6. Prove that:
1
a. cos4θ + sin4θ = 4 (3 + cos4θ)
Solution
LHS = cos4θ + sin4θ
= (cos2θ – sin2θ)2 + 2 sin2θ . cos2θ
= (cos2θ)2 + 1 (2 sinθ . cosθ)2
2
= cos22θ + 1 sin22θ
2
= 1 (2 cos22θ + sin22θ)
2
= 1 (cos22θ + sin22θ + cos22θ)
2
= 1 (1 + cos22θ)
2
= 1 (2 + 2 cos22θ)
4
= 1 (2 + 1 + cos4θ)
4
= 1 (3 + cos4θ) ( 2 cos2x = 1 + cos2x)
4
= RHS proved
b. cos6θ – sin6θ = cos2θ 1 – 1 sin22θ
4
Solution
LHS = cos6θ – sin6θ
= (cos2θ – sin2θ) (cos4θ + cos2θ . sin2θ + sin4θ)
= cos2θ {(cos2θ – sin2θ)2 + 2 sin2θ . cos2θ + sin2θ . cos2θ}
= cos2θ (cos22θ + 3 sin2θ . cos2θ)
= cos2θ cos22θ + 3 (2 sinθ . cosθ)2
4
= cos2θ 4 sins22θ + 3 sin22θ
4
= cos2θ 4 – 4 cos22θ + 3 sin22θ
4
= cos2θ 1 – 1 sin22θ
4
= RHS proved
Vedanta Optional Mathematics Teacher's Guide ~ 10 251
1
c. sin4θ = 8 (3 – 4 cos2θ + cos4θ)
Solution
RHS = 1 (3 – 4 cos2θ + cos4θ)
8
= 1 {3 – 4(1 – 2 sin2θ) + (1 – 2sin22θ)}
8
= 1 {3 – 4 + 8 sin2θ + 1 – 2 sin22θ}
8
= 1 {8 sin2θ – 2(2 sinθ . cosθ)2}
8
= 1 {8 sin2θ – 8 sin2θ . cos2θ}
8
= 1 . 8 sin2θ(1 – cos2θ)
8
= sin2θ . sin2θ
=sin4θ = LHS proved
1
d. cos8θ + sin8θ = 1 – sin22θ + 8 cos42θ
Solution
LHS = cos8θ + sin8θ
= (cos4θ + sin4θ)2 – 2 sin4θ . cos4θ
= {(cos2θ – sin2θ)2 + 2 sin2θ . cos2θ}2 – 2 sin4θ . cos4θ
=cos22θ + 1 sin22θ 2 – 1 sin42θ
2 8
1 1
=cos42θ + cos22θ . sin22θ + 4 sin42θ – 8 sin42θ
= (1 – sin22θ)2 + (1 – sin22θ) . sin22θ + 1 sin42θ
8
1
= 1 – 2 sin22θ + sin42θ + sin22θ – sin42θ + 8 sin42θ
= 1 – sin22θ + 1 sin42θ
8
= RHS proved
6. Prove that:
31
a. sin40° + cos40° = 4
Solution
LHS = 3 + 1
sin40° cos40°
252 Vedanta Optional Mathematics Teacher's Guide ~ 10
= 3 cos40° – sin40°
sin40° . cos40°
2 3 + 1 sin40°
2 cos40° 2
=
sin40° . cos40°
= 2(cos30° . cos40° + sin30° . sin40°)
sin40° . cos40°
= 4 cos(40° – 30°)
2 sin40° . cos40°
= 4 cos10°
sin80°
= 4 cos10°
sin(90° – 10°)
= 4 cos10°
cos10°
= 4 = RHS proved
b. cosec10° – 3 sec10° = 4
Solution
LHS = cosec10° – 3 sec10°
= 1 – 3
sin10° cos10°
= cos10° – . 3 sin10°
sin10° cos10°
4 1 cos10° – 23sin10°
2
=
2 sin10° . cos10°
= 4 sin30° . cos10° – cos30° . sin10°
sin20°
= 4 sin(30° – 10°)
sin20°
= 4 sin20°
sin20°
= 4 = RHS proved
7. Prove that:
a. (2 cosθ + 1) (2 cosθ – 1) = 2 cos2θ + 1
Vedanta Optional Mathematics Teacher's Guide ~ 10 253
Solution
LHS = (2 cosθ + 1) (2 cosθ – 1)
= 4 cos2θ – 1
= 2(2 cos2θ – 1) + 1
= 2 cos2θ + 1
RHS proved
b. sec8θ – 1 = tan8θ
sec4θ – 1 tan2θ
Solution
LHS = sec8θ – 1
sec4θ – 1
= 1 – 1
cos8θ – 1
1
cos4θ
= 1 – cos8θ × cos4θ
cos8θ – cos4θ
1
= 2 sin24θ . cos4θ
cos8θ . 2 sin22θ
= (2 sin4θ . cos4θ) sin4θ
cos8θ . 2 sin22θ
= sin8θ . 2 sin2θ . cos2θ
cos8θ 2 sin22θ
= tan8θ
sin2θ
cos2θ
= tan8θ = RHS proved
tan2θ
c. tanθ + 2 tanθ + 4 tan4θ + 8 cot8θ = cotθ
Solution
Example (14) text book
d. sin2α – cos2α . cos2β = sin2β – cos2β . cos2α
Solution
LHS = sin2α – cos2α . cos2β
= sin2α – cos2α(2 cos2β – 1)
= sin2α – 2 cos2α . cos2β + cos2α
= sin2α + cos2α – 2 cos2β . cos2α
254 Vedanta Optional Mathematics Teacher's Guide ~ 10
= 1 – 2 cos2α . cos2β
= sin2β + cos2β – 2 cos2α . cos2β
= sin2β – cos2β(2 cos2α – 1)
= sin2β – cos2β . cos2α = RHS proved
e. 2 + 2 + 2 + 2 cos8θ= 2 cosθ
Solution
LHS = 2 + 2 + 2 + 2 cos8θ
= 2 + 2 + 2(1 + cos8θ)
= 2 + 2 + 2 . 2 cos24θ
= 2 + 2 + 2 cos4θ
= 2 + 2(1 + cos4θ)
= 2 + 4 cos22θ
= 2 + 2 cos2θ
= 2(1 + cos2θ)
= 2 . 2 cos2θ
= 2 cosθ = RHS proved
sin2α – sin2β
f. sinα . cosα – sinβ . cosβ = tan(α + β)
Solution
RHS = tan(α + β)
= 1 tanα – tanβ
– tanα . tanβ
= 1 tanα – tanβ
– tanα . tanβ
sinα + sinβ
cosα cosβ
=
sinα sinβ
1 – cosα . cosβ
= sinα . cosβ + sinβ . cosα × sinα . cosβ – sinβ . cosα
cosα . cosβ – sinα . sinβ sinα . cosβ – sinβ . cosa
Vedanta Optional Mathematics Teacher's Guide ~ 10 255
= sinα . cosa . cos2β – sin2α . cos2β – sin2β . cos2α cosβ + sin2β . sina . cosa
cos2α . sinb . cosβ – sin2α . sinb .
= sinα . sin2α(1 – sin2β) – sin2β(1 – sin2α) + sin2a)
cosa(cos2β + sin2b) – sinb . cosβ(cos2α
= sinα sin2α – sin2β cosβ
. cosα – sinβ .
