMM-MMMMMBMMMMMMMMMMMMMMMEMMMMMDMMMMMMAMMMMMM 302 A-MMMEMMMPMMMSMMMDMMMRMMMMMMMMMMMMMMMMMEMMMMMDMMMMMMAMMMMMM 263 AHM-MMMMMHMMMSMMMTMMMKMMMAMMMMLMMMMMMMMMMMMMMMMMMMMMEMMMMMM 215 AHM-MMMMMPMMMHMMMGMMMMSMMM(MQMMMMuMMMiMlMlM)MMMMMMMMMMMMMEMMMMMM 77 AHM-MMMMMPMMMTMMMPMMMMMMMMAMMMSMMMMMMMMMMMMMMMMMMMMMEMMMMMM 213 AHM-MMMMMSMMMSMMMPMMMAMMMLMMMMMMMMMMMMMMMMMMMMMMMMMEMMMMMM 79 AHM-MMMMMWMMMMJMMMEMMMSMMMMMMMMMMMMMMMMMMMMMGMMMMMMCMMMMMM 455 AHM-MMMMMWMMMMPMMMAMMMMSMMM(MQMMMMuMMiMMlMlM)MMMMMMGMMMMMMCMMMMMM 461 AHMWMMMMM-MMMMSMMMHMMMMEMMMSMMMMMMMMMMMMMMMMMMMMMMMEMMMMMM 59 AHM-MMMMWMMMXMMMPMMMAMMLMMM(MQMMMuMMMiMlMlM)MMMMMMMMGMMMMMMCMMMMMM 461
A-MMMAMMMHMMMDMMMDMMMMMMMMMMMMMMMMMMMMMMMMMEMMMMMMAMMMMMM 275 A-MMMEMMMSMMMDMMMDMMMMMMMMMMMMMMMMMMMMEMMMMMDMMMMMMAMMMMMM 263 AHM-MMMMMHMMMSMMMTMMMKMMMAMMMMSMMMMMMMMMMMMMMMMMMMMMEMMMMMM 215 AHM-MMMMMPMMMHMMMGMMMMXMMMMMMMMMMMMMMMMMMMMMMMMMMMEMMMMMM 57 AHM-MMMMMPMMMTMMMPMMMMMMMMAMMMXMMMMMMMMMMMMMMMMMMMMMEMMMMMM 213 AHM-MMMMMSMMMSMMMPMMMAMMMSMMMMMMMMMMMMMMMMMMMMMMMMMEMMMMMM 79 AHM-MMMMMWMMMMJMMMGMMMLMMMMMMMMMMMMMMMMMMMMMGMMMMMMCMMMMMM 455 AHM-MMMMMWMMMMPMMMAMMMMXMMMMMMMMMMMMMMMMMMMMGMMMMMMCMMMMMM 451 AHMWMMMMM-MMMMSMMMHMMMMEMMMXMMMMMMMMMMMMMMMMMMMMMMMEMMMMMM 59 AHM-MMMMMWMMMMXMMMPMMMAMMMMSMMMMMMMMMMMMMMMMMGMMMMMMCMMMMMM 451
A-MMMAMMMHMMMDMMMEMMMMMMMMMMMMMMMMMMMMMMMMMEMMMMMMAMMMMMM 275 A-MMMEMMMSMMMDMMMEMMMMMMMMMMMMMMMMMMMMEMMMMMDMMMMMMAMMMMMM 263 AHM-MMMMMHMMMSMMMTMMMKMMMAMMMMXMMMMMMMMMMMMMMMMMMMMMEMMMMMM 215 AHM-MMMMMPMMMHMMMLMMM(MM2MM~MMMMM4MM)MMEMMMMMMMMMMMMMMMEMMMMMM 589 AHM-MMMMMPMMMUMMMPMMMTMMMMMMMMMMMMMMMMMMMMMMMMMMMMEMMMMMM 240 AHM-MMMMMSMMMSMMMPMMMDMMMLMMMMMMMMMMMMMMMMMMMMMMMMMEMMMMMM 79 AHM-MMMMMWMMMMJMMMGMMMSMMMMMMMMMMMMMMMMMMMMMGMMMMMMCMMMMMM 455 AHM-MMMMMWMMMMPMMMDMMMMLMMMMMMMMMMMMMMMMMMMMGMMMMMMCMMMMMM 451 AHMWMMMMM-MMMMSMMMHMMMMGMMMLMMMMMMMMMMMMMMMMMMMMMMMEMMMMMM 59 AHM-MMMMWMMMXMMMPMMMAMMSMMM(MQMMMMuMMiMlMlM)MMMMMMMMGMMMMMMCMMMMMM 461
A-MMMAMMMHMMMDMMMGMMMMMMMMMMMMMMMMMMMMMMMMMEMMMMMMAMMMMMM 275 A-MMMEMMMSMMMDMMMGMMMMMMMMMMMMMMMMMMMMEMMMMMDMMMMMMAMMMMMM 263 AHM-MMMMMHMMMTMMMFMMMPMMMAMMMMMMMMMMMMMMMMMMMMMMMMMEMMMMMM 229 AHM-MMMMMPMMMHMMMLMMMTMMMAMMMLMMMMMMMMMMMMMMMMMMMMMMEMMMMMM 131 AHM-MMMMMPMMMUMMMPMMMTMMMFMMMMMMMMMMMMMMMMMMMMMMMMMEMMMMMM 240 AHM-MMMMMSMMMSMMMPMMMDMMMSMMMMMMMMMMMMMMMMMMMMMMMMMEMMMMMM 79 AHM-MMMMMWMMMMJMMMKMMMAMMMLMMMMMMMMMMMMMMMMMMGMMMMMMCMMMMMM 485 AHM-MMMMMWMMMMPMMMDMMMMSMMMMMMMMMMMMMMMMMMMMGMMMMMMCMMMMMM 451 AHMWMMMMM-MMMMSMMMHMMMMGMMMSMMMMMMMMMMMMMMMMMMMMMMMEMMMMMM 59 AHM-MMMMMWMMMMXMMMPMMMDMMMMLMMMMMMMMMMMMMMMMMGMMMMMMCMMMMMM 451
A-MMMAMMMHMMMDMMMRMMMMMMMMMMMMMMMMMMMMMMMMMEMMMMMMAMMMMMM 275 A-MMMEMMMSMMMDMMMRMMMMMMMMMMMMMMMMMMMMEMMMMMDMMMMMMAMMMMMM 263 AHM-MMMMMHMMMTMMMFMMMPMMMRMMMMMMMMMMMMMMMMMMMMMMMMMEMMMMMM 229 AHM-MMMMMPMMMHMMMLMMMTMMMAMMMSMMMMMMMMMMMMMMMMMMMMMMEMMMMMM 131 AHMSMMMFMMMDMMMLMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMEMMMMMM 329 AHM-MMMMMSMMMSMMMPMMMEMMMLMMMMMMMMMMMMMMMMMMMMMMMMMEMMMMMM 79 AHM-MMMMMWMMMMJMMMKMMMAMMMSMMMMMMMMMMMMMMMMMMGMMMMMMCMMMMMM 485 AHM-MMMMMWMMMMPMMMEMMMLMMMMMMMMMMMMMMMMMMMMMGMMMMMMCMMMMMM 451 AHMWMMMMM-MMMMSMMMHMMMMGMMMXMMMMMMMMMMMMMMMMMMMMMMMEMMMMMM 59 AHM-MMMMMWMMMMXMMMPMMMDMMMMSMMMMMMMMMMMMMMMMMGMMMMMMCMMMMMM 451
A-MMMAMMMJMMBMMMMMMMMMMMMMMMMMMMMMMMMMMMMMEMMMMMMAMMMMMM 188 AEMXMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMEMMMMMDMMMMMMAMMMMMM 1132 AHM-MMMMMHMMMTMMMFMMMPMMMTMMMMMMMMMMMMMMMMMMMMMMMMMEMMMMMM 229 AHM-MMMMMPMMMHMMMLMMMTMMMDMMMLMMMMMMMMMMMMMMMMMMMMMMEMMMMMM 131 AHMSMMMFMMMDMMMSMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMEMMMMMM 329 AHM-MMMMMSMMMSMMMPMMMEMMMSMMMMMMMMMMMMMMMMMMMMMMMMMEMMMMMM 79 AHM-MMMMMWMMMMJMMMKMMMDMMMLMMMMMMMMMMMMMMMMMMGMMMMMMCMMMMMM 485 AHM-MMMMMWMMMMPMMMEMMMSMMMMMMMMMMMMMMMMMMMMMGMMMMMMCMMMMMM 451 AHMWMMMMM-MMMMSMMMHMMMMKMMMAMMMLMMMMMMMMMMMMMMMMMMMMEMMMMMM 169 AHM-MMMMMWMMMMXMMMPMMMEMMMLMMMMMMMMMMMMMMMMMMGMMMMMMCMMMMMM 451
A-MMMAMMMPMMMAMMMLMMMMMMMMMMMMMMMMMMMMEMMMMMDMMMMMMAMMMMMM 109 AGMMLMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMEMMMMMDMMMMMMAMMMMMM 767 AHM-MMMMMHMMMTMMMPMMMAMMMLMMMMMMMMMMMMMMMMMMMMMMMMMEMMMMMM 205 AHM-MMMMMPMMMHMMMLMMMTMMMDMMMSMMMMMMMMMMMMMMMMMMMMMMEMMMMMM 131 AHMSMMMFMMMEMMMLMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMEMMMMMM 329 AHM-MMMMMSMMMSMMMPMMMGMMMMLMMMMMMMMMMMMMMMMMMMMMMMMEMMMMMM 79 AHM-MMMMMWMMMMJMMMKMMMDMMMSMMMMMMMMMMMMMMMMMMGMMMMMMCMMMMMM 485 AHM-MMMMMWMMMMPMMMGMMMMLMMMMMMMMMMMMMMMMMMMMGMMMMMMCMMMMMM 451 AHMWMMMMM-MMMMSMMMHMMMMKMMMAMMMSMMMMMMMMMMMMMMMMMMMMEMMMMMM 169 AHM-MMMMMWMMMMXMMMPMMMEMMMSMMMMMMMMMMMMMMMMMMGMMMMMMCMMMMMM 451
A-MMMAMMMPMMMAMMMSMMMMMMMMMMMMMMMMMMMMEMMMMMDMMMMMMAMMMMMM 109 AHM-MMMMMAMMMPMMMAMMMMLMMMMMMMMMMMMMMMMMMMMMMMMMMMEMMMMMM 113 AHM-MMMMMHMMMTMMMPMMMAMMMSMMMMMMMMMMMMMMMMMMMMMMMMMEMMMMMM 205 AHM-MMMMMPMMMHMMMLMMMTMMMEMMMLMMMMMMMMMMMMMMMMMMMMMMEMMMMMM 131 AHMSMMMFMMMEMMMSMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMEMMMMMM 329 AHM-MMMMMSMMMSMMMPMMMGMMMMSMMMMMMMMMMMMMMMMMMMMMMMMEMMMMMM 79 AHM-MMMMMWMMMMJMMMKMMMEMMMLMMMMMMMMMMMMMMMMMMGMMMMMMCMMMMMM 485 AHM-MMMMMWMMMMPMMMGMMMMSMMMMMMMMMMMMMMMMMMMMGMMMMMMCMMMMMM 451 AHMWMMMMM-MMMMSMMMHMMMMKMMMAMMMXMMMMMMMMMMMMMMMMMMMMEMMMMMM 169 AHM-MMMMMWMMMMXMMMPMMMGMMMMLMMMMMMMMMMMMMMMMMGMMMMMMCMMMMMM 451
A-MMMAMMMPMMMBMMMMMMMMMMMMMMMMMMMMMMMMMMMMEMMMMMMAMMMMMM 187 AHM-MMMMMAMMMPMMMAMMMMSMMMMMMMMMMMMMMMMMMMMMMMMMMMEMMMMMM 113 AHM-MMMMMHMMMTMMMPMMMAMMMXMMMMMMMMMMMMMMMMMMMMMMMMMEMMMMMM 205 AHM-MMMMMPMMMHMMMLMMMTMMMEMMMSMMMMMMMMMMMMMMMMMMMMMMEMMMMMM 131 AHMSMMMFMMMGMMMMLMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMEMMMMMM 329 AHM-MMMMMSMMMSMMMPMMMRMMMLMMMMMMMMMMMMMMMMMMMMMMMMMEMMMMMM 79 AHM-MMMMMWMMMMJMMMKMMMEMMMSMMMMMMMMMMMMMMMMMMGMMMMMMCMMMMMM 485 AHMWMMMMM-MMMMPMMMHMMMMAMMMLMMMMMMMMMMMMMMMMMMMMMMMEMMMMMM 59 AHMWMMMMM-MMMMSMMMHMMMMKMMMDMMMLMMMMMMMMMMMMMMMMMMMMEMMMMMM 169 AHM-MMMMMWMMMMXMMMPMMMGMMMMSMMMMMMMMMMMMMMMMMGMMMMMMCMMMMMM 451
