The words you are searching are inside this book. To get more targeted content, please make full-text search by clicking here.
Discover the best professional documents and content resources in AnyFlip Document Base.
Search
Published by Persatuan Jurufalak Syarie; Buku Digital Percuma, 2022-12-25 20:30:47

BUKU FALAK ABAD 21

BUKU FALAK ABAD 21

Figure 2. Different Type of Twilight (source: https://w1.weather.gov/glossary/)

a) Civil twilight

It happens when centre of the sun is 6° below horizon. The brightest stars are
visible, and the horizon is clearly visible at sea. The purple light begins to fade
away. The intensity of the purple light varies very much from one day to another.
Apparently mingling with the horizontal stripes, for these are getting brighter and
orange-coloured.

b) Nautical twilight

This type of twilight occurs whilst the centre of the Sun is more than 6° but less
than 12° below the horizon. The horizontal stripes are considerably weakened
and are now a faded green.

c) Astronomical twilight

Appear while centre of the Sun is more than 12° but less than 18° below horizon.
The twilight glow has disappeared. Stars of fifth magnitude are now becoming
visible.

As explained by Shariff et al., (2013), a serious study of the colours of
twilight will provide information concerning the condition of the layers of the
atmosphere (where cloud was formed) which light was scattered. The length of
time after sunset can be easily converts into altitude of atmosphere stratum. In
the case of Fajr, the moment of sunset can generally be ascertained from the
vantage of a minaret and the twilight phenomena are likewise readily observable
(King,2004). As for the limitation, Ibn Yūnus limits twilight as the first
appearance of the true morning twilight glow and the disappearance of the red
twilight glow (Goldstein, 1985).

43

Modern Practices in Determining Fajrs Prayer Time

There are several early scholars like Ibn Shatir (704-777M), al-Khawārizmī (790-
863M), Ibn Yunus (950-1009M) and al-Marrakusi (1256-132M) that contribute
plenty within the analysis on sun’s apparent motion based on the Qur'an and
hadith in determining prayer time and record the prayer time in the form of table
(King, 2004). As claimed by Sadali (2011), the timetable format continues to be
getting used within the astronomical calculation until now. Fajr prayer time
commences at the true morning twilight when the sky begins to lighten up at
dawn time and the light scattering spreads laterally on the horizon. Fajr prayer

time ends at sunrise.

Equation of Fajr Prayer Time

The prayer times for each location is different and the knowledge of the
geographical coordinates of locations are prerequisite for finding the actual
prayers time. The values of Sun declination as well as the correction factor
resulting from the “Equation of Time” owing on the time discrepancy between
the apparent solar time and mean solar times are universal and depend on the
Julian day number. The declination of the sun (δ) is the angle between the sun’s
rays and the plane of the equation of the Earth’s equator. The angle varies with
the seasons since the angle between the earth axis and the plane of the Earth
orbit is nearly constant. The period is one year for the Earth complete it

revolution around the sun (Ismaail et al., 2009) .

A fajr prayer time prayer starts with the dawn or morning twilight. At
normal locations, the solah altitude is equal to -18° as used in Malaysia which is
also knows as morning astronomical twilight. It will end just before the sunrise.
Below are the equations for calculation of Fajr prayer times.

Fajr = Transit - ts (1)

From the trigonometry,

ts = cos-1 [(cos Zs – sin δs – sin θ) / cos δs cos θ)] (2)

where ts represents the angle of the sun at the Fajr, Zs represents the position of
zenith at Fajr, ⸹s represents the sun declination at Fajr, Ф represents the latitude
at location studies.

It's best to be able to identify the position roughly, then place a window
corresponding to the polynomial function that will produce the standard
difference (root mean square error - RMSE) .

The general form of calling a 4-degree polynomial is given in equation (3) below:

(3)

44

Where, yi represents Observed sky brightness data (physical data) at ti;
p1,p2,p3,p4,p5 represents A polynomial 4-degree parameter to be estimated, ti
represents Time at which SQM data is recorded.

Substituting all the data in the selected window into equation (3) will
produce a series of linear functions. Equation (4) shows them in matrix format.

(4)

Where, e represents vector difference, y represents vectors of polynomial
parameters are estimated, A represents design matrix and y represents
observational value vectors .

The squared approach requires that must be minimal. The relatively

long derivation will end in that we will be able to compute the 4th degree
parameter it calls from equation (5).

(5)

The standard difference can be calculated from equation (6).

(6)

Where, represents sky brightness estimate data (calculated); yi
represents sky brightness observation data (original physical data); n represents

amount of data in one window; u represents number of parameters in a
polynomial model.

Sky Brightness Observation

A fieldwork was carried out at a Balai Cerap, UTM. The survey was performed in
April to May 2021. Observations were made from 4.58 am till 6.30 am in one
morning by using Sky Quality Meter. The SQM-L is very simple to use. The
system is designed to measure the dynamical of the brightness of night sky in
magnitudes per square arc second unit. To get the best position for the SQM
device, therefore the observer has prepared the instrument namely Topcon
Digital Theodolite (Model: Topcon DT-205) as the "base". There are several
reasons why SQM-L is established at the “base”; a) the optical drop ensures the
theodolite is placed almost vertically above the survey point, b) the internal
bubble level ensures the device is horizontal, and c) the instrument level is key to

45

survey work success which can improve accuracy and precision. Since the
instrument is flattened to the horizon, then SQM-L will be directed directly to
the light radiating on the eastern horizon near the position of the rising sun.

As for the SQM-LU, it will automatically activate the detector and then
wait for a few second to obtain a reading. Under urban skies, a reading will be
displayed almost immediately meanwhile under the sky darkest conditions (no
moon in the sky, far from civilization) the meter may take up to a minute to
complete its measurement. The observer must ensure that SQM-LU maintain the
orientation of the meter until the reading is displayed. The SQM-LU’s reading is
indicative of the sky brightness within its field of view. There must be no direct
illumination or shading of the sensor by a terrestrial light source. The sky
brightness value was observed using SQM-L device and recorded directly into the
PC. The observation was carried out at Balai Cerap UTM as shown in Figure 5.

Figure 3. The theodolite was attached on of the pillar at Balai Cerap UTM

RESULT AND DISCUSSION
The results obtained for each data are presented in this section. Table 1 shows
the information of the morning twilight and official time of Farj. The data for
official time of Fajr obtained from Department of Islamic Development Malaysia
(JAKIM). Also, the data for sky brightness readings and altitude of sun’s readings
for each day of observation data can be seen on that table. This data has been
taken at Balai Cerap, UTM starting on 27 April 2021 until 29 April 2021. All the
observations were in a good sky condition, even though there is some cloud
movement and might be light pollution that night influence the results.
Graphically the result in April is shown in Figure 6, 7 and 8. Based on Table 1
and Figure 6, SQM value for 27 April 2021 is 16.15 mag/ arcsec2 with the
Altitude of Sun is -13º 46’ 12” at 06:10 am compared to the official Farj time

46

whereby the SQM value is 16.17 mag/ arcsec2 with the Altitude of Sun is -17º
49’ 12” at 5:48 am. Next the SQM value for 28 April 2021 as shown in Table 1

and Figure 7 is 16.18 mag/arcsec2 with the Altitude of Sun is -13º 42’ 00” at
06:10 am compared to the official Farj time whereby the SQM value is 16.18

mag/ arcsec2 with the Altitude of Sun is -17º 44’ 53” at 5:48 am. Followed by
Table 1 and Figure 8 on 29 April 2021 the SQM value is 16.11 mag/ arcsec2 with
the Altitude of Sun is -13º 37’ 12” at 06:10 am compared to the official Farj time
whereby the SQM value is 16.16 mag/ arcsec2 with the Altitude of Sun is -17 º
55’ 09” at 5:47 am.

Date Morning Twilight Official time of Fajr
27 April 2021
(The end of Astronomical

Twilight)

6:10 5:48
Altitude of
SQM Altitude of SQM
(mag/arcsec2) Sun
(mag/arcsec2) Sun

28 April 2021 16.15 -13 46’ 12” 16.17 -17 49’ 12”

SQM 6:10 SQM 5:48
(mag/arcsec2) Altitude of (mag/arcsec2) Altitude of

Sun Sun

29 April 2021 16.18 -13 42’ 00” 16.18 -17 44’ 53”

SQM 6:10 SQM 5:47
(mag/arcsec2) Altitude of (mag/arcsec2) Altitude of

Sun Sun

16.11 -13 37’ 12” 16.16 -17 55’ 09”

Table 1. The results of the morning twilight in April

Figure 4. SQM values at Balai Cerap, UTM on 27 April 2021

47

Figure 5. SQM values at Balai Cerap, UTM on 28 April 2021

Figure 6. SQM values at Balai Cerap, UTM on 29 April 2021
Based on the results obtained, there is a difference of 20 minutes between
the prayer time observed and the prayer time issued by JAKIM. The difference is
because of the sun depression angle that has being used for the prayer time
calculation. From the observation it found that the sun depression angle from the
observation is average of -13.77 compared to -18° that has been issued by
JAKIM. The result show that the dawn time just occur when the sun depression
angle is -13.77° and it is indicated that the dawn time is only 54 minutes.
Therefore, advanced study needs to be carried out at the same location and
other’s suitable location to prove the differences of sun depression value. The
difference also may be due to the occurrence of light pollution which affect the
SQM sensor reading during the observations. In addition, it may be due to the
targeted observation east direction which is not at the exact location of the
sunrise. It just being justify using the smartphone compass rather than using the
direction from sun observation method. In this case, it will also affect the reading
value because the value of the compas magnitude is constantly changing and not
fixed. Therefore, in the future, it is necessary the the observance to consider all
the things that could result in a difference in the observations at dawn.

48

CONCLUSION

Based on the analysis that has been made, the conclusion that can be made is that
to advance qualitative and quantitative understanding of sky brightness at dawn
for morning twilight or fajr stages. It was found out that there are strong
relationships between the position of the sun below the horizon to determine the
beginning of Fajr prayer time. From the evidence, SQM is able to assist the
process of determining the beginning of Fajr prayer time. Furthermore, SQM just
gives numerical result (which has to analyses) so this makes SQM more precise.
At this point, the author can conclude that the SQM approach proved to be good
for determining prayer times. The author proposed it is plausible that the value of
the morning twilight angle is fluctuating between for Fajr according to what is
given by the instruments.

ACKNOWLEDGEMENT

The authors would like to express their deepest appreciation and gratitude to the
Ministry of Education Malaysia and Universiti Teknologi Malaysia for the
support and provision given to conduct this study under the Research University
Grant Fund (GUP) (No. Vot: Q.J130000.2527.19H35).

REFERENCES

______________________

a Universiti Teknologi Malaysia, Faculty of Built Environment and Surveying,
Department of Geoinformation, Johor Bahru, Johor, Malaysia 81300
b Insititut Tanah Negara (INSTUN), Behrang, Tanjung Malim, Perak, Malaysia.
35950
[1] Abdul Kader M.Abed, (2015). Determining The Beginning Of The True
Dawn (al-Fajer al-Sadek) Observationally By The Naked Eye In Jordan. Jordan
Journal of Islamic Studies 11 (2) (2015), 2.
[2] Al-Bakri, Z. M. (2019). Bayan Linnas Khas: Isu Tambahan Waktu 8 Minit
Bagi Permulaan Azan Subuh Dan Hukum Solat Subuh Sebelum Masuk Waktu.
Retrieved November 19, 2020, from http://muftiwp.gov.my
[3] Aminnuraliff, M. (2019, November 29). Kenapa solat Subuh di Selangor lewat
8 minit? Sinar Harian. Retrieved from https://www.sinarharian.com.my
[4] Bernama. (2019, November 28). Tambahan 8 minit waktu Subuh di seluruh
Selangor mulai esok. Astro Awani. Retrieved from https://www.astroawani.com
[5] Goldstein, B.R. (1985). Theory and Observation in Ancient and Medieval
Astronomy, London, Variorum Reprints.
Ismaail, Z., Yahaya, N., Kaspin, R., Sanip, Z., Husmin, E., Zaini, N. F. M. and
Bakar, F. A. (2009). Computational calculations of islamic prayer times: Issues
and solutions, Proceedings - 2009 International Conference on Future Computer
and Communication, ICFCC 2009, pp. 301–305.