= LHS proved
8. a) 4(cos310° + sin220°) = 3(cos10° + sin20°)
Solution
LHS = 4(cos310° + sin220°)
= 4 cos310° + 4 sin220°
= 3 cos10° + cos(3.10°) + 3 sin20° – sin(3.20°)
= 3(cos10° + sin20°) + 3(cos30° – sin60°)
= 3(cos10° + sin20°) + 3 3 – 23
2
= 3(cos10° + sin20°) + 3.0
= 3(cos10° + sin20°) = RHS proved
b) sin310° + cos320° = 3 (cos20° + sin10°)
4
Solution
LHS = sin310° + cos320°
By using formula,
1
cos3θ = 4 (3 cosθ + cos3θ)
1
LHS =si14n3[θ3=si4n1(30°si–nθsi–n(s3in.13θ0)°) + 3 cos20° + cos(3.20°)]
1
= 4 [3 sin10° – sin30° + 3 cos20° + cos60°]
= 3 (sin10° + cos20°) + 1 –12 + 1
4 4 2
= 3 (sin10° + cos20°)
4
= RHS proved
9. Prove that: 2 cos2A
1 + sin2A
a) cot(A + 45°) – tan(A – 45°) =
256 Vedanta Optional Mathematics Teacher's Guide ~ 10
Solution
LHS = cot(A + 45°) – tan(A – 45°)
= tan 1 45°) – tan(A – 45°)
(A +
= 1 – 1 tanA – tan45°
tanA + tan45° + tanA . tan45°
1 – tanA . tan45°
= 1 – tanA – tanA – 1
1 + tanA 1 + tanA
= 1 – tanA – tanA + 1
1 + tanA
= 2(1 – tanA)
1+ tanA
1 – sinA
cosA
= 2
sinA
1 + cosA
= 2 cosA – sinA × cosA + sinA
cosA + sinA cosA + sinA
= 2 cos2A + cos2A – sin2A . cosA
sin2A + 2 sinA
= 2 cos2A = RHS proved
1 + sin2A
b) tan(A + 45°) + tan(A – 45°) = 2 tan2A
Solution
LHS = tan(A + 45°) + tan(A – 45°)
= tanA + tan45° + 1 tanA – tan45°
1 – tanA . tan45° + tanA . tan45°
= tanA + 1 + tanA – 1
1 – tanA 1 + tanA
(1 + tanA)2 + (tanA – 1) (1 – tnaA)
= 1 – tan2A
= 1 + 2 tanA + tan2A + tanA – tan2A – 1 + tanA
1– tan2A
= 4 tanA
1 – sin2A
cos2A
= 4 sinA × cos2A
cosA cos2A – sin2A
Vedanta Optional Mathematics Teacher's Guide ~ 10 257
= 2 2 sinA cosA
cos2A
sin2A
= 2 cos2A
= 2 tan2A = RHS proved
c) tan(A + 45°) – tan(A – 45°) = 2 sec2A
Solution
LHS = tan(A + 45°) – tan(A – 45°)
= tanA + tan45° – 1 tanA – tan45°
1 – tanA . tan45° + tanA . tan45°
= tanA + 1 – tanA – 1
1 – tanA 1 + tanA
tanA + 1 1 – tanA
= 1 – tanA + 1 + tanA
= (1 + tanA)2 + (1 – tanA)2
1 – tan2A
1 + 2 tanA + tan2A + 1 – 2 tanA – tan2A
= 1 – tan2A
= 2 (1 + tan2A)
1 – tan2A
1
= 2 1 – tan2A
1 + tan2A
= 2
cos2A
= 2 sec2A = RHS proved
d) tanA + tan π + A – tan π – A = 3 tan3A
3 3
Solution
LHS = tanA + tan π + A – tan π – A
3 3
= tanA + tan23π + tanA – tan3π – tanA
1 – tanπ3 . tanA + tan3π . tanA
1
= tanA + 1 3 + tanA – 1 3 – tanA
– 3 tanA + 3 tanA
= tanA + ( 3 + tanA) (1 + 3 tanA) – ( 3 – 3tanA) (1 – 3 tanA)
1 – 3 tan2A
258 Vedanta Optional Mathematics Teacher's Guide ~ 10
= tanA + 3 + 3 tanA + tanA + 3 tan2A – 3 + tanA + tanA – 3 tan2A
1 – 3 tan2A
= tanA + 1 8 tanA
– 3tan2A
tanA – 3 tan3A + 8 tanA
= 1 – 3 tan2A
9 tanA – 3 tan3A
= 1 – 3 tan2A
3(3 tanA – tan3A)
= 1 – 3 tan2A
= 3 tan3A = RHS proved
sin2β
10. a) If 2 tanα = 3 tanβ, prove that : tan(α – β) = 5 – cos2β
Solution
Given, 2 tanα = 3 tanβ
or, tanα = 3 tanβ
2
LHS = tan(α – β)
= 1 tanα – tanβ
+ tanα . tanβ
3 tanβ – tanβ
2
=
3
1 + 2 tanβ . tanβ
= 3 tanb – 2 tanβ
2 + 3 tan2b
sinβ
= cosβ
2 + 3 sin2β
cos2β
= sinβ × 2 cos2β sin2b
cosb cos2b + 3
= 4 2 sinβ . cosβ
cos2b + 6 sin2b
= 4 – sin2β 6 sin2b
4sin2b +
= 4 sin2β
+ 2 sin2b
= 5 – sin2β
1 + 2 sin2b
Vedanta Optional Mathematics Teacher's Guide ~ 10 259
= 5 – sin2β
(1 – 2 sin2b)
= 5 sin2β = RHS proved
– cos2β
11
b) tanθ = 7 and tanb = 3, prove that : cos2θ = sin4b
Solution
Here, tanθ = 1 , tanb = 1
7 3
LHS = cos2θ = 1 – tan2q
1 + tan2q
= 1 – 1 2
1 + 7
1 2
7
1 – 1
49
=
1
1 + 49
= 48 × 49
49 50
= 24
25
RHS = sin4b = sin2(2b)
= 2 sin2b . cos2b
= 2 1 2 tanb × 1 – tan2b
+ tan2b 1 + tan2b
= 4 × 1 1 × 1 – 1
3 9 1 + 9
1 1
+ 9
= 4 × 9 × 8 × 9
3 10 9 10
= 24
25
LHS = RHS proved
11. Prove that :
a) cosA – 1 + sin2A
sinA – 1 + sin2A = tanA
260 Vedanta Optional Mathematics Teacher's Guide ~ 10
Solution
LHS = cosA – 1 + sin2A
sinA – 1 + sin2A
= cosA – sin2A + cos2A + 2 sinA cosA
sinA – sin2A + cos2A + 2 sinA cosA
= cosA – (sinA + cosA)2
sinA – (sinA + cosA)2
= cosA – sinA – cosA
sinA – sinA – cosA
= –sinA
–cosA
= tanA = RHS proved
b. 1 – 1 cotθ= cot4θ
tan3θ + tanθ cot3θ +
Solution
LHS = 1 tanθ – 1 cotθ
tan3θ + cot3θ +
= 1 tanθ – 1 1 1
tan3θ + tan3θ + tanθ
= 1 tanθ – tanθ . tan3θ
tan3θ + tanθ + tan3θ
= 1 – tanθ . tan3θ
tan3θ + tanθ
1
= tan3θ+ tanθ
1 – tanθ . tan3θ
= 1 + θ)
tan(3θ
= cot4θ = RHS proved
c. cotA – tanA = 1
cotA – cot3A tan3A – tanA
Solution
LHS = cotA – tanA
cotA – cot3A tan3A – tanA
1
= tanA – tanA
tan3A – tanA
1 – 1
tanA tan3A
Vedanta Optional Mathematics Teacher's Guide ~ 10 261
= 1 tanA . tan3A – tanA
tanA tan3A – tanA tan3A – tanA
= tanA – tanA
tan3A – tanA tan3A – tanA
= tan3A – tanA
tan3A – tanA
= 1 = RHS proved
12. Prove that:
a) 8 1 + sin π 1 + sin 3π 1 – sin 5π 1 – sin 7π = 1
8 8 8 8
Solution
LHS = 8 1 + sin π 1 + sin 38π 1 – sin 58π 1 – sin 7π
8 8
= 8 1 + sin π 1 + sin 38π 1 – sin π – 3π 1 – sin π – π
8 8 8
= 8 1 + sin π 1 + sin 38π 1 – sin 38π . 1 – sin π8
8
= 8 1 – sin2 π . 1 – sin2 3π
8 8
= 8 cos2 π . cos2 3π ∴cos2 3π = cos2 π – π = sin2 π
8 8 8 2 8 8
π π
= 8 cos2 8 . sin2 8
= 2 4 sin2 π . cos2 π
8 8
= 2 2 sin π . cos π 2
8 8
= 2 sin2 π
4
= 2 1 2
2
= 1 = RHS proved
b) sin4 π + sin4 3π + sin4 5π + sin2 7π = 3
8 8 8 8 2
Solution
LHS = sin4 π + sin4 3π + sin4 5π + sin2 7π
8 8 8 8
= sin4 π + sin4 3π + sin4 2π + 8π + sin4 2π + 3π
8 8 8
= sin4 π + sin4 3π + cos4 8π + cos4 3π
8 8 8
= sin4 π + sin4 π – 8π + cos4 π + cos4 π – π
8 2 8 2 8
262 Vedanta Optional Mathematics Teacher's Guide ~ 10
= sin4 π + cos4 π + cos4 π + sin4 π
8 8 8 8
=2 sin4 π + cos4 π
8 8
=2 sin2 π + cos2 π 2 – 2 sin2 π . cos2 π
8 8 8 8
=2 1 – 1 4 sin2 π . cos2 π
2 8 8
=2 1 – 1 sin2 π
2 4
= 2 1 – 1 . 12
2
= 2 1 – 14
= 2 . 3
= 4
3 RHS proved
2 =
Questions for practice
1. If cosθ = 1 , then find the values of sin2θ, cos2θ and tan2θ.
2
1+cos2θ
2. Prove that cotθ = ± 1– cos2θ
3. Prove the following :
(a) 2sin2 π – A= (1– sinA)
4
(b) tanα + cotα = 2cosec2α
(c) tan 4π + θ = cos2θ
1–sin2θ
π
(d) 1–tan2 4 – θ = sin2θ
1 + tan2 π – θ
4
(e) 1+sin2A = cotA+1 2
1–sin2A cotA–1
4. Prove the following:
(a) cos2θ + sin2θ.cos2ß = cos2ß + sin2ß . cos2θ
(b) cosec 20° + cot 40° = cot 10° – cosec 40°
(c) 4 cosec2θ . cot2θ = cosec2θ – sin2θ
5. Prove that : tanθ + 2tan2θ + 4cot4θ = cotθ
6. Prove that : tanθ + tan 3π + θ + tan 2π – θ = 3 tan3θ.
3
Vedanta Optional Mathematics Teacher's Guide ~ 10 263
Sub multiple angles
Estimated Periods: 7
1. Objectives Objectives
S,N. Level
To define sub-multiple angles of an angle.
