sekeping kad berlabel dengan A = {36}
huruf vokal B = {30, 35, 40}
A = Event of picking a card C = {29, 38, 39}
labelled with 74 and a card A ∪ B ∪ C = {29, 30, 35, 36, 38, 39,
labelled with a vowel 40}
= {(74, I)} (A ∪ B ∪ C)' = {27, 28, 31, 32, 33,
P(A) 34, 37, 41, 42, 43, 44}
n[(A ∪ B ∪ C)'] = 11
n(A)
= n(S) 32 (a) Sebilangan persamaan kuadratik
mempunyai punca yang negatif.
1 Some quadratic equations have
= 25 negative roots.
(ii) B = Peristiwa memilih sekeping (b) Premis 2:
kad berlabel dengan 49 atau Premise 2:
sekeping kad berlabel dengan 97 tidak boleh dibahagi dengan 3.
huruf konsonan 97 is not divisible by 3.
B = Event of picking a card
labelled with 49 or a card (c) 3(2)n + n
labelled with a consonant (d) Implikasi 1:
= {(49, G), (49, H), (49, R), (49,
X)} Implication 1:
P(B) mm
n(B)
= n(S) Jika 8 > 9 , maka m > 0.
4 mm
= 25
If 8 > 9 , then m > 0.
30 (a) Sebilangan prisma tegak mempunyai
Implikasi 2:
keratan rentas dalam bentuk Implication 2:
trapezium. mm
Jika m > 0, maka 8 > 9 .
Some right prisms have cross-
mm
sections in the form of trapezium. If m > 0, then 8 > 9 .
(b) Luas segi tiga ABC adalah 1 × 15 × 33 (a) Palsu
2 False
48 iaitu 360 cm2. (b) Jika m adalah gandaan 4, maka m
adalah gandaan 16.
1 If m is a multiple of 4, then m is a
The area of triangle ABC is 2 × 15 × multiple of 16.
48 that is 360 cm2. ∴ Akas itu adalah palsu.
∴ The converse is false.
(c) Premis 1:
(c) Premis 2:
Premise 1: Premise 2:
Luas bulatan itu bukan 64π cm2.
Jika xy 2x + 5 ialah suatu The area of the circle is not 64π cm2.
persamaan kuadratik dalam x, maka
nilai y adalah 2.
If xy 2x + 5 is a quadratic equation
in x, then the value of y is 2.
31 (a) ξ = {27, 28, 29, 30, 31, 32, 33, 34, 34 (a) {(1, P), (1, Q), (1, R), (1, S), (2, P),
(2, Q), (2, R), (2, S), (3, P), (3, Q),
35, 36, 37, 38, 39, 40, 41, 42, 43, 44} (3, R), (3, S), (4, P), (4, Q), (4, R),
(4, S), (5, P), (5, Q), (5, R), (5, S), (6,
B = {30, 35, 40} P), (6, Q), (6, R), (6, S)}
(b) ξ = {27, 28, 29, 30, 31, 32, 33, 34,
(b) (i) A = Peristiwa bagi penunjuk itu
35, 36, 37, 38, 39, 40, 41, 42, 43, 44} menunjukkan sektor R
A = Event of the pointer points
A = {36} at sector R
= {(1, R), (2, R), (3, R), (4, R),
C = {29, 38, 39}
A∩C=∅
(c) ξ = {27, 28, 29, 30, 31, 32, 33, 34,
35, 36, 37, 38, 39, 40, 41, 42, 43, 44}
51
(5, R), (6, R)} (ii) Jarak
P(A) Distance
1
n(A) = 2 × (176 +128) × 12 + 128 × 4
= n(S)
1
1 + 2 × 128 × 16
=4
= 3360 m
(ii) A = Peristiwa bagi dadu Laju purata
menunjukkan nombor ganjil atau Average speed
penunjuk menunjukkan sektor S
A = Event of the dice shows an 3360
odd number or the pointer points = 32
at sector S = 105 m s−1
= {(1, P), (1, Q), (1, R), (1, S),
(3, P), (3, Q), (3, R), (3, S), (5, 37 (a) (i) Palsu
P), (5, Q), (5, R), (5, S), (2, S), False
(4, S), (6, S)}
P(A) (ii) Benar
n(A) True
= n(S)
5 (b) Premis 2:
=8 Premise 2:
16 adalah suatu nombor kuasa dua
35 (a) (i) 5 ialah faktor bagi 19 dan 25 sempurna.
