ของไหล
จัดทำโดย
นางสาวชญานี กล่ำทอง เลขที่ 36
นางสาวพัตรพิมล กงแก้ว เลขที่ 39
ชั้นมัธยมศึกษาปีที่ 5 ห้อง 3
2 ความดัน สารบัญ
1 ของไหล
3 ความตึงผิว
4 ความหนืด
6 พลศาสตร์ของไหล 5 แรงลอยตัว
1
(n.)
ของเหลวเป็ นสถานะของสสารมีปริมาตร
คงตั วและมี รู ปร่ างตามภาชนะที่ บรรจุ
2
สมบัติของ
ของไหล
ความหนาแน่น ความดัน
ความตึงผิว ความหนืด
แรงลอยตัว
3
ความหนาแน่น
สูตรการหาความหนาแน่น
ρ =-mv- ความหนาแน่น คือ อัตราส่วนระหว่างมวล
กับปริมาตรของวัตถุ เป็นสมบัติเฉพาะตัว
ของวัตถุแต่ละชนิด หมายความว่าวัตถุชนิด
เดียวกันมีค่าความหนาแน่นเดียวกันวัตถุ
ต่างกันค่าความหนาแน่นต่างกัน
ρ m= มวล v= ปริมาตร
ความหนาแน่น = หน่วยคือ kg หน่วยคือ m3
หน่วยคือ kg/m 3
ρ =-mv- 4
example
ตัวอย่างการคำนวณหาความหนาแน่น
วัตถุรูปลูกบาศก์มีความยาวแต่ละด้านเท่ากับ 2 m มีมวล 400 kg จงหาความหนาแน่นของวัตถุนี้
จากสูตร ρ = m/v
แทนค่าจากโจทย์ ρ = 400 kg / 2 m x 2 m x 2 m
2 m = 400 kg / 8 m3
2 m = 50 kg/m 3
เพราะฉะนั้น วัตถุนี้มีความหนาแน่นเท่ากับ 50 กิโลกรัมต่อลูกบาศก์เมตร
ความหนาแน่นสัมพัทธ์ การนำความหนาแน่น
( relative density ) ไปใช้ประโยชน์
หรือ ความถ่วงจำเพาะ การที่เรือสร้างมาจากเหล็กที่มีมวล
( specific gravity ) มากและหนัก ไม่จมน้ำได้ จากการ
ใช้สูตรคำนวณหาความหนาแน่น
เป็นการบอกว่าความหนาแน่นของสารชนิดหนึ่ง ด้วยการเพิ่มปริมาตรของเหล็กจน
มีความหนาแน่นเป็นกี่เท่าของน้ำ ความหนาแน่นเปลี่ยน ทำให้เหล็ก
โปร่ง เบา จึงลอยน้ำได้นั่นเอง
ความหนาแน่นสัมพัทธ์ของสาร = ความหนาแน่นของสาร
ความหนาแน่นของน้ำ
ความหนาแน่นของสาร = ความถ่วงจำเพาะ x ความหนาแน่นของน้ำ
5
ความดัน
ถ้าเราเอาน้ำใส่ในถุงแล้วปิดให้สนิท น้ำจะมีแรงดันผนังของถุง
และนำแรงดันที่มีหารด้วยพื้นที่ที่แรงนั้นกระทำ ได้สมการดังนี้
แรงดันและความดันของของเหลวใดๆ จะมีสมบัติเบื้องต้นได้แก่
1. มีทิศได้ทุกทิศทาง
2. มีทิศตั้งฉากกับผิวสัมผัส
ถ้าเรานำของเหลวไปใส่ในภาชนะดังรูป แรงดันและความดัน
ของของเหลวที่กระทำต่อผนังภาชนะจะแบ่งเป็น 2 ส่วน ได้แก่
1. แรงดันและความดันที่ก้นภาชนะ
2. แรงดันและความดันที่ข้างภาชนะ
6
example
ของเหลวชนิดหนึ่งมีความหนาแน่น 1000 กิโลกรัมต่อลูกบาศก์เมตร จวหาว่า
ของเหลวนี้ปริมาตร 3.50 ลูกบาศก์เมตร จะมีน้ำหนักกี่นิวตัน
ρ = _m_ W = mg
v W =3500(10)
1000 =_m_ W =35000
3.5
