The words you are searching are inside this book. To get more targeted content, please make full-text search by clicking here.
Discover the best professional documents and content resources in AnyFlip Document Base.
Search
Published by harrywyt428, 2018-03-12 08:07:15

Elementary Algebra Exercise Book I

ELEMENTARY ALGEBRA EXERCISE BOOK I inequAlities



Proof: If one of x,y,z is zero, without loss of generality, assume x =0, then |y + z| =0,
thus y + z =0, which implies x + y + z =0. If x,y,z are all nonzero, then there are four
possibilities:


1) If x,y,z are all positive, then y + z ≤ x, z + x ≤ y, x + y ≤ z , impossible.
2) If x,y,z have two positive one negative, without loss of generality, assume
x> 0,y > 0,z < 0. |y + z|≤ x ⇒−x ≤ y + z ≤ x ⇒ x + y + z ≥ 0. On the
other hand |x + y|≤ |z|⇒ x + y ≤−z ⇒ x + y + z ≤ 0. As a conclusion,
x + y + z =0.
3) If x,y,z have one positive two negative, without loss of generality, assume
x> 0,y < 0,z < 0 . |y + z|≤ x ⇒ y + z ≥−x ⇒ x + y + z ≥ 0. On the other
hand, |x + y|≤ |z|⇒ x + y ≤−z ⇒ x + y + z ≤ 0. As a conclusion,
x + y + z =0.
4) If x,y,z are all negative, then x ≤ y + z ≤−x, y ≤ z + x ≤−y, z ≤ x + y ≤−z ,
then x + y + z ≤ 2(x + y + z), thus x + y + z ≥ 0, a contradiction to the assumed
negativity condition.




3.41 If x> y > 0, show x − y + 2xy − y >x .
2
2
2
2 2 2 2 2 2 2 2
2
2
2
2
2
2
2
2
Proof 1: x>y > 0 ⇒ xy > y , 2xy − y >y ⇒ x − y >x − 2xy + y =(x − y) ⇒
x>y > 0 ⇒ xy > y , 2xy − y >y ⇒ x − y >x − 2xy + y =(x − y) ⇒

2
2
x − y >x − y x − y + 2xy − y >x − y + y = x .
2
2
2
2
2
2
x − y >x − y , and 2xy − y >y , thus

2 2 2 x − y >x − y
2
2
Proof 2: x> y > 0 ⇒ y> −y ⇒ x + y >x − y ⇒ x − y > (x − y) ⇒

2 2 2 2xy − y >y (ii).
2
(i). 2xy > 2y ⇒ 2xy − y >y ⇒

2
2
2
(i)+(ii)⇒ x − y + 2xy − y >x .

2
2
2
2
2
2

2
2
2

2
Proof 3: x − y + 2xy − y >x ⇔ x −y +2 2 (x − y )(2xy − y ) +2xy −y >x ⇔
2
2
2
2
2
2
2
2
2
x − y +
2xy − y >x ⇔ x −y +2
(x − y )(2xy − y ) +2xy −y >x ⇔
(x − y )(2xy − y ) >y − xy . The left hand side is greater than zero, while he right
2 2 2 2
(x − y )(2xy − y ) >y − xy
2
2
2
2

hand side y − xy = y(y − x) < 0, thus (x − y )(2xy − y ) >y − xy always holds.
2
2
2
2
2
1
3.42 Given x> 0,y > 0, + 9 y =1, show x + y ≥ 12.
x

Proof: Since x> 0,y > 0, we have 1 x + 9 y ≥ 2 1 x · 9 y = √ 6 xy . Since 1 x + y 9 =1 , we have
6 √ √
√ ≤ 1 , which is equivalent to xy ≥ 6. x + y ≥ 2 xy ≥ 12.
xy
3.43 a, b, c are real numbers and a + b + c =1, show a + b + c ≥ .
2
2
2
1
3
1
1
1
2
2
2
2
2
2
2
2
2
2
2
Proof 1: a + b + c =1 ⇒ c =1 − a − b , then a +b +c − = a +b +(1−a−b) − = a +b +1+a +b −2a−2b+2ab− = 2(a +
1
2
2
2
2
2
2
2
1
2

2
2
1
2
a +b +c 3 − = a +b +(1−a−b) − = a +b +1+a +b −2a−2b+2ab− = 2(a +
3
3
3
2 1 3 2 b−1 2 3 b−1 2 2 1 b−1 2 (3b−1) 2 2 ] ≥ 0
) + (3b−1)
1
1
1
2
2
2
1
2
2
2
2
2
2
2
1
2
2
2
) +b −b+ ] = 2[(a+ b−1 2
) −( b−1 2
b +ab−a−b+ ) = 2[a +(b−1)a+( b−1 2
2
2
1
2
2
2
2
2
2
2
2
2
2
1
a +b +c − = a +b +(1−a−b) − = a +b +1+a +b −2a−2b+2ab− = 2(a + b +ab−a−b+ 3 ) = 2[a +(b−1)a+( 2 ) −( 2 ) +b −b+ ] = 2[(a+ 2 ) + 12 12 ] ≥ 0
1

3
a +b +c
3 − = a +b +(1−a−b) − = a +b +1+a +b −2a−2b+2ab− = 2(a +
3
3
2
3
2
3
2
3
3
3
2
b−1 2
2
1
2
) +
(3b−1)
) +b −b+ ] = 2[(a+ b−1 2
2
b +ab−a−b+ ) = 2[a +(b−1)a+( b−1 2 b−1 2 2 2 1 3 1 3 b−1 2 (3b−1) 2 ] ≥ 0 .
2
1
) −( b−1 2
2 ) +
2 ) +b −b+ ] = 2[(a+
] ≥ 0
3 ) = 2[a +(b−1)a+(
2 ) −(
b +ab−a−b+
12
12
2
2
3
2
Download free eBooks at bookboon.com
101

ELEMENTARY ALGEBRA EXERCISE BOOK I inequAlities



2
Proof 2: a + b + c =1 ⇒ (a + b + c) =1 ⇒ a + b + c =1 − 2(ab + bc + ca) (i).
2
2
2
2
2

2
2
2
2
2
2
2
a + b ≥ 2ab, b + c ≥ 2bc, c + a ≥ 2ca , add them up to obtain 2(a + b + c ) ≥ 2(ab + bc + ca)
2(a + b + c ) ≥ 2(ab + bc + ca)(ii).
2
2
2
(i)+(ii)⇒ 3(a + b + c ) ≥ 1 ⇒ a + b + c ≥ .
2
2
2
2
2
1
2
3
3.44 The function f(x) is defined on [0, 1], and f(0) = f(1) . For any distinct
x 1 ,x 2 ∈ [0, 1], we have |f(x 2 ) − f(x 1 )| < |x 2 − x 1 | . Show |f(x 2 ) − f(x 1 )| < .
1
2
Proof: Let 0 ≤ x 1 <x 2 ≤ 1. We consider two cases:
1) If x 2 − x 1 ≤ , then |f(x 2 ) − f(x 1 )| < |x 2 − x 1 |≤ .
1
1
2 2
2) If x 2 − x 1 > , then from f(0) = f(1) we obtain
1
2
|f(x 2 ) − f(x 1 )| = |f(x 2 ) − f(1) + f(0) − f(x 1 )|≤|f(x 2 ) − f(1)| + |f(0) − f(x 1 )|
|f(x 2 ) − f(x 1 )| = |f(x 2 ) − f(1) + f(0) − f(x 1 )|≤|f(x 2 ) − f(1)| + |f(0) − f(x 1 )|. Hence, (1 − x 2 ) + (x 1 − 0) = 1 − (x 2 − x 1 ) < 1 2

(1 − x 2 ) + (x 1 − 0) = 1 − (x 2 − x 1 ) < .
1
2
3.45 The equation |x| = ax +1 has one negative root but no positive root, find the
range of the parameter a .
Solution 1: Let x be the negative root of the equation |x| = ax +1 , then
−x = ax +1 ⇒ x = −1 < 0, thus a +1 > 0. Equivalently, when a> −1, the equation has
a+1
a negative root.
1
Suppose the equation has a positive root x, then x = ax +1 ⇒ x = 1−a > 0 , thus a< 1.
As a conclusion, the condition that the equation has one negative root but no positive root
is equivalent to a> −1 holds but a< 1 fails, that is, a ≥ 1.

Solution 2: Another approach is to plot the functions y = |x| and y = ax +1 on the
Cartesian plane. This will directly give us the same conclusion.


2
3.46 Solve the inequality 3x −4x−23 > 2.
2
x −9
2
2
Solution: 3x −4x−23 > 2 ⇔ x −4x−5 > 0 ⇔ (x+1)(x−5) > 0. This inequality is equivalent to
2
2
x −9 x −9 (x+3)(x−3)
(x + 3)(x + 1)(x − 3)(x − 5) > 0 whose solution set is (−∞, −3) ∪ (−1, 3) ∪ (5, +∞).












Download free eBooks at bookboon.com
102

ELEMENTARY ALGEBRA EXERCISE BOOK I inequAlities




3.47 Consider the inequality x +2 >m(x − 1), (1) if the inequality holds for any real
2
number x , find the range of m ; (2) if for any m ∈ [−2, 2] the inequality holds, find the

range of x .


Solution: (1) x +2 >m(x − 1) ⇔ m(x − 1) − (x + 2) < 0 ⇔ mx − x − m − 2 < 0. This
2
2
2

m< 0
m< 0
m< 0

inequality holds for any real number x , then m< 0 ⇔ m< 0 ⇔ m< √0 √ ⇔
2
Δ = 1 +4m(m + 2) < 0 ⇔ 4m +8m +1 < 0 ⇔ −1 − 3 √ <m< −1+ 3 √ 3 ⇔
2
3
√ Δ = 1 +4m(m + 2) < 0 4m +8m +1 < 0 −1 2 − 2 <m< −1+ 2 2

m< 0 m< 0 m< 0 3 √ 3 √
3
−1 −
<m < −1+
⇔ ⇔ √ √ ⇔ −1 2 − <m < −1+ 2 3 .
2
Δ = 1 +4m(m + 2) < 0 4m +8m +1 < 0 −1 − 3 <m< −1+ 3 2 2
√ √ 2 2
3 3
2
−1 − <m < −1+ (2) For any m ∈ [−2, 2] the inequality holds. Let f(m) =(x − 1)m − (x + 2) which is a
2 2
linear function of m , and f(m) < 0 should hold for any m ∈ [−2, 2], equivalently we
2 2 2 2 1 1
−2(x − 1) − (x + 2) < 0
2x + x> 0
should have −2(x − 1) − (x + 2) < 0 ⇔ 2x 2 2x + x> 0 ⇔ x> x> 0 or x< − 2 √ 1+ 33 ⇔ ⇔
x> 0 or x< −

1
2
−2(x − 1) − (x + 2) < 0
⇔+ x> 0
2 √

⇔ 0 or x< −

2
2
1− 33
2
2x − x − 4 < 0
2
2(x − 1) − (x + 2) < 0
1− 33
1+ 33
2 √

2(x − 1) − (x + 2) < 0 ⇔
2x − x − 4 < 0 ⇔
2
2
< x< 33
1+
2(x − 1) √ − √ (x + 2) < 0 2x − x − 4 < 0 1− 33 4 < x< < x< ⇔ 4
4
4
0 < x< 1+ 33 √ 4 4
1+ 33

0 < x< 33
1
0 < x< 1+ 4 or 4 1− 33 < x< − .
4 4 2
3.48 x,y,z are positive numbers, and xyz(x + y + z) =1. Find the minimum value
of (x + y)(x + z).
Challenge the way we run
EXPERIENCE THE POWER OF
FULL ENGAGEMENT…
RUN FASTER.
RUN LONGER.. READ MORE & PRE-ORDER TODAY
RUN EASIER… WWW.GAITEYE.COM
1349906_A6_4+0.indd 1 22-08-2014 12:56:57
Download free eBooks at bookboon.com Click on the ad to read more
Click on the ad to read more
Click on the ad to read more
Click on the ad to read more
Click on the ad to read more
Click on the ad to read more
Click on the ad to read more
Click on the ad to read more
Click on the ad to read more
Click on the ad to read more
Click on the ad to read more
Click on the ad to read more
Click on the ad to read more
Click on the ad to read more
Click on the ad to read more
Click on the ad to read more
Click on the ad to read more
Click on the ad to read more
Click on the ad to read more
Click on the ad to read more
Click on the ad to read more
Click on the ad to read more
Click on the ad to read more
Click on the ad to read more
Click on the ad to read more
Click on the ad to read more
Click on the ad to read more
Click on the ad to read more
Click on the ad to read more
Click on the ad to read more
Click on the ad to read more
Click on the ad to read more
Click on the ad to read more
1 10303

ELEMENTARY ALGEBRA EXERCISE BOOK I inequAlities




Solution: The given conditions imply that (x + y)(x + z) = yz + x(x + y + z) ≥ 2 yz · x(x + y + z)=2


(x + y)(x + z) = yz + x(x + y + z) ≥ 2 yz · x(x + y + z)=2. When x = 2 − 1,y = z =1, the equal sign is reached in the
above inequality, thus the minimum value of (x + y)(x + z) is 2.