ialah nombor perdana. 16 is a perfect square.
5 is a factor of 19 and 25 is a
prime number. (c) Implikasi 1:
Implication 1:
(ii) Palsu Jika 3k2 > 12, maka k > 2.
False If 3k2 > 12, then k > 2.
(b) s ≠ 2 Implikasi 2:
Implication 2:
(c) Implikasi 1: Jika dua garis lurus Jika k > 2, maka 3k2 > 12.
Implication adalah serenjang, maka If k > 2, then 3k2 > 12.
1: hasil darab kecerunan
dua garis itu adalah −1 38 (a) (i) Benar
If two straight lines are
perpendicular, then the True
product of the
gradients of the two (ii) Benar
lines is −1
True
Implikasi 2: Jika hasil darab
Implication kecerunan dua garis (b) Implikasi 1: Jika ΔABC ialah segi
2: lurus adalah −1, maka
Implication tiga bersudut tegak,
dua garis itu adalah 1:
serenjang maka AC2 = AB2 +
If the product of the
two straight lines is BC2.
−1, then the two lines If ΔABC is a right-
are perpendicular
angled triangle, then
36 (a) Laju seragam AC2 = AB2 + BC2.
Uniform speed
= 128 m s−1 Implikasi 2: Jika AC2 = AB2 + BC2,
Implication maka ΔABC ialah segi
(b) (i) 512 = 128 × (t − 12)
512 2: tiga bersudut tegak.
t = 128 + 12 If AC2 = AB2 + BC2,
= 16 then ΔABC is a right-
angled triangle.
(c) ∠ABC ≤ 90°
39 (a) (4x + 26 + 10 + 19) − (10 + 19 + 22
+ 9) = 15
4x + 55 − 60 = 15
4x 5 = 15
52
4x = 20 Jika 3p = 5q 4, maka q = 3p + 4
x=5 5 .
20 + 26 + 10 + 19 + y + 22 + 9 = 113 If 3p = 5q 4, then q = 3p + 4
y + 106 = 113 5 .
y=7
(b) 10 Implikasi 2:
(c) 26 + 19 + 22
= 67 Implication 2:
40 Ruang sampel, S Jika q = 3p + 4 maka 3p = 5q 4.
Sample space, S 5 ,
= {(H, N), (H, 3), (H, 4), (J, N), (J, 3), (J,
4), (L, N), (L, 3), (L, 4), (1, N), (1, 3), (1, If q = 3p + 4 then 3p = 5q 4.
4), (2, N), (2, 3), (2, 4)} 5 ,
(a) A = Peristiwa kedua-dua keping kad (b) (i) Kesimpulan:
adalah dilabel dengan satu nombor Conclusion:
A = Event of both cards are labelled q mempunyai dua garis simetri.
with a number q has two lines of symmetry.
= {(1, 3), (1, 4), (2, 3), (2, 4)}
P(A) (ii) Premis 2:
n(A) Premise 2:
= n(S) 3 adalah satu faktor bagi 24.
4 3 is a factor of 24.