(i) Knowledge(k) To tell the formulae of trigonometric ratios of sub-multiple angles.
(ii) Understanding(U) To explain to derive the formulae of sub-multiple angles by
using compound angle formulae.
(ii) Application(A)
To solve problems of trigonometric identities of sub-multiple angles.
(iv) Higher Ability
(HA) To solve very long question of trigonometric ratios multiple
angles.
2. Teaching Materials
Formula chart of trigonometric ratios sub-multiple angles.
Teaching Strategies
– Review the formulae of trigonometric ratios of compound angles and multiple angles.
q q q
– Define sub-multiple angles of q as 2 , 3 , 4 etc.
– Show how to derive the formulae of trigonometric ratios of sub-multiple angles by
using compound angle formulae.
– Compare formula of multiple and sub-multiple angle formulae of rigonometry like
sin2q = 2 sinq . cosq
sinq = sin2 q = 2 sin q . cos q .
2 2 2
cos2q = cos2q – sin2q = 2 cos2q – 1 = 1 – tan2q
1 + tan2q
q cos22q q 1 – tan2 q
2 2 2
cosq = cos2 – – sin2 =
1 + tan22q
12.
5. Discuss how to evaluate values of sinq, cosq, tanq if sinq =
6. Discuss to solve problems related to trigonometric ratios of sub-multiple questions
given in exercises.
List of formulae: 2 tan q
2
1. sinθ = 2 sin q . cos q =
2 2 1 – tan22q
264 Vedanta Optional Mathematics Teacher's Guide ~ 10
cos22q q cos22q q 1 – tan2 q
2 2 1 2
2. cosθ = – sin2 = 2 – 1 = 1 – 2 sin2 =
+ tan22q
3. sinθ = 3 sin3q – 4 sin3 q
3
cosθ = 4 cos3 q – 3 cos q
3 3
3 tan q – tan3 q
1– 3 tan23q 3
4. tanθ =
3
cot2 q – 1
2
5. cotθ =
q
2 cot 2
cot3 q – 3 cot q
3 3
6. cotθ =
3 cot23q – 1
Some solved problems
Prove the following :
cot3 x – 3 cot 3x
3
1. cotx =
x
3 cot2 3 – 1
Solution
LHS = cotx = cot x + cot23x
3
cot x . cot 2x – 1
3 3
=
2x x
cot 3 + cot 3
x cot2 x – 1
3 3
= cot . – 1
x
2 cot 3
cot2 x – 1 x
3 3
= + cot
x
2 cot 3
cot3 x – 3 cot x
3 3
=
x 1
3 cot2 3 –
Vedanta Optional Mathematics Teacher's Guide ~ 10 265
= RHS proved
2. a) If cos q = 1 p + p1 , then prove that : cosθ = 1 p3 + 1
3 2 2 p3
Solution
Here, cos q = 1 p + 1
3 2 p
LHS = cosθ = 4 cos3 q – 3 cos q
3 3
= 4 . 1 p + 1 3 – 3 p + 1
8 p 2 p
= 1 p + 1 p + 1 2 – 3
2 p p
= 1 p + 1 p2 + 2 . p . 1 + 1 – 3
2 p p p2
= 1 p + 1 p2 + 2 + 1 – 3
2 p p2
= 1 p + 1 p2 – 1 + 1
2 p p2
= 1 p3 + 1
2 p3
= RHS proved
b) If sin q = 1 p + 1 , then prove that : cosθ = –21 p2 + 1
2 2 p p2
Solution
LHS = cosθ = 1 – 2 sin2 q
2
= 1 – 2 . 1 p + 1 2
4 p
= 1 – 1 p2 + 2 . p . 1 + 1
2 p2 p2
= 1 – 1 p2 + 1 + 2
2 p2
= 1 2 – p2 – 1 – 2
2 p2
= –12 p2 + 1
p2
266 Vedanta Optional Mathematics Teacher's Guide ~ 10
= RHS proved
3. Prove the following
1 – sinA 1 – tan A
cosA 2
a) =
1 + tanA2
Solution
LHS = 1 – sinA
cosA
1 – 1 2 tan A/2
+ tan2 A/2
=
1 – tan2A/2
1 + tan2A/2
1 + tan2 A – 2 tan A
1– 2 2
=
A
tan2 2
1 – tan A 2
2
= tan
A2 1 – tan A2
1 +
1 – tan A
1 2
=
+ tanA2
= RHS proved
b) 1 – 2 sin2 p – θ = sinθ
4 2
Solution
LHS = 1 – 2 sin2 p – θ
4 2
= cos2 p – θ
4 2
= cos p – θ
2
= sinθ = RHS proved
1– tan2 p – θ θ
1+ 4 4 2
c) = sin
p θ
tan2 4 – 4
Vedanta Optional Mathematics Teacher's Guide ~ 10 267
Solution
1– tan2 p – θ
1+ 4 – 4
LHS =
p θ
tan2 4 4
= cos2 p – θ
4 4
= cos p – θ
2 2
= sin θ = RHS proved
2
4. Prove that
a) cos4 θ – sin4 θ = cosθ
2 2
Solution
LHS = cos4 θ – sin4 θ
2 2
= cos2 θ + sin2 θ cos2 θ – sin2 θ
2 2 2 2
= 1 . cosθ
= cosθ = RHS proved.
b) 2 sinθ – sin2θ = tan
2 sinθ + sin2θ
Solution
LHS = 2 sinθ – sin2θ
2 sinθ + sin2θ
= 2 sinθ – 2 sinθ . cosθ
2 sinθ + 2 sinθ . cosθ
= 2 sinθ (1 – cosθ)
2 sinθ (1 + cosθ)
= 2 sin2 θ
2 cos2 2
θ
2
= tan2 θ = RHS proved.
2
268 Vedanta Optional Mathematics Teacher's Guide ~ 10
c) 1 sin2θ . 1 cosθ = tan θ
+ cos2θ + cosθ 2
Solution
LHS = 1 sin2θ . 1 cosθ
+ cos2θ + cosθ
= sin2θ cosθ . 1 cosθ
2 cos2θ + cosθ
= 1 sinθ
+ cosθ
2 sin θ . cos θ
2 2
=
θ
2 cos2 2
= tan θ = RHS proved
2
d) 1 + sinθ = tan2 p + θ
1 – sinθ 4 2
Solution
RHS = tan2 p + θ
4 2
= tan p + θ 2
4 2
tan p + tan θ 2
4 2
=
p θ
1 – tan 4 . tan 2
sin θ 2
cos 2
1 +
θ
= 2
sin θ 2
1– 2
cos θ
2
= cos θ + sin θ 2
2 2
cos θ – sin θ 2
2 2
= cos2 θ + sin2 θ + 2 cos θ . sin θ
2 2 2 2
cos2 θ + sin2 θ – 2 cos θ . sin θ
2 2 2 2
Vedanta Optional Mathematics Teacher's Guide ~ 10 269
= 1 + sinθ = LHS proved
1 – sinθ
cos θ – 1 + sinθ θ
e) 2 1 + sinθ 2
= tan
θ
sin 2 –
Solution
LHS = cos θ – 1 + sinθ
2 1 + sinθ
sin θ –
2
cos θ – sin2 θ + cos2 θ + 2 sin θ . cos θ
2 2 2 2 2
=
sin θ – sin2 θ + cos2 θ + 2 sin θ . cos θ
2 2 2 2 2
cos θ – sin θ + cos θ 2
2 2 2
=
sin θ – sin θ + cos θ 2
2 2 2
= cos θ – sin θ – cos θ
2 2 2
sin θ – sin θ – cos θ
2 2 2
= –sin θ
2
–cos θ
2
= tan θ = RHS proved.