49

[6] JAKIM. (2019). Tambahan 8 Minit Bagi Permulaan Waktu Solat Subuh. In
Muzakarah Majlis Kebangsaan Bagi Hal Ehwal Ugama Islam Malaysia Kali Ke-116, 20-
21 November.
[7] Kassim Bahali, Abdul Latif Samian, Nazri Muslim & Nurul Shazana Abdul
Hamid (2019) 'Re-evaluation of Calculation of the Dawn Prayer Time in the
Malay World', International Journal of the Malay World and Civilisation 7(2),
2019: 37 - 48
[8] King, D. A. (2004). The Call of the Muezzin: Studies in Astronomical
Timekeeping and Instrumentation in Medieval Islamic Civilization:(studies I-IX).
Leiden: E.J. Brill.
[9] Niri, M. A., Zainuddin, M. Z., Man, S., Nawawi, M. S. A. M., Wahab, R. A.,
Ismail, K., ... & Lokman, M. A. A. (2012). Astronomical determinations for the
beginning prayer time of isha’. Middle-East Journal of Scientific Research, 12(1),
101-107.
[10] Nizam, N. K., Nawawi, M. S. A. M. and Man, S. (2018) ‘Kaedah Penentuan
Waktu Solat di Malaysia: Satu Sorotan Literatur’, in Penyelidikan Serantau Islam
dan Alam Melayu: Pendidikan, Kewangan, Kehartaan, Kenegaraan dan Isu
Kontemporari. Kuala Lumpur: Akademi Pengajian Islam Universiti Malaya, pp.
202–215.
[11] Noh, N. C. (2019, November 28). Waktu Subuh di Selangor lewat 8 minit
bermula esok. Berita Harian Online. Retrieved from
https://www.bharian.com.my/
[12] Noor, U. M. M. (2020). Al-Kafi #1638 : Pasca Perubahan Waktu Subuh;
Adakah Waktu Syuruk Dan Imsak Berubah? Retrieved from
https://muftiwp.gov.my
[13] Nor, S. A. M., & Zainuddin, M. Z. (2012). Sky Brightness for Determination
of Fajr and Isha Prayer by Using Sky Quality Meter. Muslim World, 15, 15.
[14] Nur Nafhatun et al., (2013). Background Theory of Twilight in Isha and
Subh Prayer Times, dalam Dimensi Penyelidikan Astronomi Islam, ed. Saadan
Man, Mohd Saiful Anwar Mohd Nawawi, Raihana Abdul Wahab dan Nurul
Huda Ahmad Zaki (Kuala Lumpur: Jabatan Fiqh dan Usul, Akademi Pengajian
Islam, Universiti Malaya, 2013), 25.
[15] Raihana, A., Hazwan, M. M. and Norihan, K. (2016) ‘Issues on
Determination of-Accurate Fajr and Dhuha Prayer Times According to Fiqh and
Astronomical Perspectives in Malaysia ’:, in Conference Proceeding, Bali
Indonesia Oct 13-14,2016,18 (10) Part V, pp. 675–680.
[16] Sadali, H. M. (2011) Kajian Penetapan Takwim Solat Pulau Pinang Menurut
Ilmu Falak. Universiti Sains Malaysia.
[17] Sadali, H. M. (2019). Taudhih Alahkam . Tajuk : Penjelasan Tambahan Waktu
Subuh 8 Minit. (video file). Retrieved from https://www.youtube.com/watch?v=
cwSDm_ tMOW4&ab_ channel=JabatanMuftiNegeriSelangor

50

[18] Semeida M.A., Hassan A.H., (2018). Pseudo Dawn and True Dawn
Observations By Naked Eye in Egypt. Journal of Basic and Applied Sciences 7
(2018), 287.
[19] Shariff, N. N. M., Muhammad, A., Zainuddin, M. Z., Hamidi, Z. S., &
Ibrahim, Z. A. (2011). Investigation of Twilight Using Sky Quality Meter for
Isha’ Prayer Time. 7th Mathematic and Physical Science Graduate Conference
2011. National Universiti of Singapore. Singapore
[20] Shariff, N. N. M., Muhammad, A., Zainuddin, M. Z., & Hamidi, Z. S. (2012).
The Application of Sky Quality Meter at Twilight for Islamic Prayer Time.
International Journal of Applied Physics and Mathematics, 2(3), 143.
[21] Tono Saksono (2019). Awal Subuh di Indonesia. Seminar Falak Kontemporari
Peringkat Kebangsaan 2019. Dewan Besar Pusat Islam Iskandar, Johor Bahru,
Malaysia, Julai 3, 2019
[22] Unihedron (2012, April 2). Sky Quality Meter. Retrieved from
http://www.unihedron.com/projects/sqm-l/

51

52

PRAKTIS BILAL DALAM MELAUNGKAN AZAN DAN
IMPAKNYA TERHADAP KETEPATAN PENJAGAAN

WAKTU SOLAT
Aimi Musaa*, Othman Zainonb, Mustafa Din Subaria
Abstract: There are variations in how Muslims would determine the
start of prayer time. In Malaysia, one of the most common way is by
referring the prayer call from the nearby mosque. Some used other
methods such as referring directly to prayer timetables published by
State Mufti Department and Department of Islamic Department
Malaysia in the websites, using prayer apps, and referring to television
or radio. These will be referred as prayer timekeeping practices. This
study focuses on muezzin’s call to prayer practice as it may likely to
impact the prayer timekeeping practices in a larger community scale.
This study aimed to investigate the factors that influence muezzin’s
time lag in announcing call to prayer. The study was conducted
qualitatively by interviewing the muezzin. Twenty-one muezzins were
selected from several mosques in Negeri Sembilan as respondents for
the interview. The data collected were analysed using NVivo12. The
findings showed that there are three factors that influence the muezzin’s
prayer timekeeping accuracy namely, the muezzin’s background, the
muezzin’s working process and the muezzin’s practice in calling the
prayer including in the month of Ramadhan. The findings also
identified that the accuracy of the prayer clock would also contribute to
the muezzin’s time lag in announcing call to prayer. The analyzed
results are then used to construct an equation to relate the mentioned
factors. From the equation, it is understood that muezzin will require
some time to announce the call to prayer. Therefore, several proposed
guidelines regarding muezzin’s practices are been suggested. It is hoped
that the suggested guidelines would be used as references for the Islamic
authorities in drafting policies regarding the matter.

53

PENDAHULUAN
Masuk waktu dan berakhirnya waktu bagi setiap solat telah dijelaskan di
dalam Al-Quran dan hadis-hadis Rasulullah S.A.W. Dua (2) sumber utama
ini amat penting dalam memberikan penjelasan dan huraian bagi setiap
waktu solat. Rasulullah SAW juga menjelaskan setiap waktu solat dengan
jelas sebagai panduan para sahabat. Dalil-dalil tentang waktu solat juga
digunakan oleh para fuqaha sebagai rujukan untuk menentukan kriteria
waktu solat. Salah satu syarat sah sesuatu solat pula ialah mengetahui masuk
waktu solat. Seseorang Muslim itu perlu yakin bahawa waktu solat telah pun
masuk sebelum mendirikan solat tersebut. Ini kerana, mengerjakan solat
sebelum waktunya boleh menyebabkan solat seseorang itu tidak sah.

Terdapat beberapa praktis penjagaan waktu solat yang digunakan
oleh masyarakat Muslim untuk mengetahui masuk waktu solat di Malaysia.
Antaranya adalah menggunakan jadual waktu solat (Sadali, 2001, 2011) yang
dikeluarkan oleh Jabatan Mufti Negeri dan Jabatan Kemajuan Islam Malaysia
di laman sesawang, menggunakan aplikasi waktu solat (Sarkawi et al., 2016),
dan juga mendengar azan daripada televisyen atau radio. Terdapat juga yang
memilih untuk mendengar laungan azan daripada bilal untuk mengetahui
masuk waktu solat. Di Malaysia, laungan azan dikumandangkan dengan kuat
oleh bilal masjid dan surau melalui pembesar suara sebagai tanda waktu solat
telahpun masuk. Rajah 1 menunjukkan gambaran ringkasan bagi praktis bilal
dalam melaungkan azan.

Rajah 1. Praktis bilal dalam melaungkan azan
Bilal merupakan orang yang bertanggungjawab melaungkan azan di
masjid dan surau. Pemilihan bilal adalah berdasarkan kriteria-kriteria yang
telah ditetapkan di dalam garis panduan yang telah disediakan oleh Jabatan
Agama Islam bagi setiap negeri. Menurut Shokouhi dan Yusof (2013), bilal
merupakan orang yang penting di masjid dan surau kerana bakat dan
kelebihan mereka dalam melaungkan azan dengan indah, merdu dan kuat
untuk didengari oleh masyarakat Muslim. Oleh yang demikian, praktis bilal
dalam melaungkan azan adalah penting bagi memastikan azan yang
dilaungkan adalah tepat iaitu setelah yakin bahawa waktu solat telah pun
masuk.

54

Kajian ini bertujuan untuk mengenal pasti faktor-faktor yang
mempengaruhi praktis bilal dalam melaungkan azan. Faktor-faktor ini
dikenal pasti bagi menambah baik praktis bilal yang sedia ada dan
mengelakkan azan dilaungkan sebelum waktunya seperti mana yang pernah
berlaku di sebuah masjid baru-baru ini (Aziz, 2021; Shuaib, 2021). Walaupun
isu yang berlaku merupakan kesilapan teknikal daripada jam waktu solat di
masjid yang cepat 3 minit, namun ia juga berkait rapat dengan praktis bilal
kerana jam digunakan bagi mengetahui masuk waktu solat.

TINJAUAN PUSTAKA
Manusia pertama yang melaungkan azan pada zaman Rasulullah SAW dan
para sahabat merupakan Bilal bin Rabah. Di dalam kitab al-Fiqh al-Manhaji
(1/338), pengarang ada menyebut tentang azan disyariatkan pada tahun
pertama hijrah yang mana ketika itu orang Islam sampai di Madinah
berkumpul dan menantikan waktu untuk mendirikan solat (Al-Bakri, 2019).
Pada waktu itu, Rasulullah SAW bersabda:

ِ‫ فَ َنا ِد بِال َّصل َاة‬،‫َيا بِل َا ُل قُ ْم‬
Maksudnya: “Wahai Bilal, berdirilah dan serukan solat”

(Riwayat al-Bukhari: 579 dan Muslim: 377)
Selepas azan yang pertama ini, praktis melaungkan azan mula
tersebar ke tempat-tempat lain (Shokouhi and Yusof, 2013). Panggilan bagi
orang yang melaungkan azan di dalam Bahasa Arab dikenali sebagai
mu’addhin. Manakala di Malaysia orang yang melaungkan azan lebih dikenali
sebagai panggilan bilal. Menurut Dewan Bahasa dan Pustaka (2005), bilal
bermaksud orang yang melaungkan azan apabila masuk waktu solat, tukang
bang, tukang azan, mudin atau dikenali sebagai muazin.
Pada zaman awal Islam, penentuan waktu solat diletakkan di bawah
tugas muwaqqit atau mu’addhin (King, 1996). Huraian tentang tugas
mu’addhin ada dinyatakan dengan jelas di dalam buku David A. King yang
bertajuk “On the Role of Muezzins and Muwaqqits in Medieval Islamic
Society” dan “In Synchrony with the Heavens: Studies in Astronomical
Timekeeping and Instrumentation in Medieval Islamic Civilization (Volume
1: The Call of the Muezzin)”. Menurut King (1996), mu’addhin ketika itu
perlu mengetahui tentang bagaimana waktu solat ditentukan iaitu dengan
cara mereka perlu mengetahui kedudukan bayang matahari dan kecerahan
langit.