m = 3500 kg
ของเหลวความหนาแน่น 100 กิโลกรัมต่อลูกบาศก์เมตร จงหาว่าของเหลวนี้
ปริมาตร 2.50 ลูกบาศก์เมตร จะมีน้ำหนักกี่นิวตัน
ρ = _mv__ W = mg
100 = _m___ = 250(10)
= 2500 N
2.50
m = 100(2.50)
= 250 kg
7
แรงดันและความดันที่ก้นภาชนะ
มี 2 กรณี คือ 1. กรณีที่ภาชนะบรรจุของเหลวเป็นภาชนะปิด
2. กรณีที่ภาชนะบรรจุของเหลวเป็นภาชนะเปิด
1 กรณีที่ภาชนะบรรจุของเหลว
เป็นภาชนะปิด
แรงดันที่ก้นภาชนะ = น้ำหนักของของเหลว
ส่วนที่อยู่ในแนวตั้งฉากกับพื้นที่ก้นภาชนะ
ภาชนะทั้ง 3 บรรจุของเหลวชนิดเดียวกันและมีความสูงเท่ากัน ความดันจะ
เท่ากันเพราะความดันขึ้นอยู่กับความสูงอย่างเดียวไม่เกี่ยวกับรูปร่างภาชนะ
8
แรงดันและความดันที่ก้นภาชนะ
กรณีที่ภาชนะบรรจุของเหลวเป็นภาชนะเปิด 2
สำหรับของเหลวที่กระทำต่อพื้นที่ก้นภาชนะจะมี 2 อย่าง ได้แก่
1 ความดันเกจ 2 ความดันเกจ
P จากน้ำหนัก P จากการกดทับ
P จากแรงโน้มถ่วง
ความดันรวมของความดันเกจรวมกับความ ความดันบรรยากาศ (1x10^5 N/m^3)
ดันบรรยากาศ เรียกว่า ความดันสัมบูรณ์
9
แรงดันและความดันที่ข้างภาชนะ
หาความค่าความดันของของเหลวที่กระทำต่อพื้นที่
ด้านข้างนั้น สามารถหาได้จากค่าเฉลี่ยของ
ความดั นในชี วี ตประจำวั น
การสร้างเขื่อนไม่ให้เขื่อนแตก การออกแบบเรือดำน้ำให้
ทนต่อสภาพความดันสูง
ใช้หลอดในการดูดน้ำ
ไม่จำเป็นต้องคิดความดันบรรยากาศเพราะความดันบรรยากาศจะ
มีทั้งภายในและภายนอก และจะเกิดการหักล้างกันหมดไป
10
example
กล่องปิดรูปสี่เหลี่ยมมุมฉาก มีพื้นที่ฐานเท่ากับ 0.2 ตารางเมตร บรรจุน้ำ
บริสุทธิ์มวล 5 กิโลกรัม จงหาแรงดันและความดันของน้ำที่ก้นภาชนะ
Fก้นภาชนะ = mg Pก้นภาชนะ = Fก้นภาชนะ
= 5 x 10 Aก้นภาชนะ
= 50 N
= 50
0.2
= 250 N/m2
ถังปิดรูปสี่เหลี่ยมลูกบาศก์ที่มีความยาวด้านละ 2 เมตร เมื่อบรรจุน้ำเต็ม
ความดันและแรงดันของของเหลวที่กระทำต่อพื้นที่ด้านขวามือของกล่องมี
ขนาดเท่ากับเท่าใด
1.) Pข้าง = ρghcm 2.) Pข้าง = Fข้าง
= 103x 10 x 1
= 104 Pa Pข้าง
104 = Fข้าง
= 4 x 104 N
4
11
แรงดันของน้ำเหนือเขื่อน
มี 2 ลักษณะใหญ่ คือ ตั้งตรงในแนวดิ่ง เอียง
example
เขื่อนยาว 50 เมตร ผิวเขื่อนที่ได้รับน้ำเอียง 53 องศา กับแนวราบในขณะ
ที่มีน้ำสูง 10 เมตรจงหาแรงที่กระทำต่อเขื่อนนี้
F = 1 ρgLh 2 F = 1 (103)(10)(50)(102)
22
sinθ 4
5
F = 3.13x10^7 N
12
เครื่องวัดความดัน
1.แบรอมิเตอร์ (Barometer)