2
5. Prove the following
a) tan p + θ = secθ + tanθ
4 2
Solution
LHS = tan p + θ
4 2
= tan p + tan θ
4 2
1 – tan p . tan θ
4 2
270 Vedanta Optional Mathematics Teacher's Guide ~ 10
= 1 + tan θ
1 – tan 2
θ
2
= 1 + sin q/2
cos q/2
1 – sin q/2
cos q/2
= cos θ + sin θ × cos θ + sin θ
2 2 2 2
cos θ – sin θ cos θ + sin θ
2 2 2 2
= cos θ + sin θ 2
2 2
cos2 θ – sin2 θ
2 2
= 1 + sinθ
cosθ
= 1 + sinθ
cosθ cosθ
= secθ + tanθ = RHS proved.
b) tan p – θ = 1 – sinθ
4 2 1 + sinθ
Solution
RHS = 1 – sinθ
1 + sinθ
sin2 θ + cos2 θ – 2 sin θ . cos θ
2 2 2 2
=
sin2 θ + cos2 θ + 2 sin θ . cos θ
2 2 2 2
cos θ – sin θ 2
2 2
=
cos θ + sin θ 2
2 2
= cos θ – sin θ
2 2
cos θ + sin θ
2 2
Dividing numerator and denominator by cos θ , we get
2
Vedanta Optional Mathematics Teacher's Guide ~ 10 271
= 1 – tan θ
2
1 + tan θ
2
= tan p – tan θ
4 2
1 + tan p . tan θ
4 2
= tan p – θ = LHS proved
4 2
c) sec p + θ . sec p + θ = 2 secθ
4 2 4 2
Solution
LHS = sec p + θ . sec p + θ
4 2 4 2
11
= –
p θ p θ
cos 4 – 2 cos 4 + 2
= 11 .
cos p . cos θ + sin p . sin θ cos p . cos θ + sin p . sin θ
4 2 4 2 4 2 4 2
= 11 .
1 . cos θ + 1 . sin θ 1 . cos θ + 1 . sin θ
2 2 2 2 2 2 2 2
= 2
cos θ + sin θ cos θ – sin θ
2 2 2 2
2
=
θ θ
cos2 2 – sin2 2
= 2
cosθ
= 2 secθ = RHS proved.
d) tan p – θ = cosθ
4 2 1 + sinθ
Solution
LHS = tan p – θ
4 2
= tan p – tan θ
4 2
1 + tan O4pp.ttioanna2θl Mathematics Teacher's Guide ~ 10
272 Vedanta
= 1 – sin q/2
cos q/2
1 + sin q/2
cos q/2
= cos θ – sin θ
2 2
cos θ + sin θ
2 2
= cos θ – sin θ cos θ + sin θ
2 2 × 2 2
cos θ + sin θ cos θ + sin θ
2 2 2 2
= cos2 θ – sin2 θ
2 2
sin θ + cos θ 2
2 2
= cosθ
sin2 θ + cos2 θ + 2 sin θ . cos θ
2 2 2 2
= 1 cosθ = RHS proved.
+ sinθ
e) cot θ + p – tan θ – p = 2 cosθ
2 4 2 4 1 + sinθ
Solution
LHS = cot θ + p – tan θ – p
2 4 2 4
= cot θ . cot p – 1 – tan θ – tan p
2 4 2 4
cot θ + cot p 1 + tan θ . tan p
2 4 2 4
= cos q/2 – 1 – sin q/2 –1
sin q/2 cos q/2
sin q/2
cos q/2 + 1 1+ cos q/2
sin q/2
= cos θ – sin θ – sin θ – cos θ
cos 2 + sin 2 cos 2 + sin 2
θ θ θ θ
2 2 2 2
= cos θ – sin θ + cos θ – sin θ
2 2 2 2
cos θ + sin θ cos θ + sin θ
2 2 2 2
Vedanta Optional Mathematics Teacher's Guide ~ 10 273
= 2 cos θ – sin θ
2 2
cos θ + sin θ
2 2
=2 cos θ – sin θ × cos θ + sin θ
2 2 2 2
cos θ + sin θ cos θ + sin θ
2 2 2 2
θ θ
=2 cos2 2 – sin2 2
cos θ + sin θ 2
2 2
2 cosθ
=
θ θ θ θ
cos2 2 + sin2 2 + 2 sin 2 . cos 2
= 2 cosθ = RHS proved.
1 + sinθ
f) tan p + θ + tan p – θ = 2 secθ
4 2 4 2
Solution
LHS = tan p + θ + tan p – θ
4 2 4 2
= tan p + tan θ + tan p – tan θ
4 2 4 2
p
1 – tan 4 . tan θ 1 + tan p . tan θ
2 4 2
= 1+ sin q/2 + 1 – sin q/2
1– cos q/2 cos q/2
sin q/2
cos q/2 1 + sin q/2
cos q/2
= cos θ + sin θ + cos θ – sin θ
2 2 2 2
cos θ – sin θ cos θ + sin θ
2 2 2 2
= cos θ + sin θ 2 + cos θ – sin θ 2
2 2 2 2
cos θ – sin θ cos θ + sin θ
2 2 2 2
= 1 + sinθ + 1 – sinθ
θ θ
cos2 2 – sin2 2
= 2
cosθ
= 2 secθ = RHS proved.
6. Prove that
274 Vedanta Optional Mathematics Teacher's Guide ~ 10
a) (cosa – cosb)2 + (sina – sinb)2 = 4 sin2 a – b
2
Solution
LHS = (cosa – cosb)2 + (sina – sinb)2
= cos2a – 2 cosa . cosb + cos2b + sin2a – 2 sina . sinb + cos2b
= 2(cos2a + sin2a) + (cos2b + sin2b) – 2(cosa . cosb + sina . sinb)
= 1 + 1 – 2 cos(a – b)
= 2 – 2 cos(a – b)
= 2[1 – cos(a – b)]
= 2 . 2 sin2 a – b
2
= 4 sin2 a – b = RHS proved
2
b) (sina + sinb)2 + (cosa + cosb)2 = 4 cos2 a – b
2
Solution
LHS = (sina + sinb)2 + (cosa + cosb)2
= sin2a + sin2b + 2 sina . sinb + cos2a + cos2b – 2 cosa . cosb
= (sin2a + cos2a) + (sin2b + sin2a) + 2(sina . sinb + cosa . cosb)
= 1 + 1 + 2 cos(a – b)
= 2 + 2 cos(a – b)
= 2[1 + cos(a – b)]
= 2 . 2 cos2 a – b
2
= 4 cos2 a – b = RHS proved
2
7. Prove the following
a) cos 2p . cos 4p . cos 8p . cos 1165p = 1
15 15 15 16
Solution
LHS = cos 2p . cos 4p . cos 8p . cos 16p
15 15 15 15
= 1 2 sin 2p . cos 2p . cos 4p . cos 8p . cos 1165p
15 15 15 15
2 sin 2p
15
Vedanta Optional Mathematics Teacher's Guide ~ 10 275
= 1 sin 4p . cos 4p . cos 8p . cos 1165p
15 15 15
2 sin 2p
15
= 1 sin 8p . cos 8p . cos 16p
15 15 15
4 sin 2p
15
= 1 sin 16p . cos 16p
15 15
8 sin 2p
15
= 1 2p sin 32p
sin 15 15
16
= 1 2p . sin 2p + 2p
sin 15 15
16
= 1 2p . sin 2p
sin 15 15
16
= 1 = RHS proved.
16
8. Proved that:
1 + cos 8p 1 + cos 3p 1 + cos 5p 1 + cos 7p = 1
8 8 8 8
Solution
LHS = 1 + cos 8p 1 + cos 3p 1 + cos 5p 1 + cos 7p
8 8 8
= 1 + cos 8p 1 + cos 3p 1+ cos p – 3p 1 + cos p – p
8 8 8
= 1 + cos p8 1 + cos 3p 1 – cos 3p 1 – cos 8p
8 8
= 1 – cos2 p8 1 – cos2 3p
8
= sin2 p . sin2 3p
8 8
= sin2 p . sin2 p2 – p8
8
= sin2 p . cos2 p
8 8
276 Vedanta Optional Mathematics Teacher's Guide ~ 10
= 1 2 sin p . cos p 2
4 8 8
= 1 sin2 p 2
4 8
= 1 sin p 2
4 4
= 1 1 2
4 2
= 1 = RHS proved.