2
3.49 Real numbers a, b, c satisfy a + b + c =1. Show that one of |a − b|, |b − c|, |c − a|
2
2

is not greater than 2 .
2
Proof: Without loss of generality, we assume a ≤ b ≤ c , and let m be the minimum one

of |a − b|, |b − c|, |c − a| . Then b − a ≥ m, c − b ≥ m, c − a =(c − b) + (b − a) ≥ 2m . On

2 2 2 2 2 2 2 2 2

one hand, (a − b) + (b − c) +(c − a) = 2(a + b + c ) − 2(ab + bc + ca)=3(a + b + c ) −
2
2
2
2
2
2
2
2
2
(a − b) + (b 2 − c) +(c − a) = 2(a + b + c ) − 2(ab + bc + ca)=3(a + b + c ) −
(a + b + c) ≤ 3
2
2
2
2
2
2
(a + b + c) ≤ 3. On the other hand, (a − b) +(b − c) +(c − a) ≥ m + m + (2m) =6m 2
2

2 2 2 2 2 2 2 2 2
(a − b) +(b − c) +(c − a) ≥ m + m + (2m) =6m . Hence, 6m ≤ 3 ⇒ m ≤ .
2
α β α+1 β+1
3.50 Let α, β be real numbers, show log (2 +2 ) ≥ 2 + 2 .
2
α β α+1 β+1 α β α+β+2
Proof: To show log (2 +2 ) ≥ 2 + 2 , we only need to show 2 +2 ≥ 2 2 , we only need
2
to show 2 2α +2 α+β+1 +2 2β ≥ 2 α+β+2 , we only need to show 2 α−β−2 +2 −1 +2 β−α−2 ≥ 1, we
1
2
1
only need to show 2 α−β +2+ α−β ≥ 4, we only need to show (2 α−β α−β ) ≥ 0 which is
2 −
2
2 2
obviously valid.
2
3.51 Given the function f(x) = ax − c that satisfies −4 ≤ f(1) ≤−1, −1 ≤ f(2) ≤ 5.
Find the range of f(3).
1
1
2
Solution: From f(x) = ax − c, we know f(1) = a − c, f(2) = 4a − c , thus a = [f(2) − f(1)],c = [f(2) − 4f(1)]
3 3
1
5
1
8
1
a = [f(2) − f(1)],c = [f(2) − 4f(1)] . Then f(3) = 9a − c = 3[f(2) − f(1)] − [f(2) − 4f(1)] = f(2) − f(1)
3 3 3 3 3
1 8 5 8 5 8 5
f(3) = 9a − c = 3[f(2) − f(1)] − [f(2) − 4f(1)] = f(2) − f(1). Hence, × (−1) + (− ) × (−1) ≤ f(3) ≤ × 5+(− ) × (−4), that is, −1 ≤ f(3) ≤ 20
3 3 3 3 3 3 3
−1 ≤ f(3) ≤ 20.
1
1
3.52 Given real numbers a> 0,b > 0,c > 0 and a + b + c =1, show + + 1 ≥ 9.
a b c

Proof 1: The conditions together with Cauchy’s Inequality imply a+b+c ≥ 3 abc ⇒ √ 1 ≥ 3 =3 .
3 3 abc a+b+c
1
1 + + 1
1
Apply Cauchy’s Inequality again to obtain a b c ≥ 3 1 · · 1 = √ 1 ≥ 3 ⇒ 1 + 1 + 1 ≥ 9 .
3 a b c 3 abc a b c
2
2
2
2
2
2
Proof 2: 1 1 + 1 bc+ac+ab − 9= (a+b+c)(bc+ac+ab)−9abc 2 a c+a b+b c+ab +ac +bc −6abc =
2
2
2
2
2
1 + 1 a + + 1 b − 9= − 9=+ab abc − 9= (a+b+c)(bc+ac+ab)−9abc = a = c+a b+b c+ab +ac +bc −6abc =
bc+ac
c
abc
abc
a a(b−c) +b(c−a) +c(a−b) 2 abc abc
2 c
abc
b
2
2
2
a(b−c) +b(c−a) +c(a−b) 2 ≥ 0 . ≥ 0
abc
abc
Download free eBooks at bookboon.com
104

ELEMENTARY ALGEBRA EXERCISE BOOK I inequAlities




1 2 1 2 25
3.53 Let a> 0,b > 0 and a + b =1, show (a + ) +(b + ) ≥ .
a b 2
√ √
1 1 1 ≥ 4.
Proof 1: 1= a + b ≥ 2 ab ⇒ ab ≤ ⇒ ab ≤ ⇒
2 4 ab
And (a+ ) +(b+ ) ) ≥ [ ≥ [ a+ +b+ ] = (1 ++ 1 1 + ) = (1 ++ 1 2 2 2525,
1 1
1 2 1 2
1 2 1 2
1 1
a+ +b+
(a+ ) +(b+
b 2 b 2
1 1
1 2 1 2
1
1 1
+ ) = (1
)
]
a a
b b
a a
) ≥≥
2 2 2 2 4 = (1 a a b b 4 4 abab 4 4
4
1 2 1 2 25
thus (a + ) +(b + ) ≥ .
a b 2
2
1
2
2
2
2
1 2
2
2
2
2
1 2
2
Proof 2: Let a = sin α, b = cos α , then (a+ ) +(b+ ) = (sin α+csc α) +(cos α+sec α) ≥ (sin α+csc α+cos α+
2
a
b
2
2
1
2
2
2
1
2
4
1
1
1
1
sec α) = (1+ sin α cos α 2 1 2 sin α cos α ) = (1+ sin 2α ) = (1+4 csc 2α) ≥
2 +
2 ) = (1+
2
2
2
2
2
2
2
1 11
2
2 2
2 2
2 2
2 2
22
1 2 1 2
2 2
2
2 2
2 25 2
1 2 1 2
(a+ ) +(b+ ) = (sin α+csc α) +(cos α+sec α) ≥ (sin α+csc α+cos α+
(1 + 4) =
(a+ ) +(b+ ) = (sin α+csc α) +(cos α+sec α) ≥ (sin α+csc α+cos α+
2
2
2 2
2
2
1 2
2 2 2 1
1
2
1 2
2
2 2
2 2
2
2
2
b1 2
2 ) +(b+ ) = (sin α+csc
2
2
2
a 1 2
(a+
2
b
2 2 (a+ ) +(b+ ) = (sin α+csc α) +(cos α+sec α) ≥ (sin α+csc α+cos α+
a
1 1
4 4
2 2
1
2 2
2 2
1
1
1 12
2 2
1 2
1 1 2
1
1 1 2
2
2
2
2
2
2
) = (1+ +
2 ) =
a
sec α) =
(a+
) = (1
sec α) = (1+ (1+ b 1 b b 1 2 1 cos α α 1 2 2 2 1 1 α) +(cos α+sec α) ≥ (sin α+csc α+cos α+
) = (1+4 csc 2α) ≥α+
1 a ) +(b+ ) = (sin α+csc α) +(cos α+sec α) ≥ (sin α+csc α+cos
2
2 + +
2 ) = (1+ (1+
2
2
) = (1+4 csc 2α) ≥
2
2 2
1
2 2
2
2 2
2 2 1
1
sin α cos α α 2
cos 1
2
sin 4
1
2
2 21
1
2
2 1
sin 2α 2α4 2
2 sin α cos 1
2 a
2
1
sin α sin α
2 2 1
2
2
sec α) =
1 sec α) = (1+ 2 +
2 + 2 ) = (1+
2 (1+
) = (1+4 csc 2α) ≥
25
2
1
2
1
2
) = (1+ 2 4
2
1
2 2
2
1
1
(1 + 4) =
1
) =
2 +
sec α)
sin α cos α ) = (1+
2
1 (1 + 4) == (1+ sin α cos α 2 ) = (1+ 2 2 1 2 2 α ) = (1+ sin 2α ) = (1+4 csc 2α) ≥
cos α ) = (1+
2
sin α
2
2
sin 2α 2
sin α cos
25 2
2
2
2 (1+4 csc 2α) ≥
25
2
2
2
2
2 1
2
2
2 1 (1 + 4) = 2 2 2 25 sin α cos α 2 sin α cos α 2 sin 2α 2
2 .
2
2 1 (1 + 4) = 25
2
2 (1 + 4) =
2 2
3.54 Let a,b,c,d,m,n be positive real numbers,
√ √ √
d
P = ab + cd, Q = ma + nc b + . Compare P and Q .
m n

d
2
2
Solution: P = ab + cd +2 abcd, Q =(ma + nc)( b + )= ab + cd + nbc + mad . Since
m n m n

2
2
nbc + mad ≥ 2 nbc · mad =2 abcd , then P ≤ Q . Because P, Q are positive, we have P ≤ Q .
m n m n
3.55 Show the inequality (a + b) ≤ 128(a + b ).
8
8
8
Proof: (a − b) ≥ 0 ⇒ a + b ≥ 2ab. Similarly we have a + b ≥ 2a b ,a + b ≥ 2a b .
2
8
2 2
8
4
4
2
4 4
2
Add a + b ,a + b ,a + b to the above three inequalities respectively to obtain
8
2
4
2
8
4
2(a + b ) ≥ (a + b) , 2(a + b ) ≥ (a + b ) , 2(a + b ) ≥ (a + b ) ) . The last inequality leads
22
4 4
22
8 8
22
2
2 2 2
8 8
2 2
4
4 2 2
4 4
44
2(a + b ) ≥ (a + b) , 2(a + b ) ≥ (a + b ) , 2(a + b ) ≥ (a + b

2 2
2 2
8 8 8 8 4 4 4 2 4 2 4 4 4 4 2 2 22 2 2 2 2 2 2 2 2 2 2

128(a + b ) ≥ 64(a + b ) = 16[2(a + b )] ≥ 16[(a + b ) ] = {[2(a + b )] } ≥
to 128(a + b ) ≥ 64(a + b ) = 16[2(a + b )] ≥ 16[(a + b ) ] = {[2(a + b )] } ≥
2
2 2
2
4
2 2 2
4
2
4
4 2
8
8
2
128(a + b
2 2 2 2 2 2 ) ≥ 64(a + b ) = 16[2(a + b )] ≥ 16[(a + b ) ] = {[2(a + b )] } ≥
{[(a + b) ] } =(a
8
{[(a + b) ] } =(a + b) + b) 8
{[(a + b) ] } =(a + b) .
2 2 2
8
2
3.56 Given the function f(x − 3) = log x 2 2 (a> 0,a =1 ) that satisfies
a 6−x
f(x) ≥ log 2x . Find the domain of the function f(x) .
a
3+t
Solution: Let x − 3= t , then x = 3+ t . Substitute it into the function: f(t) = log a 3−t , thus
2
2
f(x) = log 3+x . Then the inequality f(x) ≥ log 2x is equivalent to log 3+x ≥ log 2x .
a 3−x a a 3−x a

3+x > 0
⎨ 3−x
If a> 1, then 3+x ≥ 2x ⇒ x ∈ (0, 1) ∪ [− , 3).
3
3−x 2

x> 0

3+x >
< 0
⎨ 3−x
If 0 <a < 1, then 3+x ≤ 2x ⇒ x ∈ [1, ) .
3
3−x 2

x> 0
Download free eBooks at bookboon.com
105

ELEMENTARY ALGEBRA EXERCISE BOOK I inequAlities




3.57 Given a< −1, and x satisfies x + ax ≤−x , and x + ax has the minimum
2
2
1
value − , find the value of a .
2
2 2 a 2 a 2
Solution: a< −1,x + ax ≤−x ⇒ x[x +(a + 1)] ≤ 0 ⇒ 0 ≤ x ≤−(a + 1). Let f(x) = x + ax =(x + ) − 4

2
2 a 2 a 2
f(x) = x + ax =(x + ) − .
2 4
If −(a + 1) < − ⇔−2 <a < −1, then f(x) reaches its minimum value f(−a − 1) = a +1
a
2
3
1
at x = −(a + 1), thus a +1 = − ⇒ a = − .
2 2
2
a
If −(a + 1) ≥− ⇔ a ≤−2, then f(x) reaches it minimum value − at x = − , thus
a
a
2 4 2

a 2 1
− = − ⇒ a = ± 2 both of which violate a ≤−2.
4 2
As a conclusion, a = − .
3
2















This e-book



is made with SETASIGN





SetaPDF











PDF components for PHP developers



www.setasign.com








Download free eBooks at bookboon.com Click on the ad to read more
Click on the ad to read more
Click on the ad to read more
Click on the ad to read more
Click on the ad to read more
Click on the ad to read more
Click on the ad to read more
Click on the ad to read more
Click on the ad to read more
Click on the ad to read more
Click on the ad to read more
Click on the ad to read more
Click on the ad to read more
Click on the ad to read more
Click on the ad to read more
Click on the ad to read more
Click on the ad to read more
Click on the ad to read more
Click on the ad to read more
Click on the ad to read more
Click on the ad to read more
Click on the ad to read more
Click on the ad to read more
Click on the ad to read more
Click on the ad to read more
Click on the ad to read more
Click on the ad to read more
Click on the ad to read more
Click on the ad to read more
Click on the ad to read more
Click on the ad to read more
Click on the ad to read more
Click on the ad to read more
Click on the ad to read more
106
106

ELEMENTARY ALGEBRA EXERCISE BOOK I inequAlities




3.58 a 1 ,a 2 , ··· ,a n are positive numbers and satisfy a 1 a 2 ··· a n =1 , show
(2 + a 1 )(2 + a 2 ) ··· (2 + a n ) ≥ 3 .
n

3
Proof: Use an arithmetic mean-geometric mean inequality a + b + c ≥ 3 abc (a, b, c are

positive numbers) to obtain 2+ a i = 1+ 1+ a i ≥ 3 a i (i =1, 2, ··· ,n ). Then
3
√√
n n 3 3 n n

(2 + a 1 )(2 + a 2 ) ··· (2 + a n ) ≥ 3 ·(2 + a 1 )(2 + a 2 ) ··· (2 + a n ) ≥ 3 · a 1 a 2 ··· a n =3a 1 a 2 ··· a n =3 .
3.59 If a, b, c are side lengths of a triangle, show a b(a − b)+ b c(b − c)+ c a(c − a) ≥ 0
2
2
2
and determine when the equal sign is reached.
Proof: Let a = y + z, b = z + x, c = x + y where x,y,z are positive numbers. Substitute

them into the inequality:
22 22 22
(y + z) (x + z)(y − x)+(z + x) (x + y)(z − y)+ (x + y) (y + z)(x − z) ≥ 0 ⇔(y + z) (x + z)(y − x)+(z + x) (x + y)(z − y)+ (x + y) (y + z)(x − z) ≥ 0 ⇔
2
2
2
(y + z) (x + z)(y − x)+(z + x) (x + y)(z − y)+ (x + y) (y + z)(x
− z) ≥ 0 ⇔
33
33
33
x
x z + y x + z y − xyz(x + y + z) ≥ 0z + y x + z y − xyz(x + y + z) ≥ 0
x z + y x + z y − xyz(x + y + z) ≥ 0. Divide both sides by xyz to obtain
3
3
3
x 2 + y 2 + z 2 ≥ x + y + z which can be proven by the inequalities
y z x
2 2
2 2
2 2
xx + y ≥ 2x,+ y ≥ 2x, yy + z ≥ 2y,+ z ≥ 2y, zz + x ≥ 2z+ x ≥ 2z .
yy zz xx
These inequalities have the equal sign if and only if x = y = z , that is, the original inequality
has the equal sign if and only if a = b = c .
|a+b| |a| + |b|
≤ 1+|b| .
3.60 a, b are real numbers, show 1+|a+b| 1+|a|
=
=
|a+b| 1+|a+b|−1 1 1 |a|+|b| |a| |b|
+
1
1
|a|
|a|+|b|
|b|
1+|a+b| =
Proof: Since |a + b| ≤|a| + |b|, we have |a+b| = 1+|a+b|−1 =1 − 1+|a+b| ≤ 1 − 1+|a|+|b| = 1+|a|+|b| = 1+|a|+|b| + 1+|a|+|b| ≤