คือ เครื่องวัดคสามดันบรรยากาศใช้ในการพยากรณ์อากาศและหาระดับความสูง
ประดิษฐ์ครั้งแรกโดย เทอริเชลลี (Evangelista Torricelli)
2.แมนอมิเตอร์ (Manometer)
คือ เครื่องมือวัดความดันของแก๊สในถังและความดันของของเหลว โดยเครื่องมือ
ประกอบด้วยหลอดแก้วรูปตัวยู ภายในบรรจุของเหลว ปลายข้างหนึ่งต่อกับถังแก๊ส
ที่ระดับต่ำสุดเป็นระดับอ้างอิงแล้วอ้างว่า
ที่ระดับเดียวกัน P เท่ากัน
13
เครื่องอัดไฮดรอลิก
กฎของพาสคาล
พาสคัล กล่าวว่า ความดันภายนอกที่กระทำต่อของเหลว
ที่ไม่มีการไหลและอยู่ในภาชนะปิด จะได้รับการส่งผ่านไป
ยังจุดต่างๆของของเหลวอย่างทั่วถึงและเท่ากัน ความรู้
ของพาสคาลทำให้เราประดิษฐ์ “เครื่องอัดไฮดรอลิก”ได้
เครื่ องอั ดไฮดรอลิ ก
คือ เครื่องมือที่ใช้ยกวัตถุที่มีน้ำหนักมาก เช่นแม่แรงยกรถ เป็นต้น มีท่อเชื่อมต่อถึงกัน
14
example
น้ำและน้ำมัน ชนิดหนึ่งบรรจุในหลอดแก้วรูปตัวยู โดยน้ำอยู่ในหลอดแก้ว
ทางขวาและน้ำมันอยู่ในภาวะสมดุลระดับน้ำและน้ำมันดังแสดงในรูป จง
หาความหนาแน่นน้ำมันนี้เป็นกิโลกรัม/เมตร^3
PA = PB
Pa + ρghน้ำมัน = Pa + ρghน้ำ
ρhน้ำมัน = ρhน้ำ
ρh(0.5) = (103)(0.3)
ρ = 600
น้ำและน้ำมัน ชนิดหนึ่งบรรจุในหลอดแก้วรูปตัวยู โดยน้ำอยู่ในหลอดแก้ว
ทางขวาและน้ำมันอยู่ในภาวะสมดุลระดับน้ำและน้ำมันดังแสดงในรูป จง
หาความหนาแน่นน้ำมันนี้เป็นกิโลกรัม/เมตร^3
P =P
W=F
Aa
80 = F
24 3
F = 10 N
15
แรงตึงผิว
แรงตึงผิว : แรงที่พยายามยึดผิวของของเหลวไว้ด้วยกัน
สมบั ติ ของแรงตึ งผิ ว
1 มีทิศขนานกับผิวของของเหลว
2 มีทิศทางตั้งฉากกับผิวสัมผัส
หากเรานำวัตถุเบา เช่นห่วงกลมที่ทำจากลวดเส้นเล็กๆไปวางบนผิวของเหลว ต่อ
จากนั้นจึงออกแรงกดวัตถุนั้น การทดลองแบบนี้มีสิ่งที่ควรทราเพิ่มเติมดังนี้
1.หากวัตถุถูกดึงขึ้นจากผิวของเหลว แรงตึงผิวจะมีทิศฉุดลง
2.หากวัตถุกดลงจากผิวของเหลว แรงตึงผิวจะมีทิศต้านขึ้น
16
ความตึงผิว : ความพยายามยึดผิวของเหลว
ความตึงผิว เป็นปริมาณที่ใช้พิจารณาความพยายามในการยึดติดผิวของเหลว
F= L
ตัวอย่างการหา L ที่สำคัญ
เส้นลว
ดยาว สมการที่ใช้ FF
L
เส้นลวด =
F
2L FF
วงแหวน สมการที่ใช้ L= 2πr
F
= 2(2πr) F
สมการที่ใช้
F
พื้น
ผิว = 2πr L= 2πr
= สัมประสิทธิ์ความตึงผิว F = แรงตึงผิวของวัตถุ หน่วย นิวตัน (N)
L = ความยาววัตถุ หน่วย m r = รัศมีวงกลม
17
ตั วอย่ างปรากฎการณ์ ของแรงตึ งผิ ว
การลำเลียงน้ำของพืช