8
8. Prove that:
tan 712° = 6 – 3 + 2 – 2
Solution
LHS = tan 712°
= tan 15°
2
= sin 15° × 2 sin 15°
cos 2 2 sin 2
15°
15° 2
= 2 sin2 15°
2
sin 15°
= 1 – cos 15°
sin 15°
= 1 – cos(45° – 30°)
sin(45° – 30°)
= 1 – cos 45° . cos 30° – sin 45° . sin 30°
sin 45° . cos 30° – cos 45° . sin 30°
1 – 1 3 – 1 . 1
2 .2 2 2
=
1 3 1 1
2 . 2 – 2 . 2
= 2 2 – 3 – 1 × 3 + 1
3–1 3+1
= 2 6 – 3 – 3+2 2– 3 –1
3–1
Vedanta Optional Mathematics Teacher's Guide ~ 10 277
= 2 6 – 2 3 + 2 2 – 4
2
= 6 – 3 + 2 – 2 = RHS proved
Questions for practice
1. Prove that: tan A =± 1 – cosA
2 1 + cosA
2. If cos 330° = 23, prove that : sin 165° = 1 2– 3
2
3. Prove that: 1 + cosθ + sinθ = cot θ
1 – cosθ + sinθ 2
4. Prove that: secθ + tanθ = tan p + θ
4 2
5. If sin θ = 1 a + 1 , prove that: sinθ = 1 a3 + 1
3 2 a 2 a3
6. Prove that: tan p + θ = 1 + sinθ = secθ + tanθ
4 2 1 – sinθ
7. Prove that: 1 sin2A × 1 cosA = tan A
+ cos2A + cosA 2
8. Prove that: cot 712° = 2 + 3 + 4 + 6
278 Vedanta Optional Mathematics Teacher's Guide ~ 10
Transformation of Trigonometric Formula
of sine and cosine
Estimated Periods: 5
1. Objectives Objectives
S,N. Level
To tell the formulae of transformation of trigonometric ratios
(i) Knowledge(k) of sine and cosine.
(ii) Understanding(U) To explain to derive the formulae of trannsformation of
trigonometric ratios.
(ii) Application(A)
To solve the problems of transformation of trigonometric formulae.
(iv) Higher Ability
(HA) To solve harder problems of transformation of trigonometric
formulae.
2. Required teaching materials
Formula chart of trigonometric ratio of compound angles and transformation formula of
trigonometric ratios.
Teaching strategies
– Review the formulae of trigonometric ratios of compound angles.
– List the trigonometric ratios of compound angles as given below:
sin(A + B) = sinA . cosB + cosA . sinB ... ... ... (i)
sin(A – B) = sinA . cosB – cosA . sinB ... ... ... (ii)
cos(A + B) = cosA . cosB – sinA . sinB ... ... ... (iii)
cos(A – B) = cosA . cosB + sinA . sinB ... ... ... (iv)
– Adding and subtracting above identities we get the required formulae.
Example adding (i) and (ii), we get
2 sinA . cosB = sin(A + B) + sin(A – B)
Subtracting (ii) from (i), we get
2 cosA . sinB = sin(A + B) – sin(A – B)
Similarly, explain to get the following results
2 cosA . cosB = cos(A – B) + cos(A – B)
2 sinA . sinB = sin(A – B) – cos(A + B)
Again, discuss how to derive the following formulae
–
sinC + sinD = 2 sin C + D . cos C – D
2 2
C + D C – D
sinC – sinD = 2 cos 2 . sin 2
cosC + cosD = 2 cos C + D . cos C – D
2 2
C + D C – D
cosC – cosD = 2 sin 2 . sin 2
Vedanta Optional Mathematics Teacher's Guide ~ 10 279
List of formula:
1. 2 sinA . cosB = sin(A + B) + sin(A – B)
2. 2 cosA . sinB = sin(A + B) – sin(A – B)
3. 2 cosA . cosB = cos(A + B) + cos(A – B)
4. 2 sinA . sinB = cos(A – B) – cos(A + B)
5. sinC + sinD = 2 sin C + D . cos C – D
2 2
6. sinC – sinD = 2 cos C + D . sin C – D
2 2
7. cosD – cosC = 2 sin C + D . sin C – D
2 2
8. If a = c then a+b = c+d is called componendo and dividendo.
b d a–b c–d
Some solved problems
1. Prove the following: 3
a) cos75° + cos15° = 2
Solution
LHS = cos75° + cos15°
= 2 cos 75° + 15° cos 75° – 15°
2 2
= 2 cos45° . cos30°
=2. 1 . 3
2 2
= 3 = RHS proved.
2
b) sin75° – sin15° = 1
2
Solution
LHS = sin75° – sin15°
= 2 cos 75° + 15° . sin 75° – 15°
2 2
= 2 cos45° . sin30°
280 Vedanta Optional Mathematics Teacher's Guide ~ 10
=2. 1 . 1
2 2
1
= 2 = RHS proved.
c) cos52° + cos68° + cos172° = 0
Solution
LHS = cos52° + cos68° + cos172°
= 2 cos 52° + 68° . cos 52° – 68° + cos(180° – 8°)
2 2
= 2 cos60° . cos(–8°) – cos8°
= 2 . 1 . cos8° – cos8°
2
= cos8° – cos8°
= 0 = RHS proved.
2. Prove that:
a) cos5A + sin3A = cotA
sin5A – sin3A
Solution
LHS = cos5A + sin3A
sin5A – sin3A
= 2 cos 5A + 3A . cos 5A – 3A
2 cos 2 . sin 5A 2 3A
5A + –
2 3A 2
= cos4A . csoinsAA cos(–θ) = cosθ
cos4A .
= cotA = RHS proved.
b) cos40° – cos60° = tan50°
sin60° – sin40°
Solution
LHS = cos40° – cos60°
sin60° – sin40°
= 2 sin 40° + 60° . sin 40° – 60°
2 cos 2 . sin 40° 2 60°
40° + –
2 60° 2
= sin50° . sin10°
cos50° . sin10°
= tan50° = RHS proved.
Vedanta Optional Mathematics Teacher's Guide ~ 10 281
c) cos80° + cos20° = 3
sin80° – sin20°
Solution
LHS = cos80° + cos20°
sin80° – sin20°
= 2 cos 80° + 20° . cos 80° – 20°
2 cos 80° 2 20° . sin 80° 2 20°
+ –
2 2
= cos30°
sin30°
3
= 2
1
2
= 3 × 2
2
= 3 = RHS proved.
d) cos8° + sin8° = tan53°
cos8° – sin8°
Solution
LHS = cos8° + sin8°
cos8° – sin8°
= cos8° + sin(90° – 82°)
cos8° – sin(90° – 82°)
= cos8° + cos82°
cos8° – cos82°
= 2 cos 8° + 82° . cos 8° – 82°
2 sin 8° 2 . sin 2
+
2 82° 82° –8°
2
= cos37°
sin37°
= cot37°
= cot(90° – 53°)
= tan53° = RHS proved.
e) cos10° – sin10° = cot55°
cos10° + sin10°
282 Vedanta Optional Mathematics Teacher's Guide ~ 10
Solution
LHS = cos10° – sin10°
cos10° + sin10°
= cos10° – sin(90° – 80°)
cos10° + sin(90° – 80°)
= cos10° – cos80°
cos10° + cos80°
2 sin 10° + 80° . sin 80° – 10°
2 2
=
10° + 80° 10° – 80°
2 cos 2 . cos 2
= sin45° . sin35°
cos45° . cos35°
= tan35°
= tan(90° – 55°)
= cot55° = RHS proved.
f) cos(40° + A) + cos(40° – A) = cotA
sin(40° + A) – sin(40° – A)
Solution
LHS = cos(40° + A) + cos(40° – A)
sin(40° + A) – sin(40° – A)
= 2 cos 40° + A + 40° – A . cos 40° + A – 40° + A
2 cos + A 2 40° – . sin + A 2 40° +
40° + 40° –
cosA 2 A 2 A
sinA
=
= cotA = RHS proved.