≤ 1 −
1+|a+b| =1 −
1+|a+b| 1+|a+b| 1+|a+b| 1+|a|+|b| 1+|a|+|b| 1+|a|+|b| 1+|a|+|b|
|a+b| 1+|a+b|−1 1 1 |a|+|b| |a| |b| |a| + |b|
= =1 − ≤ 1 − = = + ≤ 1+|a| + 1+|b|.
|a|
|b|
1+|a+b| 1+|a+b| 1+|a+b| 1+|a|+|b| 1+|a|+|b| 1+|a|+|b| 1+|a|+|b| 1+|a| 1+|b|
|a| |b|
+
1+|a| 1+|b|
1
y
x
2
3.61 Given 0 <a < 1,x + y =0, show log (a + a ) ≤ log 2+ .
a
a
8
√ x+y
y
x+y
x
Proof: a + a ≥ 2 a a =2a 2 . Since 0 <a < 1, we have log (a + a ) ≤ log (2a x+y x+y x+y = log 2+ x−x 2 = log 2+ x(1 − x) ≤
x y
1
x
y
2 ) = log 2+
2
2
a
x
a x
y
y
2 ) = log 2+) = log 2+
log (a +(a + a ) ≤ log (2a 2 a x+y 2 x+y a x−x 2x−x a 1 2 1
= log 2+= log 2+
1 x+1−x 2 a ) ≤ log (2alog
= log 2+ x(1 − x) ≤= log 2+ x(1 − x) ≤
a
a
a
(
log a 2x+1−x 2 ) = log 2+ 1 a a a 2 2 a a 2 2 a a 2 2
x+y
) = log 2+) = log 2+ .
1
a
1
2
y
1
x
(
log
log (a + a ) ≤ log (2a 2 ) = log 2+ x+y = log 2+ x−x = log 2+ x(1 − x) ≤ log 2+ ( 2 x+1−x 2 a a 1 8 8 1

8
a
a
a
2
a 2 a 2
2
a
a
2
2
2
log 1 x+1−x 2 1
(
) = log 2+
a 2 2 a 8
3.62 The system of inequalities

2
x − 2x − 8 < 8 − x
2
x + ax + b< 0
has the solution 4 ≤ x< 5, find the conditions a and b should satisfy.
⎧ 2 ⎧
⎨ x − 2x − 8 ≥ 0 ⎨ x ≤−2 or x ≥ 4
Solution: √ 2 ⇒ x ≤−2
x − 2x − 8 < 8 − x ⇒ 8 − x> 0 ⇒ x< 8
⎩ 2 2 ⎩ 36
x − 2x − 8 < (8 − x) x<
7
36
or 4 ≤ x ≤ 7 .
Download free eBooks at bookboon.com
107

ELEMENTARY ALGEBRA EXERCISE BOOK I inequAlities




The solution of the inequality x + ax + b< 0 should have the form α <x < β . Since the
2
solution of the inequality system is 4 ≤ x< 5, then β =5, −2 ≤ α< 4. Since β =5, then

25 + 5a + b =0 Since α + β = −a , then 3 ≤−a< 9, that is, −9 <a ≤−3. As a conclusion,

a, b should satisfy −9 <a ≤−3
5a + b + 25 = 0.



2
2
2
2
3.63 If x,y,z ≥ 1, show (x − 2x + 2)(y − 2y + 2)(z − 2z + 2) ≤ (xyz) − 2xyz +2
(x − 2x + 2)(y − 2y + 2)(z − 2z + 2) ≤ (xyz) − 2xyz +2.
2
2
2
2
2 2 2 2 2 2
Proof: Since x ≥ 1,y ≥ 1, we have (x −2x+2)(y −2y+2)−[(xy) −2xy+2] = (−2y+2)x +(6y−2y −4)x+(2y −

2
2
2
2
2
2
(x −2x+2)(y −2y 2 +2)−[(xy) −2xy+2] = (−2y+2)x +(6y−2y −4)x+(2y −
2
2
4y +2) = −2(y −1)x −2(y −1)(y −2)+2(y −1) = −2(y −1)[x +(y −2)x+1−y]=
2
2
2
2
2
2
2
2 2y+2)−[(xy) −2xy+2] = (−2y+2)x +(6y−2y −4)x+(2y −
2
(x −2x+2)(y −
2 2 2 2 2 2 4y +2) = −2(y −1)x −2(y −1)(y −2)+2(y −1) = −2(y −1)[x +(y −2)x+1−y]=
(x −2x+2)(y −2y+2)−[(xy) −2xy+2] = (−2y+2)x +(6y−2y −4)x+(2y − −2(y − 1)(x − 1)(x + y − 1) ≤ 0 2 2
2
2
2
2
2
2
2
2 −2y+2)−[(xy) −2xy+2] =
(x −2x+2)(y
−2(y − 1)(x − 1)(x + y − 1) ≤ 0
2
2(−2y+2)x +(6y−2y −4)x+(2y −
4y +2) = −2(y −1)x −2(y −1)(y −2)+2(y −1) = −2(y −1)[x +(y −2)x+1−y]= 4y +2) = −2(y −1)x −2(y −1)(y −2)+2(y −1) = −2(y −1)[x +(y −2)x+1−y]=

2
2
2
2
4y +2) = −2(y −1)x −2(y −1)(y −2)+2(y −1) = −2(y −1)[x +(y −2)x+1−y]=
−2(y − 1)(x − 1)(x + y − 1) ≤ 0 2 2 −2(y − 1)(x − 1)(x + y − 1) ≤ 0, then (x − 2x + 2)(y − 2y + 2) ≤ (xy) − 2xy +2
−2(y − 1)(x − 1)(x + y − 1) ≤ 0

2
2
2
2
2
2
(x − 2x + 2)(y − 2y + 2) ≤ (xy) − 2xy +2(i). Similarly, since xy ≥ 1,z ≥ 1, we have [(xy) − 2xy + 2](z − 2z + 2) ≤ (xyz) − 2xyz +2
2
2
2
2
2
2
2
[(xy) − 2xy + 2](z − 2z + 2) ≤ (xyz) − 2xyz +2 (ii). From (i) and (ii), we can obtain (x − 2x + 2)(y − 2y + 2)(z − 2z + 2) ≤ (xyz) − 2xyz +2

(x − 2x + 2)(y − 2y + 2)(z − 2z + 2) ≤ (xyz) − 2xyz +2.
2
2
2
2
1
1
3.64 Given natural numbers a<b< c , m is an integer, and + + 1 = m , find
a b c
a, b, c .
1 1 1 5
Solution: Since a, b, c are natural numbers and a<b< c , we have a ≥ 1,b ≥ 2,c ≥ 3, 0 <m ≤ + + =1
1 2 3 6
1 1 1 5
a ≥ 1,b ≥ 2,c ≥ 3, 0 <m ≤ + + =1 . Since m is an integer, we have m =1 and a =1 . If a ≥ 3 , then
1 2 3 6
1
1
1
1 + + 1 1 + + 1 = 47 < 1. Hence, + + 1 = m =1. Therefore, a =2. Then + 1 1 = 1
1
1
a b c ≤ 3 4 5 60 a b c b c =1 − 2 2
1 + 1 1 = . If b ≥ 4, then + 1 1 + 1 = 9 1 1 1 1 = ,
1
1
1
b c =1 − 2 2 b c ≤ 4 5 20 < , thus b =3. Then =1 − − 3 6
c
2
2
thus c =6.
x
x
3.65 Given 1 <a < 2,x ≥ 1, and f(x) = a +a −x ,g(x)= 2 +2 −x . (1) Compare f(x)
2 2
m .
n 1 1
and g(x). (2) Let n ∈ N, n ≥ 1, show f(1) + f(2) + ··· + f(2n) < 4 − 2n
2 2
x
x
x x
x
x 2x
x
x
a −a
+1
1 a
Solution: (1)f(x)−g(x) = a +a −x − 2 +2 −x = ( 2x +1 2 2x x ) = 2 a +2 −2 2x x x = (a −2 )(2 a −1) .
2 2 2 a x − 2 2 x+1 x 2 x+1 x
a
a
x
x x
Since 1 <a < 2,x ≥ 1, then 2 a > 1,a < 2 , thus (a −2 )(2 a −1) < 0 , that is,
x
x x
x
x
a
2 x+1 x
f(x) − g(x) < 0. Hence, f(x) <g(x).
2n
1 1
1
2
(2) Since f(x) <g(x), then f(1) + f(2) + ···+ f(2n) <g(1) + g(2) + ···+ g(2n)= (2 + 2 + ···+2 )+ ( +
1 1
1
2n
2
f(1) + f(2) + ···+ f(2n) <g(1) + g(2) + ···+ g(2n)= 2 2 (2 + 2 + ···+2 )+ ( 2 2+
1
n 2 2
1
1
1
1
1
2n−1
n
2
2 + ··· +
2n ) = (1 +2 +2 + ··· +2
1
2n =4 − 1
2
n
)+ (1 − 1
1
1 1
2
2n ) < 4 − 1 +1 − 1
n
2n
f(1) + f(2) + ···+ f(2n) <g(1) + g(2) + ···+ g(2n)= (2 + 2 + ···+2 )+ ( + 1 2 + 2 ··· + 1 2n ) 2 = (1 +2 +2 + ··· +2 2n−1 )+ (1 2 − 2 ) < 4 − 1 +1 − 2 =4 − 2 2n
1
1 1
2n
2
f(1) + f(2) + ···+ f(2n) <g(1) + g(2) + ···+ g(2n)= 2 (2 + 2 + ···+2 )+ ( + 2 2 2 2 2n 2 2n 2 2n
2 2
1 1 2 2n−1 1 1 2 n 1 n 2 2 1
2 + ··· + 1
)+ (1 − 1
2n ) = (1 +2 +2 + ··· +2 2n−1
2
n
n
1 2 + ··· + 2 ) = (1 +2 +2 + ··· +2 )+ 1 2n ) < 4 − 1 +1 − 1 2n =4 − 1 2 .
2n
2 =4 −
2 ) < 4 − 1 +1 −
2 2 2 2n 2 2 (1 − 2 2n 2 2n 2 2n
Download free eBooks at bookboon.com
108

ELEMENTARY ALGEBRA EXERCISE BOOK I inequAlities




ab c


3.66 a, b, c are real numbers, and a + b + c< 0, show b ca ≥ 0.


ca b

2
2
2
2
Proof: a + b ≥ 2ab, b + c ≥ 2bc, c + a ≥ 2ca , and add them up to obtain
2
2
2 2
2 2
2(a + b + c ) ≥ 2(ab + bc + ca), thus (ab + bc + ca) − (a + b + c ) ≤ 0.
2 2
2(a + b + c ) ≥ 2(ab + bc + ca) 2 2 2

1

ab c
ab c a + b + cb c 1 bc bc 1 b 1 b c c







a + b + cb c

ab c a + b + cb c 1 bc 1 b c



1
b


1

ab
b ca =
=(a+b+c) 1
=
b ca = a + b + cca =(a+b+c) 1 ca ca =(a+b+c) 0 c − ba = − c c
=(a+b+c) 0 c − ba − c



c a + b + cca bc

a + b + cb c





=









b ca a + b + cca =(a+b+c) 1 ca =(a+b+c) 0 c − ba − c =
b







1 ab ab
a + b + ca b b
ca b a + b + ca =(a+ 1 0 a − bb − c bb − c =


ca bca a + b + cca b+c) 1 ca =(a+b+c) 0 c − ba − c


=



2 0 a − bb − c
ca b a + b + ca b 1 ab 0 a −

1 ab
2
(a + b + c)[−(b − c) − (a − b)(a − c)] = (a + b + c)[(ab + bc + ca) − (a + b + c )] ≥ 0 2 0 a − bb − c
2



a + b + ca b
ca b
2
2
2
(a + b + c)[−(b − c) − (a − b)(a − c)] = (a + b + c)[(ab + bc + ca) − (a + b + c )] ≥ 0
2


2 − (a − b)(a − c)] = (a + b + c)[(ab + bc + ca) − (a + b + c )] ≥ 0.
2
2
2
2
(a + b + c)[−(b − c)
2
2
2
(a + b + c)[−(b − c) − (a − b)(a − c)] = (a + b + c)[(ab + bc + ca) − (a + b + c )] ≥ 0
www.sylvania.com
We do not reinvent
the wheel we reinvent
light.
Fascinating lighting offers an infinite spectrum of
possibilities: Innovative technologies and new
markets provide both opportunities and challenges.
An environment in which your expertise is in high
demand. Enjoy the supportive working atmosphere
within our global group and benefit from international
career paths. Implement sustainable ideas in close
cooperation with other specialists and contribute to
influencing our future. Come and join us in reinventing
light every day.
Light is OSRAM
Download free eBooks at bookboon.com Click on the ad to read more
Click on the ad to read more
Click on the ad to read more
Click on the ad to read more
Click on the ad to read more
Click on the ad to read more
Click on the ad to read more
Click on the ad to read more
Click on the ad to read more
Click on the ad to read more
Click on the ad to read more
Click on the ad to read more
Click on the ad to read more
Click on the ad to read more
Click on the ad to read more
Click on the ad to read more
Click on the ad to read more
Click on the ad to read more
Click on the ad to read more
Click on the ad to read more
Click on the ad to read more
Click on the ad to read more
Click on the ad to read more
Click on the ad to read more
Click on the ad to read more
Click on the ad to read more
Click on the ad to read more
Click on the ad to read more
Click on the ad to read more
Click on the ad to read more
Click on the ad to read more
Click on the ad to read more
Click on the ad to read more
Click on the ad to read more
Click on the ad to read more
109
109

ELEMENTARY ALGEBRA EXERCISE BOOK I inequAlities




2
x − x − 2 > 0
3.67 If the system of inequalities 2x +(5+2k)x +5k< 0 has only one integer
2
solution −2, find the range of k .


