Section 6.4 Trigonometry
Right Triangles
Hypotenuse opposite
Adjacent
Trigonometric Ratios
sin opp . csc hyp.
hyp. opp.
cos adj. sec hyp.
hyp. adj.
tan opp. cot adj.
adj. opp.
Example 1
Given the following right triangles find these trigonometric ratios sin A, cos A, and tan A
B
5
3
A 4C
sin a opp . 3
hyp. 5
cos a adj. 4
hyp. 5
tan A opp. 3
adj. 4
Example 2
Use the following figure to answer questions #1-3
B
c
a
AbC
1) Find sin B , if a 5 and b 12
B
c
12
A 5C
c2 a2 b2
c 2 52 122
c 2 169
c 169 c 13
B
c = 13
12
A 5C
sin B 12
13
2) Find b , if cos A .7 and c 12
B
12
b
A aC c2 a2 b2
122 8.4 b2
cos A a 144 70.56 b2
12 b2 73.44
0.7 a b 73.44 8.6
12
a .712 8.4
3) Find sin B , if b a 3
B
2a 30
b =a 3
60 C
Aa
sin B sin 30 a 1
2a 2
Example 4
Solve the following right triangle
B
10
34 C
A
Find the value of the missing angle first.
B 90 34 56
B
56
10
a
34 C
Ab
sin 34 a cos 34 b
10 10
.559 a .829 b
10 10
a 10.559 b 10.829
a 5.59 b 8.29
Example 5
Solve the following right triangle
B
11 7
AC
Find angle A
sin A 7
11
sin A .636
A sin 1.636 39.5
Find B
b 90 39.5 50.5
Find b
112 7 2 b2
121 49 b2
121 49 b2
b2 72
b 72 8.5
Example 6
A construction worker is standing 50 feet from the base of the tower with an angle of elevation
of 27 degrees. Find the height of the tower?
?
27
50 ft
cos27 h
50
.891 h
50
h .89150
h 44.6 ft
Example 7
Find the area of the given triangle
14
32
18
Solution:
14
h
32
18
sin 32 h
14
h 14sin 32
h 7.42 units
A 1 bh 1 7.4218 66.8 square units
22
Example 8
A surveyor at point P wished to measure the distance PQ in the drawing that follows. The
surveyor sights point Q, makes a right angle at P and steps off 100 feet to R, and again sights Q.
Find PQ.
R
64
100 ft
P Q
tan 64 PQ
100
2.050 PQ
100
PQ 2.050 100
PQ 205