3. Prove the following.
a) sinA . sin2A + sin3A . sin6A = tan5A
sinA . cos2A + sin3A . cos6A
Solution
LHS = sinA . sin2A + sin3A . sin6A
sinA . cos2A + sin3A . cos6A
= 2 sinA . sin2A + 2 sin3A . sin6A
2 sinA . cos2A + 2 sin3A . cos6A
= cos(A – 2A) – cos(A + 2A) + cos(3A – 6A) – cos(3A + 6A)
sin(A + 2A) + sin(A – 2A) + sin(3A + 6A) + sin(3A – 6A)
Vedanta Optional Mathematics Teacher's Guide ~ 10 283
= cosA – cos3A + cos3A – cos9A
sin3A – sinA + sin9A – sin3A
= cosA – cos9A
sin9A – sinA
= 2 sin A + 9A . sin A + 9A
2 cos 2 . sin 2
A + A +
2 9A 2 9A
= tan5A = RHS proved.
b) cos2A . cos3A – cos2A . cos7A = sin7A + sin3A
sin4A . sin3A – sin2A . sin5A sinA
Solution
LHS = cos2A . cos3A – cos2A . cos7A
sin4A . sin3A – sin2A . sin5A
= 2 cos2A . cos3A – 2 cos2A . cos7A
2 sin2A . sin3A – 2 sin2A . sin5A
= cos(2A + 3A) + cos(2A – 3A) – cos(2A + 7A) – cos(2A – 7A)
cos(4A – 3A) – cos(4A + 3A) – cos(2A – A) + cos(2A + 5A)
= cos5A + cosA – cos9A – cos5A
cosA – cos7A – cos3A + cos7A
= cosA – cos9A
cosA – cos3A
2 sin A + 9A . sin 9A – A
2 2
=
A + 3A 3A – A
2 sin 2 . sin 2
= sin5A . sin4A
sin2A . sinA
= sin5A . 2 sin2A . cos2A
sin2A . sinA
= 2 sin5A . cos2A
sinA
RHS = sin7A + sin3A
sinA
2 sin 7A + 3A . cos 7A – 3A
2 2
=
sinA
= 2 sin5A . cos2A
sinA
LHS = RHS proved
284 Vedanta Optional Mathematics Teacher's Guide ~ 10
c) cos7A + cos3A – cos5A – cosA = cot2A
sin7A – sin3A – sin5A + sinA
Solution
LHS = cos7A + cos3A – cos5A – cosA
sin7A – sin3A – sin5A + sinA
= (cos7A – cosA) + (cos3A – cos5A)
(sin7A + sinA) – (sin3A + sin5A)
= 2 sin 7A + A . sin 7A – A + 2 sin 3A + 5A . sin 5A – 3A
2 sin 2 . cos 2 A – 2 2 cos 3A 2
7A + sin 3A + 5A –
2 A 7A – 2 . 2 5A
2
= 2 sin4A [sin3A + sinA]
2 sin4A [cos3A – cosA]
= sinA – sin3A
cos3A – cosA
2 cos A + 3A . sin A – 3A
2 sin 2 . sin A 2
= – 3A
3A + A 2
2
= cos2A
sin2A
= cot2A = RHS proved.
d) sinA + sin3A + sin5A + sin7A = tan4A
cosA + cos3A + cos5A + cos7A
Solution
LHS = sinA + sin3A + sin5A + sin7A
cosA + cos3A + cos5A + cos7A
= (sinA + sin7A) + (sin3A + sin5A)
(cosA + cos7A) + (cos3A + cos5A)
2 sin A + 7A . cos A – 7A + 2 sin 3A + 5A . cos 3A – 5A
2 cos 2 7A . cos A 2 + 2 cos 2 . cos 3A 2
= A + – 7A 3A + 5A – 5A
2 2 2 2
= 2 sin4A [cos3A + cosA]
2 cos4A [cos3A + cosA]
= tan4A = RHS proved.
e) sin5A – sin7A – sin4A + sin8A = cot6A
cos4A – cos5A – cos8A + cos7A
Solution
LHS = sin5A – sin7A – sin4A + sin8A
cos4A – cos5A – cos8A + cos7A
Vedanta Optional Mathematics Teacher's Guide ~ 10 285
= (sin5A – sin7A) – (sin4A – sin8A)
(cos4A – cos8A) – (cos5A – cos7A)
2 cos 5A + 7A . sin 5A – 7A – 2 cos 4A + 8A . sin 4A – 8A
2 sin 4A 2 8A . sin 8A 2 4A – 2 sin 5A 2 . sin 7A 2 5A
= + – + 7A –
2 2 2 2
= cos6A [–sinA + sin2A]
sin6A [sin2A – sinA]
= cot6A = RHS proved.
f) sin(p + 2)θ – sinpθ = cot(p + 1)θ
cospθ – cos(p + 2)θ
Solution
LHS = sin(p + 2)θ – sinpθ
cospθ – cos(p + 2)θ
= 2 cos p + 2 + p θ . sin p +2 – p θ
2 sin p + 2 + 2 θ . sin p 2 – p θ
p
2 +2
2
= cos(p + 1)θ . sinθ
sin(p + 1)θ . sinθ
= cot(p + 1)θ = RHS proved.
g) (sin4A + sin2A) . (cos4A – cos8A) = 1
(sin7A + sin5A) . (cosA – cos5A)
Solution
LHS = (sin4A + sin2A) . (cos4A – cos8A)
(sin7A + sin5A) . (cosA – cos5A)
2 sin 4A + 2A . cos 4A – 2A . 2 sin 4A + 8A . sin 8A – 4A
2 2 . 2 sin A 2 . sin 2
= 2 sin + A
7A + 5A 7A – 5A 2 5A 5A –
2 . cos 2 2
= sin3A . cosA . sin6A . sin2A
sin6A . cosA . sin3A . sin2A
= 1 = RHS proved.
4. Prove that:
a) sin20° . sin40° . sin60° . sin80° = 3
16
286 Vedanta Optional Mathematics Teacher's Guide ~ 10
Solution
LHS = sin20° . sin40° . sin60° . sin80°
= 3 . 1 (2 sin20° . sin40°) . sin80°
2 2
= 3 cos(20° – 40°) – cos(20° + 40°) . sin80°
4
= 3 {cos20° – cos60°} . sin80°
4
= 3 cos20° . sin80° – 3 . 1 . sin80°
4 4 2
= 3 sin(20° + 80°) – sin(20° – 80°) – 3 sin80°
8 8
= 3 sin100° + 3 sin60° – 3 sin80°
8 8 8
= 3 sin(180° – 80°) – 3 sin80° + 3 . 3
8 8 8 2
= 3 + 3 sin80° – 3 sin80°
16 8 8
= 3 = RHS proved.
16
b) sin10° . sin30° . sin50° . sin70° = 1
16
Solution
LHS = sin10° . sin30° . sin50° . sin70°
= sin10° . 1 . sin50° . sin70°
2
= 1 (2 sin10° . sin50°) sin70°
4
= 1 {cos(10° – 50°) – cos(10° + 50°)} . sin70°
4
= 1 {cos40° – cos60°} . sin70°
4
= 1 cos40° . sin70° – 1 . 1 . sin70°
4 4 2
= 1 (2 cos40° . sin70°) – 1 sin70°
8 8
= 1 {sin110° – sin(–30°)} – 1 sin70°
8 8
= 1 sin110° + 1 . 1 – 1 sin70°
8 8 2 8
Vedanta Optional Mathematics Teacher's Guide ~ 10 287
= 1 sin(180° – 70°) + 1 – 1 sin70°
8 16 8
= 1 sin70° – 1 sin70° + 1
8 8 16
= 1 = RHS proved.
16
d) cos40° . cos100° . cos160° = 1
8
Solution
LHS = cos40° . cos100° . cos160°
= 1 [2 cos40° . cos100°] . cos160°
2
= 1 [cos40° + 100°) + cos(40° – 100°)] . cos160°
2
= 1 [cos140° + cos60°] . cos160°
2
= 1 cos140° . cos160° + 1 . 1 . cos160°
2 2 2
= 1 (cos300° + cos20°) + 1 . cos160°
4 4
= 1 . 1 + 1 cos20° – 1 cos20°
4 2 4 4
= 1 = RHS proved.
8
e) tan20° . tan40° . tan80° = 3
Solution
LHS = tan20° . tan40° . tan80°
= sin20° . sin40° . sin80°
cos20° cos40° cos80°
Numerator = sin20° . sin40° . sin80°
Simplify it to get, 3
8
Again, denominator = cos20°, cos40°, cos80°
Simplify it to get, 1
8
3
Then, LHT = 8 = 3 = RHS proved.
1
8
288 Vedanta Optional Mathematics Teacher's Guide ~ 10
5. Prove that:
a) sin(45° + θ) . sin(45° – θ) = 1 cos2θ
2
Solution
LHS = sin(45° + θ) . sin(45° – θ)
= 1 {2 sin(45° + θ) . sin(45° – θ)}
2
1
= 2 {cos(45° + θ – 45° + θ) – cos(45° + θ + 45° – θ)}
= 1 {cos2θ – cos90°}
2
1
= 2 cos2θ = RHS proved.
b) cos(45° + θ) . cos(45° – θ) = 1 cos2θ
2
Solution
LHS = cos(45° + θ) . cos(45° – θ)
= 1 {cos(45° + θ + 45° – θ) + cos(45° + θ – 45° + θ)}
2
1
= 2 [cos90° + cos2θ]
= 1 cos2θ = RHS proved.
2
c) cosθ . cos(60° – θ) . cos(60° + θ) = 1 cos3θ
4
Solution
LHS = cosθ . cos(60° – θ) . cos(60° + θ)
= 1 cosθ {2 cos(60° – θ) . cos(60° + θ)}
2
1
= 2 cosθ {cos(60° – θ + 60° + θ) + cos(60° – θ – 60° – θ)}
= 1 cosθ {cos120° + cos2θ}
2
= 1 cosθ –1 + 1 cosθ . cos2θ
2 2 2
= – 1 cosθ + 1 {cos3θ . cosθ}
4 4
=– 1 cosθ + 1 cos3θ + 1 cosθ
4 4 4
1
= 4 cos3θ = RHS proved.