Solution: The solution of x − x − 2 > 0 is x< −1 or x> 2. The second inequality is
2
equivalent to (2x + 5)(x + k) < 0. When −k< − , i.e. k> , the second inequality has
5
5
2 2
5
5
the solution −k <x < − , in which −2 is not included. When −k> − , i.e. k< , the
5
2 2 2
second inequality has the solution − <x< −k , then the solution of the inequality system
5
2
x> 2
is x< −1 or − <x < −k . To have only one integer solution −2, we should
5
5
− <x < −k 2
2
5
have −k ≤ 3 and −k> −2, that is, −3 ≤ k< 2. When −k = − , i.e. k = , the second
5
2 2
inequality has no solution. As a conclusion, k ∈ [−3, 2).
3 .
a b c
3.68 Let a, b, c are positive numbers, show a b c ≥ (abc) a+b+c
3 , we only need
a b c
Proof: Without loss of generality, let a ≥ b ≥ c> 0. To show a b c ≥ (abc) a+b+c
b−c ≥ 1, we only need to show
3a 3b 3c
to show a b c ≥ (abc) a+b+c , we only need to show a a−b b b−a c c−a
a c−a b c−a c
a a−b b b−c c a−c a b a ≥ 1, thus the
a−c ≥ 1. Since a − b ≥ 0,b − c ≥ 0,a − c ≥ 0, we have ≥ 1, ≥ 1,
b a−b c b−c a b c c
last inequality holds.
2
2
2
2
2
2
3.69 If a,b,c,x,y,z are all real numbers, and a + b + c = 25,x + y + z = 36, ax + by + cz = 30

a+b+c
a + b + c = 25,x + y + z = 36, ax + by + cz = 30, find the value of x+y+z .
2
2
2
2
2
2
Solution: Cauchy’s Inequality implies
25 × 36 = (a + b + c )(x + y + z ) ≥ (ax + by + cz) = 30× 36 = (a + b + c )(x + y + z ) ≥ (ax + by + cz) = 30 . The equal sign is
25 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
obtained since 25 × 36 = 30 . Thus there exist λ, μ (not both zero) such that
2
λa = μx, λb = μy, λc = μz . Therefore
2 2
2 2
2 2
λ (a + b + c )= μ (x + y + z ) ⇒ 25λ = 36μ ⇒ 5λ = ±6μλ (a + b + c )= μ (x + y + z ) ⇒ 25λ = 36μ ⇒ 5λ = ±6μ . However,
2 2
2 2
2 2
2 2
2 2
2 2
2 2

μ 5 a+b+c μ 5
ax + by + cz = 30, thus 5λ =6μ ⇒ λ = 6 ⇒ x+y+z = λ = .
6



Download free eBooks at bookboon.com
110

ELEMENTARY ALGEBRA EXERCISE BOOK I inequAlities




4
s
t
2
2
2
3.70 Let r,s,t satisfy 1 ≤ r ≤ s ≤ t ≤ 4 , find the minimum value of (r − 1) +( − 1) +( − 1) +( − 1) 2
t s r
s
4
t
(r − 1) +( − 1) +( − 1) +( − 1) .
2
2
2
2
t s r
t
s
4
t
s
4
s
2
2
2
2
2
2
Solution: (r−1) +( −1) +( −1) +( −1) ≥ [ (r−1)+( −1)+( −1)+( −1) ] ⇒ 4[(r−1) +( −
s
t
r
t
4
s
(r−1)+( −1)+( −1)+( −1)
2
t 2
t
s
s
s 2
4
r2
2
(r−1) 2 t +( −1) +( −1) +( −1) ≥ [ t t 2 s 2 4 r ] ⇒ 4[(r s −1) +( − t 2
s
2
t
2
4
2
2
4
t
r
t
s
1) +( −1) +( −1) ] ≥ [(r −1)+( −1)+( −1)+( −1)] = [(r + + + )−4]
1) +( −1) +( −1) ] ≥ [(r −1)+( −1)+( −1)+( −1)] = [(r + + + )−4] .
2
2
s 2
r
4
t
s 4
r 2
s
s
t
4
s
2
t
r
t t
s r t s r t s r

t
s
s
t
4
Cauchy’s Inequality implies that r + + + 4 ≥ 4 4 r · · · 4 =4 4, thus
t s r t s r
√ √
2 2
2 2
2 2
2 2
4 4
2 2
2 2
√√
s s
2 2
4 4
4[( 4[(r − 1)4[(r − 1) s s t t +( − 1) +( − 1) +( − 1) ] ≥ [4 4 − 4] ⇒ (r − 1) +( − 1) ++( − 22 t t s s +( − 1) +( − 1) ] ≥ [4 4 − 4] ⇒ (r − 1) +( − 1) +

22
22
22
t t
ss
22
ss
44
4[(r − 1) +( − 1) +( − 1) +( − 1) ] ≥ [4 4 − 4] ⇒ (r − 1) +( − 1) +r − 1) +( − 1) +( − 1) +( − 1) ] ≥ [4 4 − 4] ⇒ (r − 1) +( − 1) + 22
2
2
4 4
√ √1)
r r
t t
t t
4 4
t t
√√
2 2
2 2
2 2
( ( − 1) +( − 1) ≥ 4( 2 − 1)− 1) +( − 1) ≥ 4( 2 − 1) ss 22 rr t t
22
t t
s s ( − 1) +( − 1) ≥ 4( 2 − 1)− 1) +( − 1) ≥ 4( 2 − 1) . The equal sign is obtained if and only if
22
44
(
ss r r rr
√ √
r = 2,s =2,t =2 2. Hence, the minimum value of

(r − 1) +( − 1) +( − 1) +( − 1) is 4( 2 − 1) .
2
s
4
t
2
2
2
2
t s r
3.71 Real numbers a 1 ,a 2 satisfy a + a ≤ 1, show that for any real numbers b 1 ,b 2,
2
2
2
1
(a 1 b 1 + a 2 b 2 − 1) ≥ (a + a − 1)(b + b − 1) always holds.
2
2
2
2
2
2
1
2
1
Proof: If b + b − 1 > 0, since a + a ≤ 1, we have (a + a − 1)(b + b − 1) ≤ 0, then
2
2
2
2
2
2
2
2
2
1
2
1
1
1
2
2
obviously (a 1 b 1 + a 2 b 2 − 1) ≥ (a + a − 1)(b + b − 1) . If b + b − 1 ≤ 0, Mean Inequality
2
2
2
2
2
2
2
1
2
2
1
1
2
2
2
2
2
2
2
a +b 2 a +b 2 1 2 2 2 2 (1−a −a )+(1−b −b )
2
2
1 2
2
1 2

implies that a 1 b 1 ≤ 1 1 ,a 2 b 2 ≤ 2 2 . Thus a 1 b 1 + a 2 b 2 ≤ (a + a + b + b ) ≤ 1 ⇒ 1 − a 1 b 1 − a 2 b 2 ≥ (1−a −a )+(1−b −b ) 2 ⇒
2
2
2
1
2
1
1
2
2
2 2 a 1 b 1 + a 2 b 2 ≤ 1 2 (a + a + b + b ) ≤ 1 ⇒ 1 − a 1 b 1 − a 2 b 2 ≥ (1−a −a )+(1−b −b ) 2 ⇒
2
2 2
1 2
2
1 2
2
2
2
2
2 2
1
2 1
2 2
1
2
a 1 b 1 + a 2 b 2 ≤ 2 2 (a + a + b + b ) ≤ 1 ⇒ 1 1− a 1 b 1 − a 2 b 2 ≥ 1 2 2 2 2 2 2 ⇒ 2
2 2
(1−a −a )+(1−b −b ) 2
2
] ≥ [(1 − a − a ) + (1 − b − b ) ] ≥ (a +
2 2
2
1
2 2
2
1 2 1
2
2
1 2
2
2
2
2
2
2
(1−a −a )+(1−b −b ) )
2
2
2 2
2
2
2 2
2
2
1
1
1 1 2 2 2 2 2 2 2 2 (1−a −a )+(1−b −b 2 2 2 2 (1 − a 1 b 1 − a 2 b 2 ) ≥ [ (1−a −a )+(1−b −b ) 2 1 2 [(1 − a − a ) + (1 − b − b ) ] ≥ (a +
1
2

2
1
2
2
1
1 2
1
2
1 2
2 2
1
a 1 b 1 + a 2 b 2 ≤ (a + a + b + b ) ≤ 1 ⇒ 1 − a 1 b 1 − a 2 b 2 ≥
a 1 b 1 + a 2 b 2 ≤ (a + a + b + b ) ≤ 1 ⇒ 1 − a 1 b 1 − a 2 b 2 ≥ ⇒ (1 − a 1 b 1 − a 2 b 2 ) ≥ [ (1−a −a )+(1−b −b ) 2 ] ≥ 1 1 2 2 2 2 2 1 2 2 2 2 1
2
2
2
2
2
1
1
2
2
a − 1)(b + b − 1)
2 2 1 1 2 2 2 2 2 2 1 1 2 2 2 2 2 2 2 2 (1 − a 1 b 1 − a 2 b 2 2 ) ≥ [ 2 2 ] ≥ [(1 − a − a ) + (1 − b − b ) ] ≥ (a +
1
2
1
2
2
2
1
2
2
2
a − 1)(b + b − 1)
1
2
2
2
2
2
1
1
(1−a −a )+(1−b −b ) 2
2
2
2 2
2 2
2
2 2
2 2
(1 − a 1 b 1 − a 2 b 2 ) ≥ [ [
] ≥ [(1 − a − a ) + (1 − b − b ) ] ≥ (a +
2
1
2
2
2
1
1
1
2
2
1
2
2
(1 − a 1 b 1 − a 2 b 2 ) ≥ (1−a −a )+(1−b −b ) 2 2 ] ≥ [(1 − a − a ) + (1 − b − b ) ] ≥ (a + a − 1)(b + b − 1) .

2
1
1
2
1
1
2
2
1
1
2
2
2
2
2
2
1
2
2
2
2
2
2
a − 1)(b + b − 1)
a − 1)(b + b − 1)
1
2
2
2
2
1
1 a log 2
1 x(x−a+1)
3.72 Let A = {x|1+ 1 − 1 < 0}; B = {x|( ) 3 < ( ) ,a ∈ R} ,
log x log x 3 2
3
5
find the range of a such that A ⊆ B.
1
3
−1
1
Solution: 1+ log 3 x − log 5 x < 0 ⇒ 1 + log 3 − 2 log 5 < 0 ⇒ log x 25 < log x . Thus x> 1,
x
x
x
1
1 x(x−a+1)
1 a log 2
then > 3 , then 1 <x< 25 . Hence, A = {x|1 < x< 25 }. ( ) 3 < ( ) log 2 −a < 2 −x(x−a+1) ⇒ 2 −a < 2 −x(x−a+1) ⇒−a<
3
x 25 3 3 1 a log 2 1 x(x−a+1) ⇒ 3 −a −x(x−a+1) −a −x(x−a+1)
3
2
log 2
( ) 3 < ( ) ⇒ 3 3 < 2 ⇒ 2 < 2 ⇒−a<
−x(x − a + 1) ⇒ (x − a)(x + 1) < 0
2
3

1 a log 2
1 x(x−a+1)

( ) 3 < ( ) ⇒ 3 log 2 −a < 2 −x(x−a+1) ⇒ 2 −a < 2 −x(x−a+1) ⇒−a< −x(x − a + 1) ⇒ (x − a)(x + 1) < 0 ( ).
3
3 2
−x(x − a + 1) ⇒ (x − a)(x + 1) < 0
When a = −1, ( ) has no solution.
When a> −1, ( ) has the solution −1 < x <a .
When a< −1, ( ) has the solution a<x< −1.

⎨ φ (a = −1)
25
Hence, B = {x|− 1 <x <a} (a> −1) from which we know that when a ≥ 3 , A ⊆ B .
{x|a< x< −1} (a< −1)

Download free eBooks at bookboon.com
111

ELEMENTARY ALGEBRA EXERCISE BOOK I inequAlities




3.73 x,y,z are positive numbers, show (x+1) 3 + (y+1) 3 + (z+1) 3 ≥ 81 .
y
z
4
x
3
3
Proof: Since x,y,z > 0,Mean Inequality implies that (x+1) + 27 y + 27 ≥ 3 3 (x+1) 3 · 27 y · 27 = 27 (x + 1) ⇒ (x+1) ≥ 27 (x − y)+ 27
y 2 4 y 2 4 2 y 2 4

(x+1) 3 + 27 y + 27 ≥ 3 3 (x+1) 3 27 27 = 27 (x+1) 3 27 (x − y)+ 27 . Similarly, we can obtain (y+1) 3 27 27 (z+1) 3 27 27
y 2 4 y · 2 y · 4 2 (x + 1) ⇒ y ≥ 2 4 z ≥ 2 (y − z)+ 4 , x ≥ 2 (z − x)+ 4
(y+1) 3 27 (y − z)+ 27 (z+1) 3 27 (z − x)+ 27 . Add them up to obtain the aimed inequality.
,
z ≥ 2 4 x ≥ 2 4
√ √
3.74 m, n are positive numbers, show m +1 > n holds if and only if for any

x
x> 1, mx + x−1 > n .
360°
√ √
1
x
Proof: m, n > 0,x − 1 > 0, then mx+ x−1 = mx−m+m+ x−1+1 =[m(x−1)+ x−1 ]+m+1 ≥ 2 m+m+1 = ( m+1) 2

x−1
√ √ 1
2
mx+ x = mx−m+m+ x−1+1 =[m(x−1)+ 1 ]+m+1 ≥ 2 m+m+1 = ( m+1) . If and only if m(x − 1) = 1 , i.e. x = 1+ √ , mx + x has
x−1 x−1 x−1 x−1 m x−1
√ √ thinking.
x
2
the minimum value ( m + 1) . Hence, mx + x−1 > n for any x> 1 if and only if

( m + 1) >n , i.e. √ m +1 > √ n . 360°
2
thinking.











