PERLIS MATRICULATION COLLEGE
TUTORIAL & PSE SM015 Session 2021/2022
CHAPTER 2: EQUATIONS, INEQUALITIES AND ABSOLUTE VALUES
TUTORIAL 1 OF 5
1. Solve
(a) −2 = 1 (d) 2(22x ) − 5(2x ) + 2 = 0
(e) 32x+1 − 26(3x ) − 9 = 0
4x 3 9 (f) x2 10x − x 10x = 2 10x
(g) ex −12e−x −1 = 0
(b) 7x2 − 496−2x = 0
(c) x +1 + 12 − x = 13 + 4x
(c) ( 4x )x = 4 8x
2. Solve
(a) x + 5 = 7 − x
(b) 3 1− x = 1+ 3x − 2
3. Solve (g) log3 x − 2logx 3 = 1
(a) (5x )(5x−1) = 10
(h) 2ln x = ln 3 + ln(6 − x)
(b) ex ln 3 = 27
(c) e2 ln x = 9 (i) 9logx 5 = log5 x
(d) 3e−2x = 75 (j) eln(1−x) = 2x
(k) log2(2x+1 − 32 2) = x
(e) 2log( x − 2) = log(2x − 5) (l) x6e−4ln x = 2x +15
(f) log16 x = (log4 x)2, x 1
ANSWER TUTORIAL 1
1. (a) 216 (b) -6,2 (c) − 1 ,2 (d) -1,1
(e) 2 (f) -1,2 2
(d) -1.6094
2. (a) -2,-9 (g) ln 4 (h) 3
(l) 5
3. (a) 1.2153 3 (c) 3
(e) 3
(b)
1
4
(i) 125,
(b) 3 (c) 3
125 (f) 2 (g) 9, 1
1 11 3
11
(j) (k)
2
32
Page 1 of 7
PERLIS MATRICULATION COLLEGE
TUTORIAL & PSE SM015 Session 2021/2022
TUTORIAL 2 OF 5
1. Solve the following inequalities. Write down the answer in interval form.
(a) 3x −1 2( x − 5) (b) − 7 3 − 4x 6
(c) x − 4 3 − x (d) 7 − 3x 13
(e) 1− 7x x + 3 (f) x + 3 3x − 5
2. Find the ranges of values of x that satisfy the following inequalities using real number
line. Write down the answer in solution set form.
(a) ( x +1)( x − 2) 0 (b) (x + 1)(x − 4) 0
(c) 2x2 − 3x − 2 0 (d) x 2 − 2x − 15 0
3. Find the ranges of values of x that satisfy the following inequalities using table of signs.
Write down the answer in interval form.
(a) 5x2 3x + 2 (b) ( x −1)2 9
(c) x2 − 4x −3 (d) ( x −1)( x − 2) 0
(e) 4x2 1 (f) (1− x)(4 − x) x +11
4. Find the range of values of x for which 3x + 4 x2 − 6 9 − 2x .
ANSWER TUTORIAL 2
1. a) (− , − 9) b) − 3 , 5 c) − , 7
4 2 2
d) (− 2, ) e) − , − 1 f) (4, )
4
2. a) x : x −1 x 2 b) x : −1 x 4
c) x : − 1 x 2 d) x : x −3 x 5
2
3. a) − , − 2 (1, ) d) 1, 2
5 e) − 1 , 1
2 2
b) (− , − 2) (4, )
c) (− , −1 3, ) f) (− , −1) (7, )
4. − 5 x −2 or (− 5, −2)
Page 2 of 7
PERLIS MATRICULATION COLLEGE
TUTORIAL & PSE SM015 Session 2021/2022
TUTORIAL 3 OF 5
1. Find the range of values of x for each of the following inequalities. Write down the
answer in interval form.
(a) x + 5 0 (b) 8 − 4x 1− x
2x −1 x+5
(c) x − 2 3 (d) x − 3 1
x−5 2x
2. Find the possible values of x for which 11.
x −1 x +1
3. What values of x satisfy the inequality 2x x ?
x +1
4. Solve the given equations by using definition. Write down the answer in solution set
form.
(a) x +1 = 2 (b) 12x +1 = 3 (c) 2x − 5 = 3
x−3 24
(d) x2 − 7 = 2 (e) 4 = 8
x+2
5. Solve the following equations by squaring both sides. Write down the answer in
solution set form.
(a) 4 − 3x = 5x + 4 (b) x − 2 = 10 − 3x (c) x + 2x = 3
ANSWER TUTORIAL 3
1. − 5, 1 c) 5, 13
a) 2 2
b)
( − 5, ) d) −1, 0 (2, )
2
2. x : −1 x 1
3. x : x −1 0 x 1
4. a) x = 5 , 7 d) x = − 3, − 5, 5, 3
3
b) x = −5 , 1 e) x = − 5, −3
24 2 2
24
c) x = 1, 4
5 a) x = 0, − 4 b) x = 3, 4 c) x = 1, 3
Page 3 of 7
PERLIS MATRICULATION COLLEGE
TUTORIAL & PSE SM015 Session 2021/2022
TUTORIAL 4 OF 5
1. Solve the following absolute value inequalities by using the basic definition. Write
down the answer in interval form.
(a). 2x − 3 1 (b) x 5 (c) x −1 2
36 x+3
(d) x 2 (e) 2x 1 (f) x2 − 6x + 4 4
x+4 x+3
2. Find the range of values of x that satisfy the following inequalities by using basic
definition. Write down the answer in solution set form.
(a) 3x − 4 2x + 1 (b) 2 x 3x −10 (c) 2x + 1 3x + 2
3. Find the possible value of x that satisfy the following inequalities by squaring both
side. Write down the answer in interval form.