Vedanta Optional Mathematics Teacher's Guide ~ 10 289
6. Prove that: cos(36° – θ) . cos(36° + θ) + cos(54° + θ) . cos(54° – θ) = cos2θ
Solution
LHS = cos(36° – θ) . cos(36° + θ) + cos(54° + θ) . cos(54° – θ)
= 1 {cos(36° – θ + 36° + θ) + cos(36° – θ – 36° – θ)}
2
1
+ 2 {cos(54° + θ + 54° – θ) + cos(54° + θ – 54° + θ)}
= 1 {cos72° + cos2θ + cos108° + cos2θ}
2
= 1 . 2 cos2θ + 1 {cos72° + cos(180° – 72°)}
2 2
= cos2θ + 1 {cos72° – cos72°}
2
= cos2θ + 1 . 0
2
= cos2θ = RHS proved.
7. Prove that:
a) tan p + θ + tan p – θ = 2 sec2θ
4 4
Solution
LHS = tan p + θ + tan p – θ
4 4
= tan p + tanθ – tan p – tanθ
4 . tanθ 4
p
1 – tan 4 1 + tan p . tanθ
4
= 1 + sin q + 1– sin q
cos q 1+ cos q
sin q
1 – sin q cos q
cos q
= cosθ + sinθ + cosθ – sinθ
cosθ – sinθ cosθ + sinθ
= (cosθ + sinθ)2 + (cosθ – sinθ)2
cos2θ – sin2θ
= cos2θ + sin2θ + 2 sinθ. cosθ + cos2θ + sin2θ – 2 sinθ cosθ
cos2θ
= 1+1
cos2θ
= 2 1
cos2θ
= 2 sec2θ = RHS proved.
290 Vedanta Optional Mathematics Teacher's Guide ~ 10
b) tan p + θ – tan p – θ = 2 tan2θ
4 4
Solution
LHS = tan p + θ – tan p – θ
4 4
= tan p + tanθ – tan p – tanθ
4 4
1 – tan p . tanθ 1 + tan p . tanθ
4 4
= 1 + sin q – 1 – sin q
cos q cos q
1 – sin q 1 + sin q
cos q cos q
= cosθ + sinθ – cosθ – sinθ
cosθ – sinθ cosθ + sinθ
= (cosθ + sinθ)2 – (cosθ – sinθ)2
cos2θ – sin2θ
= cos2θ + sin2θ + 2 sinθ. cosθ – cos2θ – sin2θ + 2 sinθ cosθ
cos2θ
= sin2θ + cos2θ
cos2θ
= 2 sin2θ
cos2θ
= 2 tan2θ = RHS proved.
8. Prove the following.
a) (cosA + cosB)2 + (sinA + sinB)2 = 4cos2 A – B
2
Solution
LHS = (cosA + cosB)2 + (sinA + sinB)2
= 2 cos A + B . cos A – B 2+ 2 sin A + B . cos A – B 2
2 2 2 2
= 4 cos2 A – B cos2 A + B + sin2 A + B
2 2 2
= 4 cos2 A – B = RHS proved.
2
b) (CosB – cosA)2 + (sinA – sinB)2 = 4 sin2 A – B
2
Solution
LHS = (CosB – cosA)2 + (sinA – sinB)2
= 2 sin A + B . sin A – B 2 + 2 cos A + B . sin A – B 2
2 2 2 2
Vedanta Optional Mathematics Teacher's Guide ~ 10 291
= 4 sin2 A + B sin2 A – B + 4 cos2 A + B . sin2 A – B
2 2 2 2
= 4 sin2 A – B sin2 A + B + cos2 A + B
2 2 2
= 4 sin2 A – B . 1
2
= 4 sin2 A – B = RHS proved.
2
c) sin2 π + A – sin2 π – A = 1 sinA
8 2 8 2 2
Solution
LHS = sin2 π + A – sin2 π – A
8 2 8 2
= 1 1 – cos2 π + A – 1 1 – cos2 π – A
2 8 2 2 8 2
= 1 – 1 cos π + A – 1 + 1 cos π4 – A
2 2 4 2 2
= 1 cos π – A – cos π – A
2 4 4
1 π – A + π + A π + A – π + A
2 4 4 4 4
= 2 sin . sin
22
= sin π . sinA
4
= 1 sinA = RHS proved.
2
3
d) sin2A + sin2(A + 120°) + sin2(A – 120°) = 2
Solution
LHS = sin2A + sin2(A + 120°) + sin2(A – 120°)
= sin2A + 1 {1 – cos2 (A + 120°) + 1 – cos2 (A – 120°)}
2
= 1 + 1 + sin2A – 1 {cos(2A + 240°) + cos(2A – 240°)}
2 2 2
= 1 + sin2A – 1 . 2 cos 2A + 240° + 2A – 240° cos 2A + 240° – 2A – 240°
2 2 2
= 1 + sin2A – cos2A . cos240°
= 1 + sin2A – cos2A cos240°
= 1 + sin2A – (1 – 2 sin2A) . –1
2
1
= 1 + sin2A + 2 – sin2A
= 1 + 1 = 3 = RHS proved.
2 2
292 Vedanta Optional Mathematics Teacher's Guide ~ 10
9. a) If sinα + sinb = 1 and cosα + cosb = 12, prove that: tan a + b = 1
4 2 2
Solution
Here, sinα + sinb = 1
4
1
or, 2 sin a + b . cos a – b = 4 ... ... ... (i)
2 2
1
and cosα + cosb = 2
or, 2 cos a + b . cos a – b = 1 ... ... ... (ii)
2 2 2
Dividing (i) by (ii), we get,
tan(α + b) = 1 proved.
2
b) If sinx = k siny, then prove that: tan x – y = k – 1 tan x + y
2 k + 1 2
Solution
Here, k = sinx
siny
RHS = k–1 tan x + y
k+1 2
= sinx – 1 tan x + y
siny + 1 2
sinx
siny
= sinx – siny × siny tan x + y
siny sinx + siny 2
= 2 cos x + y . sin x – y tan x + y
2 2 . cos x 2 y 2
sin x + y –
2 2
= cot x + y . tan x + y . tan x – y
2 2 2
= tan x – y = RHS proved.
2
c) If sin(A + B) = k sin(A – B), then prove that: (k – 1) tanA = (k + 1) tanB.
Solution
Here, = sin(A + B) = k
sin(A – B) 1
By using componendo and dividendo
sin(A + B) + sin(A – B) = k+1
sin(A + B) – sin(A – B) k–1
Vedanta Optional Mathematics Teacher's Guide ~ 10 293
or, 2 sinA . cosB = k+1
2 cosA . sinB k–1
or, tanA = k+1
tanB k–1
(k – 1) tanA = (k + 1) tan B proved.
10. Prove that: sin2x – sin2y = tan(x y)
sinx . cosx – siny . cosy
Solution
LHS = sinx sin2x – sin2y cosy
. cosx – siny .
= 2 sin2x – sin2y
2 sinx . cosx – 2 siny . cosy
= 1 – cos2x – 1 + cos2y
sin2x – sin2y
= cos2y – cos2x
sin2x – sin2y
= 2 sin 2y + 2x . sin 2x – 2y
2 2
2 cos 2x + 2y . sin 2x – 2y
2 2
= tan(x y) = RHS proved.
11. Prove that cos 2π + cos 4π + cos 6π = –12
7 7 7
Solution
LHS = cos 2π + cos 4π + cos 6π
7 7 7
1
= 2 cos 2π . sin p + 2 cos 4π . sin p + 2 cos 6π . sin p
p 7 7 7 7 7 7
2 sin 7
1 p sin 2π + p – sin 2π – p + sin 4π + p – sin 4π – p
= 7 7 7 7 7 7 7 7 7
2 sin
+ sin 67π + p7 – sin 6π – 7p
7
= 1 sin 3π – sin p + sin 5π – sin 3π + sin π – sin 5π
7 7 7 7 7
2 sin p
7
1 –sin p + 0
= p 7
7
2 sin
= –21 = RHS proved.
294 Vedanta Optional Mathematics Teacher's Guide ~ 10
11. Prove that: x = y cot a + b , if x cosα + y sinα = x cosβ + y sinβ.
2
Solution
Here, x cosα + y sinα = x cosβ + y sinβ
or, x(cosα – cosb) = y(sinβ – sina)
or, x . 2 sin a + b sin b – a = y 2 cos b + a sin b – a
2 2 2 2
x = y cot a + b proved.