360°
thinking.



360°
thinking.











Discover the truth at www.deloitte.ca/careers Discover the truth at www.deloitte.ca/careers







© Deloitte & Touche LLP and affiliated entities.
Discover the truth at www.deloitte.ca/careers © Deloitte & Touche LLP and affiliated entities.





© Deloitte & Touche LLP and affiliated entities.
Discover the truth at www.deloitte.ca/careers
Download free eBooks at bookboon.com Click on the ad to read more
Click on the ad to read more
Click on the ad to read more
Click on the ad to read more
Click on the ad to read more
Click on the ad to read more
Click on the ad to read more
Click on the ad to read more
Click on the ad to read more
Click on the ad to read more
Click on the ad to read more
Click on the ad to read more
Click on the ad to read more
Click on the ad to read more
Click on the ad to read more
Click on the ad to read more
Click on the ad to read more
Click on the ad to read more
Click on the ad to read more
Click on the ad to read more
Click on the ad to read more
Click on the ad to read more
Click on the ad to read more
Click on the ad to read more
Click on the ad to read more
Click on the ad to read more
Click on the ad to read more
Click on the ad to read more
Click on the ad to read more
Click on the ad to read more
Click on the ad to read more
Click on the ad to read more
Click on the ad to read more
Click on the ad to read more
Click on the ad to read more
Click on the ad to read more
112
112
© Deloitte & Touche LLP and affiliated entities.

ELEMENTARY ALGEBRA EXERCISE BOOK I inequAlities



3.75 Given f(x) = ax + bx , and 1 ≤ f(−1) ≤ 3, 2 ≤ f(1) ≤ 4, find the range of
2
f(−3).


Solution: f(−1) = a − b, f(1) = a + b, f(−3) =9a − 3b . Let f(−3) = mf(−1) + nf(1)

where m, n are parameters ready to be determined. 9a − 3b = m(a − b)+ n(a + b) =(m + n)a − (m − n)b


9a − 3b = m(a − b)+ n(a + b) =(m + n)a − (m − n)b . Comparing the coefficients to obtain m + n =9 ⇒ m =6,n =3. Thus
m − n =3
f(−3) = 6f(−1) + 3f(1) . Since 1 ≤ f(−1) ≤ 3, 2 ≤ f(1) ≤ 4 , we have 12 ≤ 6f(−1) + 3f(1) ≤ 30

12 ≤ 6f(−1) + 3f(1) ≤ 30, then 12 ≤ f(−3) ≤ 30. Therefore the range of f(−3) is [12, 30].

π
3.76 Given 0 <b< 1, 0 <a < , and x = (sin α) log sin α ,y = (cos α) log cos α ,z = (sin α) log cos α
b
b
b
4
x = (sin α) log sin α ,y = (cos α) log cos α ,z = (sin α) log cos α , determine the order of x,y,z .
b
b
b
π
Solution: 0 <b< 1, thus f(x) = log x is a decreasing function. 0 <a < , thus
b
4
0 < sin α< cos α< 10 < sin α< cos α< 1. Therefore, log sin α> log cos α> 0, then

b
b
(sin α) log sin α < (sin α) log cos α ,
b
b
i.e. x< z . And (sin α) log cos α < (cos α) log cos α , i.e. z <y . Hence,
b
b
we obtain the order x <z <y .
3.77 Consider a triangle with side lengths a, b, c , and its area is 1/4, the radius of
√ √ √
1
its circumcircle is 1. If s = a + b + c, t = 1 + 1 + . Compare s and t .
a b c
Solution: Let C be the angle whose opposite side length is c , and the radius of circumcircle
1
R =1, then c =2R sin C = 2 sin C . In addition, ab sin C = . Therefore abc =1. Then
1
2 4

√ √
1 1
1
1
1
1
1
1
1 1
1
1
1 1

t = 1 a + + = ( + )+ ( + )+ ( + ) ≥ 11 ab + 11 bc + 11 ca = 11 c+ a+ b √ √


√ √
√ √
= bb

c+ a+ a+
c+
1 11
2 c 1
1 11
11
2 b 1
2 a 1
11
11
11
1 11
11
t = =
c
c
b
+ + + = ( + )+ ( + )+ ( + )
b
+
a
2
√ √ t aa √ bb cc = ( + )+ ( + )+ ( + ) ≥ ≥ ab ab + + bc bc + + ca ca = = abc √ √ abc abc = =
cc
2 aa
bb
2 cc
aa
2
2
2 bb
√ √

a + √ b + c = s
√ √
a
a + + b + + c = ss . The equal sign can only be obtained if a = b = c = R =1, which is
b
c =
impossible. Hence, s <t .
3 1 1 1
3.78 a, b, c are positive numbers and a + b + c ≤ 3, show ≤ a+1 + b+1 + c+1 < 3.
2
1
1
1
1
1
1
Proof: Since a, b, c > 0, we have a+1 < 1, b+1 < 1, c+1 < 1 , then a+1 + b+1 + c+1 < 3.
Mean Inequality implies
Download free eBooks at bookboon.com
113

ELEMENTARY ALGEBRA EXERCISE BOOK I inequAlities




1 + 1 + 1 ≥ 3 3 1 , (a+1)+(b+1)+(c+1) ≥ 3 3 (a + 1)(b + 1)(c + 1)
a+1 b+1 c+1 (a+1)(b+1)(c+1) 1 1 1 1 3
Therefore, ( + + )[(a+1)+(b+1)+(c+1)] ≥ 3 3 ·3 (a + 1)(b + 1)(c + 1) =
a+1 b+1 c+1 (a+1)(b+1)(c+1)
( 1 + 1 + 1 )[(a+1)+(b+1)+(c+1)] ≥ 3 3 1 ·3 3 (a + 1)(b + 1)(c + 1) = 9 . Since
a+1 b+1 c+1 (a+1)(b+1)(c+1)
9
1 + 1 + 1 9 9 = 3
0 <a + b + c ≤ 3, then a+1 b+1 c+1 ≥ (a+1)+(b+1)+(c+1) ≥ 3+3 2 .
3.79 Given a, b, c, m, n, p > 0, and a + m = b + n = c + p = R , show an + bp + cm < R 2

an + bp + cm < R .
2
Proof: Construct an equilateral triangle ABC with side length R . Choose points

D,E,F on sides AB, BC, CA respectively such that

AD = a, DB = m, BE = c, EC = p, CF = b, FA = n . In this way, three side lengths are

a + m, c + p, b + n , and a + m = c + p = b + n = R . Connect D with E , connect E

with F , and connect F with D . Let S ADF = S 1 ,S BDE = S 2 ,S CEF = S 3 ,S ABC = S


1
1
1
0
0
0
S ADF = S 1 ,S BDE = S 2 ,S CEF = S 3 ,S ABC = S . Then S 1 + S 2 + S 3 = an sin 60 + cm sin 60 + bp sin 60 = 3 (an + cm + bp)
2 2 2 4
√ √
1
1
1
1
0
0
2
0
0
2
S 1 + S 2 + S 3 = an sin 60 + cm sin 60 + bp sin 60 = 3 (an + cm + bp). S = R sin 60 = 3 R . S = S 1 + S 2 + S 3 + S DEF >S 1 + S 2 + S 3 , thus
2 2 2 4 2 4
√ √
3 (an + cm + bp) < 3 R , that is, an + bp + cm < R .
2
2
4 4
2
3.80 Let x 1 ,x 2 , ··· ,x n are positive numbers, show x 2 1 + x 2 2 + ··· + x 2 n−1 + x n ≥ x 1 + x 2 + ··· + x n
x 2 x 3 x n x 1
x 2 x 2 x 2 2
1 + 2 + ··· + n−1 + x n ≥ x 1 + x 2 + ··· + x n .
x 2 x 3 x n x 1
2 2 2 x 2 1
Proof 1: Since x 1 ,x 2 , ··· ,x n > 0 , we can do the following: (x 1 − x 2 ) ≥ 0 ⇒ x + x ≥ 2x 1 x 2 ⇒ x 2 + x 2 ≥ 2x 1

2
1
2 2 2 x 2 1 x 2 2 x 2 n−1 x n 2
(x 1 − x 2 ) ≥ 0 ⇒ x + x ≥ 2x 1 x 2 ⇒ x 2 + x 2 ≥ 2x 1. Similarly, we can obtain x 3 + x 3 ≥ 2x 2 , ··· , x n + x n ≥ 2x n−1 , x 1 + x 1 ≥ 2x n
2
1
2
2
x
2
x
x
. Add them up to obtain ( x 2 1 + x 2 2 + ··· + x 2 n−1 ( + 1 2 x n 2 ) +(x 1 + x 2 + ··· + x n ) ≥ 2(x 1 + x 2 + ··· + x n ) ⇒
+
+ ··· +
+
n−1
2
x n
) +(x 1 + x 2 + ··· + x n ) ≥ 2(x 1 + x 2 + ··· + x n ) ⇒
x 2 2 x 3 2 x n x 2 x 1 x 3 x n x 1
2
x
x
x
+ ··· +
2
n−1
1
≥ x 1 + x 2 + ··· + x n ≥ x 1 + x 2 + ··· + x n.
( x 2 1 + x 2 2 + ··· + x 2 n−1 + x n 2 ) +(x 1 + x 2 + ··· + x n ) ≥ 2(x 1 + + x 2 + ··· + x n ) ⇒ + x x 1 2 2 n + x 2 2 + ··· + x 2 n−1 + x 2 n
x 1
x 2 x 3 x n x 1 x 2 x 3 x n x 2 x 3 x n x 1
x 2 1 + x 2 2 + ··· + x 2 n−1 + x 2 n
Proof 2: Mean Inequality implies that 1 + x 2 ≥ 2 1 · x 2 =2x 1 . Similarly, we have
x 2 x 3 x n x 1 ≥ x 1 + x 2 + ··· + x n x 2 x 2
x 2 x 2
2
x 2 2 + x 3 ≥ 2x 2 , ··· , x 2 n−1 + x n ≥ 2x n−1 , x n + x 1 ≥ 2x n . Add them up to obtain the result.
x 3 x n x 1
2
2
2
2
2
Proof 3: x n + x 2 1 + x 2 1 + x 2 2 + ···+ x 2 n−1 + x n = 2 x n +x 2 1 + x +x 2 2 + ···+ x 2 n−1 2 +x n ≥ 2( x 1x n + x 1 x 2 +
1
2
2
2
2
2
2
2
2
2
2
x
x
+
+
=
+
+
x 1
1
x 2
x n + x n−1 x n + x 2 + ···+ x n−1 x n x n x n x n +x 1 x 1 + x +x 2 x 2 + ···+ x n−1 +x x n n ≥ 2( x 1x n x 1 x 1 x 2 x 2
x 1
1
x 2
1
x n
x n
2 2 2 2 x 2 2 2 2 2 2 x 2 2 ··· + x 1 x 2 ) = 2(x 1 + x 2 + ··· + x n ) x 1 x 2 x n x 1 x 2
x 1
x 2
+ + + + ···+ + = + + ···+ ≥ 2( + + ··· + x n ) = 2(x 1 + x 2 + ··· + x n ) which implies the result.
1
x n x 1 x 1 x 2 n−1 x n x n +x 1 x +x 2 n−1 +x n x 1x n x 1 x 2 x n−1 x n
x 1 x 1 x 2 x 2 x n x n x 1 x 2 x n x 1 x 2 x n
··· + x n−1 x n ) = 2(x 1 + x 2 + ··· + x n )
x n
Proof 4: x 2 1 + x 2 2 + ··· + x 2 n−1 + x n 2 = [x 2−(x 2 −x 1)] 2 + [x 3−(x 3 −x 2)] 2 + ··· + [x n−(x n−x n−1)] 2 +.
x 2 x 3 x n x 1 x 2 x 3 x n
[x 1−(x 1 −x n)] 2
=(x 2 + x 3 + ··· + x n + x 1 ) − 2(x 2 − x 1 + x 3 − x 2 + ··· + x n − x n−1 + x 1 −
x 1 2 2 2 2 2
x n )+ (x 2 −x 1) + (x 3 −x 2) + ··· + (x n−x n−1) + (x 1 −x n) =(x 1 + x 2 + ··· + x n )+ (x 2 −x 1) +
x 2 x 3 x n x 1 x 2
(x 3 −x 2) 2 (x 1 −x n) 2
+ ··· + ≥ x 1 + x 2 + ··· + x n
x 3 x 1
Download free eBooks at bookboon.com
114

ELEMENTARY ALGEBRA EXERCISE BOOK I inequAlities



√ √ √ √
Proof 5: Since x 1 ,x 2 , ··· ,x n > 0, let a 1 = x 2 ,a 2 = x 3 , ··· ,a n−1 = x n ,a n = √ ,b 2 = x 2 √ ,b 3 =
x 1


x 2


x 2 =
x 3 =
a 1 = x 2 ,a 2 = x 3 , ··· ,a n−1 = x n ,a n = x 1 ,b 1 = √ ,b 2 √ ,b 3
x 1 ,b 1 = x 1
x 3 x n−1 x n x 2 x 3
√ √ √ √ √ , ··· ,b n−1 = √ ,b n = √
x n−1
x 3
a 1 = x 2 ,a 2 = x 3 , ··· ,a n−1 = x n ,a n = x 1 ,b 1 = √ ,b 2 = √ ,b 3 = √ , ··· x 4 ,b n−1 = √ ,b n x n = √ x n . Cauchy Inequality implies that
x 2
x 1
x 1
x 2 x 3 x 4 x n x 1
x 3 x n−1 x n
√ , ··· ,b n−1 = √ ,b n = √ √ 2 √ 2 √ 2 √ 2 2 2 x n−1 2 2
x n
x 4 x n x 1 2 2 2 2 2 2 2 √ √ √ √ x 1 x 2 ) +( √ ) ] ≥
(a + a + ··· + a )(b + b + ··· + b ) ≥ (a 1 b 1 + a 2 b 2 + ··· + a n b n ) , then [( x 2 ) +( x 3 ) +···+( x n ) +( x 1 ) ]·[( √ ) +( √ ) +···+( √ 2
2
2
2
2
2
x n−1 2
2


x n
x 2

x 1

1 2 n 1 2 n [( x 2 ) +( x 3 ) 2 +···+( x n ) +( x 1 ) ]·[( √ x 1 x 2 ) +( √ ) +···+( √ x n ) +( √ ) ] ≥
x n−1 2
2
x 3 2
2
2
x 1 2
2
x 2
x n
2 x 1) ] ≥
√ [( x 2 ) +( x 3 ) +···+( x n ) +( x 1 ) ]·[( √ ) +( √ ) +···+( √ x n) +( √ x x 1 x 2

x 3

x 2

2
x n−1
√ √ 2 √ √ 2 2 2 x n−1 2 2 √ √ x 1 + √ x 3 x 2 √ x 2 + ··· + √ x n x n−1 + √ x 1 x n x n x 2 x 3 x n 2 2 1 + x 2 2 2 +
√ ] ⇒ (x 2 + x 3 + ··· + x n + x 1 )( x