55

Kini, kaedah penentuan waktu solat boleh dilakukan dengan lebih
mudah menggunakan kaedah hitungan. Ilmu pengetahuan berkaitan dengan
matahari dan bulan serta bumi dalam menentukan waktu solat diaplikasikan
dalam penentuan waktu solat berdasarkan kaedah hitungan. Kaedah
hitungan ini juga digunakan bagi menghasilkan jadual waktu solat yang kini
diguna pakai oleh masyarakat Muslim. Selain itu ia juga digunakan untuk
menghasilkan aplikasi waktu solat dan juga jam waktu solat di surau dan
masjid untuk rujukan masyarakat Islam terutamanya bilal masjid bagi
melaungkan azan. Oleh yang demikian praktis bilal dalam melaungkan azan
adalah penting kerana ia juga merangkumi ketepatan dalam penjagaan waktu
solat.

SKOP DAN METODOLOGI KAJIAN

Kajian ini menggunakan kaedah berbentuk kualitatif bagi mendapatkan
maklumat yang lebih mendalam mengenai praktis bilal dalam melaungkan
azan. Informan kajian bersetuju ditemu bual secara mendalam bagi setiap
soalan yang diajukan kepada informan kajian. Informan kajian bagi kajian ini
terdiri daripada bilal masjid di Negeri Sembilan yang mempunyai pengalaman
menjadi bilal di antara enam bulan sehingga 18 tahun. Informan kajian
dipilih dengan menggunakan teknik persampelan bertujuan (purposive
sampling) yang mana ia bertujuan untuk mengenal pasti subjek adalah
bersesuaian bagi kajian ini. Sampel bagi kajian ini dipilih dengan mengambil
kira mereka yang berkebolehan untuk mendapatkan semua maklumat yang
diperlukan terhadap perkara dan isu yang hendak dikaji. (Patton, 1990;
Merriam, 1998; Creswell, 2013)

Kajian ini menggunakan kaedah temu bual separa berstruktur (semi-
structured interview) yang mana kaedah temu bual ini dapat memberikan
maklumat dan data kajian yang lebih mendalam dengan cara yang meluas dan
mudah (Creswell, 2013). Bagi menganalisis data, perisian NVivo 12
digunakan untuk memudahkan proses menguruskan analisis data kajian yang
dilakukan.

HASIL KAJIAN DAN PERBINCANGAN

Berdasarkan analisis kajian, informan kajian yang ditemu bual berumur di
antara 27 tahun sehingga 73 tahun. Majoriti informan kajian yang ditemu
bual adalah berumur 60 tahun ke atas. Seramai 12 orang informan kajian
yang bekerja sebagai bilal bagi pekerjaan utama mereka, tujuh orang
informan kajian yang bekerja sendiri, dan dua orang informan kajian yang
bekerja di sektor swasta. Berdasarkan analisis kajian, seramai lapan orang
informan kajian yang telah menjadi bilal lebih daripada enam tahun dan
lapan orang informan kajian mempunyai tempoh pengalaman kurang
daripada dua tahun. Jadual 1 merupakan ringkasan terperinci mengenai
maklumat latar belakang informan kajian.

56

Jadual 1. Profil informan kajian

Terdapat tiga (3) tema yang dibentuk daripada analisis temu bual bagi
mengenal pasti faktor faktor yang mempengaruhi ketepatan bilal dalam
melaungkan azan iaitu a) latar belakang bilal; b) proses kerja sebagai bilal; dan
c) praktis bilal dalam melaungkan azan.

a) Latar Belakang Bilal
Soalan berkenaan latar belakang merupakan soalan yang biasa ditanya bagi
mendapatkan maklumat tentang informan kajian. Bagi kajian ini, latar
belakang informan kajian iaitu bilal merupakan salah satu tema bagi
menganalisis faktor yang mempengaruhi praktis azan bilal. Latar belakang
setiap informan kajian telah diringkaskan di dalam Jadual 1 mengikut umur,
pekerjaan semasa dan tempoh pengalaman menjadi bilal. Berdasarkan
dapatan tersebut, salah seorang informan kajian yang paling tua iaitu Bilal G

57

yang berumur 73 tahun mempunyai tempoh pengalaman menjadi bilal yang
paling lama iaitu selama 22 tahun. Selain itu, terdapat juga informan kajian
iaitu Bilal F yang berumur 63 tahun dan mempunyai pengalaman menjadi
bilal masjid selama 6 bulan. Bilal A pula merupakan informan kajian yang
paling muda iaitu berumur 27 tahun dan mempunyai pengalaman menjadi
bilal selama 7 bulan. Walaupun Bilal A merupakan yang paling muda,
tempoh pengalaman menjadi bilal adalah lebih sebulan berbanding dengan
Bilal F. Majoriti informan kajian iaitu seramai 12 orang yang pekerjaan
utamanya adalah bilal .

b) Proses Kerja Bilal

Berdasarkan butiran yang diberikan informan kajian, terdapat dua perkara
yang dikategorikan di bawah tema proses kerja informan kajian sebagai bilal
iaitu a) posisi bilal sebelum melaungkan azan dan b) jenis jam yang
digunakan sebagai rujukan. Majoriti informan kajian memilih untuk bersiap
sedia berada di dalam bilik azan ketika hampir masuk waktu solat. Bilal A
menyatakan “…biasa dah nak masuk waktu solat, saya siap-siap duduk dalam
bilik azan…”. Berbeza pula dengan Bilal E yang memilih untuk berada di
luar bilik azan sehingga masuknya waktu solat. Bilal E menyatakan “…saya
biasa duduk di tempat ruang solat dulu, kemudian baru masuk bilik azan bila
dah masuk waktu solat…”. Berdasarkan pernyataan yang diberikan oleh Bilal
E, ia menunjukkan bahawa Bilal E akan mempunyai sedikit sela waktu untuk
bergerak ke bilik azan.

Bagi jenis jam yang digunakan sebagai rujukan untuk waktu solat
pula, majoriti informan kajian iaitu seramai 19 orang memilih untuk
menggunakan jam masjid. Terdapat dua jenis jam masjid yang digunakan
oleh informan kajian sebagai rujukan iaitu jam digital dan jam yang
dipamerkan melalui TV LED. Hanya dua orang informan kajian yang
memilih untuk menggunakan jadual waktu solat kemudian rujuk waktu
menggunakan jam persendirian. Perbezaan jenis jam rujukan yang digunakan
oleh informan kajian sebagai bilal bagi melaungkan azan menunjukkan
terdapat perbezaan dari segi ketepatan penjagaan waktu yang dipraktikan
oleh setiap informan kajian. Menurut Sabri et al. (2016), jam waktu solat yang
tepat adalah penting kerana ia digunakan sebagai rujukan oleh bilal untuk
melaungkan azan pada waktunya .

c) Praktis Bilal Dalam Melaungkan Azan

Beberapa perkara yang hasil daripada dapatan kajian dikategorikan di bawah
tema praktis bilal dalam melaungkan azan iaitu a) definisi permulaan waktu
solat, b) penggunaan jam rujukan waktu solat, c) rutin sebagai bilal dan d)
praktis bilal ketika bulan Ramadhan. Berdasarkan dapatan kajian, majoriti
informan kajian iaitu seramai 12 orang memilih untuk tunggu sebentar
apabila mengetahui waktu solat telah pun masuk sebelum melaungkan azan.

58

Terdapat dua daripada 12 orang informan kajian yang menunggu sehingga
jam waktu solat masjid berhenti berbunyi sebelum mula melaungkan azan.
Seramai 9 orang daripada 21 orang informan kajian pula menyatakan bahawa
mereka terus melaungkan azan sebaik sahaja masuk waktu solat.

Bagi penggunaan jam rujukan pula, informan kajian yang memilih
untuk menggunakan jam waktu solat masjid menyatakan jam tersebut mudah
dan senang digunakan kerana mempunyai notifikasi bagi menandakan waktu
solat telah pun masuk. Antaranya adalah pernyataan daripada Bilal A iaitu
“…jam masjid ada bunyi kalau masuk waktu…”. Terdapat juga informan
kajian yang memilih untuk menggunakan jam waktu solat di masjid kerana
yakin dengan ketepatan jam tersebut. Bilal C mengakui “… jam masjid
tepat…” apabila ditanya tentang pemilihan jam rujukan waktu solat.

Berdasarkan dapatan kajian mengenai rutin informan kajian sebagai
bilal, kesemua 21 orang informan kajian menyatakan bahawa mereka sangat
menjaga masa dan sentiasa datang awal ke masjid sebelum masuk waktu. Hal
ini kerana, tugas bilal merupakan tugas yang penting kerana ia melibatkan
ibadah wajib dalam Islam iaitu solat.

Bagi praktis bilal ketika bulan Ramadhan pula, 15 orang informan
kajian menyatakan bahawa mereka akan berbuka puasa dengan meminum air
kemudian terus melaungkan azan. Seramai enam orang informan kajian pula
memilih untuk berbuka puasa dengan air dan kurma.

Perbincangan Keseluruhan

Tiga (3) tema yang dibentuk bagi mengenal pasti faktor-faktor yang
mempengaruhi praktis bilal dalam melaungkan azan menunjukkan bahawa
terdapat sela waktu bagi bilal sebelum melaungkan azan. Sela waktu bagi
kajian ini didefinisikan sebagai ketepatan bilal dalam melaungkan azan. Ia
juga bermaksud, terdapat sedikit masa yang diperlukan oleh informan kajian
sebelum melaungkan azan dan ia memberi impak dalam penjagaan waktu
solat. Menurut Halawani and Li (2011), (Musa et al., 2019b, 2019a) seseorang
itu memerlukan sedikit masa sebelum melakukan sesuatu perkara. Oleh itu,
berdasarkan dapatan kajian ini, satu persamaan dibentuk bagi menunjukkan
dengan jelas mengenai sela waktu bagi bilal dalam melaungkan azan.
Persamaan tersebut adalah :

M = A + f (B) (Eq. 1)

di mana ,

M = Sela waktu bilal sebelum melaungkan azan

A = Ketepatan jam rujukan waktu solat

B = Faktor-faktor yang mempengaruhi ketepatan bilal dalam melaungkan
azan

59

M dianggarkan sekitar beberapa minit kerana mengambil kira A dan f (B)
yang sudah pasti akan mempengaruhi ketepatan bilal dalam melaungkan
azan. Persamaan ini adalah bertujuan untuk menggambarkan bahawa bilal
memerlukan sedikit masa dalam praktis mereka untuk melaungkan azan dan
ia dianggarkan lewat sedikit pada bulan Ramadhan.
CADANGAN GARIS PANDUAN DAN KESIMPULAN
Berdasarkan perbincangan di atas menunjukkan bahawa latar belakang bilal,
proses kerja bilal dan praktis bilal merupakan faktor-faktor yang dapat
mempengaruhi praktis bilal dalam melaungkan azan. Pengenalpastian faktor-
faktor ini membantu untuk melihat dengan ruang yang lebih besar mengenai
impaknya terhadapan ketepatan penjagaan waktu solat. Secara umumnya,
faktor-faktor ini juga mempengaruhi sela waktu bilal dalam melaungkan
azan. Oleh yang demikian, beberapa garis panduan dicadangkan bagi
membantu mengurangkan ralat yang sedia ada atau pun yang terhasil
daripada kesilapan manusia sendiri (human error). Garis panduan berkaitan
dengan jam rujukan masjid juga dicadangkan bagi tujuan mengurangkan
ralat. Menurut Sabri et al. (2016), jam rujukan waktu solat perlulah sentiasa
diselenggara dengan memastikan ianya tepat dengan Waktu Piawai Malaysia
atau Malaysian Standard Time yang dikeluarkan oleh SIRIM. Jadual 2
merupakan garis panduan yang dicadangkan beserta dengan rasional. Garis
panduan di dalam Jadual 2 ini dicadangkan untuk dimasukkan di dalam garis
panduan yang berkaitan dengan tugas bilal.