= 15
43 (a) 12 − 4 = 8 s
(b) B = Peristiwa sekeping kad dilabel
dengan satu huruf dan kad yang lain (b) Kadar perubahan laju
dilabel dengan satu nombor
B = Event of one card is labelled Rate of change of speed
with a letter and the other card is 35 − 15
labelled with a number
= {(H, 3), (H, 4), (J, 3), (J, 4), (L, 3), =4
(L, 4), (1, N), (2, N)}
P(B) = 5 m s-2
n(B)
= n(S) (c) 1 1
8 662 = 2 × (15 + 35) × 4 + 35 × 8 + 2
= 15
× (35 + 59) × (t − 12)
41 (a) Palsu
False 662 − 100 − 280 = 1 × 94 × (t − 12)
2
(b) Sebilangan
Some 282 × 2
t = 94 + 12
(c) Implikasi 1:
Jika 2x 5 = 1, maka x = 3 = 18
Implication 1:
If 2x 5 = 1, then x = 3 44 (a) Laju purata
Implikasi 2:
Jika x = 3, maka 2x 5 = 1 Average speed
Implication 2:
If x = 3, then 2x 5 = 1 2812
= 37
42 (a) Implikasi 1: = 76 m s−1
Implication 1:
(b) Kadar perubahan laju
Rate of change of speed
−18
=6
= −3 m s−2
(c) 1 (v + 18) × 20 + 18 × 11 +
2 812 = 2 ×
1
2 × 18 × 6
2 812 = (v + 18) × 10 + 198 + 54
v = 2 812 − 198 − 54 − 18
10
= 238
53
45 (a) (i) 2 1
(ii) 8 = 10
(iii) 7 + 11 + 2
= 20 (b) B = Peristiwa memilih sekeping kad
dengan nombor gandaan 10 atau
(b) 2x + 8 + 7 + 2 + 11 + 2 = 36 sekeping card dilabel dengan huruf Q
2x + 30 = 36 B = Event of picking a card with a
2x = 6 number which is a multiple of 10 or a
x=3 card labelled with letter Q
= {(40, A), (40, N), (40, P), (40, Q),
46 (a) A = Peristiwa sehelai baju putih (40, S), (43, Q)}
dipilih. P(B)
A = Event that a white shirt is n(B)
drawn. = n(S)
P(A) 6
9 = 10
= 17 3
=5
(b) B = Peristiwa sehelai baju putih dan
sehelai skirt hijau dipilih. 48 ξ = {4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14}
B = Event that a white shirt and a P = {8}
green skirt are drawn. P ∪ Q = {4, 6, 8, 10, 12, 14}
P(B)
93 (a) (i) P ⊂ Q, P ∪ Q = Q
= 17 × 15 = {4, 6, 8, 10, 12, 14}
9
= 85 (ii) Q ' ∪ P = {5, 7, 8, 9, 11, 13}
(c) C = Peristiwa sehelai baju dan (b) P ' = {4, 5, 6, 7, 9, 10, 11, 12, 13, 14}
sehelai skirt yang sama warna R = {5, 7, 9, 11, 13}
dipilih. P ' ∩ R = {5, 7, 9, 11, 13}
C = Event that a shirt and a skirt of n(P ' ∩ R) = 5
the same colour are drawn.
P(C) 49 (a) 70 − 40 = 30 minit
97 25 63 70 − 40 = 30 minutes
= (17 × 15 ) + (17 × 15 ) + (17 × 15 )
21 2 6 (b) Average speed = 70
= 85 + 51 + 85 105
91
= 255 = 2 km minit−1
3
47 Ruang sampel, S
Sample space, S 2
= {(40, A), (40, N), (40, P), (40, Q), (40, = 3 × 60
S), (43, A), (43, N), (43, P), (43, Q), (43, = 40 km j-1
S)}
70
(a) A = Peristiwa memilih sekeping kad Laju putara = 105
dengan nombor genap dan sekeping
kad dilabel dengan huruf N = 2 km minute−1
A = Event of picking a card with an 3
even number and a card labelled
with letter N 2
= {(40, N)} = 3 × 60
P(A) = 40 km h-1
n(A)
= n(S) (c) (i) 28 km
(ii) 70 minit
70 minutes
50 (a) (i) Sebilangan nombor ganjil adalah
nombor perdana.