2

x n
[ x 2 x 1
x 1

x 2

x
2 √ √
2 √ √
√ √
√ √
2




x
x
[( x 2 ) +( x 3 ) +···+( x n ) +( x 1 ) ]·[( √ ) +( √ ) +···+( √ ) +( √ ) ] ≥ [ x 2 x 1 x 2 + √ x 3 x 2 x 3 + ··· + √ x n n−1 x n + √ x 1 x n x 1 ] ⇒ (x 2 + x 3 + ··· + x n + x 1 )( x 1 1 x 2 + x 2 2 x 3 +
x
2 2
2 2
2 2
2 2
2 2
x n−1 2 2
2 2
2 2
x n−1
x 3 ) +···+(
x 1
x n n
x 2 2
[( x 2 ) +( x 3 ) +···+( x n ) +( x 1 ) ]·[( √ 1 x 2 ) +( √ ) +···+( √ √ x n ) +( √ ) ] ≥ [ x 2 √ x 2+ x 3 √ x 3+ ··· + x n √ x n + x 1 √ x 1] ⇒ (x 2 + x 3 + ··· + x n + x 1 )( x 2+ x 3+
2
x 1 ) ] ≥
[( x 2 ) +( x 3 ) +···+( x n ) +( x 1 ) ]·[( √ ) +( √
2
x
) +( √
n
≥ (x 1 + x 2 + ··· + x n−1 + x n )
x 3 3
x 2 2
x n n
√ √ √ √ x x x x x x x 2 ··· + x x 2 2 n−1 + x 2 x x 3 x n x 1 2 x 2 x 3
2 1 1
2
+
x n


√ √ √ x 1 + √ √ x 2 + ··· + √ x n−1 √ √ √ ] ⇒ (x 2 + x 3 + ··· + x n + x 1 )( x x 2 2 1 + x x 2 2 2 x 2 n−1 2 n x 1 ≥ (x 1 + x 2 + ··· + x n−1 + x n ) 2 2
x n +x
x
2 2


x
+ ··· + n−1
x n n−1
n
+
[ x 2 x 1 1
[ [ x 2 x 2 √ √ x x 2 + + x 3 x 3 x 3 x 2 2 x 3 + ··· + + x n x n x x n−1 x n+ + x 1 x 1 x 1 x n n x 1 ] ⇒ (x 2 + x 3 + ··· + x n + x 1 )( )( 1 1 x 2 + + 2 2 x 3 + ··· + x n + x 1 ≥ (x 1 + x 2 + ··· + x n−1 + x n )
+ ···
√ √
√ √
√ √ ] ⇒ (x 2 + x 3 + ··· + x n + x 1
x x 2 2 2 x 2 x x x x x x n x 1
x n n
x 1 1
x 3 3
x 2 2
x 3 3
x
n−1
··· + x x 2 2 n−1 + x x 2 2 n ≥ (x 1 + x 2 + ··· + x n−1 + x n ) 2 2 2
··· + + n−1 n n x 1≥ (x 1 + x 2 + ··· + x n−1 + x n ) ) . Divide both sides by x 1 + x 2 + ··· + x n−1 + x n ≥ 0 to obtain
x n + +
···
≥ (x 1 + x 2 + ··· + x n−1 + x n
x x
x n n
x 1 1
x 2 1 + x 2 2 + ··· + x 2 n−1 + x n 2 .
x 2 x 3 x n x 1 ≥ x 1 + x 2 + ··· + x n−1 + x n
We will turn your CV into
an opportunity of a lifetime
Do you like cars? Would you like to be a part of a successful brand? Send us your CV on
We will appreciate and reward both your enthusiasm and talent. www.employerforlife.com
Send us your CV. You will be surprised where it can take you.
Download free eBooks at bookboon.com Click on the ad to read more
Click on the ad to read more
Click on the ad to read more
Click on the ad to read more
Click on the ad to read more
Click on the ad to read more
Click on the ad to read more
Click on the ad to read more
Click on the ad to read more
Click on the ad to read more
Click on the ad to read more
Click on the ad to read more
Click on the ad to read more
Click on the ad to read more
Click on the ad to read more
Click on the ad to read more
Click on the ad to read more
Click on the ad to read more
Click on the ad to read more
Click on the ad to read more
Click on the ad to read more
Click on the ad to read more
Click on the ad to read more
Click on the ad to read more
Click on the ad to read more
Click on the ad to read more
Click on the ad to read more
Click on the ad to read more
Click on the ad to read more
Click on the ad to read more
Click on the ad to read more
Click on the ad to read more
Click on the ad to read more
Click on the ad to read more
Click on the ad to read more
Click on the ad to read more
Click on the ad to read more
115
115

ELEMENTARY ALGEBRA EXERCISE BOOK I inequAlities




3.81 If x, y are real numbers, and y ≥ 0,y(y + 1) ≤ (x + 1) , show y(y − 1) ≤ x .
2
2
2
2
2
2
1 2
2
Proof: If 0 ≤ y ≤ 1, obviously y(y − 1) ≤ 0 ≤ x . If y> 1, then y(y + 1) ≤ (x + 1) ⇒ y + y + 1 ≤ (x + 1) + 1 ⇒ (y + ) ≤ (x + 1) + 1 ⇒ 1 <
2
2
2
4
2
1 2
2
4
y(y + 1) ≤ (x + 1) ⇒ y + y + 1 ≤ (x + 1) + 1 ⇒ (y + ) ≤ (x + 1) + 1 ⇒ 1 < 4
2 1 1 4 4 2 4


1
2
2
2
1 2
2
2
(x + 1) +
y(y + 1) ≤ (x + 1) ⇒ y + y + 1 ≤ (x + 1) + 1 ⇒ (y + ) ≤ (x + 1) + 1 ⇒ 1 < y ≤ y ≤ (x + 1) + 1 2 4 . The inequality
2

4
4 4 2 4
2
y ≤ (x + 1) + 1 − 1 to prove 2 2 2 2 2 2 1 1 1 2 2 2 1 1 1 ⇔ (y − ) ≤ x + 1 1 2 1 1 1 1 1 1
1 2 2
2
1 2
1
22 1
2 2
1
1
1
2
y(y − 1) ≤ x ⇔ y − y + ≤ x + ⇔ (y − ) ≤ x + 2
2
1 2
4 2 y(y − 1) ≤ x ⇔ y − y + 4 + 1 4 x + 2 4 1 4 4⇔ (y − ) ≤ x + 4 4 ⇔ y ≤ x + x + + 2 ⇔ ⇔
x
4+
y(y − 1) ≤ x ⇔ y − y
4 2 +
4 ≤ x +
⇔ y ≤ y ≤ x + 2

+ + ⇔
y(y − 1) ≤ x ⇔ y − y + ≤
2 2
2 ⇔
≤ x + ⇔ (y − ) ≤ x + ⇔ y ≤
2
4
4
4
2
4
2
1
2
1
1
2

1− y +
2 ) ≤ x +
y(y − 1) ≤ x 2 1 ⇔ y 1 4 1 ≤ x + 1 2 2 4 x + 2 + 1 2
⇔ (y −
1
(x + 1) + − x + + 1 1 ⇔ 4 (x + 1) + 1 ≤ 2 ⇔ y ≤ 4 2 1 ⇔
1
1
≤ 1
1
2 1
2 2
2 1
2 1 1
2 1
2 4
≤ 2 14
2 1 1
x + +1 ⇔ (x + 1) + 2 1 2
2
2
1
1
1
x + 1
1
4 +1
x
4 +
(x + 1)
x2
(x + 1)
2
4 2 +
2
x
4 +
(x + 1) + ≤
(x + 1) + − 4 ≤ x + + 1 2 ⇔ (x + 1) + 2 4 ≤ x + +1 ⇔ (x + 1) + 2 4 1 ≤
(x + 1) + − ≤
4 + +1 ⇔ (x + 1) + ≤
2 ⇔
2 ≤
4 4 2 − 2 2 4 + 4 4 + ⇔ 4 4 + 4 ⇔ (x + 1) + 4 ≤
4
4 ≤
2
4
1
1
1
1
1
2 2
1 2
1 2
1 2
2 2
x + +1
x + +

(x + 1)
(x + 1) + 1 x + +1 ⇔ x +2x +1 ≤ x +2 + x + +1 ⇔ x ≤ ⇔ (x + 1) + 1 ≤

1
2
1

2 ≤
x +
2 ≤
2
1
1
1
1
2 1 2
2 2 1 x + +2 − 1 1 4 2 2 4 2 1 1 1 4 2 2 4 2 2 1 4 +1 ⇔ x ≤ x + 4 + 1 1 4
2 1
2 4
4 1 4
2
1
x + 1
1
2
2
x
2
4 +
4 +1 ⇔ x +2x +1 ≤ x +2
x 2 4 +2 4 x + +1 ⇔ x +2x +1 ≤ x +2 x + +1 ⇔ x ≤ x
x
x2
2
4
x + +2 x + +1 ⇔ x +2x +1 ≤ x +2
x + +2 4 + 4 4 4 4 4 + 4 +1 ⇔ x ≤ 4 + 4 4
4
4
4
4
1
1
2
1
2
1
2
1
2
2
2
x + +2 x + +1 ⇔ x +2x +1 ≤ x +2 x + +1 ⇔ x ≤ x + 1 which is
4 4 4 4 4 4
obviously valid.
3.82 If real numbers x,y,z satisfy x + y + z =2, show x + y + z ≤ xyz +2.
2
2
2
Proof: If one (or more) of x,y,z is not positive, without loss of generality let z ≤ 0. Since
1 2 2 1 2 2 2
2
2
2
2
2
x+y ≤ 2(x + y ) ≤ 2(x + y + z ) =2, xy ≤ (x +y ) ≤ (x +y +z )= 1, then
2 2
2+ xyz − (x + y + z) = [2 − (x + y) − z(xy − 1)] ≥ 0, that is, x + y + z ≤ xyz +2.
If x,y,z are all positive, let 0 <x ≤ y ≤ z .
When z ≤ 1, 2+ xyz − (x + y + z)=1 − x − y + xy +1 − xy − z + xyz = (1 − x) − y(1 − x)+

2+ xyz − (x + y + z)=1 − x − y + xy +1 − xy − z + xyz = (1 − x) − y(1 − x)+
(1 − xy) − z(1 − xy) = (1 − x)(1 − y) + (1 − xy)(1 − z) ≥ 0

2+ xyz − (x + y + z)=1 − x − y + xy +1 − xy − z + xyz = (1 − x) − y(1 − x)+ (1 − xy) − z(1 − xy) = (1 − x)(1 − y) + (1 − xy)(1 − z) ≥ 0 , that is,x + y + z ≤ xyz +2

(1 − xy) − z(1 − xy) = (1 − x)(1 − y) + (1 − xy)(1 − z) ≥ 0
x + y + z ≤ xyz +2.

2
2

When z> 1, x + y + z ≤ 2[z +(x + y) ]= 2(2 + 2xy)= 2 1+ xy ≤ 2+ xy < 2+ xyz

2
2
x + y + z ≤ 2[z +(x + y) ]= 2(2 + 2xy)= 2 1+ xy ≤ 2+ xy < 2+ xyz .
As a conclusion, x + y + z ≤ xyz +2 holds.
3.83 Given the function f(x) = ax + bx + c (a> 0), and the two roots of the
2
1
equation f(x) − x =0 satisfy 0 <x 1 <x 2 < . (1) When x ∈ (0,x 1 ), show x< f(x) <x 1 ;
a
(2) Assume the curve of the function f(x) is symmetric about the straight line x = x 0, show
x 0 < x 1 .
2
Download free eBooks at bookboon.com
116

ELEMENTARY ALGEBRA EXERCISE BOOK I inequAlities




Proof: (1) Let G(x) = f(x) − x . Since x 1 ,x 2 are the two roots of the equation f(x) − x =0,

then G(x) = a(x − x 1 )(x − x 2 ). When x ∈ (0,x 1 ), since x 1 <x 2 ,a > 0, then G(x) = a(x − x 1 )(x − x 2 ) > 0 ⇒ f(x) − x> 0 ⇒ f(x) >x

G(x) = a(x − x 1 )(x − x 2 ) > 0 ⇒ f(x) − x> 0 ⇒ f(x) >x. x 1 − f(x)= x 1 − [x + G(x)] = x 1 − x − a(x − x 1 )(x − x 2 )=(x 1 − x)[1 + a(x − x 2 )]

1
x 1 − f(x)= x 1 − [x + G(x)] = x 1 − x − a(x − x 1 )(x − x 2 )=(x 1 − x)[1 + a(x − x 2 )] . Since 0 <x 1 <x 2 < , we have x 1 − x> 0, 1+ a(x − x 2 ) = 1+ ax − ax 2 > 1 − ax 2 > 0
a
x 1 − x> 0, 1+ a(x − x 2 ) = 1+ ax − ax 2 > 1 − ax 2 > 0, thus x 1 >f(x).