A-MMMAMMMPMMMDMMMLMMMMMMMMMMMMMMMMMMMMEMMMMMDMMMMMMAMMMMMM 109 AHM-MMMMMAMMMPMMMDMMMMLMMMMMMMMMMMMMMMMMMMMMMMMMMMEMMMMMM 113 AHM-MMMMMHMMMTMMMPMMMKMMMAMMMMLMMMMMMMMMMMMMMMMMMMMMEMMMMMM 215 AHM-MMMMMPMMMHMMMLMMMTMMMGMMMLMMMMMMMMMMMMMMMMMMMMMMEMMMMMM 131 AHMSMMMFMMMGMMMMSMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMEMMMMMM 329 AHM-MMMMMSMMMSMMMPMMMRMMMSMMMMMMMMMMMMMMMMMMMMMMMMMEMMMMMM 79 AHM-MMMMMWMMMMJMMMKMMMGMMMMLMMMMMMMMMMMMMMMMMGMMMMMMCMMMMMM 485 AHMWMMMMM-MMMMPMMMHMMMMAMMMSMMMMMMMMMMMMMMMMMMMMMMMEMMMMMM 59 AHMWMMMMM-MMMMSMMMHMMMMKMMMDMMMSMMMMMMMMMMMMMMMMMMMMEMMMMMM 169 AHM-MMMMMWMMMMXMMMPMMMRMMMMLMMMMMMMMMMMMMMMMMGMMMMMMCMMMMMM 451
A-MMMAMMMPMMMDMMMSMMMMMMMMMMMMMMMMMMMMEMMMMMDMMMMMMAMMMMMM 109 AHM-MMMMMAMMMPMMMDMMMMSMMMMMMMMMMMMMMMMMMMMMMMMMMMEMMMMMM 113 AHM-MMMMMHMMMTMMMPMMMKMMMAMMMMSMMMMMMMMMMMMMMMMMMMMMEMMMMMM 215 AHM-MMMMMPMMMHMMMLMMMTMMMGMMMSMMMMMMMMMMMMMMMMMMMMMMEMMMMMM 131 AHMSMMMFMMMRMMMLMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMEMMMMMM 329 A-MMMHMMMSMMMTMMMAMMMLMMMMMMMMMMMMMMMMMEMMMMMDMMMMMMAMMMMMM 201 AHM-MMMMMWMMMMJMMMKMMMGMMMMSMMMMMMMMMMMMMMMMMGMMMMMMCMMMMMM 485 AHMWMMMMM-MMMMPMMMHMMMMAMMMXMMMMMMMMMMMMMMMMMMMMMMMEMMMMMM 59 AHMWMMMMM-MMMMSMMMHMMMMKMMMDMMMXMMMMMMMMMMMMMMMMMMMMEMMMMMM 169 AHM-MMMMMWMMMMXMMMPMMMRMMMMSMMMMMMMMMMMMMMMMMGMMMMMMCMMMMMM 451
A-MMMAMMMPMMMEMMMLMMMMMMMMMMMMMMMMMMMMEMMMMMDMMMMMMAMMMMMM 109 AHM-MMMMMAMMMPMMMEMMMLMMMMMMMMMMMMMMMMMMMMMMMMMMMMEMMMMMM 113 AHM-MMMMMHMMMTMMMPMMMKMMMAMMMMXMMMMMMMMMMMMMMMMMMMMMEMMMMMM 215 AHM-MMMMMPMMMHMMMLMMMTMMMRMMMLMMMMMMMMMMMMMMMMMMMMMMEMMMMMM 131 AHMSMMMFMMMRMMMSMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMEMMMMMM 329 A-MMMHMMMSMMMTMMMAMMMSMMMMMMMMMMMMMMMMMEMMMMMDMMMMMMAMMMMMM 201 AHM-MMMMMWMMMMJMMMKMMMRMMMLMMMMMMMMMMMMMMMMMMGMMMMMMCMMMMMM 485 AHMWMMMMM-MMMMPMMMHMMMMDMMMLMMMMMMMMMMMMMMMMMMMMMMMEMMMMMM 59 AHMWMMMMM-MMMMSMMMHMMMMKMMMEMMMLMMMMMMMMMMMMMMMMMMMMEMMMMMM 169 AHM-MMMMMWMMMMXMMMPMMMTMMMWMMMMAMMMMMMMMMMMMMMGMMMMMMCMMMMMM 467
A-MMMAMMMPMMMEMMMSMMMMMMMMMMMMMMMMMMMMEMMMMMDMMMMMMAMMMMMM 109 AHM-MMMMMAMMMPMMMEMMMSMMMMMMMMMMMMMMMMMMMMMMMMMMMMEMMMMMM 113 AHM-MMMMMHMMMUMMMPMMMMTMMMMMMMMMMMMMMMMMMMMMMMMMMMEMMMMMM 240 AHM-MMMMMPMMMHMMMLMMMTMMMRMMMSMMMMMMMMMMMMMMMMMMMMMMEMMMMMM 131 AHM-MMMMMSMMMHMMM(MM2MM~MMMMM4MM)MMEMMMMMMMMMMMMMMMMMMEMMMMMM 589 A-MMMHMMMSMMMTMMMAMMMXMMMMMMMMMMMMMMMMMEMMMMMDMMMMMMAMMMMMM 201 AHM-MMMMMWMMMMJMMMKMMMRMMMSMMMMMMMMMMMMMMMMMMGMMMMMMCMMMMMM 485 AHMWMMMMM-MMMMPMMMHMMMMDMMMSMMMMMMMMMMMMMMMMMMMMMMMEMMMMMM 59 AHMWMMMMM-MMMMSMMMHMMMMKMMMEMMMSMMMMMMMMMMMMMMMMMMMMEMMMMMM 169 AHM-MMMMMWMMMMXMMMPMMMTMMMWMMMMDMMMMMMMMMMMMMMGMMMMMMCMMMMMM 467
A-MMMAMMMPMMMGMMMLMMMMMMMMMMMMMMMMMMMMEMMMMMDMMMMMMAMMMMMM 109 AHM-MMMMMAMMMPMMMGMMMMLMMMMMMMMMMMMMMMMMMMMMMMMMMMEMMMMMM 113 AHM-MMMMMHMMMUMMMPMMMMTMMFMMMMMMMMMMMMMMMMMMMMMMMMMEMMMMMM 240 AHM-MMMMMPMMMHMMMMMMMMSMMMMMMMMMMMMMMMMMMMMMMMMMMMEMMMMMM 583 AHM-MMMMMSMMMHMMMAMMMMLMMMMMMMMMMMMMMMMMMMMMMMMMMMEMMMMMM 57 A-MMMHMMMSMMMTMMMKMMMAMMMLMMMMMMMMMMMMMMMMMMMEMMMMMMAMMMMMM 215 AHM-MMMMMWMMMMJMMMPMMMAMMMLMMMMMMMMMMMMMMMMMMGMMMMMMCMMMMMM 459 AHMWMMMMM-MMMMPMMMHMMMMDMMMXMMMMMMMMMMMMMMMMMMMMMMMEMMMMMM 59 AHMWMMMMM-MMMMSMMMHMMMMKMMMEMMMXMMMMMMMMMMMMMMMMMMMMEMMMMMM 169 AHM-MMMMMWMMMMXMMMPMMMTMMMWMMMMEMMMMMMMMMMMMMMGMMMMMMCMMMMMM 467
A-MMMAMMMPMMMGMMMSMMMMMMMMMMMMMMMMMMMMEMMMMMDMMMMMMAMMMMMM 109 AHM-MMMMMAMMMPMMMGMMMMSMMMMMMMMMMMMMMMMMMMMMMMMMMMEMMMMMM 113 AHMJMMMAMMMLMMM-MMMMMCMMMMMMMMMMMMMMMMMEMMMMMDMMMMMMAMMMMMM 145 AHM-MMMMMPMMMHMMMMMMMMSMMMLMMMMMMMMMMMMMMMMMMMMMMMMEMMMMMM 583 AHM-MMMMMSMMMHMMMAMMMMLMM(MMQMMMuMMMiMlMMlM)MMMMMMMMMMMMMEMMMMMM 77 A-MMMHMMMSMMMTMMMKMMMAMMMSMMMMMMMMMMMMMMMMMMMEMMMMMMAMMMMMM 215 AHM-MMMMMWMMMMJMMMPMMMAMMMSMMMMMMMMMMMMMMMMMMGMMMMMMCMMMMMM 459 AHMWMMMMM-MMMMPMMMHMMMMEMMMLMMMMMMMMMMMMMMMMMMMMMMMEMMMMMM 59 AHMWMMMMM-MMMMSMMMHMMMMKMMMGMMMLMMMMMMMMMMMMMMMMMMMMEMMMMMM 169 AHM-MMMMMWMMMMXMMMPMMMTMMMWMMMMGMMMMMMMMMMMMMMGMMMMMMCMMMMMM 467
A-MMMAMMMPMMMHMMMAMMMMLMMMMMMMMMMMMMMMMEMMMMMDMMMMMMAMMMMMM 109 AHM-MMMMMAMMMPMMMHMMMMAMMMLMMMMMMMMMMMMMMMMMMMMMMMMEMMMMMM 113 AHMJMMMAMMMSMMM-MMMMMCMMMMMMMMMMMMMMMMMEMMMMMDMMMMMMAMMMMMM 145 AHM-MMMMMPMMMHMMMMMMMMTMMMMMMMMMMMMMMMMMMMMMMMMMMMEMMMMMM 585 AHM-MMMMMSMMMHMMMAMMMMSMMMMMMMMMMMMMMMMMMMMMMMMMMMEMMMMMM 57 A-MMMHMMMSMMMTMMMKMMMAMMMXMMMMMMMMMMMMMMMMMMMEMMMMMMAMMMMMM 215 AHM-MMMMMWMMMMJMMMPMMMDMMMLMMMMMMMMMMMMMMMMMMGMMMMMMCMMMMMM 459 AHMWMMMMM-MMMMPMMMHMMMMEMMMSMMMMMMMMMMMMMMMMMMMMMMMEMMMMMM 59 AHMWMMMMM-MMMMSMMMHMMMMKMMMGMMMSMMMMMMMMMMMMMMMMMMMMEMMMMMM 169 AHM-MMMMMWMMMMXMMMPMMMTMMMWMMMMRMMMMMMMMMMMMMMGMMMMMMCMMMMMM 467
A-MMMAMMMPMMMHMMMAMMMMSMMMMMMMMMMMMMMMMEMMMMMDMMMMMMAMMMMMM 109 AHM-MMMMMAMMMPMMMHMMMMAMMMSMMMMMMMMMMMMMMMMMMMMMMMMEMMMMMM 113 AHMJMMMBMMM-MMMMMCMMMMMMMMMMMMMMMMMMMMEMMMMMDMMMMMMAMMMMMM 188 AHM-MMMMMPMMMHMMMMMMMMTMMMLMMMMMMMMMMMMMMMMMMMMMMMMEMMMMMM 585 AHM-MMMMMSMMMHMMMAMMMMSMMM(MQMMMMuMMiMMlMlM)MMMMMMMMMMMMMEMMMMMM 77 AHMSMMMWMMMMMDMMMLMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMEMMMMMM 331 AHM-MMMMMWMMMMJMMMPMMMDMMMSMMMMMMMMMMMMMMMMMMGMMMMMMCMMMMMM 459 AHMWMMMMM-MMMMPMMMHMMMMEMMMXMMMMMMMMMMMMMMMMMMMMMMMEMMMMMM 59 AHMWMMMMM-MMMMSMMMHMMMMKMMMGMMMXMMMMMMMMMMMMMMMMMMMMEMMMMMM 169 AHM-MMMMMWMMMMXMMMSMMMAMMMMLMMMMMMMMMMMMMMMMMMMMMMMGMMMMMM 465
A-MMMAMMMPMMMHMMMDMMMMLMMMMMMMMMMMMMMMMEMMMMMDMMMMMMAMMMMMM 109 AHM-MMMMMAMMMPMMMHMMMMDMMMLMMMMMMMMMMMMMMMMMMMMMMMMEMMMMMM 113 AHMJMMMDMMMLMMM-MMMMMCMMMMMMMMMMMMMMMMMEMMMMMDMMMMMMAMMMMMM 145 AHM-MMMMMPMMMHMMMRMMMMLMMMMMMMMMMMMMMMMMMMMMMMMMMMEMMMMMM 57 AHM-MMMMMSMMMHMMMAMMMMXMMMMMMMMMMMMMMMMMMMMMMMMMMMEMMMMMM 57 AHMSMMMWMMMMMDMMMSMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMEMMMMMM 331 AHM-MMMMMWMMMMJMMMPMMMEMMMLMMMMMMMMMMMMMMMMMMGMMMMMMCMMMMMM 459 AHMWMMMMM-MMMMPMMMHMMMMGMMMLMMMMMMMMMMMMMMMMMMMMMMMEMMMMMM 59 AHMWMMMMM-MMMMSMMMHMMMMKMMMRMMMLMMMMMMMMMMMMMMMMMMMMEMMMMMM 169 AHM-MMMMMWMMMMXMMMSMMMAMMMMSMMMMMMMMMMMMMMMMMMMMMMMGMMMMMM 465