2
Questions for practice
Prove the following
1. cos15° . sin75° = 2 + 3
4
2. sin5x – sin3x = tan4x
cos5x + cos3x
3. cos20° – sin20° = tan25°
cos20° + sin25°
4. cosθ – cos2θ + cos3θ = cot2θ
sinθ – sin2θ + sin3θ
5. sin8θ . cosθ – sin6θ . cos3θ = tan2θ
cos2θ . cosθ – sin3θ . sin4θ
6. cosec π – θ . cosec π + θ = 2
4 4 cosθ
7. sin10° . sin50° . sin60° . sin70° = 3
16
1
8. cos80° . cos140° . cos160° = 8
9. cosθ . cos(60° – θ) . cos(60° + θ) = 1 cos3θ
4
10. cos20° . cos40° . cos80° . cos240° = –116
11. cos π . cos 2π . cos 4π = –18
7 7 7
12. If sin2x + sin2y = 1 and cos2x + cos2y = 12, then show that: tan(x + y) = 32.
3
Conditional Trigonometric Identities
Vedanta Optional Mathematics Teacher's Guide ~ 10 295
Estimated Periods: 6
1. Objectives
S,N. Level Objectives
(i) Knowledge(k) To state the conditional identities related to angles of a triangle.
(ii) Understanding(U) To explain to derive the conditional trigonometric identities.
(ii) Application(A) To solve the problems related to conditional identities in
trigonometry.
(iv) Higher Ability (HA) To solve the order problems related to conditional identities.
2. Teaching Materials
List of formula of conditional trigonometric identity in a chart paper.
3. Teaching Learning Stategies:
– Review the formulae of transformation of trigonometric ratios.
– Discuss components of a triangle 3 sides and 3 angles.
– If A, B and C are angles of a triangle. Then A + B + C = π or A + B = π – C
Taking sin, cosine and tangent ratios on both side, find different identities.
Example sin(A + B) = sin(π – C) = sinC
cos(A + B) = cos (π – C) = –cosC
tan(A + B) = tan (π – C) = –tanC
A B C
– Similarly, from 2 + 2 = π – 2
2
find different conditional identities.
– Again from 2A + 2B = 2π – 2C
find different conditional identities.
– Solve some question from exercise of the text book and give guidance to the students
to solve the problems in the same exercise.
List of formula:
1. 2 sinA . cosB = sin(A + B) + sin(A – B)
2. 2 cosA . sinB = sin(A + B) – sin(A – B)
3. 2 sinA . sinB = cos(A – B) – cos(A + B)
4. 2 cosA . cosB = cos(A + B) + cos(A – B)
5. sinC + sinD = 2 sin C + D . cos C – D
2 2
6. sinC – sinD = 2 cos C + D . sin C + D
2 2
296 Vedanta Optional Mathematics Teacher's Guide ~ 10
7. cosC + cosD = 2 cos C + D . cos C – D
2 2
8. cosC – cosD = 2 sin C + D . sin D– C
2 2
= –2 sin C + D . sin C – D
2 2
9. sin(A + B) = sin(π – C) = sinC
sin A + B = sin π – C = cos C
2 2 2 2 2
cos(A + B) = cos(π – C) = –cosC
cos A + B = cos π – C = sin C
2 2 2 2 2
tan(A + B) = tan(π – C) = –tanC
tan A + B = tan π – C = tan C
2 2 2 2 2
sin(2A + 2B) = sin(2π – 2C) = –sin2C
cos(2A + 2B) = cos(2π – 2C) = cos2C
tan(2A + 2B) = tan(2π – 2C) = –tan2C
Some solved problems
1. If A + B + C = 180°, show that: sin(B + 2C) + sin(C + 2A) + sin(A + 2B) = sin(A – C) +
sin(B – A) + sin(C – B)
Solution
Here, A + B + C = 180°
or, A + B = 180° – C
sin(A + B) = sin(180° – C) = sinC
LHS = sin(B + 2C) + sin(C + 2A) + sin(A + 2B) (∴180° = π)
= sin(B + C + C) + sin(C + A + A) + sin(A + B + B)
= sin(π – A + C) + sin(π – B + A) + sin(π – C + B)
= sin{π – (A – C)} + sin{π – (B – A)} + sin{π – (C – B)}
= sin(A – C) + sin(B – A) + sin(C – B)
= RHS proved.
2. If A + B + C = π, prove that:
a) cot A . cot B . cot C = cot A + cot B + cot C
2 2 2 2 2 2
Vedanta Optional Mathematics Teacher's Guide ~ 10 297
b) tan A . tan B + tan B . tan C + tan C . tan A = 1.
2 2 2 2 2 2
Solution
a) cot A . cot B . cot C = cot A + cot B + cot C
2 2 2 2 2 2
Here, A + B + C = πc
or, A + B = π – C
2 2 2 2
cot A + B = cot π – C
2 2 2 2
or, cot A . cot B –1 = tan C
2 2 2
A
cot B + cot 2
2
or, cot A . cot B –1 = 1
2 2 cot
A
cot B + cot 2 C
2 2
cot A . cot B . cot C = cot A + cot B + cot C proved.
2 2 2 2 2 2
b) tan A . tan B + tan B . tan C + tan C . tan A = 1.
2 2 2 2 2 2
Solution
Here, A + B + C = πc
or, A + B = π – C
2 2 2 2
tan A + B = tan π – C
2 2 2 2
or, tan A + tan B = cot C
2 2 2
1 – tan A . tanB2
2
or, tan A + tan B = 1
2 2 tan
A
1 – tan 2 . tan B C
2 2
tan A . tan B + tan B . tan C + tan C . tan A = 1 proved.
2 2 2 2 2 2
3. If A + B + C = π, prove that:
a) cos2A + cos2B – cos2C = 1 – 4 sinA . sinB . cosC
Solution
298 Vedanta Optional Mathematics Teacher's Guide ~ 10
Here, A + B + C = π
or, A + B = π – C
cos(A + B) = cos(π – C) = –cosC
LHS = cos2A + cos2B – cos2C
= 2 cos 2A + 2B . cos 2A – 2B –(2 cos2C – 1)
2 2
= 2 cos(A + B) . cos(A – B) – 2 cos2C + 1
= 2(–cosC) . cos(A – B) – 2 cos2C + 1
= 1 – 2 cosC [cos(A – B) + cosC]
= 1 – 2 cosC [cos(A – B – cos(A + B)]
= 1 – 2 cosC . 2 sinA . sinB
= 1 – 4 sinA . sinB . cosC
= RHS proved.
4. If A + B + C = pc, prove the following:
a. SinA + sinB – sinC = 4 sinA2 . sinB2 . cosC2
Solution
Here, A + B + C = pc
A + B = pc – C
2 2 2 2
∴ sin A B = sin pc C = cosC2
2 –2 2 –2
and cos AB = cos pc C = sinC2
2–2 2 –2
Here, LHS = sinA + sinB – sinC
= 2sin A +B . cos A–B – 2sinC2 . cosC2
2 2
= 2cosC2 . cos A–B . 2sinC2 . cosC2
2
= 2cosC2 cos A – B – sinC2
2
= 2cosC2 cos A – B – cos A + B
2 2
= 2cosC2 . 2sinA2 . sinB2
= 4sinA2 . sinB2 . cosC2
Vedanta Optional Mathematics Teacher's Guide ~ 10 299
= RHS proved.
b. –SinA + sinB + sinC = 4cosA2 . sinB2 . sinC
Solution
Here, A + B + C = pc
A + B = pc – C
2 2 2 2
∴ sin A + B = sin pc C = cosC2
2 2 2 –2
and cos AB = sinC2
LHS 2+2
= sinB + sinC – sinA
= 2sin B+C . cos B–C – 2sinA2 . cosA2
2 2
= 2cosA2 cos B – C – sinA2
2
= 2cosA2 cos B – C – cos B + C
2 2
= 2cosA2 2sinB2 . sinC2
= 4cosA2 . sinB2 . sinC2
= RHS proved.
5. If A + B + C = pc, prove that
a. cos2A + cos2B – cos2C = 1 – 4sinA . sinB . cosC
Solution
Here, A + B + C = p
A + B = p – C
∴ cos(A + B) = cos(p – C) = –cosC
LHS = cos2A + cos2B – cos2C
= 2cos 2A + 2B . cos 2A – 2B – (2cos2C – 1)
2 2
= 2cos(A + B) . cos(A – B) – 2cos2C + 1
= –2cosC . cos(A – B) – 2cos2C + 1
= 1 – 2cosC[cos(A – B) + cosC]
= 1 – 2cosC[cos(A – B) – cos(A + B)]
= 1 – 2cosC . 2sinA . sinB
= 1 – 4sinA . sinB . cosC
= RHS proved.
300 Vedanta Optional Mathematics Teacher's Guide ~ 10