Jadual 2. Cadangan garis panduan bagi praktis bilal dalam melaungkan azan

60

PENUTUP

Mendengar laungan azan bilal merupakan salah satu praktis penjagaan waktu
solat bagi Muslim. Praktis penjagaan waktu solat ini bukan sahaja melibatkan
individu Muslim tetapi juga masyarakat Muslim secara amnya. Oleh yang
demikian, mengenal pasti faktor-faktor yang mempengaruhi bilal dalam
melaungkan azan adalah penting kerana dikhuatiri juga bilal melaungkan
azan sebelum masuk waktu solat kerana tiada keseragaman dalam praktis
bilal dalam melaungkan azan. Beberapa garis panduan dicadangkan dengan
mengambil kira faktor-faktor yang mempengaruhi praktis bilal dalam
melaungkan azan. Walaubagaimanapun, masih terdapat banyak ruang
penambah baikan bagi kajian ini untuk rujukan kajian yang akan datang
terutamanya faktor-faktor yang mempengaruhi dan juga persamaan yang
dihuraikan di subseksyen Perbincangan Keseluruhan.

RUJUKAN

_______________________

a Perdana Centre, Razak Faculty of Technology and Informatics Universiti
Teknologi Malaysia, Kuala Lumpur, Malaysia, 50000
b Department of Geoinformation, Faculty of Built Environment and Surveying,
Universiti Teknologi Malaysia, Johor Bahru, Malaysia, 81310
[1] Al-Bakri, Z. M. (2019) Al-Kafi #1319: Asal Usul Azan Dan Lafaznya, Laman
Web Rasmi Pejabat Mufti Wilayah Persekutuan .
[2] Aziz, I. H. (2021) ‘Masjid tersilap laung azan maghrib awal, puasa kariah
terbatal’, Berita Harian Online, 21 April .
[3] Creswell, J. W. (2013) Qualitative inquiry and research design: Choosing
among five approaches. 3rd edn. Thousand Oaks: CA: Sage Publications .
[4] Dewan Bahasa dan Pustaka (2005) Kamus Dewan (Edisi keempat). Kuala
Lumpur: Dewan Bahasa dan Pustaka .
[5] Halawani, A. and Li, H. (2011) ‘Personal relative time: Towards internet of
watches’, in Proceedings - 2011 IEEE International Conferences on Internet of
Things and Cyber, Physical and Social Computing, iThings/CPSCom 2011, pp.
678–682 .
[6] King, D. A. (1996) ‘On the Role of Muezzins And Muwaqqits In Medieval
Islamic Society’, in Tradition, Transmission, Transformation. Leiden, New York,
Koln: E.J. BRILL, pp. 286–345 .
[7] Merriam, S. B. (1998) Qualitative research and case study applications in
education. San Francisco: Jossey-Bass .
[8] Musa, A., Subari, M. D. and Zainon, O. (2019a) ‘How is Your 8 O‘clock
Different from Mine? The Accuracy of Public Timekeeping’, International
Journal of Innovative Technology and Exploring Engineering, 8(12S2), pp. 663–
668 .

61

[9] Musa, A., Subari, M. D. and Zainon, O. (2019b) ‘Synchronization of Public
Timekeeping Devices in Malaysia to Malaysian Standard Time’, in 2019 IEEE
15th International Colloquium on Signal Processing & Its Applications (CSPA).
IEEE, pp. 31–34 .
[10] Patton, M. Q. (1990) Qualitative research & evaluation methods. Thousand
Oaks: CA: Sage Publications Inc .
[11] Sabri, N., Zainon, O. and Awang, M. S. C. (2016) ‘Ketepatan Jam Waktu
Solat Berdigit di Zon Pasir Gudang Johor’, in Takwim Hijri: Instrumen &
Pencerapan Fenomena Falak. Pulau Pinang: Pusat Kajian Pengurusan
Pembangunan Islam (ISDEV), Universiti Sains Malaysia, pp. 37–52 .
[12] Sadali, H. M. (2001) Prosedur Penentuan Waktu Solat Menurut Fuqaha Dan
Ilmu Falak: Perlaksanaannya di Pulau Pinang .
[13] Sadali, H. M. (2011) Kajian Penetapan Takwim Solat Pulau Pinang Menurut
Ilmu Falak. Universiti Sains Malaysia, Pulau Pinang .
[14] Sarkawi, A. A., Rashid, K. A., Othman, J. and Sharif, H. M. (2016) ‘Islamic
Principles and Malaysian Guidelines Relating To the Provision of Surau At Petrol
Station’, Proceeding of the 3rd International Conference on Masjid, Zakat and
Waqf (IMAF 2016), (December 2016), pp. 60–70 .
[15] Shokouhi, M. A. and Yusof, A. (2013) ‘The Influence of Islamic Culture and
Holy Quran on Performing Arts: Relating to Sacred Vocal (LAHN)’, in
Proceeding: The 3rd Annual International Quranic Conference 2013, pp. 363–
382 .
[16] Shuaib, I. S. A. (2021) ‘Insiden azan Maghrib 3 minit awal di Gombak, ini
penjelasan Mufti Selangor’, mStar Online, 22 April.

62

QIBLA DIRECTION CHECKING OF ISLAMIC CEMETERY
THROUGH UNMANNED AERIAL VEHICAL
TECHNIQUES

Siti Nur Dayana Abdul Rahmana, Norhadija Darwina*, Othman Zainona

Abstract: Baitul Haram which is located in Kaaba, the direction of
Mecca is true for Muslimsin performing the obligatory prayer either
fardhu ain, or fardhu kifayah for example to perform the five daily
prayers, the slaughter of animals and things that are used in everyday
human worship in Islam. In addition, for the burial process also requires
the direction of putting the corpse's head facing the direction in which it
is a compulsory charge for Muslims. Accordingly, any cemetery shall
have signs indicating the direction to facilitate the work of burial
according to Islamic law, which has been set. Based on the problems
encountered, the cemetery is found not to be towards the Qibla.
Therefore, this study aims to determine the direction of bearing Qibla
using UAV technology. And pursuit the aims of study, there were two
objectives which are to determine the azimuth of Qibla direction using
UAV and Total Station application and to analyse the comparison
azimuth of Qibla direction using UAV and Total Station application.
This is because, there are several old graves that are not in accordance
with the actual direction of Qibla because no guidance on the direction
of Mecca. Furthermore, the gravediggers have difficulty in determining
the actual direction of Qibla when the process of excavation. So, with
signs marking the direction of Qibla this can reduce the difficulty
experienced by gravediggers in determining the direction of the real and
indirectly to expedite the work undertaken funeral. Finally, the results of
which will be derived from this project is marking signs indicating the
direction of Mecca in the cemeteries and graveyards details plan is
submitted to the management tomb to be used in the future.

INTRODUCTION

The worship of fardhu ‘ain or fardhu kifayah must be circumcision to turn
the body and face towards the Qibla in the Kaaba, Mecca. Among the acts
of worship that require the direction of Qibla are performing prayers,
slaughtering animals where the animal's head is in line with the direction of
Qibla, the construction of mosques and suraus and daily matters of worship
of Muslims, including the burial of Muslim corpses where the right and
cheeks should face the Qibla. As the belief of Allah s.w.t "And wherever you
go, turn your face towards the Masjidil Haram" (Al-Baqarah: 149) carries the

63

meaning of the direction of Qibla is an order from Allah s.w.t. The direction
of Qibla is the direction that’s faced by all Muslims, namely by Kaaba when
performing prayers and do the things that are circumcised face towards it.
While astronomers define the direction of Qibla is the direction to the
nearest Kaaba on the globe of the earth (Jaya, 2019) .

In addition, from Abu Hurairah r.a, Rasulullah s.a.w said, "Between
the east and the west is the Qibla" (Narrated by at-Tarmizi and Ibn Majah).
Thus, through the previous verse it turns out that the direction of Qibla can
be known by referring to several methods in determining the direction of
Qibla such as guided by the constellation orion, qutbi or polar star (Polaris),
sunset, stick istiwa', and compas. Along with the passage of time and the
rapid development of technology today has facilitated the work of
determining the direction of Qibla with the availability of measurement
instruments such as Theodolite, Total Station and Global Positioning System
(GPS) .

UAV applications is the easiest and most advanced method for
mapping and monitoring purposes as it can produce high resolution digital
images which can be further processed to produce an accurate orthophoto,
point clouds and 3-dimensional model according to the requirements of a
project. Therefore, the use of UAV applications can reach certain places
such as places that are difficult to access by other devices such as Total
Station, GPS for example hilly areas or on hillsides due to uneven earth
surface and covered with bushes or thick forests. Then, to make it easier for
surveyors to make measurements, the use of drone technology is used before
the measurement work is carried out to obtain a picture of the earth's surface
for the area. This is because, drone technology is an application that is easy
and light to use because it can be flown along with a portable camera
mounted on the body of the drone and controlled by individuals through a
remote control. The use of these drones can also produce maps for planning
a development in an area to be developed .

The combination of drone technology applications and common
measurement tools will focus on the Islamic cemetery to be developed on
top hilly areas. Therefore, the purpose of this study is to determine the
position of the direction of the Qibla grave using UAV applications in
Bandar Saujana Utama. This is because, in Bandar Saujana Utama there is no
own cemetery for Muslim. As a result, there is an area that has been selected
to be endowed as an Islamic cemetery on a hill. With the cooperation of the
residents of Saujana Utama and the Majlis Agama Islam Selangor, the area
has been endowed as an Islamic cemetery where it can accommodate more
bodies around Saujana Utama area and near Saujana Utama.

64

QIBLA DETERMINATION

Formerly, the development of the method of determining the direction of
Qibla get started from the traditional method to the modern method, namely
Istiwa stick, compas, theodolite, total station and GPS. However, it is not an
obstacle for any party to use it. The priority is that the Qibla direction is in
the actual position and does not deviate from the set limits. This is because,
in 2015 an issue was raised in the Muzakarah Falak which took place in
Terengganu regarding Qibla in some Islamic cemeteries has deviated from
the direction of the actual Qibla based on a report from the state mufti
department. Due to this, on 16 to 18 June 2014, the 86th JAKIM Shariah
Specialist Panel has issued a decision to decide that if it is found that the
existing grave is deviating from the actual Qibla direction, corrections must
be made there is a position of the grave and corpse in it. The deflection limit
that can be used as a guide is 45º for correction to be made.

Referring to this, Muhamad Zakuwa (2015) argues that the
determination of the limit does not exceed 3º from the allowable mihrab
deflection and does not need to be set (fatwa) instead it is used as a guideline
for the construction of mosques or surau and Islamic cemeteries. Usually,
the measurement and marking of Qibla direction carried out in the field will
be done by JUPEM while the confirmation of Qibla direction will be
determined by the relevant state religious department. The work of
measuring and marking the direction of Qibla will begin by determining the
datum based on three boundary stones that are proven in the original
position or two boundary stones and the observation of the sun (azimuth)
using theodolite / total station equipment (Mahruzaman, 2006). For
example, the angular reading of the theodolite / total station can be read up
to the nearest second value is the value 0º0’0” compared to the compas
reading of 0º 30’. (Razali, Analysis and Calibration of Qibla Direction
Accuracy for Cemeteries in Jasin Melaka District, page 2).

