The words you are searching are inside this book. To get more targeted content, please make full-text search by clicking here.

Section 6.4 Trigonometry Right Triangles Hypotenuse Adjacent opposite Trigonometric Ratios .. tan.. cos.. sin adj opp hyp adj hyp opp .. cot

Discover the best professional documents and content resources in AnyFlip Document Base.
Search
Published by , 2016-06-30 08:45:04

Hypotenuse opposite Adjacent - Radford University

Section 6.4 Trigonometry Right Triangles Hypotenuse Adjacent opposite Trigonometric Ratios .. tan.. cos.. sin adj opp hyp adj hyp opp .. cot

Section 6.4 Trigonometry
Right Triangles

Hypotenuse opposite


Adjacent
Trigonometric Ratios

sin  opp . csc  hyp.
hyp. opp.

cos  adj. sec  hyp.
hyp. adj.

tan  opp. cot  adj.
adj. opp.

Example 1

Given the following right triangles find these trigonometric ratios sin A, cos A, and tan A

B

5
3

A 4C

sin a  opp .  3
hyp. 5

cos a  adj.  4
hyp. 5

tan A  opp.  3
adj. 4

Example 2
Use the following figure to answer questions #1-3

B
c

a

AbC

1) Find sin B , if a  5 and b  12

B

c
12

A 5C

c2  a2  b2
c 2  52  122
c 2  169
c  169  c  13

B

c = 13

12

A 5C

sin B  12
13

2) Find b , if cos A  .7 and c  12
B

12
b

A aC c2  a2  b2
122  8.4  b2
cos A  a 144  70.56  b2
12 b2  73.44

0.7  a b  73.44  8.6
12

a  .712  8.4

3) Find sin B , if b  a 3
B

2a 30
b =a 3

60 C
Aa

sin B  sin 30  a  1
2a 2

Example 4
Solve the following right triangle

B

10

34 C
A

Find the value of the missing angle first.

B  90  34  56

B

56

10
a

34 C
Ab

sin 34  a cos 34  b
10 10

.559  a .829  b
10 10

a  10.559 b  10.829

a  5.59 b  8.29

Example 5

Solve the following right triangle

B

11 7

AC

Find angle A
sin A  7

11
sin A  .636

A  sin 1.636  39.5

Find B
b  90  39.5  50.5

Find b

112  7 2  b2
121  49  b2
121  49  b2
b2  72
b  72  8.5

Example 6

A construction worker is standing 50 feet from the base of the tower with an angle of elevation
of 27 degrees. Find the height of the tower?

?

27
50 ft

cos27  h

50
.891  h

50

h  .89150

h  44.6 ft

Example 7
Find the area of the given triangle

14
32
18

Solution:

14
h

32

18

sin 32  h
14

h  14sin 32
h  7.42 units

A  1 bh  1 7.4218  66.8 square units

22

Example 8

A surveyor at point P wished to measure the distance PQ in the drawing that follows. The
surveyor sights point Q, makes a right angle at P and steps off 100 feet to R, and again sights Q.
Find PQ.

R

64

100 ft

P Q

tan 64  PQ
100

2.050  PQ
100

PQ  2.050 100
PQ  205


Click to View FlipBook Version