b
(2) x 0 = − . Since x 1 ,x 2 are the roots of the equation f(x) − x =0 , that is,
2a
x 1 ,x 2 are the roots of the equation ax +(b − 1)x + c =0 . Vieta’s formula implies
2
b−1 b a(x 1 +x 2)−1 ax 1 +ax 2−1
x 1 + x 2 = − , thus b =1 − a(x 1 + x 2 ), then x 0 = − = = . Since
a 2a 2a 2a
ax 2 < 1, that is, ax 2 − 1 < 0, then x 0 = ax 1 +ax 2 −1 < ax 1 = x 1 .
2a 2a 2
2
2
2
a +b 2 b +c 2 c +a 2 a 3 b 3 c 3
3.84 Let a, b, c are positive numbers, show a + b + c ≤ + + ≤ + +
2c 2a 2b bc ca ab
2
2
2
a +b 2 b +c 2 c +a 2 a 3 b 3 c 3
a + b + c ≤ + + ≤ + + .
2c 2a 2b bc ca ab
2 1
1
2
2
Proof: Without loss of generality, assume a ≥ b ≥ c> 0, then a ≥ b ≥ c , ≥ 1 ≥ , then
c b a
1
1
1
1
1
1
1
1
1
1
1
1
a · + b · + c · ≤ a · + b · + c · ,a · + b · + c · ≤ a · + b · + c · . Add
2
2
2
2
2
2
2
2
2
2
2
2
a b c b c a a b c c a b
2
2
2
a +b 2 b +c 2 c +a 2 3 3 3 1 1 1
these two inequalities up to obtain a + b + c ≤ + + . a ≥ b ≥ c , ≥ ≥ ,
2c 2a 2b bc ca ab
3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1
then a · +b · +c · ≥ a · +b · +c ,a · +b · +c · ≥ a · +b · +c . Add
bc ca ab ab bc ca bc ca ab ca ab bc
2
2
2
these two inequalities up to obtain a 3 + b 3 + c 3 ≥ a +b 2 + b +c 2 + c +a 2 . Hence,
bc ca ab 2c 2a 2b
2
2
2
a +b 2 b +c 2 c +a 2 a 3 b 3 c 3 .
a + b + c ≤ + + ≤ + +
2c 2a 2b bc ca ab
3.85 Solve the inequality log (x +3x +5x +3x + 1) > 1 + log (x + 1).
12
6
4
10
8
2
2
6
4
6
12
12
10
10
8
8
Solution: The inequality is equivalent to log (x +3x +5x +3x + 1) > log (2x + 2) ⇔ x +3x +5x +3x +1 >
2
12
10
8
2 12
6
6
10
8
4
4 log (x +3x +5x +3x + 1) > log (2x + 2) ⇔ x
8
12
10
4
2x +2 ⇔ 2x +1 <x +3x +5x +3x 6 +3x +5x +3x +1 >
2
2
6
8
4
10
12
10
12
6
8
6
4
12
10
4
8
log (x +3x +5x +3x + 1) > log (2x + 2) ⇔ x +3x +5x +3x +1 > 2x +2 ⇔ 2x +1 <x +3x +5x +3x . Obviously
2
2
4
10
8
12
4
2x +2 ⇔ 2x +1 <x +3x +5x +3x 6
x =1 does not satisfy the inequality, thus we can divide both sides by x to obtain
6
2 2 1 1 6 6 4 4 2 2 6 6 4 4 2 2 2 2 2 2 3 3 2 2
1 1
2 2
2 2
4 4
2 2
2 2
6 <x +3x 4 4
6 6
2 2
+5x +3 = x +3x +3x +1+2x +2 = (x +1) +2(x +1) ⇔
6 6
3 3
x 2 + 2 2 x + 2 6 <x +3x +5x +3 = x +3x +3x +1+2x +2 = (x +1) +2(x +1) ⇔
6 <x +3x +5x +3 = x +3x +3x +1+2x +2 = (x +1) +2(x +1)
1 + +
x
x
6 <x +3x +5x +3 = x +3x +3x +1+2x +2 = (x +1) +2(x +1) ⇔ ⇔
2 2
1
2
3
2
3
1 x
( ) + 2( ) < (x + 1) + 2(x + 1)
3 x x
2
3
2
x
1
2( ) + 2( ) < (x + 1) + 2(x + 1)
2 2
3 3
2 1 1
2 1 1
3 3
3
2 2
x
2
x 2( ) < (x + 1) + 2(x +
x x ( ) + 2( ) < (x + 1) + 2(x + 1) 1). Let g(t)= t +2t , then the inequality becomes
(
2 2 ) +
x x x x
2 2

1
g( ) <g(x + 1). Since g(t)= t +2tg(t)= t +2t is an increasing function, then the inequality is
2
3 3
x 2

equivalent to 1 1 2 2 2 22 2 2 2 2 5−1 (the other
2 <x +1 ⇔ (x ) + x − 1 > 0<x +1 ⇔ (x ) + x − 1 > 0 whose solution is x >
x x 2 2

2 5+1
part x < − is deleted). Hence, the original inequality has the solution set
2

√ √
5−1 5−1 , +∞).
(−∞, − ) ∪ (
2 2
Download free eBooks at bookboon.com
117

ELEMENTARY ALGEBRA EXERCISE BOOK I inequAlities




3.86 Let a, b, c are integers and at least one of them is nonzero, and their
√ √
6
absolute values are not greater than 10 , show |a + b 2+ c 3| > 10 −21 .
Proof: When b =0,c =0, the conclusion is obviously valid. When one of b, c is nonzero, we consider
√ √ √ √ √ √ √ √
the following four numbers: t 1 = a + b 2+ c 3,t 2 = a + b 2 − c 3,t 3 = a − b 2+ c 3,t 4 = a − b 2 − c 3

√ √ √ √ √ √ √ √ √ √ √
√ 2 2 √ 2 2 2 √ 2 2 2
2
2
2
2
2
2
t 1 = a + b 2+ c 3,t 2 = a + b 2 − c 3,t 3 = a − b 2+ c 3,t 4 = a − b 2 − c 3. They are all irrational numbers, and t = t 1 t 2 t 3 t 4 = [(a + b 2) − 3c ][(a − b 2) − 3c ]= (a +2 2ab +2b − 3c )(a −
2
2√




√ t = t 1 t 2 t 3 t 4 = [(a + b 2) − 3c ][(a − b 2) − 3c ]= (a +2 2ab +2b − 3c )(a −
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2

√ √ √ 2 2ab +2b − 3c ) = [(a +2b − 3c ) +2 2ab][(a +2b − 3c ) − 2 2ab] = [(a +

2 = [(a + b 2) − 3c ][(a − b 2) − 3c ]= (a +2 2ab +2b − 3c )(a −
√ t = t 1 t 2 t 3 t 4
2
2
2
2
2
2
2
2 √
2 √
√ 2 2 √ 2 2 2 √ 2 2 2 √ 2 2ab +2b − 3c ) = [(a +2b − 3c ) +2 2ab][(a +2b − 3c ) − 2 2ab] = [(a +

t = t 1 t 2 t 3 t 4 = [(a + b 2) − 3c ][(a − b 2) − 3c ]= (a +2 2ab +2b − 3c )(a −
2
2
2
2
2
2
2
2
2
√t = t 1 t 2 t 3 t 4 = [(a + b 2) − 3c ][(a − b 2) − 3c ]= (a +2 2ab +2b − 3c )(a − 2 2ab 2 2 2 2 2 2 2 2 2 2 2 2
2 +2b − 3c ) = [(a +2b − 3c ) +2 2ab][(a +2b − 3c ) − 2 2ab] = [(a +


2b − 3c ) − 8a b ] ∈ Z
2
2
2
2 2
2
2
2
2
2
2 2
2
2
2 2ab +2b − 3c ) = [(a +2b − 3c ) +2 2ab][(a +2b − 3c ) − 2 2ab] = [(a +



2 2ab +2b − 3c ) = [(a +2b − 3c ) +2 2ab][(a +2b − 3c ) − 2 2ab] = [(a + 2b − 3c ) − 8a b ] ∈ Z . Thus |t|≥ 1,
2b − 3c ) − 8a b ] ∈ Z
2 2
2
2
2 2
2
2
2
2
2
2
2
2
2 2
2 2
2
2b − 3c ) − 8a b ] ∈ Z √ √
2 2
2
2 2
1
6
2b − 3c ) − 8a b ] ∈ Z which implies that |t 1 |≥ |t 2 |·|t 3|·|t 4| . In addition, since 1+ 2+ 3 < 10 and |a|, |b|, |c|≤ 10 ,
√ √
7
6
we have |t i |≤ (1 + 2+ 3) · 10 < 10 , thus |t 1 | > 1 7 = 10 −21 .
7
7
10 ·10 ·10
I joined MITAS because for Engineers and Geoscientists
�e Graduate Programme
I joined MITAS because
I joined MITAS because
�e Graduate Programme aduate Programme
�e Gr
for Engineers and Geoscientis
for Engineers and Geoscientiststs
I wanted real responsibili� real responsibili�
I wanted real responsibili� www.discovermitas.com
I wanted
Maersk.com/Mitas
Maersk.com/Mitasom/Mitas
Maersk.c
I joined MITAS because for Engineers and Geoscientists
�e Graduate Programme
I wanted real responsibili� Maersk.com/Mitas
Month 16th 16
Mon
Month 16
I was a construction
I was a construction Month 16
I w
I was a
I was aas a
I was a construction
supervisor in in
supervisor in
supervisor
I was a
I was a construction
the North Sea supervisor in
the North Sea
the North Sea
advising and
advising
advising and and the North Sea
helping
h
helping foremen foremen advising and
helping foremen
he
hee
Real w
Real work ork
Real work
Internationa al Internationaal Internationa
al
International opportunities
International opportunities
International opportunities
s s
solve problems
he
helping foremen
�ree wree w or orooro s solve problemssolve problems
�ree work placementsee work placements
�r
�ree wo
�ree work placements

Real work
al
International opportunities
Internationa
s
�ree work placements
�ree wo solve problems
or
Download free eBooks at bookboon.com Click on the ad to read more
Click on the ad to read more
Click on the ad to read more
Click on the ad to read more
Click on the ad to read more
Click on the ad to read more
Click on the ad to read more
Click on the ad to read more
Click on the ad to read more
Click on the ad to read more
Click on the ad to read more
Click on the ad to read more
Click on the ad to read more
Click on the ad to read more
Click on the ad to read more
Click on the ad to read more
Click on the ad to read more
Click on the ad to read more
Click on the ad to read more
Click on the ad to read more
Click on the ad to read more
Click on the ad to read more
Click on the ad to read more
Click on the ad to read more
Click on the ad to read more
Click on the ad to read more
Click on the ad to read more
Click on the ad to read more
Click on the ad to read more
Click on the ad to read more
Click on the ad to read more
Click on the ad to read more
Click on the ad to read more
Click on the ad to read more
Click on the ad to read more
Click on the ad to read more
Click on the ad to read more
Click on the ad to read more
118
118

ELEMENTARY ALGEBRA EXERCISE BOOK I inequAlities




80
1
3.87 For k ∈ N , show 16 < √ < 17.
k
k=1
√ √ √ √ √ √ √ √
Proof: From k − 1 < k< k +1, we have k + k − 1 < 2 k< k +1+ k .
k ∈ N , then
√ √ √ √ √ √
1 √ √ 1 √ √ 1√ √
√ √ < 12 k< √ 1 √ ⇒ 2( k +1 − k) < √ < 2( k − k − 1) ⇒
1
1
k+1+ k √ < 12 k< √ k+ k−1 ⇒ 2( k +1 − k) < √ < 2( k k − k − 1) ⇒


k+1+ k n k+ k−1 k
n
√ √ √ √ 1 1 √ √ √ √ , where 1 ≤ m ≤ n , and m, n ∈ N . Choose

2( n +1
m)
√ < 2( n −m − 1)
2( n +1 − − m) < < √ < 2( n − m − 1)
k k
k=m 80
k=m
1
n = 80,m =1, then 16 < √ . Choose n = 80,m =2, then
k
80 80 k=1 80
1 1 √ √ √ √ 1

1+
1+ √ < 2( 80 − 1) + 1 < 2 81 − 1 = 17 17. Hence, 16 < √ < 17.
√ < 2( 80 − 1) + 1 < 2 81 − 1 =

k k k
k=2
k=2 k=1
) .
3.88 For n ∈ N ,n > 1, show n! < ( n+1 n
2
Proof 1: (applying mean inequality)
n!=1 · 2 · ··· · k · ··· · (n − 1) · n (i),
n!= n · (n − 1) · ··· · (n − k + 1) · ··· · 2 · 1 (ii).
2
) =(
) =
(i)× (ii): (n!) = (1 · n)[2(n − 1)] · ··· · [k(n − k + 1)] · ··· · [(n − 1)2](n · 1). Since 1 · n ≤ ( 1+n 2 2+n−1 2 1+n 2 k+n−k+1 2
) , 2(n − 1) ≤ (
) , ··· ,k(n − k + 1) ≤ (
2 2
2
2
2 2
1+n 2 ,k(n − k + 1) ≤ (
) =
)
1
n−1+2 2 (
1+n 2 · n ≤ ( 1+n ) , 2(n − 1) ≤ 2+n−1 2 1+n ) , ··· k+n−k+1 2
1+n 2 =(
( ) , ··· , (n − 1)2 ≤ ( ) =( ) ,n · 1 ≤ ( ) 2
2
2
2
2
2 2
2 2
2 2
) =(
) , ··· ,k(n − k + 1) ≤ (
1 · n ≤ ( 1+n 2 2+n−1 2 1+n 2 k+n−k+1 2 ( 1+n ) , ··· , (n − 1)2 ≤ ( n−1+2 2 1+n ) ,n · 1 ≤ ( 1+n )
) , 2(n − 1) ≤ (
) =(
) =