จิงโจ้น้ำสามารถเดินบนน้ำได้ วัตถุบางชนิดที่ควมหนาแน่นมากกว่าน้ำ
example
แผ่นโลหะรุปวงกลมมีรัศมี 5 เซนติเมตร กำลังแตะผิวน้ำพอดี จงหาแรงที่ดึงแผ่น
โลหะนี้ ให้หลุดจากผิวน้ำพอดี เมื่อแผ่นโลหะมีมวล 25 กรัม กำหนดให้ความตึงผิว
ของน้ำเท่ากับ 7.0 x 10^-2 นิวตัวต่อเมตร
r= F
2πr
7 x 10^-2 = F
2(22)(5 x 10^-2)
7
F = 0.022
18
ความหนื ด
ถ้าเรานำช้อนไปคนน้ำกับนมข้นหวาน จะพบว่าการคนนมข้นหวานจะต้องใช้แรงมากกว่าน้ำ
จึงทำให้นมข้นหวานมีแรงต้านการเคลือนที่ของช้อนมากกว่าน้ำ
*แรงต้านการเคลื่อนที่ของวัตถุในของไหลอันเกิดจากความหนืดของของไหล เรียกว่า แรงหนืด
• ความหนืดมาก แรงหนืดน้อย
• ความหนืดน้อย แรงหนืดมาก
กฎของสโตกส์
สโตกส์พบว่าเราสามารถหาแรงหนืดที่กระทำต่อวัตถุทรงกลม
ที่เคลื่อนที่ในของเหลว ได้จาก
สำหรับความเร็วสุดท้ายของวัตถุวงกลมสามารถหาค่าได้จาก
19
ความหนื ดในชี วิ ตประจำวั น
การหล่อลื่นในยานยนต์
การทำอาหาร เช่น น้ำมัน ซอส ทางการแพทย์ คือ เลือด
example
จงหาแรงหนืดซึ่งต้านการเคลื่อนที่ของทรงกลมซึ่งมีรัศมี 2 มิลลิเมตร
กลีเซอรีนซึ่งมี ความหนาแน่น 3 x 10^3 กิโลกรัม/เมตร^3 ในขณะที่
ลูกกลมมีอัตราเร็ว 0.2 เมตร/วินาที กำหนดให้ความหนืดของกลีเซอรีน
มีค่าเท่ากับ 0.94 นิวตัน.วินาที/เมตร^2
F = 6π rv
= 6(22)(0.84)(2 x 10-3 )(0.2)
7
= 6.33 x 10-3N
20
แรงลอยตัว
แรงลอยตัว คือ แรงที่ดันวัตถุขึ้นเหนือผิวของเหลว
เขียนแทนด้วย
กฎของอาร์คิมิดิส
กล่าวว่า วัตถุใดๆที่จมอยู่ในของเหลว จะมีแรงลอยตัว
กระทำกับวัตถุ โดยแรงลอยตัวมีค่าเท่ากับขนาดน้ำหนัก
ของของเหลวที่ถูกวัตถุแทนที่
*วัตถุจะจมในของเหลวหรือไม่ให้ดูที่ความหนาแน่นไม่ใช่น้ำหนัก
21
แรงลอยตั วในชี วิ ตประจำวั น
ใช้ในการประกอบเรือไม่ให้จมน้ำ
การประดิษฐ์เสื้อ สร้างแพลอยน้ำ
ชูชีพ
example
วัตถุชิ้นหนึ่งมีปริมาตร 20 เซนติเมตรยกกำลัง3 ความหนาแน่น 900 กิโลกรัม/เมตรยก
กำลัง3 เมื่อนำไปลอยในน้ำซึ่งมีความหนาแน่น 1,000 กิโลเมตร/เมตรยกกำลัง3 จงหาปริมาตร
ของวัตถุของวัตถุส่วนจมใต้น้ำ
F = mg
ρล vจ g = ρว vว g
(10^3)(vจ) = (900)(20x10^-6)
vจ = 0_._0_18_
10^3
vจ = 1.8x10^-5
22
พลศาสตร์ของไหล
จากการสมบัติการไหลที่ผ่านมาเป็นการศึกษาของไหลที่ไหลแบบนิ่ง แต่สำหรับของไหลที่
มีการเคลื่อนที่ เช่น ลมพัด การไหลของน้ำในแม่น้ำหรือในท่อประปา จะศึกษาดังนี้
ของไหลในอุดมคติ
คุ ณสมบั ติ