A-MMMAMMMPMMMHMMMDMMMMSMMMMMMMMMMMMMMMMEMMMMMDMMMMMMAMMMMMM 109 AHM-MMMMMAMMMPMMMHMMMMDMMMSMMMMMMMMMMMMMMMMMMMMMMMMEMMMMMM 113 AHMJMMMDMMMSMMM-MMMMMCMMMMMMMMMMMMMMMMMEMMMMMDMMMMMMAMMMMMM 145 AHM-MMMMMPMMMHMMMRMMMMLMM(MMQMMMuMMMiMlMMlM)MMMMMMMMMMMMMEMMMMMM 77 AHM-MMMMMSMMMHMMMDMMMMLMMMMMMMMMMMMMMMMMMMMMMMMMMMEMMMMMM 57 AHMSMMMWMMMMMEMMMLMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMEMMMMMM 331 AHM-MMMMMWMMMMJMMMPMMMEMMMSMMMMMMMMMMMMMMMMMMGMMMMMMCMMMMMM 459 AHMWMMMMM-MMMMPMMMHMMMMGMMMSMMMMMMMMMMMMMMMMMMMMMMMEMMMMMM 59 AHMWMMMMM-MMMMSMMMHMMMMKMMMRMMMSMMMMMMMMMMMMMMMMMMMMEMMMMMM 169 AJM(M4MMM~MMMM7MMM)MMMMMMMMMMMMMMMMMMMMEMMMMMDMMMMMMAMMMMMM 189
A-MMMAMMMPMMMHMMMEMMMLMMMMMMMMMMMMMMMMMEMMMMMDMMMMMMAMMMMMM 109 AHM-MMMMMAMMMPMMMHMMMMEMMMLMMMMMMMMMMMMMMMMMMMMMMMMEMMMMMM 113 AHMJMMMEMMMLMMM-MMMMCMMMMMMMMMMMMMMMMMMEMMMMMDMMMMMMAMMMMMM 145 AHM-MMMMMPMMMHMMMRMMMMSMMMMMMMMMMMMMMMMMMMMMMMMMMMEMMMMMM 57 AHM-MMMMMSMMMHMMMDMMMMLMM(MMQMMMuMMMiMlMMlM)MMMMMMMMMMMMMEMMMMMM 77 AHMSMMMWMMMMMEMMMSMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMEMMMMMM 331 AHM-MMMMMWMMMMJMMMPMMMGMMMLMMMMMMMMMMMMMMMMMMGMMMMMMCMMMMMM 459 AHMWMMMMM-MMMMPMMMHMMMMGMMMXMMMMMMMMMMMMMMMMMMMMMMMEMMMMMM 59 AHMWMMMMM-MMMMSMMMHMMMMKMMMRMMMXMMMMMMMMMMMMMMMMMMMMEMMMMMM 169 AJM(M4MMM~MMMM7MMM)MFMMMMMMMMMMMMMMMMMMMEMMMMMDMMMMMMAMMMMMM 189
A-MMMAMMMPMMMHMMMEMMMSMMMMMMMMMMMMMMMMMEMMMMMDMMMMMMAMMMMMM 109 AHM-MMMMMAMMMPMMMHMMMMEMMMSMMMMMMMMMMMMMMMMMMMMMMMMEMMMMMM 113 AHMJMMMEMMMSMMM-MMMMMCMMMMMMMMMMMMMMMMMEMMMMMDMMMMMMAMMMMMM 145 AHM-MMMMMPMMMHMMMRMMMMSMMM(MQMMMMuMMiMMlMlM)MMMMMMMMMMMMMEMMMMMM 77 AHM-MMMMMSMMMHMMMDMMMMSMMMMMMMMMMMMMMMMMMMMMMMMMMMEMMMMMM 57 AHMSMMMWMMMMMGMMMLMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMEMMMMMM 331 AHM-MMMMMWMMMMJMMMPMMMGMMMSMMMMMMMMMMMMMMMMMMGMMMMMMCMMMMMM 459 AHMWMMMMM-MMMMPMMMHMMMMRMMMLMMMMMMMMMMMMMMMMMMMMMMMEMMMMMM 59 AHMWMMMMM-MMMMSMMMHMMMMRMMMLMMMMMMMMMMMMMMMMMMMMMMMEMMMMMM 59 AJM(M4MMM~MMMM7MMM)MPMMMMMMMMMMMMMMMMMMMEMMMMMDMMMMMMAMMMMMM 189
A-MMMAMMMPMMMHMMMGMMMMLMMMMMMMMMMMMMMMMEMMMMMDMMMMMMAMMMMMM 109 AHM-MMMMMAMMMPMMMHMMMMGMMMLMMMMMMMMMMMMMMMMMMMMMMMMEMMMMMM 113 AHMJMMMGMMMLMMM-MMMMMCMMMMMMMMMMMMMMMMMEMMMMMDMMMMMMAMMMMMM 145 AHM-MMMMMPMMMHMMMRMMMMXMMMMMMMMMMMMMMMMMMMMMMMMMMMEMMMMMM 57 AHM-MMMMMSMMMHMMMDMMMMSMMM(MQMMMMuMMiMMlMlM)MMMMMMMMMMMMMEMMMMMM 77 AHMSMMMWMMMMMGMMMSMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMEMMMMMM 331 AHM-MMMMMWMMMMJMMMPMMMRMMMLMMMMMMMMMMMMMMMMMMGMMMMMMCMMMMMM 459 AHMWMMMMM-MMMMPMMMHMMMMRMMMSMMMMMMMMMMMMMMMMMMMMMMMEMMMMMM 59 AHMWMMMMM-MMMMSMMMHMMMMRMMMSMMMMMMMMMMMMMMMMMMMMMMMEMMMMMM 59 AJMBMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMEMMMMMDMMMMMMAMMMMMM 188
A-MMMAMMMPMMMHMMMGMMMMSMMMMMMMMMMMMMMMMEMMMMMDMMMMMMAMMMMMM 109 AHM-MMMMMAMMMPMMMHMMMMGMMMSMMMMMMMMMMMMMMMMMMMMMMMMEMMMMMM 113 AHMJMMMGMMMSMMM-MMMMMCMMMMMMMMMMMMMMMMMEMMMMMDMMMMMMAMMMMMM 145 AHM-MMMMMPMMMJMMAMMMMLMMMMMMMMMMMMMMMMMMMMMMMMMMMMEMMMMMM 67 AHM-MMMMMSMMMHMMMDMMMMXMMMMMMMMMMMMMMMMMMMMMMMMMMMEMMMMMM 57 AHMSMMMWMMMMMRMMMLMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMEMMMMMM 331 AHM-MMMMMWMMMMJMMMPMMMRMMMSMMMMMMMMMMMMMMMMMMGMMMMMMCMMMMMM 459 AHMWMMMMM-MMMMPMMMHMMMMRMMMXMMMMMMMMMMMMMMMMMMMMMMMEMMMMMM 59 AHMWMMMMM-MMMMSMMMHMMMMRMMMXMMMMMMMMMMMMMMMMMMMMMMMEMMMMMM 59 AL-MMMMWMMMMPMMMLMMTMMAMMMLMMM(MQMMMuMMMiMlMlM)MMMMMMMMMMMMEMMMMMM 461
A-MMMAMMMPMMMHMMMRMMMMLMMMMMMMMMMMMMMMMEMMMMMDMMMMMMAMMMMMM 109 AHM-MMMMMAMMMPMMMHMMMMRMMMLMMMMMMMMMMMMMMMMMMMMMMMMEMMMMMM 113 AHMJMMMRMMMLMMM-MMMMMCMMMMMMMMMMMMMMMMMEMMMMMDMMMMMMAMMMMMM 145 AHM-MMMMMPMMMJMMAMMMMSMMMMMMMMMMMMMMMMMMMMMMMMMMMMEMMMMMM 67 AHM-MMMMMSMMMHMMMEMMMLMMMMMMMMMMMMMMMMMMMMMMMMMMMMEMMMMMM 57 AHMSMMMWMMMMMRMMMSMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMEMMMMMM 331 AHM-MMMMMWMMMMJMMMRMMMLMMMMMMMMMMMMMMMMMMMMMGMMMMMMCMMMMMM 455 AHMWMMMMM-MMMMPMMMJMMMAMMMLMMMMMMMMMMMMMMMMMMMMMMMMEMMMMMM 69 AHM-MMMMMWMMMMSMMMPMMMTMMMPMMMMMMMMMMMMMMMMMMGMMMMMMCMMMMMM 504 AL-MMMMWMMMMPMMMLMMTMMAMMMSMMM(MQMMMuMMMiMlMlM)MMMMMMMMMMMMEMMMMMM 461
A-MMMAMMMPMMMHMMMRMMMMSMMMMMMMMMMMMMMMMEMMMMMDMMMMMMAMMMMMM 109 AHM-MMMMMAMMMPMMMHMMMMRMMMSMMMMMMMMMMMMMMMMMMMMMMMMEMMMMMM 113 AHMJMMMRMMMSMMM-MMMMMCMMMMMMMMMMMMMMMMMEMMMMMDMMMMMMAMMMMMM 145 AHM-MMMMMPMMMJMMDMMMMLMMMMMMMMMMMMMMMMMMMMMMMMMMMMEMMMMMM 67 AHM-MMMMMSMMMHMMMEMMMLMMM(MMQMMMuMMMiMlMlMM)MMMMMMMMMMMMMEMMMMMM 77 A-MMMHMMMTMMMFMMPMMMMAMMMMMMMMMMMMMMMMMEMMMMMDMMMMMMAMMMMMM 227 AHM-MMMMMWMMMMJMMMRMMMSMMMMMMMMMMMMMMMMMMMMMGMMMMMMCMMMMMM 455 AHMWMMMMM-MMMMPMMMJMMMAMMMSMMMMMMMMMMMMMMMMMMMMMMMMEMMMMMM 69 AHM-MMMMMWMMMMSMMMTMMMAMMMLMMMMMMMMMMMMMMMMMMGMMMMMMCMMMMMM 495 ALM-MMMMAMMMMPMMMAMMMLMMMMMMMMMMMMMMMMMEMMMMMDMMMMMMAMMMMMM 117
A-MMMAMMMPMMMHMMMTMMMWMMMMAMMMMMMMMMMMMMMMMMMEMMMMMMAMMMMMM 151 AHM-MMMMMAMMMPMMMJMMMAMMMLMMMMMMMMMMMMMMMMMMMMMMMMMEMMMMMM 123 AHM-MMMMMLMMMFMMAMMMMPMMMJMMAMMMMLMMMMMMMMMMMMMMMMMMMEMMMMMM 131 AHM-MMMMMPMMMJMMDMMMMSMMMMMMMMMMMMMMMMMMMMMMMMMMMMEMMMMMM 67 AHM-MMMMMSMMMHMMMEMMMSMMMMMMMMMMMMMMMMMMMMMMMMMMMMEMMMMMM 57 A-MMMHMMMTMMMFMMPMMMMRMMMMMMMMMMMMMMMMMEMMMMMDMMMMMMAMMMMMM 227 AHM-MMMMMWMMMMKMMMAMMMMLMMMMMMMMMMMMMMMMMMMMGMMMMMMCMMMMMM 477 AHMWMMMMM-MMMMPMMMJMMMDMMMLMMMMMMMMMMMMMMMMMMMMMMMMEMMMMMM 69 AHM-MMMMMWMMMMSMMMTMMMAMMMSMMMMMMMMMMMMMMMMMMGMMMMMMCMMMMMM 495 ALM-MMMMAMMMMPMMMAMMMSMMMMMMMMMMMMMMMMMEMMMMMDMMMMMMAMMMMMM 117
A-MMMAMMMPMMMHMMMTMMMWMMMMDMMMMMMMMMMMMMMMMMMFMMMMMMBMMMMMM 151 AHM-MMMMMAMMMPMMMJMMMAMMMSMMMMMMMMMMMMMMMMMMMMMMMMMEMMMMMM 123 AHM-MMMMMLMMMFMMAMMMMPMMMJMMAMMMMSMMMMMMMMMMMMMMMMMMMEMMMMMM 131 AHM-MMMMMPMMMJMMEMMMMLMMMMMMMMMMMMMMMMMMMMMMMMMMMMEMMMMMM 67 AHM-MMMMMSMMMHMMMEMMMSMMM(MMQMMMuMMMiMlMMlM)MMMMMMMMMMMMMEMMMMMM 77 A-MMMHMMMTMMMFMMPMMMMTMMMMMMMMMMMMMMMMMEMMMMMDMMMMMMAMMMMMM 227 AHM-MMMMMWMMMMKMMMAMMMMSMMMMMMMMMMMMMMMMMMMMGMMMMMMCMMMMMM 477 AHMWMMMMM-MMMMPMMMJMMMDMMMSMMMMMMMMMMMMMMMMMMMMMMMMEMMMMMM 69 AHM-MMMMMWMMMMSMMMUMMMMPMMMTMMMMMMMMMMMMMMMMMGMMMMMMCMMMMMM 509 ALM-MMMMAMMMMPMMMDMMMLMMMMMMMMMMMMMMMMMMMMMMEMMMMMMAMMMMMM 117