2−1 2
2n 2
2
2n 2
)
n−1+2 2(
1+n 2 ,k(n − k + 1) ≤ (
) =
1+n 2 · n ≤ ( 1+ ) , 2(n − 1) ≤ 2+n 1+n 2=( 1+ ) , ··· k+n−k+1 2 2 2 2 2
1
( ) , ··· , (n − 1)2 ≤ ( ) =( 2 ) ,n · 1 ≤ ( ) 2
2
2
2
2
2n 2
2n 2
) ] ⇔ (n!) ≤ (
)
) . There are n terms. Thus (n!) ≤ [(
)
) =(
( 1+ ) , ··· , (n − 1)2 ≤ ( n−1+2 2 1+ ) ,n · 1 ≤ ( 1+n 2 2 1+n 2 n 2 n+1 2n ⇔ n! ≤ ( n+1 n
2 2 2 2 2 2 2
2
) .
) . Since n> 1, then n! < (
) ] ⇔ (n!) ≤ (
(n!) ≤ [( 1+n 2 n 2 n+1 2n ⇔ n! ≤ ( n+1 n n+1 n
)
2 2 2 2
Proof 2: (applying mathematical induction)
) = . The inequality holds.
When n =2, LHS=2! =2, RHS=( 2+1 2 9
2 4
) . Then
Assume the inequality holds for n = k , that is, k! < ( k+1 k
2
k+1
k+1
) (k + 1)) (k + 1).
k!(k + 1) < (k!(k + 1) < ( k+1 kk k+1 kk
) (k + 1) ⇔ (k + 1)! < () (k + 1) ⇔ (k + 1)! < (
2 2 2 2
k+1 k k+1
k+1 k+1
(k+1)+1 k+1
( k+1 k (k+1)+1 k+1 ⇒ 2( k+1 k ) < [ (k+1)+1 k+1 ⇒ 2( k+1 k k+1 (k+1)+1 k+1 ⇒ k+1 k+1 (k+1)+1 k+1
< [
]
) (k+1) < [
) (
]
]
)
(k+1)+1 k+1
2 2 ( 2 ) (k+1) < [ 2 ] ⇒ 2( 2 ) ( ) < 2[ ] ⇒ 2( ) < [ ] ⇒
2
(k+1)+1 k+1 2 ) k+1 2 2 2 2 2 2 2
]
( (k+1)+1 k+1
]
]
⇒ 2(
2 )
) (
]
) (k+1) < [
( k+1 k (k+1)+1 k+1 ⇒ 2( k+1 k k+1 ) < [ (k+1)+1 k+1 2 < [ k+1 k+1 < [ k+1 ] ⇒ 2 < [ (k+1)+1 k+1 ( 2 ) k+1 . Binomial theorem implies that
2 2 2 2 2 2 2 2 k+1
]
2 < [ (k+1)+1 k+1 ( 2 ) k+1 1 k+1 1 k+1 kk (k+1)+1 k+1k+1
(k+1)+1
k+1
) (k + 1)
2 k+1 (1 + ) = 1 +(k + 1) + ··· > 2. Thus (( ) (k + 1) < [ < [ ]] holds.
k+1 k+1 2 2 2 2
) holds according to mathematical induction
Hence, the original inequality n! < ( n+1 n
2
above.
Download free eBooks at bookboon.com
119

ELEMENTARY ALGEBRA EXERCISE BOOK I inequAlities




1
2
3.89 Let a 1 ,a 2 , ··· ,a n be a permutation of 1, 2, ··· ,n , show + + ··· + n−1 ≤ a 1 + a 2 + ··· + a n−1
2
n
3
a 3
a n
a 2
1 + + ··· + n−1 a 1 + a 2 + ··· + a n−1 .
2
2 3 n ≤ a 2 a 3 a n
Proof: Since a 1 ,a 2 , ··· ,a n is a permutation of 1, 2, ··· ,n , we have
(a 1 + 1)(a 2 + 1) · ··· · (a n−1 + 1) ≥ (1 + 1)(2 + 1) · ··· · (n − 1 + 1) = a 1 a 2 ··· a n a n . Thus
(a 1 + 1)(a 2 + 1) · ··· · (a n−1 + 1) ≥ (1 + 1)(2 + 1) · ··· · (n − 1 + 1) = a 1 a 2 ···
2
1a 1 +1
a 1 +1
1 a
1 + + ··· + n−1 a n−1 a 1 + + +···+ + a n−1n−1 1 a 1 1 1 a 2 1 a 1 a n−1n−1 111 1 1 + a 2 +1 1 1 1 a n−1 +1 + a 2 1 +1 1 1 + a 1 +1+1 a 2 +1 1 a n−1 +1 a n−1 +1
+ ···+
+ + +···++ +···++ + +···+
a n−1
+ + +···+
=
a n−1
a n−1
a 1
1a 2
a 2
a 1
1 a 2
=+···+ 1
+ ≥1
+···++ + +···+= 1
+···+ a 1 +1
+ 1
++ +···+ a n−1
≥ a n−1
=+ + +···++ a 1
a 2
2 3 a 2 + +···+≤ a n a 2 1 a 3 2a 3 n a n a a 12 1 a2 a n a nn + 2a+···+ a 3 a n a n + + +···+ a n 3 + + +···+ a 3 = + a n + ≥ a 2 +1 +···+ ≥
a
n
a
a 1 1a 1
a 23
a 3
a 1 a 1
a 22
a 2
a 2
a n a 2
a 1
a 2 a n
a n a n a 2 a 3 a n 1 2 a n a 1 a 2 a n a 1 a 2 a 3 a n

n (a 1 +1)(a 2 +1)·····(a n−1 +1)+1) a n−1 +1
a 2 +1
1
1
1
a 1 +1
1
n
+ +···+ + + +···+ n + + +···+ n= + n +···+ a 1 a 2 ···a n n n (a 1 +1)(a ≥ n . In
≥ n +
≥ n 2 +1)·····(a n−1 +1)
a 1 a 2 a n−1 1 1 a n−1 n (a 1 +1)(a 2 +1)·····(a n−1 +1)(a 1 +1)(a 2 +1)·····(a n−1 ≥ n

a
a 2 a 3 a n 1 2 a n a 1 a 2 a 1 a 2 ···a na n a 1 a 2 a 1 a 2 ···a n 3 a n
a 1 a 2 ···a n
1
2
1
1
1
n n (a 1 +1)(a 2 +1)·····(a n−1 +1) ≥ n addition, n =( + + ··· + ) + ( + + ··· + n−1 ). Hence,
a 1 a 2 ···a n 1 2 n 2 3 n
a
11 + + ··· ++ + ··· + n−1n−1 a 1 a 1 ++ a 2 a 2 + ··· ++ ··· + a n−1n−1 .
22
2 2 3 3 n n ≤≤ a 2 a 2 a 3 a 3 a nn
a
3.90 If real numbers a, b, c satisfy a + b + c =3, show
1 + 1 + 1 ≤ .
1
2
2
2
5a −4a+11 5b −4b+11 5c −4c+11 4
9
Proof: If a, b, c are all less than , then we can show 2 1 ≤ 1 (3 − a) ( ). Actually
5 5a −4a+11 24 2 3 2 2
( ) ⇔ (3−a)(5a −4a+11) ≥ 24 ⇔ 5a −19a +23a−9 ≤ 0 ⇔ (a−1) (5a−9) ≤
2
2
2
3
( ) ⇔ (3−a)(5a −4a+11) ≥ 24 ⇔ 5a −19a +23a−9 ≤ 0 ⇔ (a−1) (5a−9) ≤ 0 ⇔ a< 9 5

3
2
2
2
( ) ⇔
0 ⇔ a< 9(3−a)(5a −4a+11) ≥ 24 ⇔ 5a −19a +23a−9 ≤ 0 ⇔ (a−1) (5a−9) ≤
5
0 ⇔ a< . Similarly, we can obtain 2 1 ≤ 1 (3 − b), 2 1 ≤ 1 (3 − c) . Add these
9
5 5b −4b+11 24 5c −4c+11 24
1
1
1
1
1
1
1
three inequalities up to obtain 1 5a −4a+11 1 5b −4b+11 1 5c −4c+11 1 ≤ 24 (3−a)+ (3−b)+ (3−c) = 24 [9−(a+b+c)] =
+
+

2
2
2
1
24
1
1
24
2
1 2
24
24
5a −4a+11 + 5b 2 1 −4b+11 + 5c −4c+11 ≤ 24 (3−a)+ (3−b)+ (3−c) = 24 [9−(a+b+c)] =
[9 − 3] =
1
1 + 1 + 1 1 (3−a)+ (3−b)+ (3−c) = 1 [9−(a+b+c)] = 1 [9 − 3] = 1 . 4
1
24
2
2
2
5a −4a+11 5b −4b+11 5c −4c+11 ≤ 24 24 24 24 24 4
1 [9 − 3] = 1
24 4
9
9
If at least one of a, b, c is not less than , without loss of generality, assume a ≥ , then
5 5
9
9
5a − 4a + 11 = 5a(a − ) + 11 ≥ 5 · · ( − ) + 11 = 20 . Thus 2 1 ≤ 1 . Since
4
4
2
5 5 5 5 5a −4a+11 20
2 2 2 2 4 1 < 1
5b − 4b + 11 ≥ 5 · ( ) − 4 · ( ) + 11 = 11 − > 10 , then 2 . Similarly, we
5 5 5 5b −4b+11 10
1
1
1
1
1
1
1
1
1
have 5c −4c+11 < 10 . Hence, 5a −4a+11 + 5b −4b+11 + 5c −4c+11 < 20 + 10 + 10 = .
2
2
2
2
4
2 .
n
2
3
1
3.91 Given a natural number n> 1, show C + C + C + ··· + C >n × 2 n−1
n
n
n
n
Proof: According to Binomial theorem, we have 2 = (1 + 1) = 1+ C + C + ··· + C , thus
n
1
n
n
2
n
n
n
C + C + C + ··· + C =2 − 1. On the other hand, the geometric series with first term 1
1
n
n
3
2
n
n
n
n
n
n
3
and common ratio 2 is S n = 1·(1−2 ) =2 − 1, i.e. 2 − 1 = 1+2+2 +2 + ··· +2 n−1 .
2
n
1−2



2
n
n
n
3 n−1
3
3
2
2 −1
2 −1 1+2+2 +2 +···+2
1+2+3+···+(n−1)
2 3
2
n
Therefore, = n = 2 1+2+2 +2 +···+2 n−1 √ > 1 × 2 × 2 × 2 × ··· × 2 n−1 n−1 n = 2 1+2+3+···+(n−1) = =
>
1 × 2 × 2 × 2 × ··· × 2 =
n n n n
n−1 n−1
2
n
n
1
3
n
n n(n−1) n(n−1) n−1 , that is, 2 − 1 >n × 2 2 . Hence, C + C + C + ··· + C >n × 2 2 .
n−1
2 2 2 =2 2 =2 2 n n n n
2
3.92 Positive numbers x,y,z satisfy x + y + z =1, find the minimum value
2
2
2
z
y
x
of 1−x 2 + 1−y 2 + 1−z 2.
Solution: (applying mean inequality)
Download free eBooks at bookboon.com
120

ELEMENTARY ALGEBRA EXERCISE BOOK I inequAlities





5
1
1
2
1
1
5
x + 3 3 2 2 2 5 5 3 3 1 2 2 3 3 1 2 2 3 3 x · 5 3 3 1 2 3 3 1 2 2 3 3
√ x = x .
√ x ≥ 3
√ x +
√ x = x +
5
√ x · 2
√ x = x +
√ x = x
√ x ≥ 3
√ x +
x +
x ·
√ x ·
3 3
3 3
3 3
3 3
3 3
2
2
5
3
2
3
2
5
Similarly, we can obtain y + √ y ≥ y ,z + √ z ≥ z .
3 3 3 3
2
2
5
5
3
3
2
2
5
3
Add these three inequalities up to obtain x + y + z + √ (x + y + z ) ≥ x + y + z .
3 3
2
3
3
5
5
3
5
2
2
2
Since x + y + z =1, then x + y + z + √ ≥ x + y + z ,
3 3
3 2 3 2 3 2 √ (i).
2
then x (1 − x )+ y (1 − y )+ z (1 − z ) ≤
3 3
y
2

3
3
z
2
2
3
3
2
y
x
3
[x (1 − x )+ y (1 − y )+ z (1 − z )]( 2 x 2 + 1−y + 2 + 1−z + 2 ) ≥ ( x (1 − x ) 2 1−x 2 + 2 +
3
z
3
x
2
2
x
3
2 ) ≥ (
[x (1 − x )+ y (1 − y )+ z (1 − z
1−x )](
x (1 − x )
1−x 2 1−y 2 1−z 1−x

y
2
2
2
3
y (1 − y ) 2 1−y 2 + 2 + z (1 − z ) 2 1−z 2 = x + y + z =1
3
z
2
2
y
z
2
2 = x + y + z =1 . Thus
2
2
3
3
z (1 − z )
y (1 − y )
1−y
1−z
x x 2 + + y y 2 + + z z 1 1
2 2
3
3 x (1−x )+y (1−y )+z (1−z
2
2 2
3 3
2 2
3 3
1−x
1−y
1−z
1−x 2 1−y 2 1−z 2 ≥ ≥ x (1−x )+y (1−y )+z (1−z ) ) (ii). From (i) and (ii), we obtain

x y z 3 3
1−x 2 + 1−y 2 + 1−z 2 ≥ 2 .

1 x y z 3 3
When x = y = z = √ , 2 + 2 + 2 reaches the minimum value .
3 1−x 1−y 1−z 2
3.93 Positive numbers a 1 ,a 2 , ··· ,a n and b 1 ,b 2 , ··· ,b n
satisfy a 1 + a 2 + ··· + a n ≤ 1,b 1 + b 2 + ··· + b n ≤ n ,
n
show ( 1 + 1 )( 1 + 1 ) ···( 1 + 1 ) ≥ (n + 1) .
a 1 b 1 a 2 b 2 a n b n
) ≤
Proof: The given conditions together with Mean Inequality result in a 1 a 2 ··· a n ≤ ( a 1 +a 2 +···+a n n 1
n n n

n


(i), and b 1 b 2 ··· b n ≤ ( b 1 +b 2+···+b n )=1 (ii). In addition, 1 + 1 = 1 + ··· + 1 + 1 ≥ (n + 1) n+1 1 1
n
a i b i na i na i b i na i b i

n

1 1 1 1 1 1 1 n terms
+ = + ··· + + ≥ (n + 1) n+1 (i =1, 2, ··· ,n ) (iii).
a i b i na i na i b i na i b i

n terms
From (i),(ii),(iii), we can obtain

n
1 1 1 1 1 1 1 1 1
+ + ··· + ≥ (n + 1) n n+1 · ·
n n
a 1 b 1 a 2 b 2 a n b n (n ) a 1 a 2 ··· a n b 1 b 2 ··· b n

1
n n
≥ (n + 1) n n+1 · (n ) · 1
n n
(n )
n
=(n + 1) .
Download free eBooks at bookboon.com
121


Click to View FlipBook Version