1 ของไหลมีการไหลอย่างสม่ำเสมอ (steady flow)
2 ของไหลมีการไหลโดยไม่หมุน (irrotational flow)
3 ของไหลมีการไหลโดยไม่มีแรงต้านเนื่องจากความหนืดของของไหล
4 ของไหลไม่สามารถอัดได้ (incompressible flow)
การไหลของของไหลในอุ ดมคติ
เส้นกระแส หลอดการทดลอง
23
สมการความต่อเนื่อง
“ผลคูณระหว่างพื้นที่หน้าตัดซึ่งของไหลผ่านอัตราเร็วของของไหลที่ผ่านไม่ว่าจะเป็น
ตำแหน่งใด ในหลอดการไหลมีค่าคงที่” ค่าคงที่นี้เรียก อัตราการไหล
อั ตราการไหล
(สมการความต่ อเนื่ อง)
เนื่องจาก อัตราการไหลของการไหลหนึ่งๆมีค่าคงที่ ดังนั้นหากเราใช้ของไหลไหลผ่านท่อท่อ
หนึ่ง จะได้สมการดังนี้
24
หลักของแบร์นูลลี
กล่าวว่า เมื่อของไหลเคลื่อนที่ในแนวระดับ หากอัตราเร็วมีค่า
เพิ่มขึ้นความดันในของไหลของของเหลวจะลดลงและเมื่อ
อัตราเร็วลดลงความดันในของเหลวจะเพิ่มขึ้น
สมการแบร์ นู ลลี
พลศาสตร์ ในชี วิ ตประจำวั น
การระบายอากาศ การสร้างปีกเครื่องบิน การทำงานของเครื่องพ่นสี
25
example
เปิดน้ำจากก๊อกให้ไหลลงในบีกเกอร์ความจุ 1 ลิตร จนเต็มภายในเวลา 10
วินาที ภ้าน้ำไหลออกจากก๊อกเป็นลำด้วยอัตราเร็ว 0.5 เมตร/วินาที
จงหารัศมีของปลายก๊อก ___1x10^-3 = 22/7(r^2)(0.5)
10
Q1 = Q 2
r^2 = 0.64x10^-4
Av1 = Av2 r = 0.8x10^-2
_V = πr^2(0.5)
t
ท่อน้ำที่ไม่สม่ำเสมอท่อหนึ่ง ท่อตอนบนมีพื้นที่หน้าตัด 4.0 ตารางเซนติเมตร
และอยู่สูงจากพื้น 10 เมตร ถ้าน้ำในท่อมีความดัน 1.5 x 10ยกกำลัง5 พาสคัล
และไหลด้วยอัตราเร็ว 2 เมตรต่อวินาทีไปยังท่อตอนล่าง ซึ่งมีพื้นที่หน้าตัด
8 ตารางเซนติเมตร และอยู่สูงจากพื้น 1 เมตร จงหาความดันของน้ำในท่อ
ตอนล่าง Q1 = Q2
P1 + 21 ρV21 + ρgh = P2 + 1 ρV22 + ρgh2 A1 V1 = A2V2
4 x 10-4 X 2 = 8 x 10-4(V2)
(1.5 x 105 ) + 21 (103 )(102) + (103)(10)(10) = P2 + 1 (103)(1)2 + (103)(10)(1) 8 = 8V2
V2 = 1
252,000 = 10,500 + P2
P2 = 2,415,000
= 2.41 x 105
เอกสารอ้างอิง
1.) เอกสารประกอบการเรียน เรื่อง ของไหล วิชาฟิสิกส์ 4 รหัสวิชา ว32202
โดยคุณครูผู้สอน นายสุริยันต์ ลาภเย็น
2.) ข้อมูลจากเว็บไซต์ https://www.greelane.com/th/วิทยาศาสตร์เทคโนโลยี
คณิตศาสตร์/วิทยาศาสตร์/viscosity-2699336/
3.) ข้อมูลจากเว็บไซต์ https://slideplayer.in.th/slide/13988067/
4.) ข้อมูลจาก หนังสือฟิสิกส์เตรียมสอบเข้ามหาวิทยาลัย มั่นใจเต็ม100
ผู้แต่ง รักษิตภัษต์ โชติกิตติไพศาล สำนักพิมพ์ IDC