Global Navigation Satellite System (GNSS)

Global Navigation Satellite System (GNSS) refers to a term widely used
which includes various types of systems namely positioning, navigation and
time (PNT) based on satellites used worldwide (Thornton, 2018). In short,
GNSS allows GNSS receiver to determine a position or location by
measuring the distance from the GNSS device to the satellite. Ideally the
observation requires four or more satellites for positioning so that the
position can be applied (Thornton, 2018). Figure 1 shows the GPS technique
which been used for qibla determination.

65

Figure 1. The use of GNSS (Pantex SMT888-3G), (Source: Arip et. al. 2014)
Unmanned Aerial Vehicle Application
Unmanned Aerial Vehicle Application (UAV) applications have become a
hot topic in all fields as well as being no exception in the field of land
surveying. The use of UAV applications in the field of land surveying has
helped the relevant parties in terms of producing maps of an area whether
the area has been developed or not on a large or small scale. The advantage
of choosing a UAV application is its flexible use in conducting high-
resolution image collection and can produce images based on demand and
results in real time.

UAV applications are well known in the field of mapping and
security for police, fire, and army agencies but the use of UAVs can also be
used for monitoring, research in agriculture and so on. The sophistication of
UAV device also has its own classification according to the use and demand
from the client.

For the accuracy of UAV data it depends on what model and type of
UAV used for a purpose. However, the concept of work in the use of UAV
applications involves the establishment of a ground control point (GCP) that
covers the project area to get an overall picture of the project area with
enough GCP. The observation data should use the rapid static method for
the establishment of GCP, but it depends on the type of project area. The
results of the analysis can use quantitative analysis.

66

Study on Qibla Determination

There were several studies have been conducted in using UAV for other
applications such as compas, total station and GPS. A study was conducted
by Arip et.al (2014) of Projek Penandaan Arah Kiblat Kawasan Tanah
Perkuburan Dan Wakaf Am Islam Kariah Rapat Setia, Ipoh, Perak using the
GNSS application in the measurement work to ensure that this measurement
can be used. The purpose of the GNSS tool used is to obtain the coordinate
value of the traverse station for marking the Qibla direction sign. Finally, the
comparison of bearing and the distance between the traverse and the GNSS
measurement is done as a final analysis so that the Qibla bearing can be
applied and is still within the allowable limit of 3º as show in Table 1.

Inner Angle GNSS Total Station Difference
(Pantex SMT888- (Solar

3G) Observation)

<9(8)21 18 34’ 11” 18 34’ 27” 0 00’ 16”

<8(9)21 50 57’ 27” 50 56’ 38” 0 00’ 49”

<8(21)9 110 28’ 22” 110 28’ 55” 0 00’ 33”

Table 1 The comparison between the GNSS (Pantex SMT888-3G) GPS and
Total Station (Source: Arip, et.al, 2014)

The method used is to set up a compas on the three feet inside the
cemetery. Then adjust the bubbles in the compas where the position of the
bubble should be in the middle to determine the compas is in a horizontal
position (Figure 2).

Figure 2. The observation of qibla direction has been observed
(Source: Razali, 2018)

67

Observations were made by observing the position of the tombstone and
observation data were recorded three times in different places for review
purposes to find out if the observation was influenced by local attraction
factor or not (Razali, 2018). The readings for the three-observation data will
be averaged and will be compared with the actual Qibla bearing.
STUDY AREA
The study area is in lots 29145 which are in the district of Kuala Selangor,
Jeram sub-district and adjacent of Petaling districts as in like to certified plan
(CP) PA 234393 with an area of 13.59 acres. It is located at the coordinates
WGS84: 3°11'34.4"N, 101°28'38.0"E which is close to the Bukit Cerakah
Forest Reserve as shown in Figure 3.

Figure 3. The location of study area without true scale and true north
(Adapted from Google Maps, 2020)

Demarcation Survey
The purpose of this survey work is to identify the land lot by re-locating the
boundary stones for the lot if the boundary stones of the lot have been lost,
covered or broken. If the boundary stones were nowhere, should it be, a
surveyor will demarcate the borders using a new pipe to replace the stone
border. A plan for this survey work will also be made available to
landowners for their reference.

68

Topography Survey
The topographic survey work is a process of mapping the original terrain
and the data obtained will be drawn into the plan. The planning and design
work of development projects can be done based on the information
contained in this topographic plan. Topographic survey work does not
require high skill and all land surveyors can do it. Also, topographic
measurements are also not included in first -class measurements .
Establishment of Ground Control Point
Ground control points (GCP) are large, marked targets placed in the field at
strategic distances across a predetermined study area. If the GCP is
established using GPS, then at each marker center has GPS coordinates
according to the coordinate system used. These GCP and coordinates are
then used to assist in data processing using software to produce a map in line
with the position of the real-world map (Ahmad Nashman, 2020).
Solar observation
Solar observation can be done at the time morning or evening and the
altitude of the observation to the sun should be at least 10°. At least two (2)
sets of observations continuous, with each set of observations containing
two (2) average to middle of sun in the left and right intersection. While the
third set (3) should be done if the bearing difference between the first set (1)
and the set second (2) over 10”. Each set of observations should refer to the
same mark reference. Line distance between observation station and
reference point used must be not less than 30 meters. Last but not least, time
taken must be recorded atleast one (01') minute close while reading the
horizontal and vertical to the sun should be recorded to the nearest 01” (Dr.
Tan, 2019). Otherwise, we can use compas to ensure the direction of qibla
before we use the calculation of azimuth and set up with total station .
UAV Application
UAV applications have become a hot topic in all fields as well as being no
exception in the field of land surveying. The use of UAV applications in the
field of land surveying has helped the relevant parties in terms of producing
maps of an area whether the area has been developed or not on a large or
small scale. The advantage of choosing a UAV application is its flexible use
in conducting high-resolution image collection and can produce images
based on demand and results in real time.

69

Qibla Marking
Standard Procedure for marking the Qibla direction in general are shown in
Figure 4. The application for marking the direction of Qibla approvement
can be made through the State Mufti Department. After getting the approval
from the State Mufti Department, the Qibla marking work can be carried
out by appointing the Department of Surveying and Mapping Malaysia
(DSMM) or Licensed Land Surveyor.

Figure 4. Qibla direction marking work method flowchart
On-site measurements can be done by using either the Total Station
or GPS / GNSS for the horizontal control and azimuth observations. After
the on-site measurements has been done the State Mufti Department will
check the on-site measurement for conformation and approval.
RESULT AND DISCUSSION
Demarcation work was carried out first to confirm the boundary of lot
29145 and the boundary stones had been found. Then, position of boundary
stone can be used as it turned out in the certified plan. After that,

70

topographic details are carried out to find out any details found on the site.
Demarcation and topography detail was performed by GPS CHC i70.
Thereafter, the topographic data will be transferred into the ZWCAD from
the GPS CHC i70 controller device. The measurement work carried out is
based on the position of the boundary stones found as shown in Figure 5.

Figure 5. Plan demarcation in ZWCAD 2015 software
TBM is based on the value of MSL where it is created based on the
transfer of Benchmark coordinates using a static method of observation for
30 minutes or more to a site of 5 epochs. Whereas the reference station is
based on the lot boundary stone. Then, the average coordinates will be taken
and made into the coordinates of each station occupied. As for the GPC
station, it is created through the transfer of coordinates from the reference
station or the nearest boundary stone. The observation of every each GCP
station around 30 minutes to one hours depends on the condition of station
that have been choose with MyRTK method. Figure 6 shows the final
topographic map of the study area. Figure 7 shows the azimuth of Qibla
direction in ZWCAD 2015 software.

Figure 6. Plan topography in ZWCAD 2015 software

71

Figure 7. Azimuth Qibla direction in ZWCAD 2015 software
Processing image of UAV captured first using Pix4D software to
generate orthophoto before overlay in ZWCAD software with details of
topography plan. Using this orthophoto, the azimuth qibla direction can be
check and compared with the solar observation station done to see the
difference. The level of capability of the UAV in determining the direction
of Qibla can be identified based on the GCP station. The quality report of
processing the image of orthophoto using Pix4D are shown in Figure 8.

Figure 8. The orthophoto quality report
Based on Figure 8, it was found that the image for this project has
been fully processed by explaining several factors such as all images
processed reached 98% with georeferencing for GCP all have been
optimized and reached RMSE = 0.018m. Therefore, orthophoto can be
defined as a photo that presents an image of an object in the correct

72

orthographic position. Also, the use of orthophoto represent the correct
orthographic position of objects (Hanif, 2016). The comparison of
coordinate between station GCP on site using Total Station with station
GCP on orthophoto using UAV is shown in Table 1. While Table 2 shows
the difference bearing of Qibla direction between survey and State Mufti
Department.

STATION TOTAL STATION ORTHOPHOTO DIFFERENCE

(m) (m) (m)

RM06 N 2084.804 N 2084.691 N ± 0.113
E -25049.916 E -25049.900 E ± 0.016

RM05 N 2057.735 N 2057.740 N ± 0.005

E -25002.045 E -25002.033 E ± 0.012

TBM 1 N 2108.274 N 2108.279 N ± 0.005
E -25006.853 E -25006.832 E ± 0.021

Table 1. Comparison coordinate between station GCP and UAV

STATION TOTAL STATION
Survey 292° 32’ 20”

State Mufti Department 292° 32’ 31”

Table 2. The difference bearing of Qibla direction between survey and State
Mufti Department

Based on Table 1, the differences between coordinate for GCP and
UAV station shows that the minimum value for Nothing coordinate is ±
0.005 m and the maximum value is ± 0.113 m. Whereby the minimum value
for Easting coordinate is ± 0.012 m and the maximum value is ± 0.021 m.
This may be due to the distortion on the orthophoto. Next from Table 2, it
shows that the difference bearing azimuth between survey and State Mufti
Department was 11”. The difference is still in the tolerance limits that being
allowed for determining the direction of Qibla for a cemetery area is not
more than 3°. The difference bearing of Qibla direction between survey and
UAV is shown in Table 3.

TYPE OF STATION TOTAL STATION
INSTRUMENT 02_2>01_1>RM05 292° 32’ 31”

TOTAL STATION

UAV (Orthophoto) 02_2>01_1>RM05 292° 33’ 07”

Table 3. The difference bearing of Qibla direction between survey and UAV

73

Based on Table 3 the difference bearing azimuth between survey
using total station and UAV was 36”. The difference is still in the tolerance
limits that allowed for determining the direction of Qibla for a cemetery area
is not more than 3°. These results proved the ability of the use of UAV
technology was suitable for determining the direction of Qibla for an area.

CONCLUSION

In conclusion, the objective of this study has been successfully achieved by
determining the Qibla direction of the grave as well as marking the Qibla
direction sign in the Bandar Saujana Utama cemetery. The constraint for this
study is that the cemetery was originally a forest area. The difficulty made it
difficult for workers to enter the area, so the idea arose to use UAV
equipment as a replacement for workers. After that, the use of UAVs has
also helped to plan the course of measurement work from determining the
boundary stone to producing maps for commercial purposes. In fact, the use
of UAV also requires a good GCP so the production of GCP position is
determined by GCP equipment and can be used for the purpose of checking
the Qibla direction that has been determined provided the use of
observation stations is the same as the use of total stations. Finally, for
azimuth measurement work requires the use of total station where the total
station tool is more accurate for azimuth determination work compared to
other applications.

ACKNOWLEDGEMENT

The authors would like to thank to the Ministry of Higher Education (under
research votes 5F054) and Universiti Teknologi Malaysia (under research
votes 05G53) for providing funding, instruments, and experimental site. The
authors also express deepest appreciation and gratitude to the Ministry of
Education Malaysia and Universiti Teknologi Malaysia for the support and
provision given to conduct this study under the Research University Grant
Fund (GUP) (No. Vot: Q.J130000.2527.19H35).