Some odd numbers are prime
numbers.
54
(ii) Semua oktagon mempunyai a letter card X.
lapan sisi. = {(J, X)}
All octagon have eight sides. n(B) = 1
∴ P(B)
(b) Jika a > 5, maka a > 7.
If a > 5, then a > 7. n(B)
∴ Akas itu adalah palsu. = n(S)
∴ The converse is false.
1
(c) Premis 2: = 42
Premise 2:
P ∩ Q ≠ P. (c) C = Peristiwa kedua-dua keping kad
P ∩ Q ≠ P. yang dipilih adalah daripada huruf
yang sama.
51 Ruang sampel, S C = Event that the two cards drawn
Sample space, S are of the same letter.
= {(V, J), (V, S), (V, V), (V, X), (V, G), = {(V, V), (V, V)}
(V, H), (J, V), (J, S), (J, V), (J, X), (J, G), n(C) = 2
(J, H), (S, V), (S, J), (S, V), (S, X), (S, ∴ P(C)
G), (S, H), (V, V), (V, J), (V, S), (V, X), n(C)
(V, G), (V, H), (X, V), (X, J), (X, S), (X, = n(S)
V), (X, G), (X, H), (G, V), (G, J), (G, S), 2
(G, V), (G, X), (G, H), (H, V), (H, J), (H, = 42
S), (H, V), (H, X), (H, G)} 1
= 21
52 (a) (i) Palsu
False
(ii) Benar
True
(b) Premis 2: 9 lebih besar daripada
Premise 2: sifar.
9 is greater than zero.
(a) A = Peristiwa kad pertama yang (c) Implikasi 1: Jika 2n > 20, maka n >
dipilih bukan kad huruf G. Implication 10
A = Event that the first card drawn is 1: If 2n > 20, then n > 10
not a letter card G.
= {(V, J), (V, S), (V, V), (V, X), (V, Implikasi 2: Jika n > 10, maka 2n >
G), (V, H), (J, V), (J, S), (J, V), (J, Implication 20
X), (J, G), (J, H), (S, V), (S, J), (S, 2: If n > 10, then 2n > 20
V), (S, X), (S, G), (S, H), (V, V), (V,
J), (V, S), (V, X), (V, G), (V, H), (X, 53 (a) 1 1 atau 9−2 = 1
V), (X, J), (X, S), (X, V), (X, G), (X, 5 >2 81
H), (H, V), (H, J), (H, S), (H, V), (H,
X), (H, G)} 1 > 1 or 9−2 = 1
n(A) = 36 5 2 81
∴ P(A)
n(A) (b) Kesimpulan:
= n(S)
36 Conclusion:
= 42
6 Prisma tegak itu tidak mempunyai
=7 luas keratan rentas 90 cm2 dan
(b) B = Peristiwa kad pertama yang ketinggian 15 cm.
dipilih ialah kad huruf J dan kad
kedua ialah kad huruf X. The right prism does not have a
B = Event that the first card drawn is cross-sectional area of 90 cm2 and a
a letter card J and the second card is
height of 15 cm.
(c) Semua nombor 5, 12, 31, 68, ... boleh
ditulis dalam bentuk n3 + 4, n = 1, 2,
3, 4, ...
All the numbers of 5, 12, 31, 68, ...
can be written in the form n3 + 4, n =
1, 2, 3, 4, ...
55
54 (a) (i) Ruang sampel, S (b) B = Peristiwa Lukman dan Yahya
Sample space, S akan memasuki kelas tuisyen Bahasa
= {(Ganesh, Jeffri), (Ganesh, Inggeris.
Kamaruddin), (Ganesh, B = Event that Lukman and Yahya
Raihani), (Jeffri, Kamaruddin), will join English tuition class.