A-MMMAMMMPMMMHMMMTMMMWMMMMEMMMMMMMMMMMMMMMMMMFMMMMMMBMMMMMM 151 AHM-MMMMMAMMMPMMMJMMMDMMMLMMMMMMMMMMMMMMMMMMMMMMMMMEMMMMMM 123 AHM-MMMMMLMMMFMMAMMMMPMMMJMMDMMMMLMMMMMMMMMMMMMMMMMMMEMMMMMM 131 AHM-MMMMMPMMMJMMEMMMMSMMMMMMMMMMMMMMMMMMMMMMMMMMMMEMMMMMM 67 AHM-MMMMMSMMMHMMMEMMMXMMMMMMMMMMMMMMMMMMMMMMMMMMMMEMMMMMM 57 A-MMMHMMMTMMMPMMMAMMMLMMMMMMMMMMMMMMMMMEMMMMMDMMMMMMAMMMMMM 201 AHM-MMMMMWMMMMKMMMDMMMMLMMMMMMMMMMMMMMMMMMMMGMMMMMMCMMMMMM 477 AHMWMMMMM-MMMMPMMMJMMMEMMMLMMMMMMMMMMMMMMMMMMMMMMMMEMMMMMM 69 AHM-MMMMMWMMMMTMMMPMMMAMMMLMMMMMMMMMMMMMMMMMMGMMMMMMCMMMMMM 495 ALM-MMMMAMMMMPMMMDMMMSMMMMMMMMMMMMMMMMMMMMMMEMMMMMMAMMMMMM 117
A-MMMAMMMPMMMHMMMTMMMWMMMMGMMMMMMMMMMMMMMMMMMFMMMMMMBMMMMMM 151 AHM-MMMMMAMMMPMMMJMMMDMMMSMMMMMMMMMMMMMMMMMMMMMMMMMEMMMMMM 123 AHM-MMMMMLMMMFMMAMMMMPMMMJMMDMMMMSMMMMMMMMMMMMMMMMMMMEMMMMMM 131 AHM-MMMMMPMMMJMMGMMMMLMMMMMMMMMMMMMMMMMMMMMMMMMMMMEMMMMMM 67 AHM-MMMMMSMMMHMMMGMMMMLMMMMMMMMMMMMMMMMMMMMMMMMMMMEMMMMMM 57 A-MMMHMMMTMMMPMMMAMMMSMMMMMMMMMMMMMMMMMEMMMMMDMMMMMMAMMMMMM 201 AHM-MMMMMWMMMMKMMMDMMMMSMMMMMMMMMMMMMMMMMMMMGMMMMMMCMMMMMM 477 AHMWMMMMM-MMMMPMMMJMMMEMMMSMMMMMMMMMMMMMMMMMMMMMMMMEMMMMMM 69 AHM-MMMMMWMMMMTMMMPMMMAMMMSMMMMMMMMMMMMMMMMMMGMMMMMMCMMMMMM 495 ALM-MMMMAMMMMPMMMEMMMLMMMMMMMMMMMMMMMMMMMMMMEMMMMMMAMMMMMM 117
A-MMMAMMMPMMMHMMMTMMMWMMMMRMMMMMMMMMMMMMMMMMMFMMMMMMBMMMMMM 151 AHM-MMMMMAMMMPMMMJMMMEMMMLMMMMMMMMMMMMMMMMMMMMMMMMMEMMMMMM 123 AHM-MMMMMLMMMFMMAMMMMPMMMJMMEMMMLMMMMMMMMMMMMMMMMMMMMEMMMMMM 131 AHM-MMMMMPMMMJMMGMMMMSMMMMMMMMMMMMMMMMMMMMMMMMMMMMEMMMMMM 67 AHM-MMMMMSMMMHMMMGMMMMLMMM(MQMMMMuMMiMMlMlM)MMMMMMMMMMMMMEMMMMMM 77 A-MMMHMMMTMMMPMMMAMMMXMMMMMMMMMMMMMMMMMEMMMMMDMMMMMMAMMMMMM 201 AHM-MMMMMWMMMMKMMMEMMMMLMMMMMMMMMMMMMMMMMMMMGMMMMMMCMMMMMM 477 AHMWMMMMM-MMMMPMMMJMMMGMMMLMMMMMMMMMMMMMMMMMMMMMMMMEMMMMMM 69 AHM-MMMMMWMMMMTMMMPMMMTMMMPMMMMMMMMMMMMMMMMMMGMMMMMMCMMMMMM 504 ALM-MMMMAMMMMPMMMEMMMSMMMMMMMMMMMMMMMMMMMMMMEMMMMMMAMMMMMM 117
A-MMMAMMMPMMMJMMAMMMMLMMMMMMMMMMMMMMMMMEMMMMMDMMMMMMAMMMMMM 119 AHM-MMMMMAMMMPMMMJMMMEMMMSMMMMMMMMMMMMMMMMMMMMMMMMMEMMMMMM 123 AHM-MMMMMLMMMFMMAMMMMPMMMJMMEMMMSMMMMMMMMMMMMMMMMMMMMEMMMMMM 131 AHM-MMMMMPMMMJMMMMMMMSMMMMMMMMMMMMMMMMMMMMMMMMMMMMEMMMMMM 583 AHM-MMMMMSMMMHMMMGMMMMSMMMMMMMMMMMMMMMMMMMMMMMMMMMEMMMMMM 57 A-MMMHMMMTMMMPMMMKMMMAMMMLMMMMMMMMMMMMMMMMMMMEMMMMMMAMMMMMM 215 AHM-MMMMMWMMMMKMMMEMMMMSMMMMMMMMMMMMMMMMMMMMGMMMMMMCMMMMMM 477 AHMWMMMMM-MMMMPMMMJMMMGMMMSMMMMMMMMMMMMMMMMMMMMMMMMEMMMMMM 69 AHM-MMMMMWMMMMTMMMUMMMPMMMTMMMMMMMMMMMMMMMMMMGMMMMMMCMMMMMM 509 ALM-MMMMAMMMMPMMMGMMMLMMMMMMMMMMMMMMMMMMMMMMEMMMMMMAMMMMMM 117
A-MMMAMMMPMMMJMMAMMMMSMMMMMMMMMMMMMMMMMEMMMMMDMMMMMMAMMMMMM 119 AHM-MMMMMAMMMPMMMJMMMGMMMLMMMMMMMMMMMMMMMMMMMMMMMMMEMMMMMM 123 AHM-MMMMMLMMMFMMAMMMMPMMMJMMGMMMMLMMMMMMMMMMMMMMMMMMMEMMMMMM 131 AHM-MMMMMPMMMJMMMMMMMTMMMMMMMMMMMMMMMMMMMMMMMMMMMMEMMMMMM 585 AHM-MMMMMSMMMHMMMGMMMMSMMM(MQMMMMuMMMiMlMlM)MMMMMMMMMMMMMEMMMMMM 77 A-MMMHMMMTMMMPMMMKMMMAMMMSMMMMMMMMMMMMMMMMMMMEMMMMMMAMMMMMM 215 AHM-MMMMMWMMMMKMMMGMMMMLMMMMMMMMMMMMMMMMMMMMGMMMMMMCMMMMMM 477 AHMWMMMMM-MMMMPMMMJMMMRMMMLMMMMMMMMMMMMMMMMMMMMMMMMEMMMMMM 69 AHM-MMMMMWMMMMUMMMPMMMMTMMMMMMMMMMMMMMMMMMMMGMMMMMMCMMMMMM 509 ALM-MMMMAMMMMPMMMGMMMSMMMMMMMMMMMMMMMMMMMMMMEMMMMMMAMMMMMM 117
A-MMMAMMMPMMMJMMDMMMMLMMMMMMMMMMMMMMMMMEMMMMMDMMMMMMAMMMMMM 119 AHM-MMMMMAMMMPMMMJMMMGMMMSMMMMMMMMMMMMMMMMMMMMMMMMMEMMMMMM 123 AHM-MMMMMLMMMFMMAMMMMPMMMJMMGMMMMSMMMMMMMMMMMMMMMMMMMEMMMMMM 131 AHM-MMMMMPMMMJMMRMMMMLMMMMMMMMMMMMMMMMMMMMMMMMMMMMEMMMMMM 67 AHM-MMMMMSMMMHMMMGMMMMXMMMMMMMMMMMMMMMMMMMMMMMMMMMEMMMMMM 57 A-MMMHMMMTMMMPMMMKMMMAMMMXMMMMMMMMMMMMMMMMMMMEMMMMMMAMMMMMM 215 AHM-MMMMMWMMMMKMMMGMMMMSMMMMMMMMMMMMMMMMMMMMGMMMMMMCMMMMMM 477 AHMWMMMMM-MMMMPMMMJMMMRMMMSMMMMMMMMMMMMMMMMMMMMMMMMEMMMMMM 69 AHM-MMMMMWMMMMXMMMJMMMAMMMLMMMMMMMMMMMMMMMMMMGMMMMMMCMMMMMM 455 ALM-MMMMAMMMMPMMMHMMMAMMMLMMMMMMMMMMMMMMEMMMMMDMMMMMMAMMMMMM 117
A-MMMAMMMPMMMJMMDMMMMSMMMMMMMMMMMMMMMMMEMMMMMDMMMMMMAMMMMMM 119 AHM-MMMMMAMMMPMMMJMMMRMMMLMMMMMMMMMMMMMMMMMMMMMMMMMEMMMMMM 123 AHM-MMMMMLMMMFMMAMMMMPMMMJMMRMMMMLMMMMMMMMMMMMMMMMMMMEMMMMMM 131 AHM-MMMMMPMMMJMMRMMMMSMMMMMMMMMMMMMMMMMMMMMMMMMMMMEMMMMMM 67 AHM-MMMMMSMMMHMMMKMMMMAMMMLMMMMMMMMMMMMMMMMMMMMMMMMEMMMMMM 167 A-MMMHMMMUMMMPMMMTMMMMMMMMMMMMMMMMMMMMEMMMMMDMMMMMMAMMMMMM 239 AHM-MMMMMWMMMMKMMMRMMMMLMMMMMMMMMMMMMMMMMMMMGMMMMMMCMMMMMM 477 AHMWMMMMM-MMMMPMMMJMMMVMMMAMMMLMMMMMMMMMMMMMMMMMMMMMEMMMMMM 69 AHM-MMMMMWMMMMXMMMJMMMAMMMSMMMMMMMMMMMMMMMMMMGMMMMMMCMMMMMM 455 ALM-MMMMAMMMMPMMMHMMMAMMMSMMMMMMMMMMMMMMEMMMMMDMMMMMMAMMMMMM 117
A-MMMAMMMPMMMJMMEMMMMLMMMMMMMMMMMMMMMMMEMMMMMDMMMMMMAMMMMMM 119 AHM-MMMMMAMMMPMMMJMMMRMMMSMMMMMMMMMMMMMMMMMMMMMMMMMEMMMMMM 123 AHM-MMMMMLMMMFMMAMMMMPMMMJMMRMMMMSMMMMMMMMMMMMMMMMMMMEMMMMMM 131 AHM-MMMMMPMMMJMMVMMMMAMMMLMMMMMMMMMMMMMMMMMMMMMMMMMEMMMMMM 67 AHM-MMMMMSMMMHMMMKMMMMAMMMSMMMMMMMMMMMMMMMMMMMMMMMMEMMMMMM 167 A-MMMHMMMUMMMPMMMTMMMFMMMMMMMMMMMMMMMMMMMMMMEMMMMMMAMMMMMM 239 AHM-MMMMMWMMMMKMMMRMMMMSMMMMMMMMMMMMMMMMMMMMGMMMMMMCMMMMMM 477 AHMWMMMMM-MMMMPMMMJMMMVMMMAMMMSMMMMMMMMMMMMMMMMMMMMMEMMMMMM 69 AHM-MMMMMWMMMMXMMMJMMMDMMMLMMMMMMMMMMMMMMMMMMGMMMMMMCMMMMMM 455 ALM-MMMMAMMMMPMMMHMMMDMMMLMMMMMMMMMMMMMMMMMMMEMMMMMMAMMMMMM 117
A-MMMAMMMPMMMJMMEMMMMSMMMMMMMMMMMMMMMMMEMMMMMDMMMMMMAMMMMMM 119 AHM-MMMMMAMMMPMMMRMMMMLMMMMMMMMMMMMMMMMMMMMMMMMMMMEMMMMMM 113 AHM-MMMMMMMMMMPMMMHMMMAMMMLMMMMMMMMMMMMMMMMMMMMMMMMEMMMMMM 155 AHM-MMMMMPMMMJMMVMMMMAMMMSMMMMMMMMMMMMMMMMMMMMMMMMMEMMMMMM 67 AHM-MMMMMSMMMHMMMKMMMMAMMMXMMMMMMMMMMMMMMMMMMMMMMMMEMMMMMM 167 AHMWMMMMM-MMMMAMMMPMMMMAMMMLMMMMMMMMMMMMMMMMMMMMMMMEMMMMMM 115 AHM-MMMMMWMMMMKMMMTMMMWMMMMMAMMMMMMMMMMMMMMMMGMMMMMMCMMMMMM 481 AHMWMMMMM-MMMMPMMMJMMMVMMMDMMMLMMMMMMMMMMMMMMMMMMMMMEMMMMMM 69 AHM-MMMMMWMMMMXMMMJMMMDMMMSMMMMMMMMMMMMMMMMMMGMMMMMMCMMMMMM 455 ALM-MMMMAMMMMPMMMHMMMDMMMSMMMMMMMMMMMMMMMMMMMEMMMMMMAMMMMMM 117