REFERENCES

_______________________

a Universiti Teknologi Malaysia, Faculty of Built Environment and Surveying,
Department of Geoinformation, Johor Bahru, Johor, Malaysia 81300
[1] Ahmad Saiful Bahri Othman, (2020). Determination Qibla Direction Using
Network Real Time Kinematic Technique. Final Year Thesis. Faculty of Built
Environment & Surveying. Universiti Teknologi Malaysia .
[2] Arip, Fikry, Shahida, Dayana (2014). Projek Penandaan Arah Kiblat Kawasan
Tanah Perkuburan Dan Wakaf Am Islam Kariah Rapat Setia,Ipoh, Perak,
December 2014 .

74

[3] Anuar Ahmad, (2016). Kajian penggunaan UAV Dalam Bidang Ukur &
Pemetaan (2016, Mac 12) .
[4] Fara Nur Wahidah Suria, Nurulhuda Ahmad Zaki,Saadan Man (2016),
Peranan Institusi JAKIM Dalam Menentukan Arah Kiblat Di Malaysia Dari
Perspektif Maqasid Syariah. Maqasid Al-Shari̒ Ah: Aplikasi Dalam Aspek Sains
Dan Teknologi. Penyunting Sa’adan Man, Mohd Saiful Anuar Mohd Nawawi,
Raihana Abdul Wahab, Nurulhuda Ahmad Zaki. Pg 135-140 .
[5] Harian Metro (2017) Kubur salah kiblat [ Online] (2017, Julai 22)
[6] Jayusman, (2014). Akurasi Metode Penentuan Arah Kiblat : Kajian Fiqh Al-
Ikhtilaf dan Sains .
[7] Muhamad Zakuwa Rodzali (2015), Hukum Memperbetulkan Kubur Yang
Terpesong Arah Kiblat Dan Kedudukan Mayat Di Dalamnya, Muzakarah Falak
2015, Kuala Terengganu
[8] Sinar Harian, (2015). Ratusan kubur salah kiblat. [Online] (2015, Jan 19)..
Rompin, Malaysia
[9] Siti Nur Hidayah, Othman Zainon, Mohamad Saupi Che Awing (2016),
Kesedaran Arah Kiblat Dalam Kalangan Masyarakat Islam Negeri Johor, Pusat
Kajian Pengurusan Pembangunan Islam (ISDEV), USM,
https//kumparan.com/@kumparantech
[10] Syed Asry Shahab (2021). Determination Of Qibla Direction Using Rubu’
Mujayyab. Final Year Thesis. Faculty of Built Environment & Surveying.
Universiti Teknologi Malaysia.
[11] Razali bin Johari (2018), Analisis Dan Tentukur Ketepatan Arah Kiblat Bagi
Tanah Perkuburan Di Daerah Jasin Melaka, 8th National Conference in
Education - Technical & Vocational Education and Training (CiE-TVET) 2018.
pg 798-804.

75

76

RELEVANCE OF THE USE OF RUBU’ MUJAYYAB IN
QIBLA DIRECTION MARKING

Syed Asry Shahab Syed Mohamad Fikry Shahaba, Othman Zainona*

Abstract: Qibla direction is the main guide for Muslims in performing
prayers. Therefore, the direction marking of this qibla should be precise
without any tolerance. However, the National Fatwa Council has
stipulated that the difference in direction of qibla should not exceed 3°.
Many mosques and surau in Malaysia have wrong qibla direction that
exceeded 3°. This problem should be solved by conducting a thorough
review of mosques and suraus in every state in the country so that
Muslims can implement their worship with high confidence. Therefore,
the use of Rubu’ Mujayyab is still relevant in checking qibla direction.
Rubu’ Mujyyab is a type of quadrant used to measure and absorb the
sun by Islamic astronomers since the 15th century. This tool is used to
measure the angle of space, know the time, find directions, or determine
the exact position of the space object at any time. Therefore, this
project is implemented to determine the accuracy of measuring the
Rubu’ Mujayyab tool as well as showing the correct method of
calculation and marking of qibla direction. The qibla marking was
carried out in this study through two methods namely Rubu’ Mujayyab
and theodolite tool. Rubu’ Mujayyab uses direct measurement methods
through shadows and calculations, while theodolite uses sun azimuth. In
this study, the accuracy in qibla direction marking for both devices was
tested using the same observation point and time. The results showed
that the difference between azimuth direction of qibla between Rubu’
Mujayyab and theodolite is maximum 22 minutes. This difference value
indicates that qibla direction marking using Rubu’ Mujayyab is still
within the limit of difference allowed by the National Fatwa Council. In
conclusion, the use of Rubu’ Mujayyab is still relevant for use in qibla
direction marking in this country.

INTRODUCTION

The use of Rubu’ Mujayyab is said to have started before the 8th century AD.
Among the Muslim astronomers who have used it are al-Khawarizmi, al-Biruni,
Ibn Syatir, Ibn Yunus, Sheikh Abdullah Fahim, Sheikh Tahir Jalaluddin and many
more. In terms of terminology, Rubu’ Mujayyab is defined as a traditional
instrument of astronomy created specifically for the measurement of angle and
time. Theodolite and Global Navigation Satellite System (GNSS) have made
determining the direction of Qibla easier and more precise in recent years. In
practice this Qibla direction figure is represented in the azimuth which the

77

number of rotational angles is calculated from true North and rotates towards the
East. Once azimuth is known in the direction of Qibla, the next step is to
perform measurements. In calculating the angle of the Qibla direction, it is
necessary to know the coordinates of the point to be determined and then
calculate it using the formular and equation provided.

Both tools can be used to determine Qibla direction. Although
theodolites are extensively used now, Rubu’ Mujayyab was used by astronomers
in the past to observe and calculate the direction of Qibla before the technology
was ever invented. This instrument should be practiced by the young generation
today so that the usage of these instruments can bring benefits and aid in
problem solving.

According to Islamic law, Mohamad Saupi (2014) state that facing the
Qibla is defined as the body of a person facing towards the Kaaba. Astronomers
also determine the direction of Qibla as the closest distance to the Kaaba with
the great circle of the globe of the earth. Furthermore, according to the
Department of Islamic Development Malaysia (2014), for places as far away as
Malaysia, the direction of Qibla ijtihad can be determined through astronomical
calculations, using appropriate equipment. The determination of Qibla direction
can be divided into two methods namely conventional such as Rubu’ Mujayyab
and modern method such as compas and theodolite. Qibla direction can also be
determined based on the position of the sun and location of certain place. While
for people live far away from Kaaba, they can just decide by using their
knowledge of Qibla determination which call as Ijtihad. Ijtihad is the effort in
determining the direction of Qibla. In terms of prayer, the Qibla should not
deviate beyond three degrees, where the direction of the Qibla will fluctuate
depending on where the observer is. A one-degree displacement is 112
kilometers, while a three-degree difference means 336 kilometers, and our prayer
is not acknowledged if it is not fixed. Therefore, this study was carried out to
evaluate the accuracy of Qibla direction measuring using Rubu' Mujayyab and
theodolite.

QIBLA DIRECTION

The Qibla direction is the direction from the local location to the Kaabah
according to the shortest distance after the measurement. Knowing the direction
of Qibla is very important because it is one of the conditions in prayer. The
history of this Qibla direction began after the advent of Islam. Initially, the Qibla
leads to Jerusalem, but in 645M, it was changed to lead to the Kaabah. The
direction of Qibla is the azimuth direction of a place to the Kaabah, whereas
facing towards the Qibla means the body (chest) of the person facing to the
Kaaba located in the Holy Mosque in Mecca (Mohamed Saupi, 2015).

In 2007, the 79th National Fatwa Committee Muzakarah decided that the
direction facing Qibla is ijtihad, which is known as “Qibla Yakin,” and “Dzanni”

78

signifies assumed or estimated. Tolerances are limited to a maximum of 3°
.Furthermore, the longer the distance between two points, the larger the value of
the difference that can cause the direction of Qibla to deviate, although the
difference must not exceed three degrees (Mohamad Saupi, 2015).
Determination of Qibla Direction
In the early era of Islam, the search for the direction of Qibla was not so
problematic because of its location close to Makkah. However, as Islam spread
throughout the world, including to Malaysia, determining the direction of Qibla
became a problem for the astronomers. Baharrudin Zainal in Ahmad Irfan (2019)
state that Qibla means the direction to the Kaaba according to the nearest
distance of the great circle of the globe. In Malaysia, the Qibla direction is
determined through the azimuth guide at an angle between 291°to 293°based
on the locations (Ahmad Irfan, 2019). As has been agreed in general that the so-
called direction is the "shortest distance" in the form of a straight line towards
Qibla also shows the shortest direction to the Kaaba. Stated by Nur Hazliza et al,
(2018) the Kaabah location data provided by the Malaysian Department of
Survey and Mapping (JUPEM) is 21° 25' 15.6" N (latitude origin) and 39° 49'
29.1" E (longitude origin). Kaabah is a cube-shaped building, 15m high and
9.92m x 12.12m x 10.25m x 11.85m. It is in the center of Masjidil Haram, Mecca.
Kaabah is covered with a black cloth known as Kiswah and is replaced every year
to mark the Hajj season and the day of Wukuf (Mohamed Saupi, 2006). Then for
determining the direction of Qibla can be done by using the Spherical
Trigonometry. Calculation and measurements are made with angular degrees
from the True North point, using calculator aids or calculators (Dwi, 2017).
Calculation of Qibla Direction
A more accurate estimate of the Qibla direction can be obtained using a sphere
model of the Earth (Saksono et al, 2018). Spherical Trigonometry calculation
method is a formula used to obtain the Qibla direction angle as shown in Figure
1. The calculation is to get the azimuth of Qibla, which is the direction of a
desired location to the Kaaba from the north of the earth. The formula that was
used nowadays is the legacy of past astronomers such as al-Khawarizmi, al-Biruni
and many more. The exact method of determining the direction of Qibla is to get
the direction of Qibla by knowing the movement of the daily sun.

79

Figure 1. Spherical triangle of predicting the Qibla direction
(Source: Saksono et al, 2018)

The formula for calculating the Qibla azimuth is:

(1)

then, azimuth Qibla is 360 – α
whereby, α is Qibla direction angle from the North, Δλ is the difference in local
longitude and longitude Mecca (λA - λB), ΦA is the local latitude, λA is the local
longitude, ΦB is Mecca latitude and λB is Mecca longitude.

The calculation of qibla direction at the UTM, Helipad is latitude 1 33’
29.64” N and longitude is 103 38’ 13.34” E. The location of Kaabah provided
by the Malaysian Department of Survey and Mapping (JUPEM) is latitude 21° 25'
15.6" N and longitude is 39° 49' 29.1" E.

ΦA = 1 33’ 29.64”, ΦB = 21° 25' 15.6"
(λA - λB) = 103 38’ 13.34” – 39° 49' 29.1" = 63.81227778

Tan  = 0.38017289
 = 67.03955146

Qibla Azimuth for UTM Helipad is 360 – α = 360 – 67.03955146 = 292 57’
38”

80

Rubu’ Mujayyab and Theodolite

Rubu’ Mujayyab is a quarter of a circle (quadrant) that has lines and squares with
a value of 0 to 90 degrees as shown in Figure 2. Sheikh Abdullah Fahim used the
Rubu’ Mujayyab for calculate the time of prayer throughout the year and make
observations to determine the position of the constellations in the sky (Ibnor Azli
et. al, 2013). In this method of counting the time of the Subuh prayers. Basically,
the basis for the calculation is through Zawal. Zawal is a time when the sun
transits over the meridian line (Ahmad Zaki et al., 2014). According to Hayton
(2012), astrolabe is an ancient astronomical instrument that was used both to
make observations and to carry out calculations.