(Jeffri, Raihani), (Kamaruddin, P(B)
Raihani)} 31
= 8 × 16
(ii) {(Ganesh, Raihani), (Jeffri, 3
Raihani), (Kamaruddin, = 128
Raihani)}
P(a boy and a girl) (c) C = Peristiwa salah satu daripada
3 mereka akan memasuki kelas tuisyen
=6 Matematik dan yang lain satu akan
1 memasuki kelas tuisyen Bahasa
=2 Inggeris.
C = Event that one of them will join
(b) (i) Ruang sampel, S Mathematics tuition class and the
Sample space, S other will join English tuition class.
= {(Musa, Kristy), (Musa, P(C)
Hazila), (Musa, Nuraizah), 3 1 31
(Musa, Raihani), (Ganesh, = (14 × 16 ) + (8 × 20 )
Kristy), (Ganesh, Hazila), 33
(Ganesh, Nuraizah), (Ganesh, = 224 + 160
Raihani), (Jeffri, Kristy), (Jeffri, 9
Hazila), (Jeffri, Nuraizah), = 280
(Jeffri, Raihani), (Kamaruddin,
Kristy), (Kamaruddin, Hazila), 56 ξ = {37, 38, 39, 40, 41, 42, 43, 44, 45, 46,
(Kamaruddin, Nuraizah), 47, 48, 49, 50, 51, 52}
(Kamaruddin, Raihani)} A = {40, 45, 50}
B = {50}
(ii) {(Musa, Kristy), (Musa, Hazila), C = {37, 38, 39, 45, 46, 47, 48, 49}
(Musa, Nuraizah)} (a) (i) B = {50}
P(both from the Group P)
3 (ii) C = {37, 38, 39, 45, 46, 47, 48,
= 16 49}
55 (a) A = Peristiwa Yahya akan memasuki (b) (i) A ∩ C = {45}
n(A ∩ C) = 1
kelas tuisyen Matematik dan kelas
(ii) B ∪ C = {37, 38, 39, 45, 46, 47,
tuisyen Bahasa Inggeris. 48, 49, 50}
(B ∪ C)' = {40, 41, 42, 43, 44,
A = Event that Yahya will join 51, 52}
n[(B ∪ C)'] = 7
Mathematics tuition class and
English tuition class.
A' = Peristiwa Yahya tidak akan
memasuki kelas tuisyen Matematik
atau kelas tuisyen Bahasa Inggeris.
A' = Event that Yahya will not join
Mathematics tuition class or English
tuition class.
P(A')
= 1 − P(A)
= 1 − (210 × 1 )
16
= 1 − 1
320
319
= 320
56
“NAK SAYA & MATHS CATCH TEAM
BANTU SUPAYA ANAK ANDA LEBIH
MINAT, TERUJA & GHAIRAH DENGAN
”MATEMATIK?
Wajib Join Group Telegram Maths Catch disini
www.mathscatch.com/telegram
Ada soalan nak tanya dengan saya? Boleh wassap disini
https://opy.la/maths/adasoalan
57
#Pusat Tuisyen Khusus Untuk Matematik
#Penerbit Buku Matematik Maths Catch
#Kelas Tuisyen Online (KTO Premium)
#Seminar Intensif Matematik
© MC Dynamic Holdings Sdn Bhd
(1186985-A)
HAK CIPTA TERPELIHARA
Tiada bahagian daripada terbitan ini boleh diterbit semula, disimpan untuk
pengeluaran atau ditukarkan dalam sebarang bentuk atau dengan
sebarang cara sama ada dengan cara elektronik, mekanik, gambar,
rakaman dan sebagainya tanpa kebenaran daripada MC Dynamic
Holdings sdn bhd.
Diterbitkan Oleh
21-A Jalan Kristal L 7/L, 40000, Seksyen 7 Shah Alam, Selangor
Tel: 016 245 9439 Laman Web: www.mathscatch.com
Emel: [email protected] @ [email protected]
58