A-MMMAMMMPMMMJMMGMMMMLMMMMMMMMMMMMMMMMMEMMMMMDMMMMMMAMMMMMM 119 AHM-MMMMMAMMMPMMMRMMMMSMMMMMMMMMMMMMMMMMMMMMMMMMMMEMMMMMM 113 AHM-MMMMMMMMMMPMMMHMMMAMMMSMMMMMMMMMMMMMMMMMMMMMMMMEMMMMMM 155 AHM-MMMMMPMMMJMMVMMMMDMMMLMMMMMMMMMMMMMMMMMMMMMMMMMEMMMMMM 67 AHM-MMMMMSMMMHMMMKMMMMDMMMLMMMMMMMMMMMMMMMMMMMMMMMMEMMMMMM 167 AHMWMMMMM-MMMMAMMMPMMMMAMMMSMMMMMMMMMMMMMMMMMMMMMMMEMMMMMM 115 AHM-MMMMMWMMMMKMMMTMMMWMMMMMDMMMMMMMMMMMMMMMMGMMMMMMCMMMMMM 481 AHMWMMMMM-MMMMPMMMJMMMVMMMDMMMSMMMMMMMMMMMMMMMMMMMMMEMMMMMM 69 AHM-MMMMMWMMMMXMMMJMMMEMMMLMMMMMMMMMMMMMMMMMMGMMMMMMCMMMMMM 455 ALM-MMMMAMMMMPMMMHMMMEMMMLMMMMMMMMMMMMMMMMMMMEMMMMMMAMMMMMM 117
A-MMMAMMMPMMMJMMGMMMMSMMMMMMMMMMMMMMMMMEMMMMMDMMMMMMAMMMMMM 119 A-MMMHMMMAMMMTMMMAMMMLMMMMMMMMMMMMMMMMMEMMMMMDMMMMMMAMMMMMM 201 AHM-MMMMMMMMMMPMMMHMMMAMMMXMMMMMMMMMMMMMMMMMMMMMMMMEMMMMMM 155 AHM-MMMMMPMMMJMMVMMMMDMMMSMMMMMMMMMMMMMMMMMMMMMMMMMEMMMMMM 67 AHM-MMMMMSMMMHMMMKMMMMDMMMSMMMMMMMMMMMMMMMMMMMMMMMMEMMMMMM 167 AHMWMMMMM-MMMMAMMMPMMMMDMMMLMMMMMMMMMMMMMMMMMMMMMMMEMMMMMM 115 AHM-MMMMMWMMMMKMMMTMMMWMMMMMEMMMMMMMMMMMMMMMMGMMMMMMCMMMMMM 481 AHMWMMMMM-MMMMPMMMJMMMVMMMEMMMLMMMMMMMMMMMMMMMMMMMMMEMMMMMM 69 AHM-MMMMMWMMMMXMMMJMMMEMMMSMMMMMMMMMMMMMMMMMMGMMMMMMCMMMMMM 455 ALM-MMMMAMMMMPMMMHMMMEMMMSMMMMMMMMMMMMMMMMMMMEMMMMMMAMMMMMM 117
A-MMMAMMMPMMMJMMRMMMMLMMMMMMMMMMMMMMMMMEMMMMMDMMMMMMAMMMMMM 119 A-MMMHMMMAMMMTMMMAMMMSMMMMMMMMMMMMMMMMMEMMMMMDMMMMMMAMMMMMM 201 AHM-MMMMMMMMMMPMMMHMMMDMMMLMMMMMMMMMMMMMMMMMMMMMMMMEMMMMMM 155 AHM-MMMMMPMMMJMMVMMMMEMMMLMMMMMMMMMMMMMMMMMMMMMMMMMEMMMMMM 67 AHM-MMMMMSMMMHMMMKMMMMDMMMXMMMMMMMMMMMMMMMMMMMMMMMMEMMMMMM 167 AHMWMMMMM-MMMMAMMMPMMMMDMMMSMMMMMMMMMMMMMMMMMMMMMMMEMMMMMM 115 AHM-MMMMMWMMMMKMMMTMMMWMMMMMGMMMMMMMMMMMMMMMMGMMMMMMCMMMMMM 481 AHMWMMMMM-MMMMPMMMJMMMVMMMEMMMSMMMMMMMMMMMMMMMMMMMMMEMMMMMM 69 AHM-MMMMMWMMMMXMMMJMMMGMMMLMMMMMMMMMMMMMMMMMMGMMMMMMCMMMMMM 455 ALM-MMMMAMMMMPMMMHMMMGMMMMLMMMMMMMMMMMMMMMMMMEMMMMMMAMMMMMM 117
A-MMMAMMMPMMMJMMRMMMMSMMMMMMMMMMMMMMMMMEMMMMMDMMMMMMAMMMMMM 119 A-MMMHMMMAMMMTMMMAMMMXMMMMMMMMMMMMMMMMMEMMMMMDMMMMMMAMMMMMM 201 AHM-MMMMMMMMMMPMMMHMMMDMMMSMMMMMMMMMMMMMMMMMMMMMMMMEMMMMMM 155 AHM-MMMMMPMMMJMMVMMMMEMMMSMMMMMMMMMMMMMMMMMMMMMMMMMEMMMMMM 67 AHM-MMMMMSMMMHMMMKMMMMEMMMLMMMMMMMMMMMMMMMMMMMMMMMMEMMMMMM 167 AHMWMMMMM-MMMMAMMMPMMMMEMMMLMMMMMMMMMMMMMMMMMMMMMMMEMMMMMM 115 AHM-MMMMMWMMMMKMMMTMMMWMMMMMRMMMMMMMMMMMMMMMMGMMMMMMCMMMMMM 481 AHMWMMMMM-MMMMPMMMJMMMVMMMGMMMLMMMMMMMMMMMMMMMMMMMMMEMMMMMM 69 AHM-MMMMMWMMMMXMMMJMMMGMMMSMMMMMMMMMMMMMMMMMMGMMMMMMCMMMMMM 455 ALM-MMMMAMMMMPMMMHMMMGMMMMSMMMMMMMMMMMMMMMMMMEMMMMMMAMMMMMM 117
A-MMMAMMMPMMMRMMMLMMMMMMMMMMMMMMMMMMMMEMMMMMDMMMMMMAMMMMMM 109 A-MMMHMMMAMMMTMMMKMMMAMMMMLMMMMMMMMMMMMMMMMMMEMMMMMMAMMMMMM 215 AHM-MMMMMMMMMMPMMMHMMMDMMMXMMMMMMMMMMMMMMMMMMMMMMMMEMMMMMM 155 AHM-MMMMMPMMMJMMVMMMMGMMMLMMMMMMMMMMMMMMMMMMMMMMMMMEMMMMMM 67 AHM-MMMMMSMMMHMMMKMMMMEMMMSMMMMMMMMMMMMMMMMMMMMMMMMEMMMMMM 167 AHMWMMMMM-MMMMAMMMPMMMMEMMMSMMMMMMMMMMMMMMMMMMMMMMMEMMMMMM 115 AHMWMMMMM-MMMMLMMMFMMMAMMMPMMMJMMMAMMMLMMMMMMMMMMMMMMMEMMMMMM 133 AHMWMMMMM-MMMMPMMMJMMMVMMMGMMMSMMMMMMMMMMMMMMMMMMMMMEMMMMMM 69 AHM-MMMMMWMMMMXMMMJMMMKMMMAMMMLMMMMMMMMMMMMMMMGMMMMMMCMMMMMM 485 ALM-MMMMAMMMMPMMMHMMMRMMMLMMMMMMMMMMMMMMMMMMMEMMMMMMAMMMMMM 117
A-MMMAMMMPMMMRMMMSMMMMMMMMMMMMMMMMMMMMEMMMMMDMMMMMMAMMMMMM 109 A-MMMHMMMAMMMTMMMKMMMAMMMMSMMMMMMMMMMMMMMMMMMEMMMMMMAMMMMMM 215 AHM-MMMMMMMMMMPMMMHMMMEMMMLMMMMMMMMMMMMMMMMMMMMMMMMEMMMMMM 155 AHM-MMMMMPMMMJMMVMMMMGMMMSMMMMMMMMMMMMMMMMMMMMMMMMMEMMMMMM 67 AHM-MMMMMSMMMHMMMKMMMMEMMMXMMMMMMMMMMMMMMMMMMMMMMMMEMMMMMM 167 AHMWMMMMM-MMMMAMMMPMMMMGMMMLMMMMMMMMMMMMMMMMMMMMMMMEMMMMMM 115 AHMWMMMMM-MMMMLMMMFMMMAMMMPMMMJMMMAMMMSMMMMMMMMMMMMMMMEMMMMMM 133 AHMWMMMMM-MMMMPMMMJMMMVMMMRMMMLMMMMMMMMMMMMMMMMMMMMMEMMMMMM 69 AHM-MMMMMWMMMMXMMMJMMMKMMMAMMMSMMMMMMMMMMMMMMMGMMMMMMCMMMMMM 485 ALM-MMMMAMMMMPMMMHMMMRMMMSMMMMMMMMMMMMMMMMMMMEMMMMMMAMMMMMM 117
A-MMMAMMMPMMMTMMMPMMMMMMMMMMMMMMMMMMMMEMMMMMDMMMMMMAMMMMMM 227 A-MMMHMMMAMMMTMMMKMMMAMMMMXMMMMMMMMMMMMMMMMMMEMMMMMMAMMMMMM 215 AHM-MMMMMMMMMMPMMMHMMMEMMMSMMMMMMMMMMMMMMMMMMMMMMMMEMMMMMM 155 AHM-MMMMMPMMMJMMVMMMMRMMMLMMMMMMMMMMMMMMMMMMMMMMMMMEMMMMMM 67 AHM-MMMMMSMMMHMMMKMMMMGMMMLMMMMMMMMMMMMMMMMMMMMMMMMEMMMMMM 167 AHMWMMMMM-MMMMAMMMPMMMMGMMMSMMMMMMMMMMMMMMMMMMMMMMMEMMMMMM 115 AHMWMMMMM-MMMMLMMMFMMMAMMMPMMMJMMMDMMMLMMMMMMMMMMMMMMMEMMMMMM 133 AHMWMMMMM-MMMMPMMMJMMMVMMMRMMMSMMMMMMMMMMMMMMMMMMMMMEMMMMMM 69 AHM-MMMMMWMMMMXMMMJMMMKMMMDMMMLMMMMMMMMMMMMMMMGMMMMMMCMMMMMM 485 ALM-MMMMAMMMMPMMMJMMAMMMMLMMMMMMMMMMMMMMEMMMMMDMMMMMMAMMMMMM 127
A-MMMAMMMPMMMTMMMWMMMMAMMMMMMMMMMMMMMMMMMMMMEMMMMMMAMMMMMM 151 AHMBMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMEMMMMMDMMMMMMAMMMMMM 187 AHM-MMMMMMMMMMPMMMHMMMEMMMXMMMMMMMMMMMMMMMMMMMMMMMMEMMMMMM 155 AHM-MMMMMPMMMJMMVMMMMRMMMSMMMMMMMMMMMMMMMMMMMMMMMMMEMMMMMM 67 AHM-MMMMMSMMMHMMMKMMMMGMMMSMMMMMMMMMMMMMMMMMMMMMMMMEMMMMMM 167 AHMWMMMMM-MMMMAMMMPMMMMHMMMAMMMLMMMMMMMMMMMMMMMMMMMMEMMMMMM 115 AHMWMMMMM-MMMMLMMMFMMMAMMMPMMMJMMMDMMMSMMMMMMMMMMMMMMMEMMMMMM 133 AHMWMMMMM-MMMMPMMMKMMMMAMMMLMMMMMMMMMMMMMMMMMMMMMMMEMMMMMM 169 AHM-MMMMMWMMMMXMMMJMMMKMMMDMMMSMMMMMMMMMMMMMMMGMMMMMMCMMMMMM 485 ALM-MMMMAMMMMPMMMJMMAMMMMSMMMMMMMMMMMMMMEMMMMMDMMMMMMAMMMMMM 127
A-MMMAMMMPMMMTMMMWMMMMDMMMMMMMMMMMMMMMMMMMMMFMMMMMMBMMMMMM 151 AHMBMMMM-MMMMCMMMMMMMMMMMMMMMMMMMMMMMEMMMMMDMMMMMMAMMMMMM 187 AHM-MMMMMMMMMMPMMMHMMMGMMMMLMMMMMMMMMMMMMMMMMMMMMMMEMMMMMM 155 AHM-MMMMMPMMMKMMMAMMMMLMMMMMMMMMMMMMMMMMMMMMMMMMMMEMMMMMM 167 AHM-MMMMMSMMMHMMMKMMMMGMMMXMMMMMMMMMMMMMMMMMMMMMMMMEMMMMMM 167 AHMWMMMMM-MMMMAMMMPMMMMHMMMAMMMSMMMMMMMMMMMMMMMMMMMMEMMMMMM 115 AHMWMMMMM-MMMMLMMMFMMMAMMMPMMMJMMMEMMMLMMMMMMMMMMMMMMMEMMMMMM 133 AHMWMMMMM-MMMMPMMMKMMMMAMMMSMMMMMMMMMMMMMMMMMMMMMMMEMMMMMM 169 AHM-MMMMMWMMMMXMMMJMMMKMMMEMMMLMMMMMMMMMMMMMMMGMMMMMMCMMMMMM 485 ALM-MMMMAMMMMPMMMJMMDMMMMLMMMMMMMMMMMMMMMMMMMEMMMMMMAMMMMMM 127