(a) x − 3 2x + 5 (b) 2x − 5 10 − 3x
(c) x − 4 2x − 6 (d) x + 4 3x + 2
4. Find the value of k if −2 x 3 is equivalent to x − k 5 .
2
5. Solve the following inequalities
(a) 9x + 4 12 (b) 1 + log2 x − 2 log x 2 0
x
6. By completing the square express the inequality x2 + 8x + c 0 in the form
x + a b where a and b are constants. Therefore, find the interval of x so that
x2 + 8x +10 is always more than 3.
ANSWER TUTORIAL 4
1. a) ( − , 1 2, ) b) − 5 , 5 c) − 7, −3) − 3, − 5
2 2 3
d) ( − , − 8 ) − 8 , e) −1, 3 f) 0, 2 4, 6
3
2. a) x = x 3 or x 5 b) x = x 10 c) x = x − 3
5 5
3. a) x = − 8, − 2 c) x = (− ,2 10 ,
3 3
b) x = ( − , 3 ) ( 5, ) d) x = − 3 , 1
2
4. k = 1
2
5. a) x : x 0 b) 1 ,1 (2, )
4
6. x + 4 16 − c
x = x −7 x −1 or x = ( − , − 7 ) ( −1, )
Page 4 of 7
PERLIS MATRICULATION COLLEGE
TUTORIAL & PSE SM015 Session 2021/2022
TUTORIAL 5 of 5
PAST SEMESTER EXAMINATION (PSE)
SESSION 2013/2014
1. Find the value of x which satisfies the equation log9 x = (log3 x)2, x 1 [7]
[7]
Answer: x = 3
2. Solve the equation 2x−2 − 2x+1 = 2x − 23
Answer: x = 3 or x = 2
3. (a) Find the solution set of 2 − 3x x + 3 [8]
(b) If x +1 0, show that (ii) 2x −1 2 [3]
(i) 2x −1 0 x +1 [4]
Answer: a) x : − 1 x 5
4 2
SESSION 2014/2015 [6]
4. Solve the equation 3x + 33−x = 12. Answer: x = 2 or x = 1
5. Solve the inequality 1 1 .
6− x x −1 [6]
6. (a) Solve the following equation 6x2 + x −11 = 4. Answer: x :1 x 7x 6
2
[6]
(b) Find the solution set for the inequality 2 − x + 2 5. [7]
x − 4
Answer: a) x = − 5 , − 7 ,1, 3 b) x : x 5 x 4
362 2
SESSION 2015/2016
7. Solve the equation 2 + log2 x = 15logx 2. [7]
[6]
Answer: x = 8, x = 1 [9]
32
8. (a) Solve the inequality x −1 2
x+3
(b) Show that 2x 42x = 22x . Hence, find the interval for x so that
8x
( )2x 42x−132x + 36 0 .
8x
Answer: a) ( −7, −3) −3, − 5 b) Shown. (−, 2 3.17, )
3
Page 5 of 7
PERLIS MATRICULATION COLLEGE
TUTORIAL & PSE SM015 Session 2021/2022
SESSION 2016/2017 [6]
[6]
Determine the value of x which satisfy the equation 32x=1 = 4(3x ) − 9 [7]
9. Answer: x = 1 or x = 2 [5]
[8]
10. (a) If 7 − 3 5 = x − y , determine the values of x and y
(b) Solve the equation log2 x − log4 (3x + 4) = 0
Answer: x = 9 , y = 5 or x = 5 , y = 9 b) x = 4
22 22
11. (a) Solve the following equation
3 = 7, x 4.
x−4
(b) Find the solution set for the inequality b) x : − x −4 2 x 3
−4 − x x + 4, x 3.
x−3
Answer: a) x = 31 or x = 25
77
SESSION 2017/2018 [6]
[9]
12. Solve the equation 32x+1 − (16) 3x + 5 = 0
[4]
Answer: x = −1 or x = 1.465 [9]
13. Solve the equation 3log9 x = (log3 x)2 .
Answer: x = 1 or x = 5.196
14. Find the interval of x for which the following inequalities are true.
(a) 5 −1 0 (b) 3x − 2 2
x+3 2x +3
Answer: a) x : x −3 x 2 b) −8, − 3 − 3 , − 4
2 2 7
SESSION 2018/2019
15. (a) Solve 6x +1 − x = 3 [6]
[7]
(b) Determine the solution set of x which satisfies the inequality
[6]
2 x [6]
x +1 x +3
Answer: a) x = 4 b) x : x −3 −2 x −1 x 3
16. Solve
27 2 25 4 x 9 x−3 625 2
125 9 25 81
(a) =
(b) 1 8
4− 2x x
Answer: a) x=2 b) x : x 0 32 x 2
17
Page 6 of 7
PERLIS MATRICULATION COLLEGE
TUTORIAL & PSE SM015 Session 2021/2022
SESSION 2019/2020
17. Solve the following:
( )(a) 3 52x 1 x+1 [5]
+ 252 = 200 [5]
(b) x + 4 x2 + x 12 Answer: a) x = 1 b) (−4, −22,3)
18. Solve the following: [6]
(a) log2 2x = 2 log4 ( x + 4) [7]
(b) 2 x − 3 1
2x −1
Answer: a) x = 4 b) −, 1 1, 7
2 2 4
SESSION 2020/2021 [7]
19. Determine the solution set of the following inequalities.
(a) 4x 6 b) x : x 0 x 3
4−x
(b) x − 6 3 x − 2
Answer: a) 12 , 4
5
Page 7 of 7
Page 8 of 8