Ibn Syatir in Ahmad Zaki et al., (2014) defined Rubu’ Mujayyab as a tool
made the same some of copper or wood for the purpose of measuring time.
According to Ibn Syatir, on the Rubu’ Mujayyab the sky was created, and, on this
device, there are seventeen lines that can be known at times. He also defined that
the perfect Rubu’ Mujayyab is used to determine the times in Islam namely prayer
time, Qibla direction and the beginning of the Islamic month (Ahmad Zaki et al.,
2014). The use of Rubu’ Mujayyab is not only able to solve problems in
measurement but it can also be used by students in solving mathematical
problems.

The Theodolite may also be used to identify the direction of the Qibla. It
can measure the horizontal and vertical angle. In comparison to the compas, the
readings acquired from this equipment are more precise; depending on the kind
of theodolite, the readings can achieve an accuracy of 1" or more (Mohamad
Saupi, 2015). Usually, the use of a theodolite in establishing the Qibla direction is
limited for persons with expertise, such as surveyors or associated parties, who
are specifically trained to determine the Qibla direction of the mosque. Because
the theodolite is not affected by the earth's magnetic field or magnetic materials,
it is commonly used to identify the direction of the Qibla.

RESEARCH AREA IDENTIFICATION

This section explains the workflow of the study to make sure it can be
implemented properly. To achieve the aim of this study, there is two type of
method that can be applied known as conventional and modern method. This
project will be held at Helipad UTM, Skudai Johor Baharu with the latitude of
1°33'30"N and longitude of 103°38'13"E as shown in Figure 2 The coordinate
was taken using Google Earth application to estimate the local coordinate. This
study is to determine the qibla direction that will be mark as a reference by using
conventional and modern method. The location was chosen for both
observations to be measured without any obstacle (vertical building) that will
affect the reading and results.

81

Figure 2. Drop pin at Helipad UTM, Skudai Johor Baharu.

Data Acquisition

The data collecting and processing processes were carried out in accordance with
the proposed Standard Operating Procedure (SOP) for both traditional and
modern methods. The most crucial aspect of this project is determining the qibla
orientation from the selected location to the Kaabah. One station will be
established using GPS observation to obtain a highly precise position. In this
research, GNSS data will be used to identify the exact location. Meanwhile, the
local coordinate for this project is obtain from the previous study research about
New Redefinition of Geodetic and Plane Coordinates on UTM Geodetic
Markers (Liew et al., 2020). The research was done to redefine a new geodetic
and plane coordinates on UTM geodetic marker. The point of G11 at UTM,
Helipad shows the coordinate station for Helipad Benchmark station in
GDM2000 with latitude value is 1 33’ 29.64” N and longitude is 103 38’ 13.34”
E.

Sun Observation is required for azimuth control at the beginning bearing
as well as traverse correction. In this project, the method is used to determine the
actual North bearing before marking the Qibla direction. The observation starts
by setting the Theodolites at Benchmark station and prism as a reference object
RO. The assumed bearing was set for faced-left using hand compas from
targeting from station to referent object. Target the Theodolite toward to the sun
and start performing the observation.

Qibla Direction Marking

Qibla direction that has been computed by the Excel was used as a reference
bearing for this project. The bearing and the calculated azimuth will be marked
using theodolite and Rubu’ Mujayyab with a proper method to achieve the
different in the measurement. Theodolites are commonly used by Surveyors to
obtain data for cadaster, engineering, and topography surveys. This tool is used

82

to measure bearing with great accuracy to correctly record data from one point to
another. In this project, the instrument was used to mark the calculated Qibla
direction bearing that has been computed using Excel. By Using Excel, a set of
sun observation data was calculated to obtain the final true bearing that refers to
true North. Once the true bearing is computed, set the Theodolite at the
Benchmark station, and aim the RO with the true bearing to begin the Marking
process that has been calculated using the Excel. These proses must have more
than two manpower to complete this work (Figure 3).

Figure 3. Find the direction of Qibla to the Kaabah
Rubu’ Mujayyab is a traditional instrument used in the past to calculate
the qibla direction. A theodolite will be used in this technique to determine the 0˚
of True North from a solar observation. The calculated qibla direction was
transferred using Rubu’ Mujayyab and then recorded using theodolite to achieve
a precise measurement. The Theodolite was set above the established point 1 and
then observe the back-bearing prism at the helipad station. The next procedure is
to set the bearing to 0˚ of True North and marked the point using a hard wood
and nail to establish the 0˚ straight line from point 1. Place the Rubu’ Mujayyab
above the point 1 station and make sure the right side of the instrument is aligned
with the established 0˚ line .
Data Processing
The observation data then will be used to calculate the qibla direction to the
Kaabah using spherical trigonometry. Finally, to ensure that the research
objective can be achieved, the measured qibla direction will be carried out for
both methods in determine and mark the qibla direction. The bearing and
azimuth of the Qibla direction were calculated using Microsoft Excel, which can
compute instantly after receiving the coordinate. Figure 4 shows the procedure of
marking qibla direction using Rubu’ Mujayyab from 0˚ line.

83

Figure 4. Procedure of marking qibla direction using Rubu’ Mujayyab from 0˚ line
To record the data, set the theodolite at the Benchmark station again and

read the line that was produced from the Rubu’ Mujayyab at point 1. This
procedure are recommeded for two or more men power to complete the task.
Figure 5 shows the process on recorded the Rubu’ Mujayyab Data. The accuracy
in marking the Qibla Direction was determined by comparing the existing line to
the line created using Rubu’ Mujayyab.

Figure 5. The process on recorded the Rubu’ Mujayyab Data
RESULT AND DISCUSSION
The result from this paper will be prove using the proposed method. The data
was observed at the same location at the Helipad, UTM Skudai same as stated in
study area in this paper. To determine the difference between the two
measurements, the data will be presented in this chapter in the form of a table
and a graph. Calculated Qibla direction from Excel computation was used as a
reference marked using Theodolite generated two points to construct a straight
line pointing the Qibla direction in showing this method is well organised. Figure
6 shows the graphic of the Theodolite and Rubu’ Mujayyab techniques at UTM
Helipad, the orange line will represent the Theodolite and blue line is from Rubu’
Mujayyab observation .

84

Figure 6. The Theodolite and Rubu’ Mujayyab marking result at Helipad UTM, Skudai
A 10 days of data observation were collected to get a redundancy of data

in proving the accuracy for both measurements. The result will be displayed to
obtain the average bearing recorded from the observation field and computed
using Excel software. Solar observation data using theodolite was computed
using Excel software to adjust the final bearing before starts marking the Qibla
direction. In this observation, only the first-class Solar observation data were
used.
Qibla direction Marking using Theodolite and Rubu’ Mujayyab
To prove the accuracy for both measurements in this paper, the bearing was
observed for 10 days for the data to be compared and analysis to achieve the
accuracy in determined the Qibla direction needed. Table 1 shows the 10 days
average first-class Solar Observation data for Reference Object (R.O) bearing
obtained using theodolite method. The average bearing from the observation
data were used to mark the Qibla direction that has been computed using straight
line. Rubu’ Mujayyab marked the Qibla direction, which was computed using the
same coordinate as marked by the Theodolite. The observation for this
instrument started at 0˚ True Bearing, which was established by the theodolite at
point 1 using the average RO bearing. The data is then observed and recorded
using the theodolite at Benchmark station to read the line that was produced by
Rubu’ Mujayyab pointing 67˚00ʼ00ˮ.

85

Date (June) First-Class Average RO Bearing Qibla Direction

Bearing from Theodolite Set by

Theodolite

4 104˚ 41’ 59” 104˚ 42’ 00”

6 104˚ 43’ 19” 104˚ 43’ 20”

10 104˚ 42’ 37” 104˚ 42’ 40” 292˚ 57’ 40”

11 104˚ 42’ 23” 104˚ 42’ 20”

14 104˚ 43’ 02” 104˚ 43’ 00”

104˚ 42’ 57”

104˚ 42’ 46”

16 104˚ 42’ 39” 104˚ 42’ 40”

104˚ 42’ 39”

104˚ 42’ 41”

17 104˚ 44’ 47” 104˚ 44’ 40”

20 104˚ 43’ 29” 104˚ 43’ 40”

104˚ 43’ 46”

104˚ 44’ 00”

21 104˚ 43’ 58” 104˚ 44’ 00”

104˚ 43’ 59”

26 104˚ 45’ 00” 104˚ 44’ 00”

104˚ 43’ 35”

104˚ 43’ 36”
Table 1. 10 days average first-class solar observation dataset using Theodolite

Table 2 shows the 10 days dataset Qibla direction marked using Rubu’
Mujayyab. Table 3 below shows the average differences in Qibla determination
for Theodolite and Rubu’ Mujayyab for 10 days. The Qibla direction was defined
using both traditional and modern methods using average first-class sun
observation data. The observation was carried out for ten days in order to acquire
dataset redundancy. The Qibla direction for Rubu’ Mujayyab and Theodolite was
determined to obtain the difference in both measurements shown in Table 3. The
Qibla direction calculated from Helipad UTM, Skudai to Kaabah, Meccah was

292 57' 44.37”. The data obtained by theodolite is 292 57' 40” since the
instrument accuracy for the Topcon DT-200 is ±20ˮ. Meanwhile the accuracy for
Rubu’ Mujayyab is only ±30ʼ which only capable to measured 90˚ observation
dataset. Hence, the method for this instrument was observed from 0˚ of true
North. The observation can be obtained using calculated Qibla azimuth 67˚ 2’
15.63” equivalence to 67˚ using Rubu’ Mujayyab. The mean difference for Rubu’
Mujayyab observation in determined the Qibla direction by day is -12’ 58”.

86

Date (June) Theodolite Rubu’

Mujayyab
4 292˚ 35’ 40”

6 292˚ 45’ 40”

10 292˚ 40’ 40”
292˚ 57’
11 40” 292˚ 37’ 40”
14 292˚ 43’ 00”

16 292˚ 40’ 20”

17 292˚ 57’ 00”

20 292˚ 48’ 20”

21 292˚ 50’ 40”

26 292˚ 51’ 00”
Table 2. 10 days dataset Qibla direction Recorded using Theodolite.

Date (June) Theodolite Rubu’ Mujayyab Differences

4 292˚ 35’ 40” 22’ 00”

6 292˚ 45’ 40” 15’ 00”

10 292˚ 57’ 40” 292˚ 40’ 40” 17’ 00”

11 292˚ 37’ 40” 20’ 00”

14 292˚ 43’ 00” 14’ 40”

16 292˚ 40’ 20” 17’ 20”

17 292˚ 57’ 00” 0’ 40”

20 292˚ 48’ 20” 9’ 20”

21 292˚ 50’ 40” 7’ 00”

26 292˚ 51’ 00” 6’ 40”

Mean difference in Qibla determination: -12’ 58”

Table 3. Differences in Qibla Direction data for 10 days.

Figure 9 shows line graph indicates that the observation from Theodolite
data is consistent throughout the month. This is because the Qibla established by
the Theodolite is a computed bearing that was set using the Theodolite after the
bearing was adjusted using sun observation data. The line for Rubu’ Mujayyab
observation is inconsistent due to errors such as parallax and human error. Based
on Figure 11 the difference between each measurement is slightly different, but it
is still within the tolerance of 3-5 degrees, which is still adequate for conducting
our prayers.