A-MMMAMMMPMMMTMMMWMMMMEMMMMMMMMMMMMMMMMMMMMMFMMMMMMBMMMMMM 151 AHMCMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMEMMMMMDMMMMMMAMMMMMM 179 AHM-MMMMMMMMMMPMMMHMMMGMMMMSMMMMMMMMMMMMMMMMMMMMMMMEMMMMMM 155 AHM-MMMMMPMMMKMMMAMMMMSMMMMMMMMMMMMMMMMMMMMMMMMMMMEMMMMMM 167 AHM-MMMMMSMMMHMMMKMMMMRMMMLMMMMMMMMMMMMMMMMMMMMMMMMEMMMMMM 167 AHMWMMMMM-MMMMAMMMPMMMMHMMMDMMMLMMMMMMMMMMMMMMMMMMMMEMMMMMM 115 AHMWMMMMM-MMMMLMMMFMMMAMMMPMMMJMMMEMMMSMMMMMMMMMMMMMMMEMMMMMM 133 AHMWMMMMM-MMMMPMMMKMMMMAMMMXMMMMMMMMMMMMMMMMMMMMMMMEMMMMMM 169 AHM-MMMMMWMMMMXMMMJMMMKMMMEMMMSMMMMMMMMMMMMMMMGMMMMMMCMMMMMM 485 ALM-MMMMAMMMMPMMMJMMDMMMMSMMMMMMMMMMMMMMMMMMMEMMMMMMAMMMMMM 127
A-MMMAMMMPMMMTMMMWMMMMGMMMMMMMMMMMMMMMMMMMMMFMMMMMMBMMMMMM 151 AHMDMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMEMMMMMMAMMMMMM 275 AHM-MMMMMMMMMMPMMMHMMMGMMMMXMMMMMMMMMMMMMMMMMMMMMMMEMMMMMM 155 AHM-MMMMMPMMMKMMMAMMMMXMMMMMMMMMMMMMMMMMMMMMMMMMMMEMMMMMM 167 AHM-MMMMMSMMMHMMMKMMMMRMMMSMMMMMMMMMMMMMMMMMMMMMMMMEMMMMMM 167 AHMWMMMMM-MMMMAMMMPMMMMHMMMDMMMSMMMMMMMMMMMMMMMMMMMMEMMMMMM 115 AHMWMMMMM-MMMMLMMMFMMMAMMMPMMMJMMMGMMMLMMMMMMMMMMMMMMMEMMMMMM 133 AHMWMMMMM-MMMMPMMMKMMMMDMMMLMMMMMMMMMMMMMMMMMMMMMMMEMMMMMM 169 AHM-MMMMMWMMMMXMMMJMMMKMMMGMMMMLMMMMMMMMMMMMMMGMMMMMMCMMMMMM 485 ALM-MMMMAMMMMPMMMJMMEMMMLMMMMMMMMMMMMMMMMMMMMEMMMMMMAMMMMMM 127
A-MMMAMMMPMMMTMMMWMMMMRMMMMMMMMMMMMMMMMMMMMMFMMMMMMBMMMMMM 151 AHMDMMMM-MMMMBMMMMMMMMMMMMMMMMMMMMMMMEMMMMMDMMMMMMAMMMMMM 302 AHM-MMMMMMMMMMPMMMHMMMRMMMLMMMMMMMMMMMMMMMMMMMMMMMMEMMMMMM 155 AHM-MMMMMPMMMKMMMDMMMMLMMMMMMMMMMMMMMMMMMMMMMMMMMMEMMMMMM 167 AHM-MMMMMSMMMHMMMKMMMMRMMMXMMMMMMMMMMMMMMMMMMMMMMMMEMMMMMM 167 AHMWMMMMM-MMMMAMMMPMMMMHMMMEMMMLMMMMMMMMMMMMMMMMMMMMEMMMMMM 115 AHMWMMMMM-MMMMLMMMFMMMAMMMPMMMJMMMGMMMSMMMMMMMMMMMMMMMEMMMMMM 133 AHMWMMMMM-MMMMPMMMKMMMMDMMMSMMMMMMMMMMMMMMMMMMMMMMMEMMMMMM 169 AHM-MMMMMWMMMMXMMMJMMMKMMMGMMMMSMMMMMMMMMMMMMMGMMMMMMCMMMMMM 485 ALM-MMMMAMMMMPMMMJMMEMMMSMMMMMMMMMMMMMMMMMMMMEMMMMMMAMMMMMM 127
A-MMMAMMMSMMMDMMMMMMMMMMMMMMMMMMMMMMMMMMMMEMMMMMMAMMMMMM 277 A-MMMHMMMDMMM-MMMMMBMMMMMMMMMMMMMMMMMMEMMMMMDMMMMMMAMMMMMM 301 AHM-MMMMMMMMMMPMMMHMMMRMMMSMMMMMMMMMMMMMMMMMMMMMMMMEMMMMMM 155 AHM-MMMMMPMMMKMMMDMMMMSMMMMMMMMMMMMMMMMMMMMMMMMMMMEMMMMMM 167 AHM-MMMMMSMMMHMMMLMMM(MM2MM~MMMMM4MM)MMEMMMMMMMMMMMMMMMEMMMMMM 589 AHMWMMMMM-MMMMAMMMPMMMMHMMMEMMMSMMMMMMMMMMMMMMMMMMMMEMMMMMM 115 AHMWMMMMM-MMMMLMMMFMMMAMMMPMMMJMMMRMMMLMMMMMMMMMMMMMMMEMMMMMM 133 AHMWMMMMM-MMMMPMMMKMMMMDMMMXMMMMMMMMMMMMMMMMMMMMMMMEMMMMMM 169 AHM-MMMMMWMMMMXMMMJMMMKMMMRMMMLMMMMMMMMMMMMMMMGMMMMMMCMMMMMM 485 ALM-MMMMAMMMMPMMMJMMGMMMMLMMMMMMMMMMMMMMMMMMMEMMMMMMAMMMMMM 127
A-MMMAMMMSMMMDMMM-MMMMMBMMMMMMMMMMMMMMMEMMMMMDMMMMMMAMMMMMM 302 AHMDMMMMDMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMEMMMMMMAMMMMMM 275 AHM-MMMMMMMMMMPMMMHMMMRMMMXMMMMMMMMMMMMMMMMMMMMMMMMEMMMMMM 155 AHM-MMMMMPMMMKMMMDMMMMXMMMMMMMMMMMMMMMMMMMMMMMMMMMEMMMMMM 167 AHM-MMMMMSMMMHMMMLMMMTMMMAMMMLMMMMMMMMMMMMMMMMMMMMMMEMMMMMM 131 AHMWMMMMM-MMMMAMMMPMMMMHMMMGMMMLMMMMMMMMMMMMMMMMMMMMEMMMMMM 115 AHMWMMMMM-MMMMLMMMFMMMAMMMPMMMJMMMRMMMSMMMMMMMMMMMMMMMEMMMMMM 133 AHMWMMMMM-MMMMPMMMKMMMMEMMMLMMMMMMMMMMMMMMMMMMMMMMMEMMMMMM 169 AHM-MMMMMWMMMMXMMMJMMMKMMMRMMMSMMMMMMMMMMMMMMMGMMMMMMCMMMMMM 485 ALM-MMMMAMMMMPMMMJMMGMMMMSMMMMMMMMMMMMMMMMMMMEMMMMMMAMMMMMM 127
A-MMMAMMMSMMMDMMMDMMMMMMMMMMMMMMMMMMMMMMMMMEMMMMMMAMMMMMM 277 A-MMMHMMMDMMMDMMMMMMMMMMMMMMMMMMMMMMMEMMMMMDMMMMMMAMMMMMM 257 AHM-MMMMMPMMMAMMMTMMMAMMMLMMMMMMMMMMMMMMMMMMMMMMMMMEMMMMMM 205 AHM-MMMMMPMMMKMMMEMMMLMMMMMMMMMMMMMMMMMMMMMMMMMMMMEMMMMMM 167 AHM-MMMMMSMMMHMMMLMMMTMMMAMMMSMMMMMMMMMMMMMMMMMMMMMMEMMMMMM 131 AHMWMMMMM-MMMMAMMMPMMMMHMMMGMMMSMMMMMMMMMMMMMMMMMMMMEMMMMMM 115 AHM-MMMMMWMMMMMMMMMPMMMAMMMLMMMMMMMMMMMMMMMMMGMMMMMMCMMMMMM 473 AHMWMMMMM-MMMMPMMMKMMMMEMMMSMMMMMMMMMMMMMMMMMMMMMMMEMMMMMM 169 AHM-MMMMMWMMMMXMMMJMMMRMMMLMMMMMMMMMMMMMMMMMMGMMMMMMCMMMMMM 455 ALM-MMMMAMMMMPMMMJMMRMMMMLMMMMMMMMMMMMMMMMMMMEMMMMMMAMMMMMM 127
A-MMMAMMMSMMMDMMMEMMMMMMMMMMMMMMMMMMMMMMMMMEMMMMMMAMMMMMM 277 AHMDMMMMEMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMEMMMMMMAMMMMMM 275 AHM-MMMMMPMMMAMMMTMMMAMMMSMMMMMMMMMMMMMMMMMMMMMMMMMEMMMMMM 205 AHM-MMMMMPMMMKMMMEMMMSMMMMMMMMMMMMMMMMMMMMMMMMMMMMEMMMMMM 167 AHM-MMMMMSMMMHMMMLMMMTMMMDMMMLMMMMMMMMMMMMMMMMMMMMMMEMMMMMM 131 AHMWMMMMM-MMMMAMMMPMMMMHMMMRMMMLMMMMMMMMMMMMMMMMMMMMEMMMMMM 115 AHM-MMMMMWMMMMMMMMMPMMMAMMMSMMMMMMMMMMMMMMMMMGMMMMMMCMMMMMM 473 AHMWMMMMM-MMMMPMMMKMMMMEMMMXMMMMMMMMMMMMMMMMMMMMMMMEMMMMMM 169 AHM-MMMMMWMMMMXMMMJMMMRMMMSMMMMMMMMMMMMMMMMMMGMMMMMMCMMMMMM 455 ALM-MMMMAMMMMPMMMJMMRMMMMSMMMMMMMMMMMMMMMMMMMEMMMMMMAMMMMMM 127
A-MMMAMMMSMMMDMMMGMMMMMMMMMMMMMMMMMMMMMMMMMEMMMMMMAMMMMMM 277 A-MMMHMMMDMMMEMMMMMMMMMMMMMMMMMMMMMMMEMMMMMDMMMMMMAMMMMMM 257 AHM-MMMMMPMMMAMMMTMMMAMMMXMMMMMMMMMMMMMMMMMMMMMMMMMEMMMMMM 205 AHM-MMMMMPMMMKMMMEMMMXMMMMMMMMMMMMMMMMMMMMMMMMMMMMEMMMMMM 167 AHM-MMMMMSMMMHMMMLMMMTMMMDMMMSMMMMMMMMMMMMMMMMMMMMMMEMMMMMM 131 AHMWMMMMM-MMMMAMMMPMMMMHMMMRMMMSMMMMMMMMMMMMMMMMMMMMEMMMMMM 115 AHM-MMMMMWMMMMMMMMMPMMMDMMMLMMMMMMMMMMMMMMMMMGMMMMMMCMMMMMM 473 AHMWMMMMM-MMMMPMMMKMMMMGMMMLMMMMMMMMMMMMMMMMMMMMMMMEMMMMMM 169 AHM-MMMMMWMMMMXMMMKMMMMAMMMLMMMMMMMMMMMMMMMMMGMMMMMMCMMMMMM 477 ALM-MMMMAMMMMPMMMRMMMLMMMMMMMMMMMMMMMMMMMMMMEMMMMMMAMMMMMM 117
A-MMMAMMMSMMMDMMMRMMMMMMMMMMMMMMMMMMMMMMMMMEMMMMMMAMMMMMM 277 AHMDMMMMGMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMEMMMMMMAMMMMMM 275 AHM-MMMMMPMMMAMMMTMMMKMMMAMMMMLMMMMMMMMMMMMMMMMMMMMMEMMMMMM 215 AHM-MMMMMPMMMKMMMGMMMMLMMMMMMMMMMMMMMMMMMMMMMMMMMMEMMMMMM 167 AHM-MMMMMSMMMHMMMLMMMTMMMEMMMLMMMMMMMMMMMMMMMMMMMMMMEMMMMMM 131 AHMWMMMMM-MMMMAMMMPMMMMJMMAMMMLMMMMMMMMMMMMMMMMMMMMMEMMMMMM 125 AHM-MMMMMWMMMMMMMMMPMMMDMMMSMMMMMMMMMMMMMMMMMGMMMMMMCMMMMMM 473 AHMWMMMMM-MMMMPMMMKMMMMGMMMSMMMMMMMMMMMMMMMMMMMMMMMEMMMMMM 169 AHM-MMMMMWMMMMXMMMKMMMMAMMMSMMMMMMMMMMMMMMMMMGMMMMMMCMMMMMM 477 ALM-MMMMAMMMMPMMMRMMMSMMMMMMMMMMMMMMMMMMMMMMEMMMMMMAMMMMMM 117
A-MMMAMMMTMMMAMMMLMMMMMMMMMMMMMMMMMMMMEMMMMMDMMMMMMAMMMMMM 201 A-MMMHMMMDMMMGMMMMMMMMMMMMMMMMMMMMMMMEMMMMMDMMMMMMAMMMMMM 257 AHM-MMMMMPMMMAMMMTMMMKMMMAMMMMSMMMMMMMMMMMMMMMMMMMMMEMMMMMM 215 AHM-MMMMMPMMMKMMMGMMMMSMMMMMMMMMMMMMMMMMMMMMMMMMMMEMMMMMM 167 AHM-MMMMMSMMMHMMMLMMMTMMMEMMMSMMMMMMMMMMMMMMMMMMMMMMEMMMMMM 131 AHMWMMMMM-MMMMAMMMPMMMMJMMAMMMSMMMMMMMMMMMMMMMMMMMMMEMMMMMM 125 AHM-MMMMMWMMMMMMMMMPMMMEMMMLMMMMMMMMMMMMMMMMMGMMMMMMCMMMMMM 473 AHMWMMMMM-MMMMPMMMKMMMMGMMMXMMMMMMMMMMMMMMMMMMMMMMMEMMMMMM 169 AHM-MMMMMWMMMMXMMMKMMMMDMMMLMMMMMMMMMMMMMMMMMGMMMMMMCMMMMMM 477 ALM-MMMMAMMMMPMMMTMMPMMMMMMMMMMMMMMMMMMEMMMMMDMMMMMMAMMMMMM 227
A-MMMAMMMTMMMAMMMSMMMMMMMMMMMMMMMMMMMMEMMMMMDMMMMMMAMMMMMM 201 AHMDMMMMRMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMEMMMMMMAMMMMMM 275 AHM-MMMMMPMMMAMMMTMMMKMMMAMMMMXMMMMMMMMMMMMMMMMMMMMMEMMMMMM 215 AHM-MMMMMPMMMKMMMGMMMMXMMMMMMMMMMMMMMMMMMMMMMMMMMMEMMMMMM 167 AHM-MMMMMSMMMHMMMLMMMTMMMGMMMLMMMMMMMMMMMMMMMMMMMMMMEMMMMMM 131 AHMWMMMMM-MMMMAMMMPMMMMJMMDMMMLMMMMMMMMMMMMMMMMMMMMMEMMMMMM 125 AHM-MMMMMWMMMMMMMMMPMMMEMMMSMMMMMMMMMMMMMMMMMGMMMMMMCMMMMMM 473 AHMWMMMMM-MMMMPMMMKMMMMRMMMLMMMMMMMMMMMMMMMMMMMMMMMEMMMMMM 169 AHM-MMMMMWMMMMXMMMKMMMMDMMMSMMMMMMMMMMMMMMMMMGMMMMMMCMMMMMM 477 ALM-MMMMAMMMMTMMAMMMMLMMMMMMMMMMMMMMMMMEMMMMMDMMMMMMAMMMMMM 203
A-MMMAMMMTMMMAMMMXMMMMMMMMMMMMMMMMMMMMEMMMMMDMMMMMMAMMMMMM 201 A-MMMHMMMDMMMRMMMMMMMMMMMMMMMMMMMMMMMEMMMMMDMMMMMMAMMMMMM 257 AHM-MMMMMPMMMAMMMTMMMMMMMMAMMMLMMMMMMMMMMMMMMMMMMMMMEMMMMMM 213 AHM-MMMMMPMMMKMMMRMMMMLMMMMMMMMMMMMMMMMMMMMMMMMMMMEMMMMMM 167 AHM-MMMMMSMMMHMMMLMMMTMMMGMMMSMMMMMMMMMMMMMMMMMMMMMMEMMMMMM 131 AHMWMMMMM-MMMMAMMMPMMMMJMMDMMMSMMMMMMMMMMMMMMMMMMMMMEMMMMMM 125 AHM-MMMMMWMMMMMMMMMPMMMGMMMMLMMMMMMMMMMMMMMMMGMMMMMMCMMMMMM 473 AHMWMMMMM-MMMMPMMMKMMMMRMMMSMMMMMMMMMMMMMMMMMMMMMMMEMMMMMM 169 AHM-MMMMMWMMMMXMMMKMMMMEMMMLMMMMMMMMMMMMMMMMMGMMMMMMCMMMMMM 477 ALM-MMMMAMMMMTMMAMMMMSMMMMMMMMMMMMMMMMMEMMMMMDMMMMMMAMMMMMM 203
A-MMMAMMMTMMMKMMMAMMMLMMMMMMMMMMMMMMMMMMMMMMEMMMMMMAMMMMMM 215 AHMFMMMDMMMLMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMEMMMMMMAMMMMMM 329 AHM-MMMMMPMMMAMMMTMMMMMMMMAMMMSMMMMMMMMMMMMMMMMMMMMMEMMMMMM 213 AHM-MMMMMPMMMKMMMRMMMMSMMMMMMMMMMMMMMMMMMMMMMMMMMMEMMMMMM 167 AHM-MMMMMSMMMHMMMLMMMTMMMRMMMLMMMMMMMMMMMMMMMMMMMMMMEMMMMMM 131 AHMWMMMMM-MMMMAMMMPMMMMJMMEMMMLMMMMMMMMMMMMMMMMMMMMMEMMMMMM 125 AHM-MMMMMWMMMMMMMMMPMMMGMMMMSMMMMMMMMMMMMMMMMGMMMMMMCMMMMMM 473 AHMWMMMMM-MMMMPMMMKMMMMRMMMXMMMMMMMMMMMMMMMMMMMMMMMEMMMMMM 169 AHM-MMMMMWMMMMXMMMKMMMMEMMMSMMMMMMMMMMMMMMMMMGMMMMMMCMMMMMM 477 ALM-MMMMAMMMMTMMAMMMMXMMMMMMMMMMMMMMMMMEMMMMMDMMMMMMAMMMMMM 203
A-MMMAMMMTMMMKMMMAMMMSMMMMMMMMMMMMMMMMMMMMMMEMMMMMMAMMMMMM 215 AHMFMMMDMMMSMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMEMMMMMMAMMMMMM 329 AHM-MMMMMPMMMAMMMTMMMMMMMMAMMMXMMMMMMMMMMMMMMMMMMMMMEMMMMMM 213 AHM-MMMMMPMMMKMMMRMMMMXMMMMMMMMMMMMMMMMMMMMMMMMMMMEMMMMMM 167 AHM-MMMMMSMMMHMMMLMMMTMMMRMMMSMMMMMMMMMMMMMMMMMMMMMMEMMMMMM 131 AHMWMMMMM-MMMMAMMMPMMMMJMMEMMMSMMMMMMMMMMMMMMMMMMMMMEMMMMMM 125 AHMWMMMMM-MMMMMMMMMPMMMHMMMAMMMMLMMMMMMMMMMMMMMMMMMMEMMMMMM 157 AHM-MMMMWMMMPMMMLMMTMMMAMMMLMM(MQMMMMuMMiMlMlM)MMMMMMGMMMMMMCMMMMMM 461 AHM-MMMMMWMMMMXMMMKMMMMGMMMLMMMMMMMMMMMMMMMMMGMMMMMMCMMMMMM 477 A-MMMLMMFMMMAMMMPMMMMJMMAMMMLMMMMMMMMMMMMEMMMMMDMMMMMMAMMMMMM 129
A-MMMAMMMTMMMKMMMAMMMXMMMMMMMMMMMMMMMMMMMMMMEMMMMMMAMMMMMM 215 AHMFMMMEMMMLMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMEMMMMMMAMMMMMM 329 AHM-MMMMMPMMMHMMM(MM2MM~MMMMM4MM)MMEMMMMMMMMMMMMMMMMMMEMMMMMM 589 AHM-MMMMMPMMMSMMMTMMMAMMMLMMMMMMMMMMMMMMMMMMMMMMMMMEMMMMMM 205 AHM-MMMMMSMMMHMMMMMMMMSMMMMMMMMMMMMMMMMMMMMMMMMMMMEMMMMMM 583 AHMWMMMMM-MMMMAMMMPMMMMJMMGMMMMLMMMMMMMMMMMMMMMMMMMMEMMMMMM 125 AHMWMMMMM-MMMMMMMMMPMMMHMMMAMMMMSMMMMMMMMMMMMMMMMMMMEMMMMMM 157 AHM-MMMMWMMMPMMMLMMTMMMAMMMSMM(MMQMMMuMMiMlMlM)MMMMMMGMMMMMMCMMMMMM 461 AHM-MMMMMWMMMMXMMMKMMMMGMMMSMMMMMMMMMMMMMMMMMGMMMMMMCMMMMMM 477 A-MMMLMMFMMMAMMMPMMMMJMMAMMMSMMMMMMMMMMMMEMMMMMDMMMMMMAMMMMMM 129
A-MMMAMMMTMMMMMMMAMMMMLMMMMMMMMMMMMMMMMEMMMMMDMMMMMMAMMMMMM 213 AHMFMMMEMMMSMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMEMMMMMMAMMMMMM 329 AHM-MMMMMPMMMHMMMAMMMMLMMMMMMMMMMMMMMMMMMMMMMMMMMMEMMMMMM 57 AHM-MMMMMPMMMSMMMTMMMAMMMSMMMMMMMMMMMMMMMMMMMMMMMMMEMMMMMM 205 AHM-MMMMMSMMMHMMMMMMMMSMMMLMMMMMMMMMMMMMMMMMMMMMMMMEMMMMMM 583 AHMWMMMMM-MMMMAMMMPMMMMJMMGMMMMSMMMMMMMMMMMMMMMMMMMMEMMMMMM 125 AHMWMMMMM-MMMMMMMMMPMMMHMMMAMMMMXMMMMMMMMMMMMMMMMMMMEMMMMMM 157 AHM-MMMMMWMMMMPMMMRMMMMLMMMMMMMMMMMMMMMMMMMMGMMMMMMCMMMMMM 451 AHM-MMMMMWMMMMXMMMKMMMMRMMMLMMMMMMMMMMMMMMMMMGMMMMMMCMMMMMM 477 A-MMMLMMFMMMAMMMPMMMMJMMDMMMLMMMMMMMMMMMMEMMMMMDMMMMMMAMMMMMM 129
A-MMMAMMMTMMMMMMMAMMMMSMMMMMMMMMMMMMMMMEMMMMMDMMMMMMAMMMMMM 213 AHMFMMMGMMMMLMMMMMMMMMMMMMMMMMMMMMMMMMMMMMEMMMMMMAMMMMMM 329 AHM-MMMMMPMMMHMMMAMMMMLMM(MMQMMMuMMMiMlMMlM)MMMMMMMMMMMMMEMMMMMM 77 AHM-MMMMMPMMMSMMMTMMMAMMMXMMMMMMMMMMMMMMMMMMMMMMMMMEMMMMMM 205 AHM-MMMMMSMMMHMMMMMMMMTMMMMMMMMMMMMMMMMMMMMMMMMMMMEMMMMMM 585 AHMWMMMMM-MMMMAMMMPMMMMJMMRMMMLMMMMMMMMMMMMMMMMMMMMMEMMMMMM 125 AHMWMMMMM-MMMMMMMMMPMMMHMMMDMMMMLMMMMMMMMMMMMMMMMMMMEMMMMMM 157 AHM-MMMMMWMMMMPMMMRMMMMSMMMMMMMMMMMMMMMMMMMMGMMMMMMCMMMMMM 451 AHM-MMMMMWMMMMXMMMKMMMMRMMMSMMMMMMMMMMMMMMMMMGMMMMMMCMMMMMM 477 A-MMMLMMFMMMAMMMPMMMMJMMDMMMSMMMMMMMMMMMMEMMMMMDMMMMMMAMMMMMM 129