87

Figure 7. Observation Qibla direction for Theodolite and Rubu’ Mujayyab.
CONCLUSION AND RECOMMENDATION
The purpose of this research is to offer new marking standards and procedures
for identifying Qibla directions for mosques and surau using Rubu’ Mujayyab and
theodolite instruments. By implementing the correct technique and procedure,
this study has shown that both the conventional and the modern method can be
used to determine the direction of Qibla with acceptable tolerance. Rubu’
Mujayyab was used by previous astronomers to determine the time of prayer, the
direction of Qibla and many other applications. In the meantime, Theodolite is
commonly used by the Surveyor to measure and collect data. Both measurements
have their own advantages and disadvantages. Based on the Qibla direction result
that has been marked, Rubu’ Mujayyab method has been proved with the
accuracy from the measurement compared with the modern instrument which is
Theodolite. Both instruments provide the Qibla direction within the tolerance
that has been decided by the National Syariah Council's Qibla regulations.
ACKNOWLEDGEMENT
The authors would like to express their deepest appreciation and gratitude to the
Ministry of Education Malaysia and Universiti Teknologi Malaysia for the
support and provision given to conduct this study under the Research University
Grant Fund (GUP) (No. Vot: Q.J130000.2527.19H35).

88

REFERENCES
_______________________
a Universiti Teknologi Malaysia, Faculty of Built Environment and Surveying,
Department of Geoinformation, Johor Bahru, Johor, 81300.
[1] Ahmad Irfan, Ikmal Hisham (2019). Fahami evolusi penentuan arah kiblat.
Berita Harian. p. 68.
[2] Ahmad Irfan, Ikmal Hisham (2019). Panduan azimuth penentu arah kiblat.
Harian Metro. p. 19.
[3] Ahmad Zaki, N. H., Zainuddin, M. Z., Ali, A. K., Abdul Wahab, R., Mohd
Nawawi, M. S. A., Abdul Niri, M., & Ismail,
[4] K. (2014). Penentuan Waktu Solat Subuh Menggunakan Rubu’ Mujayyab di
Malaysia. Jurnal Fiqh, 11(1), 97–118 .
[5] Dwi Putra Jaya, 2017. Dinamika Penentuan Arah Kiblat. Jurnal Ilmiah Mizani.
Vol 4, No 1 (2017), 63-76 .
[6] Hayton D. (2012). An Introduction to the Astrolabe. Access on 20 Julai 2021.
Available at http://www.astrolabe.ch.
[7] Ibnor Azli Ibrahim, Mohd Razlan Ahmad, Mohd Hafiz Safiai (2013). Balai
Cerap Astrofiqh di Malaysia: Kesinambungan Ilmu Falak Syarie Dari Asia Barat.
International Journal of West Asian Studies 35 EISSN: 2180-4788 Vol. 5 No. 2
(pp 35-50)
[8] Mohamad Saupi Che Awang (2006). Prinsip-Prinsip Asas Astronomi. Fakulti
Geoinformasi dan Harta Tanah, Universiti Teknologi Malaysia, Skudai.
[9] Mohamad Saupi Che Awang (2015). Monograf Falak Syarie. Fakulti
Geoinformasi dan Harta Tanah, Universiti Teknologi Malaysia, Skudai.
[10] Nur Hazliza Ariffin, Norhana Arsad, Mohd Fikri Mohd Jumat, Mohd Saiful
Dzulkefly Zain, Badariah Bais (2018). Vector Algebra Qibla Detection In An
Indoor, Semi-Open And Outdoor Environment. Journal of Engineering Science
and Technology Vol. 13, No. 6 (2018) 1573 - 1586 © School of Engineering,
Taylor’s University
[11] Thottungal. 2021. Rubu’ Mujayyab. Website Review (Online). Retrieved
from https://cosmolabe.tripod.com/id1.html
[12] Saksono, T., Fulazzaky, M. A., & Sari, Z. (2018). Geodetic analysis of
disputed accurate qibla direction. Journal of Applied Geodesy, 12(2), 129–138.
https://doi.org/10.1515/jag-2017-0036.

89

RELEVANSI PENDEKATAN TAQI AL-DIN AL-SUBKI
DALAM PENENTUAN ANAK BULAN PADA ERA
REVOLUSI INDUSTRI 4.0
DI MALAYSIA

Nurul Syakirah Rahimana*, Mohd Saiful Anwar Mohd Nawawia, Raihana
Abdul Wahaba

Abstract: Taqi al-Din al-Subki was one one of the pronounced scholars
in the field of fiqh and usul al-fiqh. His writings became a reference for
scholars to resolve current fiqh issues, including in the matter of
determining the visibility of crescent moon. The visibility of the
crescent moon is important for Muslims because it involves the
beginning and end of a month, especially those related to certain
occasion such as fasting in Ramadan and Eid in the month of Syawal.
However, there are different approaches or criteria in determining the
visibility of the crescent moon, hence resulting in different date of the
beginning of certain months based on different countries. Therefore, it
is questionable to what extent that the opinion of al-Subki can resolve
the differences and to harmonize between them. This paper aims to
analyze al-Subki’s approach in determining the visibility of the crescent
and whether it is relevant or otherwise in this era of Industrial
Revolution 4.0. Al-Subki’s scholarly works are referred to obtain his
views in this matter. In addition, database is also used to acquire
information related to the study conducted. The result of the study can
be concluded that al-Subki’s approach in determining the visibility of
the crescent moon is relevant in the era of the Industrial Revolution 4.0.

90

PENDAHULUAN

Revolusi Industri 4.0 memainkan peranan yang amat besar dan penting dalam
memacu dan meneruskan hidup umat manusia bagi selari dengan arus teknologi
yang kian membangun ini. Peranan sains dan teknologi ini tidak dapat dinafikan
sebagaimana salah satu daripada kaedah penghasilan pengetahuan dalam
perkembangan ilmu moden adalah disumbangkan dari kaedah sains itu sendiri.
(Wan Muda, 1993) Kesinambungan daripada revolusi industri yang terdahulu
iaitu perubahan dalam automasi, penciptaan komputer, pertukaran data dan
maklumat, robot pintar dan segalanya yang berkaitan dengan pembaharuan
teknologi realiti maya, sedikit sebanyak telah memberi kesan terhadap aspek
kehidupan manusia seperti aspek sosial, pendapatan, keilmuan dan lain-lain.
Revolusi Industri 4.0 turut dilihat mampu membuka ruang kepada cetusan lebih
banyak kaedah penyelesaian masalah daripada aspek keilmuan termasuklah dalam
hal kenampakan anak bulan di Malaysia .

Kenampakan anak bulan merupakan fenomena alam yang penting untuk
menentukan tarikh-tarikh penting dalam Islam seperti tarikh 1 Ramadhan yang
menjadi permulaan ibadah puasa dan 1 Syawal sebagai permulaan Hari Raya
Aidilfitri. Para ulama sependapat bahawa apabila anak bulan kelihatan pada hari
cerapan iaitu pada hari ke-29 Hijrah khususnya bagi bulan Ramadan, Syawal dan
Zulhijjah, maka keesokannya boleh ditetapkan sebagai satu hari bulan Hijrah. Hal
ini adalah berpandukan kepada dalil-dalil syarak daripada al-Quran dan hadis
Rasulullah SAW. Namun, apabila anak bulan tidak kelihatan pada hari tersebut,
para ulama berbeza pendapat terhadap kaedah yang perlu digunakan untuk
menetapkan awal bulan Hijrah iaitu sama ada pada hari esoknya digenapkan
kepada 30 hari, dikenali sebagai kaedah istikmal, ataupun ditentukan melalui
kiraan astronomi yang terperinci iaitu kaedah hisab.

Taqi al-Din al-Subki merupakan seorang ulama besar Shafi’iyyah di Mesir
dan menguasai pelbagai ilmu termasuklah ilmu fiqh, usul fiqh, ilmu hadis, ilmu
tafsir, ilmu usuluddin, balaghah dan mahir bersyair (Muhammad, 2017). Beliau
antara salah seorang tokoh yang terkehadapan dalam perbahasan isu penentuan
awal bulan Hijrah dengan metod hisab (imkan al-rukyah) berdasarkan kepada
penulisan-penulisan karya agungnya berkenaan anak bulan seperti kitab Al-
Fatawa al-Subki dan kitab Adillah Fi Ithbat al-Ahillah. Pendapat beliau juga selari
dengan pendapat ulama seperti Shaikh Shakir, al-Qaradawi dan Sharaf Qudah.
Malah, pendapat al-Subki yang telah membahagikan imkan al-rukyah kepada
empat kategori turut dikembangkan oleh pakar-pakar falak/astronomi
kontemporari seperti Yallop, South African Astronomical Observatory (SAAO)
dan Odeh pada zaman moden ini. Justeru, dengan meneliti pendapat al-Subki,
artikel ini dapat menjelaskan pendekatan beliau dalam hal penentuan anak bulan
pada era Revolusi Industri 4.0 di Malaysia.

91

PENENTUAN ANAK BULAN PADA ERA REVOLUSI INDUSTRI 4.0
DI MALAYSIA

Malaysia mengamalkan kaedah imkan al-rukyah dalam penentuan anak bulan bagi
tujuan penetapan kalendar Hijrah. Kriteria ini mula diterapkan di Malaysia selepas
berlaku satu persidangan mengenai anak bulan iaitu Persidangan Anak Bulan
Negara-Negara Islam Sedunia yang diadakan di Istanbul pada tahun 1978. Antara
resolusi yang dicapai melalui persidangan tersebut ialah anak bulan tidak boleh
kelihatan jika ketinggian bulan kurang dari 5 darjah atas ufuk dan nilai elongasi
mestilah tidak kurang daripada 8 darjah. Malaysia telah menerima kriteria tersebut
dengan sedikit perubahan iaitu ketinggian bulan diubah kepada 5.5 darjah,
manakala nilai elongasi direndahkan kepada 7.5 darjah. (Mohd Nawawi et al.,
2015) Selain itu, Malaysia juga telah menambah satu parameter alternatif iaitu,
tempoh berlaku ijtimak mestilah tidak kurang daripada 8 jam sebelum matahari
terbenam bagi anak bulan kelihatan. (Ilyas, 1994) Setelah berlaku Pertemuan
Tidak Rasmi Menteri-Menteri Agama Brunei, Indonesia, Malaysia dan Singapura
(MABIMS), kriteria ini telah diubahsuai sekali lagi dan telah dipersetujui untuk
diaplikasikan pada 1 Jun 1992.

Berikut merupakan kriteria dan syarat yang telah dipersetujui oleh
MABIMS:

(a) Ketika matahari terbenam, ketinggian anak bulan di atas ufuk tidak
kurang daripada 2 darjah dan jarak lengkung bulan-matahari tidak kurang
daripada 3 darjah.

ATAU

(b) Ketika bulan terbenam, umur anak bulan tidak kurang daripada 8 jam
selepas ijtimak berlaku.

Amalan melihat anak bulan di Malaysia dilakukan oleh para ulama’, qadi
dan mufti-mufti dan usaha ini telah dilakukan secara rasmi bermula tahun 1934
oleh Syed Alwi bin Tahir al-Haddad di menara Masjid Sultan Abu Bakar, Johor
Bahru. Pada tahun sebelum 1970, penentuan awal bulan Ramadhan dan Syawal
menggunakan kaedah melihat anak bulan sebelum kemudiannya teodolit pula
digunakan oleh Jabatan Ukur dan Pemetaan Malaysia (JUPEM) (Abu, 2001).
Kriteria imkan al-rukyah yang diguna pakai adalah hasil daripada analisis dan
rumusan ahli falak/astronomi berdasarkan kepada data-data anak bulan di Teluk
Kemang, Malaysia yang telah dikumpulkan sejak tahun 1972 hingga 2008 iaitu
sebanyak 27 data menunjukkan anak bulan kelihatan ketika cerapan dilakukan.

Semakan terhadap data-data anak bulan ini dilakukan oleh Mohd Zambri
Zainuddin dengan menggunakan perisian Moon Calculator Version 6 bagi
mendapatkan parameter tambahan yang tidak terkandung di dalam laporan
kenampakan tersebut. (Zainuddin et al., 2010) Data-data ini dikumpulkan oleh

92


Click to View FlipBook Version