A-MMMAMMMTMMMMMMMAMMMMXMMMMMMMMMMMMMMMMEMMMMMDMMMMMMAMMMMMM 213 AHMFMMMGMMMMSMMMMMMMMMMMMMMMMMMMMMMMMMMMMMEMMMMMMAMMMMMM 329 AHM-MMMMMPMMMHMMMAMMMMSMMMMMMMMMMMMMMMMMMMMMMMMMMMEMMMMMM 57 AHM-MMMMMPMMMSMMMTMMMKMMMAMMMLMMMMMMMMMMMMMMMMMMMMMMEMMMMMM 215 AHM-MMMMMSMMMHMMMMMMMMTMMMLMMMMMMMMMMMMMMMMMMMMMMMMEMMMMMM 585 AHMWMMMMM-MMMMAMMMPMMMMJMMRMMMSMMMMMMMMMMMMMMMMMMMMMEMMMMMM 125 AHMWMMMMM-MMMMMMMMMPMMMHMMMDMMMMSMMMMMMMMMMMMMMMMMMMEMMMMMM 157 AHM-MMMMMWMMMMPMMMTMMMWMMMMAMMMMMMMMMMMMMMMMMGMMMMMMCMMMMMM 467 AHM-MMMMMWMMMMXMMMKMMMMTMMWMMMMMAMMMMMMMMMMMMMGMMMMMMCMMMMMM 481 A-MMMLMMFMMMAMMMPMMMMJMMEMMMLMMMMMMMMMMMMEMMMMMDMMMMMMAMMMMMM 129
AEMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMEMMMMMDMMMMMMAMMMMMM 1131 AHMFMMMRMMMLMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMEMMMMMMAMMMMMM 329 AHM-MMMMMPMMMHMMMAMMMMSMMM(MQMMMMuMMiMMlMlM)MMMMMMMMMMMMMEMMMMMM 77 AHM-MMMMMPMMMSMMMTMMMKMMMAMMMSMMMMMMMMMMMMMMMMMMMMMMEMMMMMM 215 AHM-MMMMMSMMMHMMMRMMMMLMMMMMMMMMMMMMMMMMMMMMMMMMMMEMMMMMM 57 AHMWMMMMM-MMMMAMMMPMMMMRMMMLMMMMMMMMMMMMMMMMMMMMMMMEMMMMMM 115 AHMWMMMMM-MMMMMMMMMPMMMHMMMDMMMMXMMMMMMMMMMMMMMMMMMMEMMMMMM 157 AHM-MMMMMWMMMMPMMMTMMMWMMMMDMMMMMMMMMMMMMMMMMGMMMMMMCMMMMMM 467 AHM-MMMMMWMMMMXMMMKMMMMTMMWMMMMMDMMMMMMMMMMMMMGMMMMMMCMMMMMM 481 A-MMMLMMFMMMAMMMPMMMMJMMEMMMSMMMMMMMMMMMMEMMMMMDMMMMMMAMMMMMM 129
A-MMMEMMMHMMMDMMMDMMMMMMMMMMMMMMMMMMMMEMMMMMDMMMMMMAMMMMMM 259 AHMFMMMRMMMSMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMEMMMMMMAMMMMMM 329 AHM-MMMMMPMMMHMMMAMMMMXMMMMMMMMMMMMMMMMMMMMMMMMMMMEMMMMMM 57 AHM-MMMMMPMMMSMMMTMMMKMMMAMMMXMMMMMMMMMMMMMMMMMMMMMMEMMMMMM 215 AHM-MMMMMSMMMHMMMRMMMMLMM(MMQMMMuMMMiMlMMlM)MMMMMMMMMMMMMEMMMMMM 77 AHMWMMMMM-MMMMAMMMPMMMMRMMMSMMMMMMMMMMMMMMMMMMMMMMMEMMMMMM 115 AHMWMMMMM-MMMMMMMMMPMMMHMMMEMMMLMMMMMMMMMMMMMMMMMMMMEMMMMMM 157 AHM-MMMMMWMMMMPMMMTMMMWMMMMEMMMMMMMMMMMMMMMMMGMMMMMMCMMMMMM 467 AHM-MMMMMWMMMMXMMMKMMMMTMMWMMMMMEMMMMMMMMMMMMMGMMMMMMCMMMMMM 481 A-MMMLMMFMMMAMMMPMMMMJMMGMMMMLMMMMMMMMMMMEMMMMMDMMMMMMAMMMMMM 129
A-MMMEMMMHMMMDMMMEMMMMMMMMMMMMMMMMMMMMEMMMMMDMMMMMMAMMMMMM 259 A-MMMHMMMGMMMDMMMMMMMMMMMMMMMMMMMMMMMEMMMMMDMMMMMMAMMMMMM 245 AHM-MMMMMPMMMHMMMDMMMMLMMMMMMMMMMMMMMMMMMMMMMMMMMMEMMMMMM 57 AHM-MMMMMPMMMSMMMTMMMMMMMMAMMMLMMMMMMMMMMMMMMMMMMMMMEMMMMMM 213 AHM-MMMMMSMMMHMMMRMMMMSMMMMMMMMMMMMMMMMMMMMMMMMMMMEMMMMMM 57 AHM-MMMMMWMMMMAMMMPMMMMTMMPMMMMMMMMMMMMMMMMMMGMMMMMMCMMMMMM 504 AHMWMMMMM-MMMMMMMMMPMMMHMMMEMMMSMMMMMMMMMMMMMMMMMMMMEMMMMMM 157 AHM-MMMMMWMMMMPMMMTMMMWMMMMGMMMMMMMMMMMMMMMMMGMMMMMMCMMMMMM 467 AHM-MMMMMWMMMMXMMMKMMMMTMMWMMMMMGMMMMMMMMMMMMMGMMMMMMCMMMMMM 481 A-MMMLMMFMMMAMMMPMMMMJMMGMMMMSMMMMMMMMMMMEMMMMMDMMMMMMAMMMMMM 129
A-MMMEMMMHMMMDMMMGMMMMMMMMMMMMMMMMMMMMEMMMMMDMMMMMMAMMMMMM 259 A-MMMHMMMGMMMEMMMMMMMMMMMMMMMMMMMMMMMEMMMMMDMMMMMMAMMMMMM 245 AHM-MMMMMPMMMHMMMDMMMMLMM(MMQMMMuMMMiMlMMlM)MMMMMMMMMMMMMEMMMMMM 77 AHM-MMMMMPMMMSMMMTMMMMMMMMAMMMSMMMMMMMMMMMMMMMMMMMMMEMMMMMM 213 AHM-MMMMMSMMMHMMMRMMMMSMMM(MQMMMMuMMiMMlMlM)MMMMMMMMMMMMMEMMMMMM 77 AHMWMMMMMDMMMLMMMMMMMMMMMMMMMMMMMMMMMMMMMMEMMMMMMAMMMMMM 331 AHMWMMMMM-MMMMMMMMMPMMMHMMMEMMMXMMMMMMMMMMMMMMMMMMMMEMMMMMM 157 AHM-MMMMMWMMMMPMMMTMMMWMMMMRMMMMMMMMMMMMMMMMMGMMMMMMCMMMMMM 467 AHM-MMMMMWMMMMXMMMKMMMMTMMWMMMMMRMMMMMMMMMMMMMGMMMMMMCMMMMMM 481 A-MMMLMMFMMMAMMMPMMMMJMMRMMMLMMMMMMMMMMMMEMMMMMDMMMMMMAMMMMMM 129
A-MMMEMMMHMMMDMMMRMMMMMMMMMMMMMMMMMMMMEMMMMMDMMMMMMAMMMMMM 259 A-MMMHMMMGMMMGMMMMMMMMMMMMMMMMMMMMMMMEMMMMMDMMMMMMAMMMMMM 245 AHM-MMMMMPMMMHMMMDMMMMSMMMMMMMMMMMMMMMMMMMMMMMMMMMEMMMMMM 57 AHM-MMMMMPMMMSMMMTMMMMMMMMAMMMXMMMMMMMMMMMMMMMMMMMMMEMMMMMM 213 AHM-MMMMMSMMMHMMMRMMMMXMMMMMMMMMMMMMMMMMMMMMMMMMMMEMMMMMM 57 AHMWMMMMMDMMMSMMMMMMMMMMMMMMMMMMMMMMMMMMMMEMMMMMMAMMMMMM 331 AHMWMMMMM-MMMMMMMMMPMMMHMMMGMMMMLMMMMMMMMMMMMMMMMMMMEMMMMMM 157 AHMWMMMMMRMMMLMMMMMMMMMMMMMMMMMMMMMMMMMMMMEMMMMMMAMMMMMM 331 AHM-MMMMMWMMMMXMMMMMMMMPMMMAMMMLMMMMMMMMMMMMMMGMMMMMMCMMMMMM 473 A-MMMLMMFMMMAMMMPMMMMJMMRMMMSMMMMMMMMMMMMEMMMMMDMMMMMMAMMMMMM 129
A-MMMEMMMMMMMHMMMMDMMMMMMMMMMMMMMMMMMMEMMMMMDMMMMMMAMMMMMM 259 A-MMMHMMMGMMMRMMMMMMMMMMMMMMMMMMMMMMMEMMMMMDMMMMMMAMMMMMM 245 AHM-MMMMMPMMMHMMMDMMMMSMMM(MQMMMMuMMiMMlMlM)MMMMMMMMMMMMMEMMMMMM 77 AHM-MMMMMPMMMTMMMFMMMPMMMAMMMMMMMMMMMMMMMMMMMMMMMMMEMMMMMM 229 AHM-MMMMMSMMMSMMMHMMMAMMMMLMMMMMMMMMMMMMMMMMMMMMMMMEMMMMMM 79 AHMWMMMMMEMMMLMMMMMMMMMMMMMMMMMMMMMMMMMMMMEMMMMMMAMMMMMM 331 AHMWMMMMM-MMMMMMMMMPMMMHMMMGMMMMSMMMMMMMMMMMMMMMMMMMEMMMMMM 157 AHMWMMMMMRMMMSMMMMMMMMMMMMMMMMMMMMMMMMMMMMEMMMMMMAMMMMMM 331 AHM-MMMMMWMMMMXMMMMMMMMPMMMAMMMSMMMMMMMMMMMMMMGMMMMMMCMMMMMM 473 A-MMMLMMFMMMSMMMJMMMAMMMLMMMMMMMMMMMMMMMEMMMMMDMMMMMMAMMMMMM 73
A-MMMEMMMMMMMSMMMDMMMMMMMMMMMMMMMMMMMMEMMMMMDMMMMMMAMMMMMM 263 AHM-MMMMMHMMMAMMMTMMMAMMMMLMMMMMMMMMMMMMMMMMMMMMMMMEMMMMMM 205 AHM-MMMMMPMMMHMMMDMMMMXMMMMMMMMMMMMMMMMMMMMMMMMMMMEMMMMMM 57 AHM-MMMMMPMMMTMMMFMMMPMMMRMMMMMMMMMMMMMMMMMMMMMMMMMEMMMMMM 229 AHM-MMMMMSMMMSMMMHMMMAMMMMSMMMMMMMMMMMMMMMMMMMMMMMMEMMMMMM 79 AHMWMMMMMEMMMSMMMMMMMMMMMMMMMMMMMMMMMMMMMMEMMMMMMAMMMMMM 331 AHMWMMMMM-MMMMMMMMMPMMMHMMMGMMMMXMMMMMMMMMMMMMMMMMMMEMMMMMM 157 AHM-MMMMMWMMMMSMMMAMMMMLMMMMMMMMMMMMMMMMMMMMMMMMMMGMMMMMM 465 AHM-MMMMMWMMMMXMMMMMMMMPMMMDMMMLMMMMMMMMMMMMMMGMMMMMMCMMMMMM 473 A-MMMLMMFMMMSMMMJMMMAMMMSMMMMMMMMMMMMMMMEMMMMMDMMMMMMAMMMMMM 73
A-MMMEMMMPMMMHMMMDMMMDMMMMMMMMMMMMMMMMMEMMMMMDMMMMMMAMMMMMM 259 AHM-MMMMMHMMMAMMMTMMMAMMMMSMMMMMMMMMMMMMMMMMMMMMMMMEMMMMMM 205 AHM-MMMMMPMMMHMMMEMMMLMMMMMMMMMMMMMMMMMMMMMMMMMMMMEMMMMMM 57 AHM-MMMMMPMMMTMMMFMMMPMMMTMMMMMMMMMMMMMMMMMMMMMMMMMEMMMMMM 229 AHM-MMMMMSMMMSMMMHMMMDMMMMLMMMMMMMMMMMMMMMMMMMMMMMMEMMMMMM 79 AHMWMMMMMGMMMLMMMMMMMMMMMMMMMMMMMMMMMMMMMMEMMMMMMAMMMMMM 331 AHMWMMMMM-MMMMMMMMMPMMMHMMMRMMMMLMMMMMMMMMMMMMMMMMMMEMMMMMM 157 AHM-MMMMMWMMMMSMMMAMMMMSMMMMMMMMMMMMMMMMMMMMMMMMMMGMMMMMM 465 AHM-MMMMMWMMMMXMMMMMMMMPMMMDMMMSMMMMMMMMMMMMMMGMMMMMMCMMMMMM 473 A-MMMLMMFMMMSMMMJMMMDMMMLMMMMMMMMMMMMMMMEMMMMMDMMMMMMAMMMMMM 73
A-MMMEMMMPMMMHMMMDMMMEMMMMMMMMMMMMMMMMMEMMMMMDMMMMMMAMMMMMM 259

1285 1286
















Click to View FlipBook Version